# Article XX.-MAMMALS COLLECTED IN EASTERN CUBA IN 1917. WITH DESCRIPTIONS OF.TWO NEW SPECIES 

By H. E. Anthony

Plates XXXV to XXXVII
Early in 1917 work was begun in the eastern end of Cuba, the Santiago region, with the intention of making collections of the living mammals and of exploring as many caves as possible in the search for extinct mammalia. I was able to get well started, with enough data gathered from various sources to insure a successful expedition, when the political rebellion that caused so much trouble in Cuba broke out. It found Mrs. Anthony, who was my able assistant on this expedition, and me at Daiquiri investigating the caves along the seacoast; and developments of this disturbance so interfered with our movements that we were compelled to remain here for several weeks after my work had been practically finished. Upon being able to get out to Santiago I learned that it was useless to attempt further work in this part of the island that spring and consequently gave up my plans and returned to New York City.

Subsequently, the entrance of the United States into the World War, when I left the Museum to enter military service, not only prevented a return to Cuba to follow up the clues I had obtained in 1917 but even kept me from a very close examination of the collection that had been made. A preliminary investigation, however, disclosed a new fossil bat, which was described. ${ }^{1}$ Now that this material has been more fully looked over, it proves to be well worthy of putting on record.

After my return from Cuba in 1917 I was able, thanks to the courtesy of Mr. William P.almer of the United States National Museum and of Dr. G. M. Allen of the Museum of Comparative Zoology, to look over the collections made on the western end of Cuba that same spring by the National Museum and by Dr. Thomas Barbour of the Museum of Comparative Zoology. In addition to these collections I I have seen material collected on the Isle of Pines by the Messrs. Link and brought to the American Museum for identification by Mr. O. A. Peterson of the Carnegie Museum. The species taken thus in four different collections are, so far as is now known, nearly identical; that

[^0]is to say, a genus occurring on both ends of the island is represented by the same species at each end and there seems to be no apparent differentiation over a large range. I exclude from this statement the species of Nesophontes described in this paper; Nesophontes micrus is found at both ends of the island and further research may show a similar range for the new form.

I take pleasure in acknowledging the very material assistance rendered the expedition to Cuba by many individuals. Mr. William Fromm of Santiago, through his intimate knowledge of the region, was able to give me much valuable information and to put me in touch with many persons who could help the expedition, and to him my sincerest thanks are due. Mr. Whittaker, in charge of the Spanish American Iron Mines, placed quarters near Daiquiri at my disposal and gave me valuable assistance in many ways. Mr. Charles Ramsden, of Guantanamo, Cuba, presnted me with several specimens of rare bats from his own collection and also stood ready to help the work in the field had it not been summarily cut off. I wish also to acknowledge my appreciation of the keen interest and material aid given by Dr. W. D. Matthew of the Department of Palæontology of this Museum, one of the pioneers in the attack on the West Indian problem.

Almost all of our collecting was done in the vicinity of Daiquiri, on the eastern coast of Cuba. Commencing work at Santiago, I made a short two-day trip back into the mountains to Jarahueca, near Sabanilla, but failed to find anything in the caves there to warrant a return. A reconnaissance at Daiquiri disclosed localities well worth extended investigation and, having been joined at Santiago in the meantime by Señor Victor Rodriquez, who was kindly sent to my assistance by Dr. Carlos de la Torre of the University of Havana, I moved our base to Daiquiri where we were very courteously received by Mr. Serrano, the superintendent of the iron mines operated by the Spanish American Iron Co., who made us his guests at his own house. Working conditions at Daiquiri proved to be ideal, as we could ride to and from the caves on the railroad of the mines and the cliffs along the Daiquiri sea-front are honey combed with caves (Plate XXXV, fig. 1). At first I was able to carry a gun and planned to collect Capromys and as many of the living bats as possible. With the outbreak of the rebellion I had to abandon this as all guns were confiscated and only such bats as could be netted or knocked down by branches were secured.

While a number of caves had a few bones in them, only two caves had large deposits. One of these, a small cavern high up on the side of
the limestone hill that overlooks the roadstead of Daiquiri, was worked in less than a day but the other was not left until after many days work of two or more people. The earth in the small cave was very red and the bones were strongly impregnated with this pigment, probably an iron stain.

The larger cave, the one known as the "Cueva de Los Indios" (Plate XXXV, fig. 2; Plate XXXVI, fig. 2), contained earth dark brown in color, loose and light in texture, and formed partly from decomposed limestone but more largely by bat guano, long since returned to its mineral constituents. The part of the cave where we worked is a small part of what was formerly a much larger underground chamber (Plate XXXVI, fig. 1), the roof of which is today fallen in, leaving a great open center in which several large trees are growing. There are two main entrances to this central court and the one we climbed up has two mouths. The whole cave in its greatest extent is about 150 by 60 feet. In these main features it bears considerable resemblance to the "Cueva Catedral" of Porto Rico, where I found a similar rich bone deposit; and I believe that it is more than mere coincidence that bones are found in greatest abundance in the large caves where the top has fallen in, admitting light, and where there are several entrances.

Throughout most of the area covered by the former cave extension the rains have washed out the earth and it is impossible to determine what was there before the roof fell in. Great masses of limestone from the roof fill the central opening and further obstruct investigation. Small subchambers opening into the central court yielded nothing to preliminary excavations. The principal bank of earth was a low rounded mound (Plate XXXVI, fig. 2), approximately forty feet long and twentyfive feet wide, sloping uniformly from the side wall of the cave down to the cave floor. It was probably the remains of a huge guano pile with a certain admixture of earthy material from the limestone walls. The bones were found quite uniformly in a stratum of about twelve inches thickness. In this stratum there were local areas of concentration where there was little else but hundreds of small bones. Specimens were found from the top down and, although some of these at the surface were Epimys, Artibeus, and other living species, being of quite recent deposition, most of them were of an older period and were found right through to the bottom of the layer. It appeared as if some agency had removed a little of the upper surface and thus exposed these bones, since they were very dark in color and had evidently been buried beneath the soil for some time. This agency may have been the wind or rain, as, although
the roof of this portion of the cave overhangs about forty feet beyond the mound, it is high enough to leave the mound exposed.

Judging from the deposits of rat and bat remains being laid down at the present time in this cave by the Cuba Barn Owl, in some places already forming deposits of considerable extent, we have the key to the accumulation of the extinct mammalia in the mound. Another point in favor of this theory is the scarcity of complete skulls but the abundance of lower jaws and palates. The owl breaks open the skull to eat out the brains and afterward swallows the mammal entire, if it be a small one, the passage of the bones through the digesting action of the owl's stomach accounting for the very fragile nature of the bones.

On the opposite side of the cave a bone-bearing breccia was discovered. This lay in a bed varying from four to eight inches in thickness, reposing in a rather even plane which tilted decidedly toward the middle of the cave. The bed rested upon the original limestone but in many places it met the limestone only at points here and there and thus arched over, being easily broken up in consequence of this type of support. The breccia is full of the same species as were found in the mound, with the obvious exception of Epimys, and must have been contemporaneous in its formation with the mound. The breccia abutted against the wall at about the same height as the mound and was coated over by a thin flow of limestone evidently deposited from solution. The formation of this type of breccia is undoubtedly very rapid.

I put a man with a shovel to work at trenching through the mound, clear down to the rock floor, to learn how deep the bones went. He struck a hard formation at about two feet and extensive digging showed that the deeper layers carried no bones.

The age of the Cuban fossils must be, comparatively speaking, very recent. In my opinion, the late Pleistocene is the earliest time in which a conservative judgment can place them, while the evidence seems to favor the age of the specimens as being of the early Recent era.

As it is a labor of many days to thoroughly work over the many thousand limb bones and skeletal remains collected, a detailed report is given of the skulls only, leaving to some future paper the treatment that this mass of material deserves.

## Capromys pilorides (Pallas)

I [sodon] pilorides SAY, 1822, Journ. Acad. Nat. Sci. Philadelphia, II, p. 333.
Although going to Cuba with every intention of securing a large series of Capromys, the prohibition on the use of fire-arms prevented me from carrying out this plan and only five specimens were secured.

These five specimens are all immature animals, three of them less than half grown, the other two nearly the full dimensions, in external measurements, of a normal adult but with skulls much smaller than in adults taken at Trinidad, Cuba. A number of discrepancies noted in comparing this series with typical pilorides from Trinidad are attributed to age but I do not have enough material at hand to satisfy myself that such is really the case. The Daiquiri skins have the hind feet whitish on the upper side (blackish in the Trinidad series); the tail is whitish (yellow or ochraceous in the Trinidad series); and the skulls are notably wider in proportion to their length than is the case with the Trinidad specimens, one of which, moreover, seems to be comparable in age with my oldest specimen.

The only hunt that I was able to make for "Hutias" was in patches of forest near Daiquiri. This growth was not the primitive jungle but was sufficiently dense to make travel slow and difficult. I had a native guide who knew where to seek the animals and I shot two of them in the course of the morning. I was told that the Hutia climbs into the top of some tall tree and curls up for a sun bath early in the morning. The best way to hunt them is to get out when the sun is yet low and move quietly through the forest scanning closely every tall tree. Both animals that I saw were detected high up in leafy trees, where they were curled up on limbs and were not easy to distinguish from clumps of foliage.

I was told that Hutias were common about Daiquiri and the natives thought that there was more than one kind in the region but, although I offered to buy specimens, I secured only three more. The natives usually hunt this animal with a small dog which scents the Hutia in the tree above him and bays the animal; or sometimes he surprises it on the ground and chases it into a hole in the rocks.

## Capromys nana G. M. Allen

Capromys nana G. M. Allen, 1917, Proc. New England Zoöl. Club, VI, p. 54.
This small Capromys is represented by more than three hundred mandibles, about half of which have two or more teeth, and some sixty skull fragments, only five or six of which are more than mere palates.

This material agrees well with the description and figures of nana given by Dr. G. M. Allen, loc. cit., and Dr. Allen kindly compared for me specimens which I sent him, pronouncing them to be nana. It would have been not at all strange if the Eastern Cuba specimens had proved to be distinguishable from nana found in Central Cuba but my
material is rather too incomplete to formulate a conclusive statement on this point. Certainly no characters of separation exist in the mandible and palate alone.

The discovery of nana as a living mammal in Central Cuba warrants the suspicion that it may be found alive in the. Oriente of Cuba as well, but this fact I very much doubt. Since none of my specimens appear to be at all recent and since this mammal formed such a large part of the owl diet in times gone by, it would almost certainly appear in recent owl pellets no matter how rare the animal might be.

## Geocapromys columbianus (Chapman)

Capromys columbianus Chapman, 1892, Bull. Amer. Mus. Nat. Hist., IV, p. 314.
Among quite a mass of capromid material collected at Daiquiri, nearly half of the specimens are referable to Geocapromys. By far the greater part of the material is composed of mandibular rami of which more than two hundred and twenty-five have been examined, while the cranial fragments are mainly palates, lacking teeth, of which there are about forty that may be satisfactorily identified.

Practically all of this material is evidently from young and very young animals. None of the specimens are as large as the type specimen of columbianus or specimens collected by Mr. Barnum Brown near Cienfuegos. The owls doubtless did not prey upon the full-grown columbianus and brought only small, immature animals to the cave. Because of the small size of the remains, they are not easily separated from Capromys nana unless the fragments are large enough to show several characters.

Mandibles containing the premolar are at once identified by the extra internal reëntrant, nearly always well developed but occasionally approaching the condition seen in rare cases among Capromys where the extra reëntrant appears as little more than a slight indication of the normal angle. Also, the rather evident immaturity shown by the rami enables small columbianus to be distinguished from C. nana, while the character of the alveolar margin of the last molar, the slope of the enamel plates of this tooth, and the oblique position of the teeth in respect to a horizontal plane (more nearly at right angles in Capromys) are confirmatory characters.

In working over the palates I have noted a very important character which I have not seen mentioned in the literature on these rodents but which I have found to be most valuable as a basis of separation between Capromys and Geocapromys. In Capromys the upper incisor takes its
origin very near to that of the first upper premolar and the two alveoli nearly meet; there is scarcely any swelling on the maxillary to show the course of the incisor. In Geocapromys the course of the incisor is clearly shown on the face of the maxillary as a prominent swelling and its upper termination is high up on the wall of the anteorbital foramen, very much higher than is the case in Capromys where it is sunk into the zygomatic root. This character is constant among recent as well as fossil species and is especially useful when only scraps of the palate are compared, since enough of the maxillary is generally present to show this point.

None of the specimens appear to be very recent; all are very much stained; and the association shows that G.columbianus was contemporaneous with C. nana throughout the limited horizon explored.

## Boromys ofella Miller

Boromys ofella Miller, 1916, Smithson. Misc. Coll., LXVI, No. 12, p. 8; December 7.

As noted in the remarks under B. torrei, this species was found very sparingly. The scanty material at hand appears to agree well with the type description of ofella and with material collected by.Dr. Barbour farther to the west. The type locality of ofella is Baracoa and Daiquiri is less than one hundred miles distant in the same character of country so that it would be rather surprising should the large species of Boromys from Daiquiri prove to be anything other than ofella.

## Boromys torrei G. M. Allen <br> Boromys torrei G. M. Allen, 1917, Bull. Mus. Comp. Zoöl., LXI, No. 1, p. 6.

A great abundance of fragmentary material of this genus was found in caves at Daiquiri, by far the most of it coming from the Cueva de Los Indios. Some idea of the abundance of the members of this genus is shown by the fact that I have cleaned and examined over five hundred mandibular rami, while nearly as many fragments have been ignored as too badly broken up. The small torrei seems to have been the dominant form, as only about five per cent of this series represents the larger B. ofella. To go with these rami, there are eight skull fragments which, in the aggregate, show nearly all the characters of a perfect skull.

A great range of variation in dental pattern is shown by this series, which discloses about every stage of wear from the freshly erupted molar to the tooth that has the crown nearly worn to the roots. Coincident with the amount of wear, the crown pattern changes from a series of
external and internal reentrants to a series of enclosed lakes, two in each tooth, placed side by side and not in an anteroposterior line. In very early stages of wear there are two internal reëntrants in the lower molar series but the most posterior of these soon disappears, passing into a lake which has worn away by the time the two main reëntrants have worn to form the laterally placed lakes. In the lower premolar an anterior lake is present in the unworn tooth but does not persist for any great length of time. The pattern at full maturity is a figure eight with no lakes, either anterior or posterior, although individuals that should be properly included in this category may show a trace of the posterior lake, where it persists longer in $\mathrm{m}_{1}$ and $\mathrm{m}_{2}$. The accessory internal reëntrant does not seem to be as well developed in torrei as in ofella.

A correspondingly shifting molar pattern is to be noted in the upper dentition, where the accessory reëntrant is external and the first lake to be seen is a posterior one.

Like the Spiny Rats, the Cuban Boromys assumes the appearance of a mature animal while yet only about half to two-thirds grown; and, while this condition may often be detected if the material is adequate, when only fragments of skull or rami are obtained the question of determination becomes complicated. The differences between torrei and ofella, the best character of separation being size, are readily apparent and no difficulty is experienced in separating the material into two series to correspond. However, the type of torrei was found in the Province of Matanzas, over 400 miles from the Santiago region where my material was found, and it is not unreasonable to expect Boromys from the two places to differ; but a comparison of the Oriente material with specimens in the Museum of Comparative Zoology from farther west fails to disclose any noteworthy differences.

> Nesophontes micrus G. M. Allen
> Plate XXXVII, Figures 6, 7, 8, 9, 11, 12
> ?Nesophontes micrus G. M. Allen, 1917, Bull. Mus. Comp. Zoöl., LXI, p. 5.

This small insectivore is represented by some thirty-three skulls and one hundred and fifty mandibles, most of the former being rather fragmentary but a number of the latter being perfect, except that none of the mandibles contain a complete set of incisors.

Most of this material is stained and very dark brown, although there are a few rami that are very recent in appearance. The Nesophontes material is associated with the Geocapromys and Boromys and was found
from almost on the surface down to about two feet, where the bone-bearing earth played out. Having before me extensive series of both the Porto Rico and the Cuba insectivores, I have made a detailed comparison of the two with the view to satisfying myself that they are congeneric. This I have been able to do and I agree with Dr. G. M. Allen that the species micrus is a good Nesophontes. For convenience in comparison I append the following table of characters by which the two forms differ.

## N. edithce

General outline of skull, viewed from above, from parietals to tip of nasals, subrectangular.

Constriction of brain-case at occipital region moderate.

Lateral face of premaxillary flat.

Anteorbital border of maxillary rounded.
Lachrymal foramen small, the opening simple.

Anterior upper premolars equal in size.
Lower premolars of equal size, crowded in the tooth-row, obliquely overlapping each other.

Lower molars extending externally beyond margin of alveoli.

## N. micrus

This outline often subtriangular; possibly this applies only to females.

Constriction averaging greater, parietal more bulging.
Premaxillary with a shallow lateral concavity, more or less pronounced.

Maxillary with a thin shelf-like expansion on orbital border.

Lachrymal foramen large, actually as large as in the larger species, edithoe, and expanded into a trumpetshaped opening.

First anterior upper premolar noticeably larger than second.

Second lower premolar about half the size of the other two, premolars not crowded or overlapping.

Lower molars not extending so far beyond margin of alveoli.

In all other characters edithe and micrus agree and, although the differences are at once discernible and of rather a pronounced character, I believe that they are only such as should mark a good species and are not worthy of even a subgeneric split. The size difference between the two sexes is not as well shown in the Cuban series as it is in the Porto Rican Nesophontes but is apparent nevertheless.

## Nesophontes longirostris, new species

## Plate XXXVII, Figures 10, 13

Type, No. 17626, Dept. of Vertebrate Palæontology, from a cave near the beach at Daiquiri, Cuba, Feb. 1917; collector, H. E. Anthony. The type is the anterior portion of a skull, from the auditory region to the tips of the nasals being almost perfect; the dentition is complete except for the incisors on both sides. The skull is a light brown in color and was thinly encrusted with a calcareous cement.

General Characters.-Very similar to Nesophontes micrus, but rostrum proportionally more slender and space between upper canine and the last premolar much greater than in micrus; the two anterior premolars subequal in size and with distinct diastemata between the canine and the first premolar, between the two anterior premolars and between the second and third premolars of the row.

Detailed Description.-Skull narrow and elongate, presenting all of the characters of micrus, but the rostrum very long and slender; interorbital region parallel-sided, with frontals rounded and somewhat inflated; nasals very narrow; premaxillæ with slight concavities along the nasal suture and meeting the nasals at almost ninety degrees, instead of a gradual rounded transition into the nasal region as in Nesophontes edithor; anteorbital border of maxillary expanded into a thin shelf that is continued about the lachrymal foramen to form a large trumpet-shaped opening; palate long and narrow, interior margins of tooth-rows nearly parallel; pterygoids long and inflated to tube-like proportions.

Dentition.-Dentition essentially that of typical Nesophontes, the canine tall and sharp, two-rooted; first two premolars simple and nearly equal in size, scarcely half as tall as the third premolar which is submolariform in shape with a very high piercing cusp and a notch-like shoulder on the anterior cingulum; first two molars of equal size with well-developed protocone and metacone, the paracone being almost vestigial in comparison and smaller in the second molar than in the first; third molar about half the size of the first two and lacking a high metacone; between the canine and the first premolar there is a distinct separation, with separations of equal extent between the first and second and the second and third premolars, resulting in the distance from the canine to the third premolar being much longer than in micrus.

It will be seen from the measurements that longirostris is a longer and slenderer form in its proportions than micrus. Because of the fragmentary nature of the material, some unusual measurements had to be taken but they serve to show that the new form varies consistently from micrus. Although as long or longer than males of micrus in most proportions, in breadths longirostris is as narrow as the females, while in the character of the separation of the canine and last premolar it is unapproached by any of the series of micrus and quite exceeds a large male of edithce. It is impossible to be sure whether the type represents a male or a female, although it might be argued from its slender structure that when more of the skulls with separated premolars are found there will be individuals conspicuously heavier in structure than the type. If so, these individuals will doubtless be noticeably larger than micrus, judging from the apparent sexual variation in the series of micrus and edithce.

The spacing of the premolars in longirostris would appear to be rather an important character, in view of the fact that (1) there is so little variation in the dentition shown by the very large series of $N$. edithoe and the fairly large series of $N$. micrus, and (2) the differences between the two species are remarkably constant when everything is
considered. A search among the one hundred and fifty mandibular rami of Cuban Nesophontes fails to reveal one with a corresponding spacing of the lower premolars.

Measurements

|  | micrus | longirostris | edithoe |
| :---: | :---: | :---: | :---: |
| Length from glenoid fossa to alveolus of first incisor. | $\begin{array}{\|cc\|} \text { No. } 17627-18.8 & \circ \\ 17628-19.7 ? & \sigma^{\prime} \\ 17629-19.0 ? & o^{\prime} \\ 17630-\ldots . & \sigma^{\prime} \\ 17631-20.8 & \delta^{\prime} \\ 17632-19.3 & \circ \end{array}$ | $\text { No. } \begin{gathered} \text { (Type) } \end{gathered}$ | $\begin{aligned} & \text { No. } 17095-29.2 \text { o } \\ & \text { 14174-27.0 } \\ & \text { (Type) } \end{aligned}$ |
| Length of palate, postpalatal notch to alveolus of first incisor. |  | 14.7 | $\begin{aligned} & 20.58^{\text {o }} \\ & 19.2 \text { o } \end{aligned}$ |
| Breadth across maxillary zygomatic roots. |  | 10.6 | $\begin{aligned} & 16.5 \circ^{7} \\ & 14.6 \stackrel{+}{7} \end{aligned}$ |
| Breadth of rostrum at canines. | $17627-4.1$ $17628-5.0$ $\circ^{7}$ $17629-4.2$ $o^{7}$ $17630-4.5$ $\sigma^{7}$ $17631-5.1$ $17632-4.0$ o $^{7}$ o | 4.4 | $\begin{aligned} & 7.5 \sigma^{7} \\ & 6.4 \quad \% \end{aligned}$ |
| Breadth of palate across $\mathrm{m}^{1}$. | $\left\|\begin{array}{rc} \text { No. } 17627-7.8 & \circ \\ 17628-8.5 & o^{7} \\ 17629-8.2 & o^{7} \\ 17630-8.1 & o^{7} \\ 17631-8.4 & o^{7} \\ 17632-7.5 & \circ \end{array}\right\|$ | 7.8 | $\begin{aligned} & 12.1 o^{r} \\ & 10.4 \circ \end{aligned}$ |
| Depth of rostrum, vertical distance at $\mathrm{m}^{1}$. | $17627-6.3$ $\circ$ <br> $17628-7.6$ $o^{7}$ <br> $17629-7.4$ $o^{7}$ <br> $17630-6.5$ $o^{7}$ <br> $17631-7.7$ $o^{7}$ <br> $17632-6.2$ $\circ$ | 6.5 | $\begin{array}{r} 10.0 \\ 9.2 \end{array}$ |


|  | micrus | longirostris | edither |
| :---: | :---: | :---: | :---: |
| Distance from glenoid fossa to maxillary zygomatic root. | $17627-6.1$ <br> 오 <br> $17628-7.1$ <br> $o^{7}$ <br> $17629-7.0$ <br> $o^{2}$ <br> $17630-\ldots$. <br> $17631-7.6$ <br> $17632-6.3$ <br> $o^{2}$ | $\begin{gathered} \text { No. } \left.\begin{array}{c} \text { (Type) } \\ \text { 17626- } \\ \hline \end{array}\right] \\ \hline \end{gathered}$ | $\begin{aligned} & \text { No. } 17095-11.7 \circ^{\text {T }} \\ & 14174-10.5 \circ \\ & \text { (Type) } \end{aligned}$ |
| Length of maxillary tooth-row, canine to $\mathrm{m}^{3}$. | $\begin{array}{lc} 17627-10.6 ? & \circ \\ 17628-12.0 ? & \delta^{7} \\ 17629-11.6 ? & o^{7} \\ 17630-11.8 & o^{7} \\ 17631-11.7 ? & o^{7} \\ 17632-11.1 & \circ \end{array}$ | 12.0 | $\begin{aligned} & 16.2 \circ^{7} \\ & 14.9 \% \end{aligned}$ |
| Distance from canine to last premolar, posterior border of canine to anterior border of premolar. | $\begin{array}{lc} 17627-2 & \circ \\ 17628-2 & \sigma^{7} \\ 17629-2.6 & 0^{2} \\ 17630-2.6 & 0^{7} \\ 17631-2.2 & \sigma^{7} \\ 17632-2.2 & \text { 우 } \end{array}$ | 3.2 | $\begin{aligned} & 2.8 \text { ه } \\ & 2.7 .8 \end{aligned}$ |

## Noctilio leporinus mastivus (Dahl)

Vespertilio mastivus Dahl, 1797, Skrivter. af Naturhist.-Selskabe Kjöbenhavn, IV, p. 132.

A fragment of a right mandible, containing the last two molars, proves upen comparison with the mandible of a female from Porto Rico to be unquestionably of this species. This is the only record for Noctilio that I secured and it was found in a cave at the top of a low hill looking out over the sea. The mendible is stained a deep red and was in the formation with Nesophontes and Boromys.

## Chilonycteris parnellii boothi (Gundlach)

Chilonycteris boothi Gundlach, 1861, Monatsber. k. preuss. Akad. Wissensch., Berlin, p. 154.

This bat was not secured in the flesh nor was it noted alive in any cave, but a skull was picked up on the floor of a small cave at Daiquiri. The skull is white and not discolored in any way, from which fact I should expect to find this species inhabiting some of the many caves of this region.

## Macrotus waterhousii minor (Gundlach)

Macrotus minor Gundlach, 1864, Monatsber. k. preuss. Akad. Wissensch., Berlin, p. 382.

In the deposits at Daiquiri I found five skulls and ten mandibles of this species as fos ils. Additional material was found in fresh owl pellets but the fossil material is all old and dark brown in color. In no way do these specimens differ from the bat now living there.

Forty-three specimens of the living Macrotus were collected as follows: Daiquiri, 11 skins, 10 alcoholics; Jarahueca, 15 alcoholics; Siboney, 2 skins, 5 alcoholics.

This series presents the two color phases described by Rehn in his revision of the genus ${ }^{1}$ but these two types of coloration in their relation to sex are difficult to determine; although the brightest colored specimens are males, some of the females are ferruginous in color. None of the ferruginous phase have the "hair unicolor" as given by Rehn. Four females taken March 2 had large embryos; three taken March 7 had small embryos.

Macrotus is a very common bat in eastern Cuba and was noted in most of the caves where the chambers were well darkened.

## Monophyllus cubanus Miller

Monophyllus cubanus Miller, 1902, Proc. Acad. Nat. Sci., Philadelphia, p. 410.
Only one specimen of this species was collected and this constitutes the sole positive record I secured. This specimen was taken at Jarahueca near Sabanilla, in a cave among the hills. In several of the larger caves about Daiquiri I saw small bats that may have been Monophyllus but the caves were too high to collect with a net and without a gun I could not verify my observations. It seems very probable that this species is not generally distributed on the eastern end of the island or more would have been taken.

## Brachyphylla nana Miller

Brachyphylla nana Miller, 1902, Proc. Acad. Nat. Sci. Philadelphia, p. 409.
Although Brachyphylla was not found living in any of the caves visited, a good series of fossil skulls was secured. Every one of the crania is discolored by age but a few of the mandibles are white and quite fresh, showing that this bat is occasionally to be found frequenting

[^1]this region. The material comprises sixty-six skulls, only three of which are at all complete and these are without teeth, and sixty mandibular rami, of which twelve are perfect but lacking teeth in most cases.

Upon looking up the specimens of Cuban Brachyphylla in the American Museum, I discovered that a series collected at Santiago in April 1902 and labeled as cavernarum are in reality nana. This series contains twenty alcoholic specimens and six of the skulls have been removed and cleaned for study. This material affords an excellent basis for comparison with the fossil series, which agrees well with the animal now living on the island. Not one specimen among the entire series seems to be referable to cavernarum, from which nana is readily distinguished by size alone. In addition to the characters pointed out by Miller ${ }^{1}$ as separating these two species, namely the difference in size and the extent of the postpalatal notch, it is to be noted that there is a slight difference in the development of the last upper molar. In cavernarum this tooth has an anteroposterior breadth nearly equal to the lateral breadth, but in nana the tooth is relatively narrower in the line of the tooth-row, in most of the skulls.

Compared with a large series of fossil cavernarum from Porto Rico the size difference is sufficient to separate the Cuban series without difficulty, although there is a tendency in the Porto Rican specimens for the skull to be a trifle smaller than in the bat now living there. The character of the differences separating these two species is such that I believe nana will stand eventually as a subspecies of cavernarum, when more material has been secured and the range of the genus is better understood.

## Artibeus jamaicensis Leach

## Plate XXXVII, Figures 1, 2

Artibeus jamaicensis Leach, 1821, Trans. Linn. Soc. London, XIII, p. 75.
Among the lot of Artibeus material taken fossil are several skulls and a mandible of a race or perhaps species quite noticeably larger than jamaicensis parvipes. The skulls are fragmentary, being the anterior portions, some of which contain several molars, and have been encrusted with lime. This lime may or may not signify a greater antiquity, since all of the other skulls of Artibeus were in a loose earthy formation and had not become cemented. Because of the fragmentary nature of this material, taken in conjunction with the closely intergrading characters

[^2]of the jamaicensis group, I have been unable to allocate satisfactorily these specimens. It is certain that they do not represent parvipes since they are conspicuously larger and more massive, with heavier teeth, in all these characters closely approaching typical jamaicensis (Plate XXXVII, figs. 1-5). On the other hand, these characters apply as well to $j$. yucatanicus and the possibilities of distribution serve for the one as well as the other. It would not be unrẻasonable to suppose that these specimens represent the earlier ancestral form of parvipes, but for the fact that the number of fossil skulls of Artibeus from Daiquiri indicates that the intergradation between the large specimens and the smaller, normal parvipes is rather abrupt. The not inconsiderable amount of variation in the parvipes series does not produce a skull truly comparable to this large form, the principal measurements of which are as follows.

Breadth of palate across alveoli of $\mathrm{m}^{2}, 12.7 \mathrm{~mm}$. (parvipes, 11.6 mm .) ; interorbital breadth, 7.4 and 7.3 mm . (parvipes, 6.7 mm .); greatest breadth of $\mathrm{m}^{2}, 3.8 \mathrm{~mm}$. (parvipes, 3.6 mm .); greatest length of mandible, 19.6 mm . (parvipes, 18.8 mm .).

Judging from the conclusions reached by Dr. Knud Andersen in his monograph on Artibeus, ${ }^{1}$ it would be decidedly unwise to attempt to base far-reaching conclusions upon such scanty material and the best treatment seems to be to consider this large form as jamaicensis in the broad sense.

## Artibeus jamaicensis parvipes (Rehn)

Plate XXXVII, Figures 3 to 5
Artibeus parvipes Rehn, 1902, Proc. Acad. Nat. Sci. Philadelphia, p. 639.
Upwards of ninety skulls and one hundred and fifty mandibles of this bat were found fossilized in the caves about Daiquiri. Practically all of this material is discolored and fully as ancient as the specimens of Nesophontes and Boromys with which it was found associated.

The individual variation disclosed by this series and by a few skulls picked up from nearest bone deposits, mainly from owl pellets, is very apparent. One of the principal characters of variation is the size and shape of the rostrum, correlated with a less noticeable variation in the size of the entire skull.

This species is a common bat, living in the caves throughout the eastern end of the island. It was seen in the caves visited near Sabanilla and was found in a number of caves from Aguadores to Daiquiri.

Specimens were taken as follows: Daiquiri, 14 skins, 4 alcoholics; Jarahueca, 13 alcoholics.

The series presents few features worthy of comment. "The coloration is rather uniform throughout the series but there are two individuals somewhat lighter than the others.

Each of eleven females collected March 7 contained a single large embryo, some of them nearly ready"for birth.

## Phyllops falcatus (Gray)

Arctibeus falcatus Gray, 1839, Ann. Nat. Hist., IV, p. 1.
This rare species is represented by seven fragmentary skulls and four mandibular rami collected at Daiquiri. The animal was not found alive. In addition to this small series, I have an almost perfect skull taken from an owl pellet collected by Mr. Barnum Brown, of the Department of Vertebrate Palæontology of this museum, at the "Cueva de Los Machos" near Cienfuegos.

Compared with a skull taken from an alcoholic specimen (No. 123187, U. S. N. M.) collected at Santiago and kindly loaned me by Mr. Gerrit S. Miller, Jr. of the National Museum, this series of subfossil skulls shows considerable differences. None of them are as large as the Santiago specimen and there are minor variations in the breadth, extent, and shape of the postpalatal notch. None of the series, however, intergrade with $P$. vetus, from which they may be readily distinguished by their larger size, the more V-shaped postpalatal notch, and by the absence of the deep basioccipital pits, this latter character alone sharply separating the two series.

The material of falcatus is, for the most part, fresh in appearance and not deeply discolored, some of it very recent in fact.

## Phyllops vetus Anthony

Phyllops vetus Anthony, 1917, Bull. Amer. Mus. Nat. Hist., XXXVII, p. 337.
I have very little to add to my original description of this species, loc. cit., except that, having gone over the entire collection of cave material more thoroughly than I had done at that time, I am able to confirm the impression that vetus is an older form than falcatus. The finding of specimens of falcatus in the cave material has drawn attention to the fact that the specimens of vetus are all more ancient in appearance, more deeply stained and discolored. The totality of bat species brought in by the owls is so much greater than the number of species I observed
personally that I have come to regard the owl as an exceedingly efficient collector. Consequently, if recent remains of a form are not found in the deposits made by the owls, the odds are greatly against that form being found alive in that particular region.

## Phyllonycteris poeyi Gundlach

Ph[yllonycteris] poeyi Gundlach, 1861, Monatsber. k. preuss. Akad. Wissensch., Berlin (1860), p. 817.

This species is represented by twenty-three skulls, five of which are only slightly broken, and five mandibles, all of which were found in the deeper layers of bones and are all brown and ancient-looking. Compared with skulls of poeyi taken at Guanajay, no differences worthy. of note can be detected.

This bat was not found living in any of the caves.

## Erophylla sezekorni (Gundlach)

Phyllonycteris sezekorni Gundlach, 1861, Monatsber.k. preuss. Akad. Wissensch., Berlin (1860), p. 818.

A large series of forty-one skins and eight alcoholics of this rare bat was taken in a cave near Siboney. Formerly a very rare species, its recent rediscovery has shown that it is common locally and I found that to be the case about Siboney.

About two miles from Siboney on the railroad to Santiago, a faint trail takes off to the right through the low brush and leads up to a small opening in the mass of limestone that forms the low ridge parallel to the sea-front. This entrance is the opening to a large and fairly high chamber with a number of smaller side chambers, so low that often one can not stand erect in them. This cave is the home of many hundreds of Erophylla and they seem to have the cave entirely to themselves. Being unable to use the shot-gun, I was forced to have recourse to primitive collecting methods. The bats were congregated in large numbers in the small subchambers and I entered these, going through the small openings on my hands and knees. Once inside, I would lay wildly about me with a handful of switches, trusting to be able to knock down some bats because of their number in such close quarters. In this I was successful and, by following them from chamber to chamber and repeating the process, I was able in two visits to the cave to obtain this large series. It would be hard to find a more exhausting way to collect bats; the violent exertion in the close air of the cave brought forth the perspira-
tion in torrents and left me completely used up at the end of half an hour. At my second visit to the cave, the number of bats to be seen was very noticeably less and it may be that this species leaves a cave completely when too closely harassed.

The series is about evenly divided between the two sexes, and small embryos were found in eleven of the females, taken February 26 and 28. The coloration of the entire series is remarkably uniform.

Compared with a series of Erophylla bombifrons from Porto Rico, there are no apparent differences in color between selected individuals but the average coloration of bombifrons is darker. The forearm of the Porto Rican bat is a trifle longer, about three millimeters, the ear is shorter and broader, with a more deeply notched tragus, the tragus of sezekorni being much longer.

An examination of the skulls of this series reveals the rudimentary condition of the zygomatic arch. Never more than a mere thread of bone at a mid-point, in two specimens the arch is incomplete and the uniform appearance of the gap, the same on both sides, shows that it is not an accidental break.

## Natalus primus, new species

Type, No. 41009, Dept. of Mammalogy, Amer. Mus. Nat. Hist., Daiquiri, Cuba, February 1917; collector, H. E. Anthony. The type is the right mandibular ramus with the last two premolars and all of the molars in position; a topotype mandible contains the last premolar and the first molar.

Characters.-A very large Natalus, with long slender mandible and heavy teeth.

Measurements.-Greatest length, $14.4 \mathrm{~mm} .{ }^{1}{ }^{1} 14.6,(13.6)^{2}$; depth of mandible at $m_{1}, 1.5,1.4,(1.4)$; transverse breadth of $m_{1}, 1.1,1.1,(.9)$.

From Chilonatalus and Nyctiellus, the only ones of the Natalidre hitherto known from Cuba, Natalus primus is easily separated by the great difference in size. From Natalus major, the largest of the group, it may be known by its even greater length of mandible and noticeably heavier teeth. The first lower molar is especially "plump" in contour and the tooth extends externally considerably beyond the alveolar border.

These mandibles were found associated with Nesophontes and Boromys in the Cueva de los Indios at Daiquiri, buried but a short distance under the surface. The bone is stained a very dark brown and

[^3]probably represents an extinct form. This is a northward extension of the genus in the West Indies and doubtless is the Cuban representative of the same ancestral stock from which the Santo Domingan major developed.

## Molossus tropidorhynchus Gray

Molossus tropidorhynchus Gray, 1839, Ann. Nat. Hist. IV, p. 6.
A mandible with a molar and two premolars is the only fossil record of this species found. A skull found in one of the caves came from the uppermost layer and is doubtless not very ancient to judge from its appearance. No variation from the living form can be detected in the fossil.

A small colony of Molossus was found in a small fissure that opened out on the exposed face of the sea-wall. Their presence was detected by droppings at the foot of the wall and when a shot was fired into the crevice several of the bats flew out but only one was secured. A later attempt to climb up to the crevice proved fruitless since the animals had departed, probably driven away by my previous disturbance. A small, free-tailed bat was seen nightly, flying about the hillsides near the superintendent's quarters, but as I did not dare shoot for fear of having my gun confiscated I could not be certain as to its identity. As I did not take Nyctinomus at Daiquiri these bats were very probably Molossus tropidorhynchus.

Plate XXXV
Daiquiri, Cuba
Fig. 1. Sea-wall showing typical limestone formation in which caves were found.

Fig. 2. Inner entrance to the Cueva de los Indios. The trees are growing in the area exposed by the fallen-in ceiling.

Bulletin A. M. N. H.


1


## Plate XXXVI

Daiquiri, Cuba
Fig. 1. Main chamber of the Cueva de los Indios showing fossil-bearing mound to the left.

Fig. 2. Mound from which many thousand bones were collected.



## Plate XXXVII

Skulls of West Indian Mammals. All figures natural size except Figs. 11-13, which are about twice natural size.

Fig. 1. Artibeus jamaicensis, No. 41010, Daiquiri, Cuba.
Fig. 2. Artibeus jamaicensis, No. 41011, Daiquiri, Cuba.
Fig. 3. Artibeus jamaicensis parvipes, No. 41012, Daiquiri, Cuba.
Fig. 4. Artibeus jamaicensis parvipes, No. 41013, Daiquiri, Cuba.
Fig. 5. Artibeus jamaicensis parvipes, No. 41113, Daiquiri, Cuba.
Fig. 6. Nesophontes edithre, No. 17114, o $0^{7}$, Porto Rico.
Fig. 7. Nesophontes edithce, No. 17107, o, Porto Rico.
Fig. 8. Nesophontes micrus, No. 17627, o Daiquiri, Cuba.
Fig. 9. Nesophontes, micrus, No. 17631, $\sigma^{7}$, Daiquiri, Cuba.
Fig. 10. Nesophontes longirostris, No. 17626, sex. indet., Daiquiri, Cuba.
Fig. 11. Nesophontes micrus, No. 17631, ठ', Daiquiri, Cuba.
Fig. 12. Nesophontes micrus, No. 17633, $\sigma^{7}$ ?, Daiquiri, Cuba.
Fig. 13. Nesophontes longirostris, No. 17626, sex indet., Daiquiri, Cuba.

Bulletin A. M. N. H.
Vol. XII, Plate XXXVII


## INDEX TO VOLUME XLI

New taxonomic names are printed in heavy-faced type, also the main reference in a series of references.

Acanthoceras, 86.
bizeti, 50.
deverianum, 50.
laticlavius, 66.
mantelli, 50, 73.
ornatissimum, 50.
rhotomagense, 50, 51, 66, 73-75, 88.
Achilleum
auriforme, 129.
formosa, 135.
Achorutes, 274.
armatus, 271, 272, 290.
boletivorus, 272.
dubius, 272.
dubius concolor, 272.

- Yarmoratus, 273.
pratorum, 273.
texensis, 273.
tullbergi, 271, 272, 288.
tullbergi concolor, 272.
Acidia
fallax, 445.
fratria, 446.
Acinonyx, 337.
Aciura insecta, 445.
Acmæa rubella, 501.
Acmæidæ, 501.
Acorchordonia
auricula, 154.
ramosa, 154, 248.
Acrochordoniæ, 248.
Actæonella purgulifera, 69.
Actinocamax
granulatus, 51, 56, 73, 91, 96.
mamillatus, 96.
plenus, 56, 58, 75, 81.
quadrata, 73.
quadratus, 56-59, 69, 71, 181.
verus, 56, 73.
westfalicus, 51, 90.
Actinocyclidæ, 258.
Actinocyclus alternans, 177, 258.

Aedes
argenteus, 424.
aureostriata, 424.
aurites, 424.
mediovittata, 424.
niger, 423.
pertinax, 423.
scapularis, 423.
sollicitans, 423.
tortilis, 424.
walkeri, 424.
Agabus semivittatus, 305, 314.
Agromyza
cærulea, 448.
maculosa, 448.
melampyga, 448.
minima, 448.
platyptera allecta, 448.
plumiseta, 448.
viridula, 448.
Agromyzidæ, 448.
Ailurin, 340.
Akodon, 355.
Alcyonidium, 618.
chonoides, 13.
disciforme, 613.
hirsutum, 613, 618.
hirsutum membranacea, 618.
mamillatum, 607, 613, 618.
mamillatum robustum, 613.
mytili, 613.
Alcyonium ficus, 103.
Allen, J. A., Severtzow's Classification of the Felidæ, 335-340; Notes on the Synonymy and Nomenclature of the Smaller Spotted Cats of Tropical America, 341-419.
Allograpta
obliqua, 434.
obliqua securifera, 434.
Alloioraphium spongiosum, 160. 242, 250.

Allosomus, 270.
Amage inhamata, 577, 586.
Amblycercus
holosericeus australis, 333 .
holosericeus flavirostris, 333 .
holosericeus holosericeus, 333 .
Ameiva navassæ, 524.
Ammonites
hernensis, 71.
margæ, 75.
peramplus, 88 .
rhotomagensis, 86.
substricarinatus, 71.
texanus, 71.
Ammusium, 491.
Amorphospongia palmata, 141.
Ampharetidæ, 577.
Amphilectella piriformis, 120, 145, 146, 187, 194.
Amphinome jamaicensis, 575.
Amphinomidæ, 575.
Amphithelion, 125-127, 189.
circumporosum, 127.
Ananchytes, 91.
ovata, 87.
Anarthropora monodon, 616.
Anastrepha acidusa, 445.
Anastrepha ocresia, 445.
Ancyloceras, 92.
Andreæa hexagonalis, 172.
Anisia vanderwulpi, 436.
Anolis
latirostris, 521.
longiceps, 521.
olssoni, 522.
Anopheles
albimanus, 424.
argyrotarsis, 424.
crucians, 424.
grabhamii, 424.
maculipes, 424.
punctipennis, 425.
vestitipennis, 424
Anthomyia albicincta, 441.
Anthomyidæ, 440.
Anthomyza cinerea, 449.
,Anthony, H. E., Mammals Collected in
Eastern Cuba in 1917, with Descrip-
tions of Two New Species, 625-1i4.3
Anthrax
bigradata, 429.
delicatula, 429.
hela, 428.
ignifera, 429.
lateralis, 429.
lucifer, 429.
trimacula, 429.
Aonides cirrata, 576.
Aphiochæta
scalaris, 432.
spinifemorata, 432.
Aphorura
grœenlandica, 273.
quadrituberculata, 274.
Aphrocallistes, 31.
alveolites, 168 .
cylindrodactylus, 168, 204, 254
Aphrocallistidæ, 254.
Aphrodite grœenlandica, 498.
Aphroditidæ, 572.
Aptychus, 89.
Arca pernula, 490.
Archisotoma, 277.
besselsi, 277.
Archytas
amethystina, 438.
analis, 438.
basifulva, 438.
piliventris, 438.
Arctibeus falcatus, 640.
Arctocyon, 544.
Argonauta arctica, 514.
Aricia, 441.
lucorum, 441.
rubre, 576.
Aricidæ, 576.
Arribalzagia maculipes, 424.
Arthrostylum fascipennis, 428.
Artibeus, 627, 638, 639.
jamaicensis, 638, 639.
jamaicensis parvipes, 638, 639.
jamaicensis yucatanicus, 639.
parvipes, 639.
Arundites oppelensis, 86.
Asilid $æ, 430$.
Asphondylia siccæ, 425.

Astarte, 480.
arctica, 484, 487, 495.
borealis, 484, 487-489, 495, 496, 497.
borealis sericea, 484, 487, 497.
crebristriata, 494.
crenata, 484, 487, 494, 495.
crenata inflata, 484, 487, 495.
elliptica, 484.
fabula, 484, 487-489, 497, 498.
semisulcata, 496.
striata, 484.
warehami, 484.
Astartidæ, 494.
Asteroderma
conica, 146.
expansa, 146.
Asterospongia subramosa, 157.
Astrobolia, 141.
Astrocladia subramosa, 157, 199.
Astrocladinæ, 248.
Astrospongia, 157.
Athyroglossa glaphyropus, 447.
Atissa, 447.
Atlapetes
canigenis, 330, 331.
castaneifrons, 330, 331.
Aulaxinia
fallax, 197.
sulcifera, 150, 188, 197, 207.
sulcifera maliformis, 197.
Auloplacidæ, 254.
Auloplax spongiosus, 169, 2 24.
Axinella stylus, 57.
Axinus gouldii, 484, 488.

## Baccha

clavata, 434.
sagittifera, 434.
Baculites
anceps, $76,82,88$.
faujasi, $82,89$. incurvatus, 69, 82.
Baker, Frank Collins, Mollusca of the Crocker Land Expedition to Northwest Greenland and Grinnell Land, 479-517; Fresh Water Mollusca from Colorado and Alberta, 527-539.
Balantionella elegans, 174, 192, 258.

Balantionellidæ, 258.
Barentsia
gracilis, 612, 617.
major, 606, 612.
variarticulata, 612.
Barroisiceras haberfellneri, 50.
Bathyopsis, 558.
Becksia, 118.
augustæ, 182, 194.
feuerwehri, 182.
nidiformis, 117, 131.
soekelandi, 74, 178, 181, 184, 186.
Becksidæ, 260.
Bela, 480.
bicarinata violacea, 485.
exarata, 485, 488.
tenuicostata, 485, 488.
trevelyana, 485, 488.
Belemnitella
mucronata, 55-59, 69, 71, 73, 90, 91.
quadrata, 181.
Belvosia
bicincta, 436.
ferruginosa, 436.
unifasciata, 437.
Berosus
aculeatus, 320.
exiguus, 320.
infuscatus, 320 .
pugnax, 320.
striatus, 320.
Bhawania goodei, 576.
Bibionidæ, 425.
Bidessus, 308.
affinis, 311.
exiguus, 310.
floridanus, 310, 311.
fuscatus, 309, 311.
lacustris, 309, 311.
longovalis, 310, 311 .
pulicarius, 310, 311.
shermani, 310, 311.
subsericeus, 311.
Blatchley, W. S., Insects of Florida. Va. Supplementary Notes on the Water
Beetles, 305-322.
Blepharipeza
breviventris, 437.
jurinoides, 437.
nigrisquamis, 437.
Boletus, 273.
Bolidium palmatum, 141.
Bombidæ, 451.
Bombus, 451.
arcticus, 456, 457.
Bombyliidæ, 428.
Bombylius plumipes, 429.
Borboridæ, 443.
Boreochiton, 490.
marmoreus, 490.
Boreotrophon
clathratus, 485, 488.
craticulatus, 485, 487, 506.
Boromys, 632, 636, 639, 642.
ofella, 631, 632.
torrei, 631, 632.
Bostrychoceras, 74.
polyplocum, 50.
Botryosella labyrinthica, 130, 134, 258.
Botryosellidæ, 258.
Bowerbankia
arctica, 613, 618.
caudata, 607, 613.
imbricata, 618.
Brachiolites racemosus, 177.
Brachiomma lobiferum, 577.
Brachyophyra effrons, 442.
Brachyphylla, 637, 638.
cavernarum, 638.
nana, 637, 638.
Bremidæ, 451.
Bremus, 451.
balteatus, 456, 458.
bolsteri, 452.
couperi, 451-453.
frigidus, 451-453.
hyperboreus, 451-456, 457, 458.
kirbyellus, 454-458.
nivalis, 458.
polaris, 451-457, 458.
vagans, 453.
Brochodora, 101, 102, 144, 194, 244.
Buccinidæ, 507.
Buccinum, 480.
amaliæ, 507.
belcheri, 485, 487, 507, 509, 510, 609.
ciliatum, 507, 510.
cyaneum, 485, 487, 507, 510, 511.
cyaneum perdix, $485,487,511$.
ekblawi, 485, 487, 512, 513, 609, 611.
elongatum, 507.
finmarchianum, 511, 512.
fragile, 507.
glaciale, 507.
gouldi, 510.
grœnlandicum, 507, 510, 511, 513.
hancocki, 507.
humphreysianum, 507.
hydrophanum, 485, 487, 488, 507, 513.
hydrophanum tumidosa var. b., 514.
inexhaustum, 510.
perdix, 507, 511, 512.
polare, 513.
sericatum, 510, 511.
tanquaryi, 485, 487, 511, 608-611.
tenue, 485, 488, 507.
terræ-novæ, 507.
tottenii, 507.

- tumidulum, 485, 487, 507, 514.
undatum, 507, 508, 509.
undulatum, 485, 487, 507, 508, 509.
Bugula, 618.
plumosa, 613, 618.
Bugulopsis peachi, 614.
Buskia nitens, 613.
Caberea ellisi, 607, 614.
Callibrochidæ, 256.
Callibrochis senonensis, 172.
Callicylix farreides, 183.
Calliphora punctata, 440.
Callisaurus, 456, 468.
carmenensis, 465.
draconoides, 466.
draconoides ventralis, 465, 467.
inusitatus, 465, 466.
plasticus, $465,466$.
splendidus, 467.
ventralis, 467.
ventralis ventralis, 465, 466.
Callitroga
macellaria, 439, 440.
turbida, 440.

Callodictyon, 31.
fragile, 111, 117.
Callodictyonidæ, 260.
Callopegma
acaulis, 150, 188, 197.
obconicum, 150.
schloenbachi, 197.
Callopora, 605, 619, 620.
arctica, 608, 614, 619.
craticula, 608, 614.
cymbæformis, 608, 614, 620.
discreta, 606, 608, 614.
flemingi, 614.
flemingi septentrionalis, 614.
lineata, 614, 619.
minax, 614, 619.
nigrans, 608, 614, 619.
sophiæ, 619, 620.
spathulifera, 608, 614, 619.
spinifera, $614,620$.
spitzbergensis, 606, 609, 614.
trifolium, 614.
trifolium quadrata, 614.
unicornis, 609, 614, 619.
unicornis armifera, 609, 614, 620.
whiteavesi, 614.
Calobata
lasciva, 446.
pleuritica, 446.
Calpia pertusa, 109.
Caltropella, 148.
Calythea albicincta, 441.
Cameroptychium patella, 120.
Camerospongia, 135.
fungiformis, $87,118,119,120,136$.
megastoma, 87.
monostoma 118-120.
subrotunda, 59.
Camerospongidæ, 260.
Canthydrus
bicolor, 307, 308.
floridanus, 307, 308.
gibbulus, 307, 308.
puncticollis, 307, 308.
Caprina, 94.
Capromys, 626, 630, 631.
columbianus, 630.
nana, 629, 630, 631.
pilorides, 628.
Caracal, 335, 337.
Carbasea, 619.
Carcelia lagoæ, 437
Cardiaster fossarius, 49, 56.
Cardiidæ, 498.
Cardium, 80.
grœnlandicum, 498.
haysii, 494.
islandicum, 484, 488.
islandicus, 499.
Caricea
antica, 442.
insignis, 442.
Carterella, 104.
spiculigera, 105, 124.
Catocha, 425.
Catolynx, 335, 338.
Catopuma, 338.
Catopygus carinatus, 57, 75, 86.
Catostomus, 263-265.
catostomus, 263-265.
commersonii, 264, 265.
hudsonius, 263, 265.
richardsoni, 263-266.
Cecidomyidæ, 425.
Celina grossula, 312.
Cellaria, 620.
borealis, 620.
Cellepora, 620, 622.
avicularis, 616.
cervicornis, 622, 623.
contigua, 605.
incrassata, 623.
nodulosa, 616.
ramulosa, 616.
ramulosa contigua, 616, 623.
ramulosa tuberosa, 616, 623.
scabra ovata, 622.
scabra plicata, 622.
spongites, 622.
surcularis, 616, 623.
tuberosa, 616, 623.
ventricosa, 616.
whiteavesi, 616.
Celleporaria incrassata, 623.
Celleporella, 620.
lepralioides, 616.

Cellia albipes, 424.
Cellularia, 619, 620.
scabra, 619.
scabra elongata, 619.
ternata gracilis, 619.
Centrosia incrustans, 183.
Centrurus eduardsii, 439.
Cephalites
campanulatus, 119.
ellipticus, 177.
monostoma, 119.
perforatus, 135.
polystoma, 135.
Cephaloraphidites
cavernosus, 160.
milleporatus, 160.
Cercyon
floridanum, 322.
prætextatum, 322.
variegatum, 322.
Ceria daphnỉæa, 435.
Ceriodes daphnæa, 435.
Cerodontha dorsalis, 448.
Cerotainia
macrocera, 430.
macrocera jamaicensis, 430.
Chætarthria pallida, 320 .
Chætona, 438.
nitens, 438.
Chalaropegma cerebriformis, 203, 238, 252.

Chamæleolis, 523.
Chamælinorops, 523.
barbouri, 523.
Chapman, Frank M., Descriptions of
Proposed New Birds from Peru, Boliv-
ia, Argentina, and Chile, 323-333.
Cheilopora
prælucida, 606, 611, 616.
sincera, 616, 623.
Chenendopora, 163.
aurita, 162.
convoluta, 126.
crassa, 127.
explanata, 129.
fungiformis, 200.
marginata, 163, 164.
obliqua, 146.
tenuis, 87, 125-127.
Chilonatalus, 642.
Chilonycteris
boothi, 636.
parnellii boothi, 636.
Chironomidæ, 422.
Chiton
marmoreus, 490.
ruber, 490.
Chlamys, 491.
Chloropidæ, 447.
Chondrites antiquus, 30.
Chonelasma hindii, 167, 254
Chonelasmatidæ, 254.
Chonella
andreensis, 68.
auriformis, 129, 141, 166, 203.
tenuis, 165, 203.
Chonocephalus jamaicensis, 433.
Chrysailurus, 335, 338, 430.
Chrysomyia macellaria, 439.
Chrysopetalidæ, 576.
Chrysopilus jamaicensis, 428.
Chrysops costatus, 428.
Chrysotoxum nigritum, 433.
Chrysotus, 431.
picticornis, 431.
Cidaris, 91.
Cinclodes
albidiventris, 326.
fuscus, 326.
fuscus fuscus, 326.
fuscus rivularis, 326.
fuscus tucumanus, 326.
Cisco, 269, 270.
johannæ, 269.
prognathus, 269.
supernas, 269.
Clænodon, 541-544, 546-555.
corrugatus, 542-546, 550.
ferox, $545,550$.
protogonioides, 550, 553, 554.
Clinopera scutellata, 440.
Clio
borealis, 515.
helicina, 514.
limacina, 515.
Clione limacina, 484, 487, 515.

Clionidæ, 515.
Clitellaria
anchialus, 427.
chalybea, 427.
Clusiodidæ, 443.
Cnemidium
conicum, 142.
pertusum, 108, 109.
Cnemidophorus
bartolomas, 476.
celeripes, 472.
disparilis, 473, 474.
estebanensis, 474.
grahamii, 473.
martyris, 473, 474.
punctilinealis, 475, 476.
vandenburghi, 477.
Cochliomyia, 439.
Cœlambus, 311.
acaroides, 312.
marginipennis, 312.
mutchleri, 315.
princeps, 311.
Cœlochonia, 18.
Cœlocorypha, 136.
acuta, 140.
socialis, 140.
subglobosa, 139, 140.
Cœloptychidæ, 260.
Cœlopthchium, 18, 20, 71, 74, 185.
agaricoides, 186, 207.
alternans, 177.
deciminum, 185, 206.
eichwaldi, 90.
goldfussi, 90.
jasikovii, 90.
münsteri, 90 .
rude, 186, 207, 260.
seebachi, 207.
truncatum, 90.
Cœnosia
flavipes, 442.
tenuicornis, 442.
tibialis, 442.
Colos tortuosus, 485.
Colossolacis plicata, 155.
Colpius inflatus, 306.
Compsomyia macellaria, 439.

Conurus pyrrhurus, 324.
Copelatus
cælatipennis, 313.
chevrolati, 313.
chevrolati australis, 305, 313.
debilis, 305, 312.
glyphicus, 313.
Coptotomus interrogatus obscurus, 313.
Corallistidæ, 39, 246.
Coregonus, 266, 267.
preblei, 266.
quadrilateralis, 267.
Coryphella salmonacea, 485.
Coryphodon, 558.
Coscinopora, 204.
infundibuliformis, 181, 206, 260.
Coscinoporidæ, 260.
Coscinostoma
auricula, 166, 203.
fragilis, 203.
Crania ignabergensis, 87.
Crassina arctica, 495.
Crassiseta attenuata, 447.
Craterella
auricula, 197.
tuberosa, 150, 188, 197.
Craticularia
maaki, 130.
relicta, 130.
virgatula, 170, 256.
Craticularidæ, 169, 256.
Credneria triacuminata, 83.
Crenella
faba, 484, 487, 493.
pectinula, 494.
Creniphilus
nanus, 321.
reductus, 321 .
Cribrilina, 620.
annulata, 609, 614, 620.
annulata spitzbergensis, 614.
nitidopunctata, 614, 620.
punctata, 606, 609, 614.
punctata watersi, 614.
Cribroscyphia, 18.
Cribrospongia, 18, 117.
decheni, 178.
fragilis, $87,111,117$.
murchisoni, 204.
Cricetodon gerandianus, 600.
Crioceras, 92.
Crisia
arctica, 612.
cornuta, 612.
denticulata, 612.
eburnea, 605, 606, 612.
producta, 612.
Cristivomer namaycush, 269.
Crysailurus, 338.
Ctenomys, 355.
Ctenosaura, 461.
conspicuosa, 461, 462.
hemilopha, 461, 462.
insulana, 462.
townsendi, 462.
Culex
annulipes, 422.
argenteus, 424.
atratus, 423.
calopus, 424.
confirmatus, 423.
corniger, 422.
fasciatus, 424.
fatigans, 423.
jamaicensis, 423.
janitor, 422.
microsquamosus, 423.
quinquefasciatus, 423.
reductor, 423.
revocator, 423.
secutor, 422.
similis, 423.
subfuscus, 423.
tæniorhynchus, 423.
tortilis, 424.
Culicidæ, 422.
Culmites, 86.
Cupulospongia, 129.
gigantea, 104, 105.
mantelli, 166.
marginata, 142.
rimosa, 154.
tenuis, 165.
Cybister fimbriolatus, 314.
Cycloclema compressa, 156, 188.
Cycloleppteron grabhamii, 424.

Cyclostigma
acinosa, 183.
mæandrina, 184, 260.
Cylichna, 480.
alba, 484, 488.
striata, 484.
Cylindrœcium, 618.
dilatatum, 607, 618.
Cylindroporella tubulosa, 611, 616, 623.
Cylindrospongia, 106.
angustata, 87.
Cymbiodyta fimbriatus, 321.
Cymmatina inflata, 68.
Cynailurus, 337.
Cynipimorpha minuta, 427.
Cyphomyia, 426, 427.
marginata, 426, 427.
Cyphosoma, 91.
Cyprinus
catostomus, 265.
forsterianus, 264, 265.
hudsonius, 263-265.
Cysticella
elegantula, 616, 622.
fragilis, 616, 622.
saccata, 610, 616, 622.
Cystispongia monostoma, 184, 194. 206. 260.

Cytoracea
costata, 141.
grandis, 141.
impressa, 140.
turbinata, 133.
Dactylopius coccidarum, 425.
Dactylotus micropelta, 158, 200, 248.
Dasychone conspersa, 577.
Defrancia lucernaria, 613.
Deinocerites cancer, 422.
Dendrailurus, 335, 338-430, 372-375.
Dendrobeania, 608-611, 618.
murrayana, 613, 618.
murrayana fruticosa, 607, 613, 618.
murrayana quadridentata, $613,618$.
Dendromyia mitchellii, 422.
Dendrospongia clathrata, 107. is
Derallus altus, 305, 320.
Dercitus, 148.

Desmacidonidæ, 252.
Desmoceras obscurum, 74.
Desmometopia m-nigrum, 448.
Desmopachria
granum, 308.
mutchleri, 309.
Dexia thomæ, 438.
Dexiidæ, 43
Diastopora
diastoporoides, 613, 618
hyalina, 618.
hyalina obelia, 618.
meandrina, $613,618$.
obelia, 613, 618.
obelia arctica, 613.
simplex, 613, 618.
suborbicularis, 613.
Dichojerea, 101.
Dickerson, M. C., Diagnoses of Twentythree New Species and a New Genus of Lizards from Lower California, 461477.

Didymictis, 558.

## Diglossa

mystacalis albilinea, 331.
mystacalis mystacalis, 331.
pectoralis, 331.
Dilophus
orbatus, 425.
venulatus, 426.
Dineutes
carolinus, 316.
emarginatus, 305, 316.
serrulatus, 316.
Diplosis coccidarum, 425.
Disceras, 94.
Discocerina
leucoprocta, 447.
parva, 447.
Discodermia
antiqua, 154, 248.
colossea, 198.
doederleini, 155.
Discoderminæ, 248.
Discoidea subuculus, 90.
Discopc a, 622, 623.
appensa, 621.
zoccinea ventricosa, 621.
pavonella, 622.
Discoporella, 618.
Dohrniphora dispar, 432.
Dolichopodidæ, 430.
Dolichorhininæ, 564.
Dolichorhinus, 564, 569.
Doryderma, 102, 146.
capitata, 187.
ficus, 145, 194.
plana, 120, 145.
ramosa, 102, 144, 187, 194.
ramosum, 68.
ramusculus, 144, 194.
roemeri, 101, 102, 144, 194, 244.
tuberosa, 145, 194.
Drapetis
flavicornis, 431.
flavida, 431.
Drosophila
ampelophila, 448.
cardini, 448.
lutzii, 448.
melanogaster, 448.
ораса, 448.
pallida, 448.
punctulata, 448.
repleta, 448.
similis, 448.
willistoni, 448.
Drosophilidæ, 448.
Dytiscidæ, 305, 306.
Echinocomus, 51.
Echinocoris vulgaris, 73.
Echinomyia basifulva, 438.
Empididæ, 431.
Elachipalpus macrocera, 437.
Elaphropeza
bacis, 431.
flavida, 431.
simplicipes, 431.
upsilon, 431.
Electra
catenularia, 614.
monostachys, 606, 614.
pilosa, 614, 619.
Eleutherodactylus montanus, 519.
Ensina picciola, 445.

Entalophora
clavata, 606, 612.
deflexa, 612.
Eohippus, 558.
Eometarhinus, 557-559, 568.
huerfanensis, 559, 564, 567, 568.
Eotitanopinæ, 564.
Eotitanops, 557-559, 562-564.
borealis, 562.
brownianus, 559, 562, 563.
gregoryi, 559, 563, 564.
major, 562.
minimus, 559, 563, 564.
princeps, 562.
Ephydridæ, 446.
Epiaster
brevis, 51, 70, 75.
gibbus, 51, 73.
Epimys, 627.
Erax
haloesus, 430.
invarius, 430.
rufitibia, 430.
stylatus, 430.
Eriocheir
japonicus, 593.
misakiensis, 593.
leptognathus, 593.
rectus, 593.
sinensis, 593.
Eristalis
albifrons, 435.
atrimanus, 435.
cubensis, 435.
lateralis, 435.
pinguis, 435.
uvarum, 435.
vinetorum, 435.
Erophylla, 641.
bombifrons, 642.
sezekorni, 641.
Eschara, 622, 623.
cervicornis, 622.
elegantula, 622.
perpusilla, 622.
sarsii, 622.
Escharella, 621.
jacotini, 621.
laqueata, 621.
lengentilii, 621.
lengentilii prototypa, 621.
linearis secundaria, 620.
lineata biaperta, 620 .
palmata, 621.
Escharina, 620.
Escharipora, 620.
Escharoides, 622.
jacksoni, 615, 621.
Escharopsis
lobata, 622.
rosacea, 616, 622.
sarsi, 616, 622.
Esox lucius, 268.
Esthonyx, 558.
Euaresta melanogaster, 446.
Eubrochidæ, 172.
Eubrochis senonica, 172.
Eucynipimorpha, 427.
Eudea
annulata, 165.
intumescens, 121.
trilobata, 121.
tuberosa, 142.
Eudictyon
diagonale, 176, 177.
striatum, 176.
Eulespongia texta, 123.
Eunicidæ, 576.
Euplectellidæ, 254.
Eupomatus uncinatus, 581.
Eurete rauffi, 167.
Euritidæ, 264.
Eurythoe complanata, 576.
Euxesta
annonæ, 444, 445.
annonæ scutellata, 44 ).
avala, 445.
costalis, 445.
puisio, 445.
stigmatias, 445.
Exogyra, 69.
columba, 82, 88.
laciniata, 75, 76, 82.
Exoprosopa
albiventris, 428.
cerberus, 429.
eremita, 429.
ignifera, 429.
parva, 429.
pueblensis, 429.
subfascia, 429.
Exorista lagoæ, 437.
Fannia trimaculata, 440.
Farrea, 31.
clarkii, 167.
halli, 167, 254.
Farrella, 618.
Felidæ, 343.
Felis, 335-355.
æquatori lis, 347.
albescens, 345, 346.
apache, 381.
armillata, 352 .
aurata, 339.
bangsi costaricensis, 346.
bengalensis, 340 .
braccata, 343, 376-378.
brasiliensis, 346, 352.
cacomitli, 381.
canescens, 345, 346, 351.
caracal, 337.
catenata, 349, 350, 352.
catus, 338.
celidogaster, 338, 339.
chibigouazou, 347, 348.
chibiguazu, 348, 350, 351.
colocolo, 339, 350, 362, 366, 367, 371-375.
colocolo neumayeri, 374.
concolor, 337.
costaricensis, 346.
darwinii, 383.
eira, 383.
emiliæ, 360.
eyra, 338, 381-384.
fossata, 381.
geoffroyi, 339, 355-358, 362, 366
368, 372, 375, 378.
glaucula, 355, 357.
griffithii, 345, 316, 350, 351.
griseus, 383.
guigna, 339, 344, 355-356, 358, 361, 362, 365, 367, 371.
guiña, 361, 362.
guttula, 355, 360.
hamiltonii, 348-351.
jacobina, 372.
jacobita, 371, 372.
jaguarondi, 383, 384.
jajeros, 375.
leo, 336.
lineata, 372.
limitis, 345, 346.
lynx, 357.
macroura, 337, 353-357.
manul, 338.
maracaya, 348.
marip:nsis, 347.
marmorata, 338.
mearnsi, 346.
megalotis, 340 .
melanura, 352 .
minuta, 340.
mitis, 352.
moormensis, 338.
ocelot, 345-352.
onca, 337.
pajeros, $338,356,362,371.374,753$,
pajeros crucina, 375.
pajeros thomasi, 376 .
panamensis, 382.
panjeros, 338.
pardachrous, 340.
pardalis, 337 ,338, 345-352.
pardalis albescens, 345 .
pardalis limitis, 345.
pardalis minimus, 352 .
pardalis ocelot, 347.
pardinoides, 355,358 , 366.
pardinoides andina, 359.
pardinoides emerita, 359.
pardinoides oncilla, 355-359.
pardoides, 352.
pardus, 337.
parjeros, 356.
parjeros garleppi, 376 .
passerum, 375.
pseudopardalis, 352.
puma, 337.
salinarum, 355, 366, 368, 372.
sanctæmartæ, 347.
serval, 338.
strigilata, 339, 340, 372-375.
temmincki, 338.
tigrina, 355, 356.
tigris, 336.
uncia, 337.
unicolor, 383.
viverrina, 340.
wiedii, 337, 353-357.
wiedii vigens, 357.
yaguarondi, 376, 377, 380, 383, 384.
yaguarondi melantho, 382, 383.
yaguarondi tolteca, 381.
yaguarondi unicolor, 383.
yaguarundi, 338, 381.
Fenestrulina malusi, 615, 621.
Fistularia ramosa, 618.
Flustra, 618, 619.
carbasea, 613.
chartacea, 619.
foliacea, 611, 613.
membranaceo-trunacta, 613, 619.
papuracea, 613, 619.
Flustrella hispida, 613, 618.
Folsom, Justus W., Collembola from the
Crocker Land Expedition, 1913-1917, 271-303.
Folsomia, 276.
diplophthalma, 276.
quadrioculata diplophthalma, 276.
Forospongia, 138.
Frison, Theodore H., Report on the
Bremidæ Collected by the Crocker
Land Expedition, 1913-1917, 451-459.
Galba, 527.
alberta, 537.
caperata, 538.
cubensis, 538.
cubensis aspirans, 538.
palustris, 529, 531.
traskii, 538.
Galerites, 91.
albogalerus, 51.
subrotundus, 90.
Gastrophilus
equi, 436.
intestinalis, 436.
pecorum, 436.
Gemellaria loricata, 607, 613, 618.
Geocapromys, 629, 631, 632.
columbianus, 630, 631.
Geodiidæ, 250.
Geodiopsis microthrinax, 158, 250.
Gephyrotes, 620.
Geranomyia intermedia, 422.
Geron
rufipes, 429.
senilis, 429.
Gidley, James Williams, New Species of Clænodonts from the Fort Union (Basal Eocene) of Montana, 541-555.
Gonia
angusta, 437.
crassicornis, 437.
pallens, 437.
Gonomyia
puer, 422.
slossonæ, 422.
Grabhamia
pygmæa, 423.
sollicitans, 423.
Gryphæa vesicularis, 69, 91.
Guettardia
striata, 130, 192.
stümpeli, 172, 192, 256.
Gymnoclytia immaculata, 436.
Gyrinidæ, 305, 316.
Gyrinus
minutes, 316.
elevatus, 316.
rockinghamensis, 316 .
Gyrispongia subruta, 134.
Heatobia
irritans, 440.
serrata, 440.
Hæmogogus equinus, 424.
Halesidota, 437.
Halichondria
lendenfeldi, 124.
vosmæri, 124, 252.
Haliplidæ, 305, 315.
Haliplus
annulatus, 309, 315.
havaniensis, 315.
lewisii, 315.
punctatus, 315.
Hamites, 92.
ellipticus, 88.
Hapale, 355.
Harmeria, 605.
scutulata, 609, 614.
Harper, Francis and Nichols, John Treadwell, Six New Fishes from Northhwestern Canada, 263-270.
Hathometra prolixa, 606.
Helicina, 503.
Helicobia helicis, 439.
Helioceras
annulifer, 88.
polyplocus, 88 .
Heliometra glacialis, 606.
Helobrachiidæ, 161, 250.
Helobrachium consecatum, 161, 250.
Helochares maculicollis, 320.
Helomorinidæ, 39, 250.
Hemeschara, 623.
contorta, 621.
Hemiaster griepenkerli, 51, 75.
Hemicyclopora polita, 616, 623.
Hercoglosa danica, 50.
Hermetia illucens, 426.
Herpailurus, 338, 339, 343, 361, 366, 380.
geoffroyi, 339, 366, 367.
pardinoides, 366.
yaguarondi, 339, 366.
yaguarondi cacomitli, 381, 393, 396, 399, 401.
yaguarondi melantho, 382.
yaguarondi panamensis, 382.
yaguarondi unicolor, 383.
yaguarondi yaguarondi, 383.
Hesione protochona, 571.
Hesionidæ, 571.
Heteroceras, 179.
polyplocum, $7 \dot{4}$.
reussianum, 51, 70, 75.
Heteromeringia lumbalis, 443.
Heteroneura lumbalis, 443.
Heteroneuridæ, 443.
Heteroraphidæ, 160.
Heteroraphidites
spongiosum, 160.
spongiosus, 160.
Heterostinia
depressa, 195.
immanis, 146, 195.
obliqua, 146, 238.
Heterotoma vaga, 281.
Hexachæta
dinia, 445.
eximia, 445.
Hexactinella
angustata, 168, 204, 254.
lævis, 169, 191.
Hilara viridis, 431.
Hippalimus, 164.
Hippelates
bicolor, 447.
convexus, 447.
dorsalis, 447.
flavipes, 447.
Hippoporina pertusa, 611, 616, 623.
Hippothoa
divaricata, 614, 620.
expansa, 614.
hyalina, 609, 614, 620.
Hippurites, 92, 94.
Hoagland, Ruth A., Polychætous Annelids from Porto Rico, the Florida Keys, and Bermuda, 571-590.
Holaster, 90.
planus, 56, 58, 87.
subglobosus, 56, 58, 75.
Holbrookia, 465.
Homalodora, 102, 120, 144, 145, 187, 194.

Homoraphidæ, 252.
Hoplites
coesfeldensis, 74.
vari, 50, 74.
Hornera lichenoides, 612.
Howardina walkeri, 424.
Hybos electus, 431.
Hydaticus, 314.
bimarginatus, 314.
Hydræna marginicollis, 318.
Hydrocanthus
iricolor, 306, 307.
oblongus, 306, 307.
texanus, 307.

Hydrocharis castus, 320.
Hydrochus
minimus, 317.
rugosus, 317.
rufipes, 317.
simplex, 316, 317.
subcupreus, 316, 317.
Hydrophilidæ, 305, 316.
Hydrophilus
lateralis, 318, 319.
ovalis, 319.
ovatus, 319.
Hydroporus
cimicoides, 312.
undulatus, 312.
Hydrovatus compressus, 308.
Hyperalonia
albiventris, 429.
cerberus, 429.
gargantua, 429.
hela, 428, 429.
proserpina, 429.
Hypogastrura armata, 273.
Hypostena, 436.
Hyrachyus, 538.
Hystricia epileuca, 437.
Hystriciella aurifrons, 437.

## Idmonea

atlantica, 606, 611, 612.
liliacea, 618.
serpens, 618.
Ilythea, 447.
Inoceramus, 69, 88.
balticus ( $=$ cripsi), 75.
brogniarti, $51,73,75,81,83,87,90,91$.
cardissoides, 51.
cripsi, 75, 90.
cuvieri, 51, 75, 82, 83, 90.
digitatus, 51, 71, 75.
exogyroides, 71.
haeleini, 51, 71.
involutus, 51, 71, 90.
kleini, 71.
koeneni, 51, 71.
labiatus, $51,70,73,75,76,81,83$.
latus, 87.
lobatus, 75.
mytiloides, 51, 73.
schloenbachi, 70.
striatus, 86.
subcardissoides, 71.
Isastrea, 86.
Ischnochitonidæ, 490.
Isis hippuris, 620.
Isodon pilorides, 628, 629.
Isoraphinia.
simplicissima, 105.
texta, 123, 124, 131, 133.

- Isotoma
arctica, 277.
besselsi, 271, 277, 278, 298.
binoculata, 276.
diplophthalma, 271, 276, 296.
janmayensis, 277.
mucronata, 280.
olivacea, 271, 279, 300.
spitzbergenensis, 277.
violacea, 271, 280, 281, 302.
violacea mucronata, 280, 281.
voraginum, 279.
Jaguarius, 336, 337.
Jerea, 104, 136, 190.
gracilis, 153.
pyriformis, 103.
quenstedti, 103, 104, 153.
reticulata, 55.
scripta, 121.
spiculigera, 105, 124.
tuberculosa, 201.
turbinata, 108, 109.
websteri, 55 .
Jereica
oligostoma, 191, 201.
polystoma, 190, 191, 201.
polystoma tuberculosa, 201.
punctata, 139, 191.
tuberculosa, 201.
Johnson, C. W., A Revised List of the
Diptera of Jamaica, 421-449.
Jurinia
amethystina, 438.
epileuca, 437.
Kentrosia incrustans, 183.

Laccorhilus
gentilis, 308.
proximus, 307, 308.
Lambdotherium, 557-559.
magnum, 559, 561, 562.
popoagicum, 559, 560, 562.
priscum, 559, 560-562.
progressum, 559, 560, 562.
Lamprempis viridis, 431.
Lauxania albovittata, 443.
Lauxiania flavida, 444.
Leda
arctica, 488.
frigida, 488.
glacialis, 488.
minuta, 484.
pernula, 484, 487, 490, 500.
pernula falcata, $484,488,491$.
Ledidæ, 490.
Leia, 425.
Leieschara, 620.
Leiochonia
cryptoporosa, 165, 191, 202.
pinguis, 134.
robusta, 202.
Leiostracosia
alcyonoides, 105, 106, 112, 116, 131.
angustata, 106, 116, 131, 134.
brandesi, 180.
Leiponeura, 422.
Leo, 335, 336, 383.
Leopardus, 335-338, 345, 351-356, 361, 369.
griseus, 346.
macroura, 353.
pardalis æquatorialis, 347 .
pardalis chibigouazou, 348, 402-406.
pardalis griffithii, 345, 354.
pardalis maripensis, 347.
pardalis mearnsi, 346, 347, 389-391, 400.
pardalis pardalis, 345, 346.
pardalis pusæa, 348.
pardalis sanctæmartæ, 347.
pardalis tumatumari, 347, 351, 407.
pictus, 346.
tigrina, 353.
wiedii, 355.

Lepeta cæca, 485, 487, 502.
Lepetidæ, 502.
Lepidomyia calopus, 433.
Lepidonotus
variabilis, 572.
wahlbergi, 573.
notata, 572, 584.
Lepidospongia
brandesi, 175.
fragilis, 176, 193, 258.
rugosa, 74, 175, 181, 184, 186, 205.
Lepodostola calopus, 433.
Lepralia, 619-623.
emucronata, 623.
hippopus, 605.
nordlandica, 623.
peachii, 621.
pertusa, 623.
plana, 610.
scutulata, 605.
smithi, 621.
spathulifera, 605.
trispinosa, 621.
Lepraliella, 605, 623.
contigua, 616, 623.
hippopus, 616, 623.
Lepromyia calopus, 433:
Leptailurus, 338.
Leptasthenura
ægithaloides berlepschi, 327.
andicola, 328.
andicola andicola, 327.
andicola peruviana, 327.
punctigula, 327.
Leptoda thomæ, 438.
Leptogaster
clavipes, 430.
longipes, 430.
pictipes, 430.
Leptophragma, 111, 117.
fragile, 117.
glutinatum, 111.
micropora, 171, 205.
murchisoni, 170, 204.
murchisoni minor, 170.
pusillum, 170, 192.
Leptophragmidæ, 256.
Leskia aurifrons, 436 .

Leskiomima tenera, 436.
Leucichthys, 267.
alascanus, 268.
athabascæ, 268, 269, 270.
entomophagus, 267.
laurettæ, 268.
lucidus, 268.
macrognathus, 268, 269, 270.
pusillus, 268.
Leucomelina
cubana, 442.
cyrtoneura, 441.
exul, 441, 442.
garrula, 441.
narona, 441, 442.
pica, 441.
senilis, 436.
Lichenopora
crassiuscula, 606, 612.
hispida, 606, 612, 618.
regularis, 612.
verrucaria, 607, 611, 612, 618.
Lima hoperi, 87.
Limacina
arctica, 514.
helicina, 484, 487, 514.
Limacinidæ, 514.
Limnobia, 422.
Limnohyops, 557, 559, 563, 566.
Limnophila nacrea, 422.
Limnophora exul, 441.
Limnorea nobilis, 87, 107.
Limosina, 443.
Lipura
grœnlandica, 273.
schotti, 273.
Loimia bermadensis, 576.
Lonchæa
nigra, 443.
orchidearum, 443.
wiedemanni, 443.
Lopadophorus janus, 137.
Loxosoma, 612, 617.
Loxosomella
antedonis, 606, 612.
phascalosomatum, 612, 617.
Lucilia, 440.
Lucina lenticularis, 81.

Lumbrinereis floridana, 576.
Lymnæa, 537. palustris, 533.
Lymnorea, 107.
Lynceus, 337.
Lynchailurus, 338, 339, 356, 374-378.
pajeros, 374, 378, 379.
pajeros braccata, 418, 419.
pajeros braccatus, 376, 379, 380.
pajeros crucina, 338, 375, 378, 379.
pajeros garleppi, 376, 379.
pajeros pajeros, 375, 379.
pajeros thomasi, 376, 378, 379.
Lynchus, 335, 337.
Lynx, 337, 344.
Lyonsia arenosa, 484.
Lysoptychus lateralis, 468.
Lytoceras, 92.
Macoma
calcarea, 484, 487, 488, 499.
calcaria, 499.
proxima, 499.
Macrobrochus emscheris, 134.
Macrocera concinna, 425.
Macrosargus
alchidas, 426.
bagosas, 426.
Macroscaphites, 92.
Macrotus, 637.
minor, 637.
waterhousii minor, 637.
Madrepora, 618.
Mæandrospongia annulata, 183.
Mammites nodosoides, 50, 51, 70, 75.
Manon, 163.
circumporosum, 127.
distans, 162.
megastoma, 135, 184.
micromatum, 162.
miliare, 126.
monostoma, 118, 119.
phillipsi, 162.
reussii, 189.
seriatoporum, 161.
sparsum, 128.
tenue, 125, 126.
turbinatum, 128, 138, 139.

Manteoceras, 564.
Margarites, 485, 502.
cinerea, 485, 505, 587.
glauca, 485.
helicina, 485, 487, 502.
umbilicalis, 485-488, 502, 503, 504, 606, 609.
umbilicalis spiralis, 485, 487, 504.
vahlii, 485, 487, 603.
Margaritia cinera, 505.
Margay, 337, 353-356, 358-361.
caucensis, 360 .
glaucula glaucula, 357, 358.
glaucula nicaraguæ, 357.
tigrina elenæ, 360.
tigrina emerita, 359.
tigrina tigrina, 356.
tigrina vigens, 357.
tigrina ${ }^{*}$ wiedii, 354, 356, 357-360, 392, 394, 397, 400.
wiedi andina, 359.
Marshallia, 177.
tortuosa, 180.
Marsupites, 73.
testudinarius, 51, 56, 75, 90.
Masicera protoparcis, 437.
Masonia titillans, 423.
Matus bicarinatus, 313.
Megaloraphium auriforme, 161, 242.
Megamorinidæ, 244.
Megarhizidæ, 39, 252.
Melanoconium
annulipes, 422.
atratus, 423.
Membranipora, 605, 619, 520.
lineata americana, 620.
lineata sophiæ, 619.
membranacea, 611, 614, 619.
serrulata, 606-608, 609, 610, 614, 619.
sophiæ, 619.
spinifera, 620.
Menipea, 619.
arctica, 614, 619.
duplex, 619.
gracilis, 619.
smitti, 614, 619.
Meromacrus cinctus, 435.

Mesatirhinus, 559, 564, 568, 569.
megarhinus, 568, 569.
Mesenteripora, 618.
Mesogramma pœcilogaster, 434.
Mesograpta arcifera, 434.
Mesonyx, 558.
Metarhinus, 559, 564, 568, 569.
Metopia leucocephala, 437.
Micraster, 91.
breviporus, 51, 66, 70.
coranguinum, 56, 58.
cortestudinarium, 51, 56, 58, 66, 70.
gibbus, 73, 90.
glyphus, 51, 74, 175.
gottschii, 73.
hassi, 73.
leskii, 87.
Microblastididæ, 258.
Microblastidium decurrens, 177, 258.
Microchrysa bruesi, 426.
Microdendron ramulosum, 200.
Microdon violens, 433.
Micropeza producta, 446.
Micropezidæ, 446.
Micropora borealis, 620.
Microporella
ciliata, 605, 615, 620.
ciliata arctica, 615.
Microporina articulata, 614, 620.
Microsittace, 323.
ferrugineus ferrugineus, 323,324 .
ferrugineus minor, 323, 324.
Milesia ania, 435.
Milichiella
argenteocincta, 449.
lacteipennis, 449.
Millepora
reticulata, 622.
truncata, 620.
Miller, Gerrit S. and Gidley, James W., A New Rodent from the Upper Oligo-
cene of France, 595-601.
Mimus orpheus, 441.
Minettia
annulata, 444.
annulipes, 444.
cineracea, 444.
quadrilineata, 444.

Mioclænus
corrugatus, 541.
ferox, 541.
protogonioides, 541.
Mochlostyrax jamaicensis, 423.
Modiola
faba, 493, 494.
lævigata, 493.
Modiolaria
discors, 492.
faba, 494.
lævigata, 493.
substriata, 492.
Mollia hyalina divaricata, 620.
Molossus tropidorhynchus, 643.
Monophyllus cubanus, 637.
Monopleura, 92, 94.
Monoporella spinulifera, 616, 623.
Morchella, 273.
Morellia
basalis, 440 .
ochryfacies, 440.
violacea, 440.
Mortoniceras
delawarense, 50.
emscheris, 50.
texanum, 50.
Moxostoma lesueuri, 263, 264, 266.
Mucro ventricosa, 615.
Mucronella, 620, 623.
abyssicola, 615, 621.
coccinea, 621.
immersa, 615, 621.
indivisa, 610, 615, 621.
labiata, 615, 621.
pavonella, 622.
peachii, 621.
ventricosa, 610, 621.
Muricidæ, 506.
Musca
basalaris, 440.
domestica, 440.
turbida, 440.
Muscidæ, 439.
Musculium
raymondi, 529, 530.
ryckholti, 530.
Musculus
lævigatus, 484, 487, 492, 493.
substriatus, 484, 487, 492, 493.
Mya
arctica, 500.
arenaria, 500 .
truncata, 484, 487, 499, 500.
truncata uddevallensis, 484, 487, 488, 500.
uddevallensis, 500.
Myacidæ, 499.
Mycetophila
pallida, 425.
punctata, 425.
Mycetophilidæ, 425.
Mycodiplosis coccidivora, 425.
Mydæa spermophilæ, 440.
Myodus torquatus, 489.
Myospalax, 596-598.
Myriozoella, 609.
Myriozoum, 609.
coarctatum, 615, 620.
crustaceum, 609, 615, 620.
subgracile, 615, 620.
Myrmeciophytum verrucosum, 150.
Mytilidæ, 491.
Mytilus
descors, 493.
edulis, 484, 487, 491, 492.
faba, 493.
Napaea
humilis, 447.
striata, 176, 193, 205, 258.
Natalidæ, 642.
Natalus
major, 642, 643.
primus, 642.
Natica
affinis, 485.
clausa, 485.
Nautilus, 69.
elegans, 88.
Neæra subtorta, 484, 488.
Nemotelus flavicornis, 427.
Neoclænodon, 547-552.
latidens, 554, 555.
montanensis, 547-554.
silberlingi, 552-554.

Neofelis, 336.
Neohindia cylindrica, 147.
Neohindiadæ, 147.
Neoptychites peramplus, 51, 70.
Neorondania chalybea, 427.
Nereidæ, 573.
Nereis
acuminata, 573, 574.
antillensis, 574.
arroyensis, 574.
bairdii, 574 .
diversicolor, 574.
dumerillii, 574.
glandulata, 575, 586.
limbata, 574.
versipedata, 574.
Nerius solitarius, 446.
Nesophontes, 626, 632, 633, 636, 639, 642.
edithæ, 633-636.
longirostris, 633-636.
micrus, 626, 632-636.
Nicania crenata, 494.
Nicidion kinbergi, 576.
Noctifelis, 339, 356, 361, 369.
guigna, 361, 364, 368, 392, 395, 398, 400, 408-410.
Noctillio, 636.
leporinus mastivus, 636.
Nelella, 618.
dilatata, 606, 607, 613, 618.
Norops, 523.
Notiphila virgata, 446.
Notogramma stigma, 444.
Notomicrus nanulus, 306.
Nucula, 480.
inflata, 484.
Nycetiellus, 642.
Nyctinomus, 643.
Ocellaria radiatus, 112.
Ochthebius foveicollis, 317.
Ochthera exculpta, 447.
Ochtheriudæ glaphyropus, 447.
Ochthiphila
elegans, 449.
quadrata, 449.
O'Connell, Marjorie, The Schrammen

Collection of Cretaceous Silicispongiæ in The American Museum of Natural History, 1-261.
Oculispongia janus, 137.
Ocyptamus
antiphates, 434.
dimidiatus, 434.
fuscipennis, 434.
fuscipennis fascipennis, 434.
iris, 434.
latiuscula, 434.
Ocyptera
carolinæ, 437.
dotades, 437.
Oecata furens, 422.
(Estridæ, 436.
Estrophasia punctata, 436.
Offaster
corculum, 73.
pilula, 73, 175.
Ommatius
marginellus, 430.
saccas, 430.
Onchidiopsis groenlandicus, 485.
Onchotœechus
cavernosus, 118.
subrutus, 134, 260.
Oncidium luridum, 443.
Oncifelis, 339, 356, 366, 367, 374.
colocolo, 371.
colocolo neumayeri, 374.
geoffroyi, 366-370, 393, 395, 398, 401, 411.
salinarum, 367-370, 393, 396, 399, 401, 412-417.
Oncilla, 355-358, 359-369.
caucensis, 360.
guttula emiliæ, 360 .
guttula guttula, 360 .
pardinoides, 360.
pardinoides andina, 359.
pardinoides emerita, 359, 360, 392, 394, 397, 400.
pardinoides oncilla, 359.
Oncoides, 335-337, 338, 345, 353.
geoffroyi, 367, 368.
pardalis æquatorialis, 347.
pardalis chibigouazou, 348.
pardalis tumatumari, 347.
Oncotæchidæ, 260.
Onychiurus
affinis, 274.
grœnlandicus, 271, 273, 274, 290, 292.

Oösternum costatum, 322.
Opetionella poculum, 125.
Ophelia xychus, 437.
Ophiraphididæ, 250.
Ophiraphidites
annulatus, 159.
cretaceus, 158.
cylindricus, 159, 188.
infundibuliformis, 159, 188, 242.
tuberosus, 159, 188, 200.
Ophyra ænescens, 440.
Opsopœodus, 266.
bollmani, 266.
borealis, 266.
Orbitolina, 92.
Orchesella
cincta, 271.
cincta vaga, 271, 281, 282.
Oreomanes
binghami, 331, 332.
fraseri, 331, 332.
Ormia punctata, 440.
Ortalidæ, 44.
Oryzomys, 355.
Osborn, Henry Fairfield, New Titanothers of the Huerfano, 557-569.
Osburn, Raymond C., Bryozoa of the Crocker Land Expedition, 603-624.
Osmeroides lewesiensis, 88.
Ostrea
carinata, 80, 83.
hippopodium, 87.
lunata, 55, 56, 58.
sulcata, 81.
vesicularis, 82.
Otailurus, 340.
Otocolobus, 335, 338.
Otodus appendiculatus, 88
Oxyæna, 558.
Oxycera liburna, 427.
Oxyrhina mantelli, 88.

Pachastrella
carteri, 148.
convoluta, 148.
primæva, 147, 148.
Pachastrellidæ, 246.
Pachinion
cylindricum, 147, 187, 236.
familiare, 136.
scriptum, 121, 147, 187, 195, 246.
Pachycalymma, 104.
subglobosa, 104.
Pachychlænia megastoma, 135.
Pachycorynia erecta, 68.
Pachycothon
giganteum, 104, 105, 124, 161, 189, 200, 238, 250.
simplicissimus, 189.
Pachydiscus
duelmensis, 75.
stobæi, 74.
Pachygaster pulcher, 427.
Pachypoterion, 195.
auritum, 147, 195.
koeneni, 136, 187.
Pachysalax processifer, 202.
Pachytrachelus
conicus, 142.
exspectatus, 204, 238, 252.
Pajeros, 374.
pampanus, 375.
Palæospongia prisca, 30.
Palæosyopinæ, 564.
Palæosyops, 558, 563, 568.
fontinalis, 557, 559, 564, 565-569.
paludosus, 565, 566.
Palmicellaria, 622.
skenei tridens, 622.
Panthera, 335, 337.
jardinii, 352.
ludoviciana, 352.
Paraclius arcuatus, 431.
Paralimma
ciliata, 447.
decipiens, 446.
plumbiceps, 446.
Parapachydiscus neubergicus, 50.
Paraphiochæta picta fasciiventris, 432.

Parasabella
flecata, 580, 590.
midoculi, 579, 588, 590.
fonticula, 579, 588.
Parasmilia centralis, 87.
Paraspiniphora, 432.
scutellata.
scutellata jamaicensis, 431.
Pardalina
guignam, 367.
warwickii, 367.
Pardalis, 337, 338, 345.
Pardofelis, 338.
Parnidæ, 305, 322.
Parydra humilis, 447.
Patella
cæca, 502.
rubella, 501.
Pecten
asper, 49, 51, 56, 57, 58, 75.
cretosus, 87.
dujardini, 87.
grœenlandicus, 484, 488, 491.
islandicus, 484, 487, 489, 491, 609, 610.
muricatus, 75.
Pectinidæ, 491.
Pedicellina, 617.
Pelonomus
obscurus, 322.
rufescens, 322 .
Peltodytès
floridensis, 315.
oppositus, 315.
Periphragella plicata, 167.
Phænonotum
estriatum, 321.
semiglobosum, 321.
Phaiosterna, 446.
Phalacrus
decurrens, 185.
flosculus, 185.
Phalangium
cylindratum, 121, 196.
scytaliforme, 132, 196, 238.
Pheneus tibialis, 428.
Philydrus
perplexus, 321.
ochraceus, 321.
nebulosus, 321.
consors, 321.
cinctus, 321.
Pholeomyia indecora, 449.
Pholidocladia dichotoma, 123.
Phora scalaris, 432.
Phoridæ, 431.
Phrissopodia, 439.
Phylactella, 621.
Phylanthus distichus, 425.
Phylloceras, 92.
Phyllodoce papillose, 573.
Phyllodocidæ, 573.
Phyllonycteris
poeyi, 641.
sezekorni, 641, 642.
Phyllops
falcatus, 640.
vetus, 640.
Phymaraphinia
infundibuliformis, 156, 188, 199.
infundibuliformis postera, 199.
Phymaraphininæ, 248.
Phymatellinæ, 246.
Phymatella
bulbosa, 121, 122, 132, 148, 188 234, 246.
bulbosa postera, 132, 196.
heteropora, 149.
intumescens, 107, 121, 122, 132, 148, 182.
plicata, 122.
sphæroides, 133, 149, 188, 207.
tuberosa, 121, 122, 148, 149, 188, 196.

Phyphus dolorosus, 426.
Physa, 527, 528, 537.
ampullacea, 529, 534-536.
gyrina, 535, 536.
nuttalli, 535.
propinqua, 536.
sayii, 534,535 .
smithi, 529, 535, 536.
traskii, 529, 534, 536.
virgata, 536.
Physogenna
multicolor, 444.
vittata, 443.
Pinites, 87.
lepidodendroides, 86.
Pionosyllis prolifera, 571.
Piophila casei, 446.
Pipunculidæ.
Pipunculus
albiseta, 433 .
cressoni, 433.
insularis, 433.
jamaicensis, 433.
Pisidium, 528, 529, 531.
huachucanum, 529, 530.
rotundatum, 529, 530.
tenuissimum, 529, 530.
variabile, 529, 531.
Placenticeras
bidorsatum, 50.
orbignyanum, 83 .
syrtale, 50.
Placoscytus jereæformis, 188, 199.
Plagia parva, 436.
Plagioneurus univittatus, 431.
Plagioptychus, 94.
Planorbis, 527, 528, 537.
altissimus, 533 .
deflectus, 533 .
hirsutus, 533.
parvus, 532, 533:
plexata, 529, 531; 532.
similaris, 529, 532, 533.
tenuis, 531, 532.
trivolvis, 531, 532.
vermicularis, 529, 532.
Platispongia discus, 165.
Platypalpus bacis, 431.
Plecia
collaris, 426.
rufithorax, 426.
Plectascus clathratus, 107, 131.
Plectodermatium fragile, 176.
Plectrophenax nivalis nivalis, 456.
Plesiomma indecora, 430.
Pleurochorium schulzii, 173, 256.
Pleurope lacunosa, 206, 260.
Pleurostoma
dichotoma, 171, 205.
lacunosa, 206.
radiata, 171, 205, 256.
tortuosum, 177, 180.
Pleurothyrisidæ, 256.
Pleurotomaria linearis, 87.
Plinthodermatium exile, 202.
Plinthosella squamosa, 30, 157, 158, 200.
Plinthosellinæ, 248.
Plocoscyphia, 106, 118.
acinosa, 183, 184.
annulata, 183.
centuncula, 182, 183.
crassilobata, 117, 118.
labyrinthica, 87, 107.
muricata, 137.
nidiformis, 117, 118.
roemeri, 106, 107, 118, 131, 134.
tenuilobata, 120.
Podarke guanica, 571, 584.
Podura
armata, 272, 273.
vaga, 281.
Polybia, 435.
Polyblastididæ, 258.
Polyblastidium
luxurians, 177.
racemosum, 177, 193, 205, 258.
Polycœlia familiaris, 136.
Polyjerea, 101.
dichotoma, 101.
verrucosa, 128.
Polynoe polytricha, 572.
Polyopesia
angustata, 168.
radiciformis, 168, 204.
Polyporus, 273.
Polypothecia
dichotoma, 101, 102.
obliqua, 146.
Polystigmatidæ, 256.
Polystigmatium striato-punctatum, 173, 256.

Polytretia seriatopora, 160.
Porella, 621.
acutirostris, 616.
aperta, 616.
bella grœenlandica, 622.
bicornis, 616.
compressa, 616, 622.
concinna, 610, 616.
concinna belli, 616.
elegantula, 610, 622.
elegantula rostrata, 610 .
fragilis, 610, 622.
grœnlandica, 616, 622.
lævis, 616.
normani, 621.
perpusilla, 610, 622.
plana, 616.
princeps, 616.
proboscidea, 616.
saccata, 610, 622.
saccata rostrata, 622.
skenei, 616, 622.
skenei tridens, 616.
struma, 616.
Porina, 620, 621, 623.
Porospongia megastoma, 153.
Posterula, 622.
Potamogeton, 315.
Prionailurus, 340.
Prionotropis woolgari, 51, 70, 75, 81.
Procaliapsis
clavata, 156.
cretacea, 157, 248.
Procorallistes
polymorphus, 131, 132, 147, 196.
tuberosus, 131, 196.
turonensis, 132.
Proeurete plicata, 167.
Profelis, 335, 338, 339, 340.
Proisotoma besselsi, 277.
Prokaliapsis
cretacea, 157.
cylindrica, 156.
Propachastrella primæva, 147, 148, 196, 234, 246.
Prosenoides flavipes, 438.
Prosopium, 266, 267.
Protapirus poirrieri, 599.
Protis
simplex, 581.
torquata, 580, 590.
Protoparce jamaicensis, 437.
Protopteris sternbergii, 87.
Psephiocera, 427.
flavipes, 427.
metzi, 427.
minuta, 427.
Pseudochloris
olivascens, 330.
olivascens olivascens, 330 .
olivascens sordida, 330.
uropygialis connectens, 329.
uropygialis sharpei, 329, 330.
uropygialis uropygialis, 329, 330.
Pseudohystricia exilis, 438.
Pseudoploscyphia mæandrina, 122.
Psilocephala obscura, 430.
Psilopa
aciculata, 447.
nigrimanus, 447.
willistoni, 447.
Psilopus
caudatus, 430.
chrysoprasius, 430.
flavicornis, 431.
jucundus, 431.
suavium, 431.
Psittacus smaragdinus, 324.
Psorophora
haruspicus; 423.
jamaicensis, 423.
johnstonii, 423.
posticatus, 423.
pygmæa, 423.
Psychoda, 422.
Psychodidæ, 422.
Pteroptila cincta, 435.
Ptychodesia papillata, 173, 256.
Ptychodesidæ, 173, 256.
Ptychodus latissimus, 88.
Pulvinaria urbicola, 425.
Puma, 335, 337.
Pyramidula cronkhitei, 537.
Pyrellia scapulata, 440.
Ragadinia, 68, 157.
clavata, 156.
compressa, 156.
rimosa, 155.
Radiolites, 92, 94.
saxonicus, 80.
Rathbun, Mary J., A New Species of Crab from Japan, 593.

Ravinia, 439.
Regadrella petri-jacobi, 166, 254.
Requienia, 92, 94.
Retepora
beaniana, 614, 620.
cellulosa, 615.
cellulosa beanina, 620 .
cellulosa notopachys elongata, 620.
elongata, 609, 615, 620.
wallichiana, 620.
Reticulipora intricaria, 613.
Retiscyphia, 112.
Retispongia radiata, 87, 112.
Rhadinorhinus, 569.
Rhagadinia, 156.
doederleini, 155.
rimosa, 154, 199, 207, 236, 248.
Rhagionidæ, 428.
Rhamphonotus, 619.
Rhamphostomella, 623.
bilaminata, 615, 622.
costata, 610, 615.
ovata, 615, 622.
plicata, 610, 615, 622.
plicata spinigera, 616.
radiatula, 616, 622.
scabra, 616, 622.
Rhantus calidus, 314.
Rhicnoëssa
cinerea, 449.
willistoni, 449.
Rhipidia domestica, 422.
Rhizodendron oppeliense, 87.
Rhizomorinidæ, 252.
Rhizomyidæ, 595.
Rhizopsis horrida, 125, 161, 252.
Rhizopterion
solidum, 176.
tubiforme, 205.
Rhizospalax, 595, 597, 598.
poirrieri, 595.
Rhoptrum
affine, 156.
scytaliforme, 155.
Rostellaria, 80.
Rhynchodexia rufianalis, 438.
Rhynchonella, 86.
bohemica, 82 .
cuvieri, 56, 58.
plicatilis, 87.
Rhyphidæ, 426.
Rhyphus
fenestralis, 426.
alternatus, 426.
Rissoa, 480.
Rudistes, 92.
Sabella melanostigma var., 577, 578, こ86, 588.
Sabellidæ, 577.
Sacandaga parva, 422.
Sapromyza
bipunctata, 443.
cincta, 443.
grata, 443.
octopunctata, 443.
sordida, 443.
sororia, 443.
Sapromyzidæ, 443.
Sarcodexia sternodontis, 439.
Sarcophaga
fimbriata, 499.
helicis, 439.
incesta, 439.
parkeri, 439.
peltata, 439.
plinthopyga, 439.
quadrisetosa, 439.
sternodontis, 439.
Sarcophagidæ, 439.
Sarcophagula
imbecilla, 439.
occidua, 439.
Sarcophilodes, 439.
Sarothromyia femoralis, 439.
Sarsiflustra abyssicola, 613, 619.
Sator, 468.
angustus, 469.
grandævus, 468, 469.
Sauromalus, 461.
ater, 464.
interbrachialis, 163.
townsendi, 464.
varius, 461, 464.
Saxicava arctica, 484-489 500, 501.
Saxicavidæ, 500.

Scalpellum maximum, 88.
Scaphites
binodosus, 51, 75.
constrictus, 51.
geinitzi, 51, 76, 81-83, 88.
pulcherimus, 74.
Scaptomyza graminum, 448.
Sceloporus
couchii, 468.
lineatulus, 467.
magister, 468.
utiformis, 468.
zosteromus, 468.
Schizoporella, 620, 621.
auriculata, 621.
biaperta, 614, 620.
cruenta, 614, 620.
elmwoodiæ, 615.
ortmanni, 615.
producta, 615.
sinuosa, 615, 620.
stylifera, 615.
unicornis, 615.
vulgaris, $615,620$.
Schloenbachia
coupii, 73.
inflatus, 55-57, 66.
varians, 56-58, 66, 73-75, 90.
Schmidt, Karl Patterson, Descriptions of New Amphibians and Reptiles from
Santo Domingo and Navassa, 519-525.
Sciara delectata, 425.
Sciurus chalaniati, 600.
Scrupocellaria, 619.
inermis, 619.
reptans, 613, 619.
scabra pænulata, 607, 613.
scruposa, 619.
ternata, 613, 619.
ternata gracilis, 607, 614.
Scyphia, 106, 121.
acuta, 140.
alveolites, 168 .
angustata, 106.
attenuata, 149.
cribrosa, 116.
decheni, 178-180.
fragilis, 117.
fungiformis, 118, 119.
glutinata, 111.
heteropora, 149.
hoeninghausii, 112.
labyrinthica, 106.
lobata, 149.
mamillata, 149.
mantelli, 166.
marginata, 142.
micrommata, 178, 179.
murchisoni, 204.
oeynhausi, 111, 112.
socialis, 140.
sulcata, 113.
tubulosa, 153.
Scytalia, 164.
annulata, 165.
cylindrata, 202.
lævis, 133.
laghetensis, 68.
pertusa, 108, 109.
radiciformis, 133, 164, 165, 191, 202.
terebrata, 108, 110, 133, 191, 201.
turbinata, 108-110.
Seliscothon, 142.
explanatum, 129.
capitatum, 129.
giganteum, 105.
mantelli, 166, 203, 252.
marginatum, 142.
planum, 129, 166, 191, 203.
Sellispongia grandis, 141.
Senotainia
rubriventris, 436 .
trilineata, 436.
Sepsidæ, 446.
Sepsis
discolor, 446.
insularis, 446.
Serpulidæ, 580.
Serripes, 498.
grœenlandicus, 484, 487, 498, 499, 608, 610, 611.
Sertularia, 619.
fastigiata, 618.
halecina, 619.
Sigaloessa, 448.
Silicispongiæ, 1-261.

Simuliidæ, 425.
Simuliun antillarum, 425.
Siphonella, 447.
Siphoneuda, 18.
Siphonia, 18, 103.
elongata, 87.
ficus, 68, 103, 104, 137.
griepenkerli, 136, 137.
incrassata, 136, 137.
maliformis, 198.
micropora, 154.
multiformis, 190.
ovalis, 123, 153.
pyriformis, 20, 86, 90.
socialis, 140.
tubulosa, 123, 153, 188, 198, 246.
tulipa, 55.
Siphonocœlia
sulcifera, 150.
texta, 123.
Siphonodentalium vitreum, 484, 488.
Siponocœlia, 140.
Siptornis
flammulata, 328.
flammulata flammulata, 328.
graminicola, 329.
hudsoni, 329.
lilloi, 329.
maculicauda, 328.
punensis punensis, 328,329 .
punensis rufala, 328, 329.
toczanowskii, 328.
urubambensis, 328.
virgata, 328.
Smittia, 621.
landsboroughii crystallina, 621.
legentilii, 621.
palmata, 621.
Smittina, 621.
auriculata, 615, 621.
bella, 615, 621.
jeffreysi, 615, 621.
landsbowii, 610, 615.
linearis, 611, 615.
lineata, 621.
majuscula, 615, 621.
minuscula, 610, 615, 621.
porifera, 615, 621.
propinqua, 615.
reticulata, 611, 615, 621.
reticulatopunctata, 610, 615, 621.
smitti, 610, 615.
solida, 610, 615, 621.
trispinosa, 615, 621.
trispinosa arborea, 615.
trispinosa jeffreysii, 621.
Solariella
lævis, 485, 487, 505.
obscura lævis, 505.
jereæformis, 199.
Spalax, 596-598.
poirrieri, 599.
Spermophila, 440.
bicolor, 440.
Sphæridiidæ, 305, 321.
Sphæriidæ, 527.
Sphærocladinidæ, 252.
Sphærodactylus becki, 520.
Spilochroa ornata, 449.
Spilogaster discreta, 441.
Spionidæ, 576.
Spogostylum
gideon, 428.
œdipus, 428.
Spondylus
fimbriatus, 91.
spinosus, $57,75,76,81,87$.
striatus, 87.
Spongia, 10, 101, 163.
capitata, 129, 142.
convoluta, 126, 127.
criborsa, 106, 112, 116.
marginata, 164.
osculifera, 138.
plana, 129, 142.
radiciformis, 164.
ramosa, 102, 128, 144.
terebrata, 108, 109, 142.
Spongites
conicus, 142.
impressus, 141.
saxonicus, 82.
tuberosus, 149.
Sporadiscinia
decheni, 178, 179, 193.
decheni quadrata, 180.
micrommata, 179, 193, 205, 207. quenstedti, 179, 180, 193, 207.
stirps, 193.
teutoniæ, 206.
venosa, 178, 193, 206, 260.
Sporadoscinidæ, 260.
Spumispongia
punctatus, 139, 140.
punctatus foveatus, 139.
Stachyspongia ramosa, 128.
Stagnicola, 538.
Stauronema carteri, 56.
Stegomyia
calopus, 424.
fasciata, 424.
Stellettidæ, 244.
Stellispongia, 142.
impressa, 140.
verrucosa, 150.
Stenodexia
albocincta, 438.
foxii, 438.
Stenodus mackenzii, 270.
Stereochlamis
pilosa, 238.
præcissa, 169.
Sternodontes damicornis, 439.
Stichmaptycidæ, 258.
Stichmaptyx alatus, 173, 258.
Stichophyma
multiformis, 190, 201.
sparsa, 128.
turbinata, 128, 138.
turbinatum, 139.
verrucosa, 128, 138, 190.
Stolleya
florida, 144.
microtulipa, 143, 194.
ornatissima, 143, 194, 244.
Stomatopora, 618.
fungia, 613, 618.
incrassata, 613.
major, 613.
penicillata, 613, 618.
Stomoxys calcitrans, 440.
Stratiomyidæ, 426.
Sturmia
distincta, 437.
fraudulenta, 437.
subvaria, 437.
Syllidæ, 571.
Syllis
gracilis, 571.
prolifera, 571.
Syrphidæ, 433.
Syrphus
antiphates, 434.
ribesii, 434.
Tabanides, 428.
Tabanus
alene, 428.
angustifrons, 428.
filiolus, 428 . .
lucidulus, 428.
rufiventris, 428.
townsendi, 428.
breviventris, 437.
Tachina
hirta, 437.
subvaria, 437.
Tachinidæ, 436.
Tachyoryctes, 595-598.
splendens, 597.
Tæniaptera
lasciva, 446.
pleuritica, 446.
Tangara
cyaneicollis cæruleocephala, 332.
cyaneicollis cyaneicollis, 332 .
cyaneicollis gularis, 332.
Tectura rubella, 485, 487, 501, 502.
Tegella, 619.
Tellina
tenera, 499.
calcarea, 499.
Tellinidæ, 499.
Tephritis
finalis, 445.
fuscata, 445.
Terebellidæ, 576.
Terebratula
cornea, 91.
semiglobosa, 87 .
Terebratulina
lata, 58.
lata ( = gracilis), 56.
striata, 87.
Teredo amphisbæna, 87.
Tessaradoma gracile, 616.
Tethya, 144.
Tethyopsis
columnifer, 144.
steinmanni, 144.
Tetillidæ, 244.
Tetillopsis longitridens, 143, 234, 244.
Tetracanthella
cœrulea, 275.
pilosa, 275.
wahlgreni, 271, 275, 294.
Tetraclinidæ, 246.
Thamnospongia pauciramea, 68.
Thecosiphonia
nobilis, 107, 131.
postumus, 151, 246.
torgeri, 103, 123.
Thelairodes cinereicollis, 438.
Theneopsis steinmanni, 144, 187, 194, 234.

Therevidæ, 430.
Thermonectes, 341.
basilaris, 314.
ornaticollis, 309, 314.
Thracia obliqua, 484, 488.
Thrissomimus, 268.
Tigris, 335, 336.
Tipulidæ, 422.
Tonicella marmorea, 484, 487, 490.
Toulminia wollemanni, 185, 240.
Toxomerus, 434.
arcifera, 434.
duplicatus, 434.
laciniosus, 434.
pictus, 434.
subannulatus, 434.
Trachysycon muricatum, 137.
Tremabolites
leonhardi, 135.
megastoma, 184, 194, 206, 260.
Tremospongia grandis, 107.
Tretocalycidæ, 169, 254.
Tretodyctium, 169.
Trichailurus, 338.
Trichophora
macrocera, 437.
pennipes, 436.
Trichtropidæ, 506.
Trichotropis
atlantica, 506.
borealis, 484-488, 506. tenuis, 485.
Tridonta borealis, 496.
Trigonia, 80.
Trigonosemus pulchellus, 51.
Tritonium.
craticulatum, 506.
grœnlandicum, 511.
Trochidæ, 502.
Trochus cinerarius, 505.
Trogosus, 557-559.
Trophon
clathratus, 506.
fabricii, 506.
Tropisternus
glaber, 319.
lateralis, 318.
nimbatus, 318, 319.
striolatus, 319.
sublævis, 319.
Trypeta
avala, 445.
humilis, 445.
Trypetidæ, 445.
Tubipora, 618.
Tubulipora, 618.
fimbria, 612, 617.
flabellaris, 606, 612, 618.
liliacea, 612, 618.
serpens, 617.
ventricosa, 612.
Turbo
cinereus, 505.
helicinus, 502.
Turonia
cerebriformis, 152, 198.
constricta, 152, 188, 198.
induta, 198.
sulcata, 151, 152.
variabilis, 151, 152, 198.
Turonifungia, 151.
Turrilites costatus, 86.
Turritella, 80.

Typhlopleura dichotoma, 171.
Uintacrinus, 56.
westfalicus, 57.
Umbonula, 622.
arctica, 622.
verrucosa, 622.
Uncia, 335-375.
Unionidæ, 527.
Upucerthia, 324.
dabbenei, 325.
dumetoria darwini 324.
dumetoria dumetoria, 324.
dumetoria hallinani, 324.
dumetoria saturatior, 324 .
pallida, 325.
validirostris, 325 .
Uranotænia
lowii, 424.
socialis, 424.
Urolynchus, 335, 337.
Ursus, 551, 552.
Uta, 468.
concinna, 470.
mannophorus, 470.
parva, 471.
squamata, 471.
stansburiana, 470.
stansburiana elegans, 470.
Velutina zonata grandis, 485.
Ventriculites, 46.
alcyonoides, 105, 106, 112.
angustata, 116, 134.
angustatus, 106.
angustatus distortus, 106.
bicomplicatus, 113.
cavatus, 114.
cribrosus, 115, 116, 192.
decurrens, 114-116, 134.
decurrens tenuiplicatus, 114.
infundibuliformis, 113.
latiplicatus, 113.
radiatus, 13, 30, 111-116, 130, 134, 174, 192, 193, 258.
radiatus minor, 174.
radiatus posterus, 174.
radiatus subcylindrica, 115, 116.
radiatus discus, 113.
stellatus, 175, 193.
striatus, 113.
Ventriculitidæ, 258.
Venus islandica, 498.
Verrucospongia, 138.
damæcornis, 126.
macrommata, 189.
turbinata, 138.
Verruculina
angulata, 138.
astræa, 201.
auriformis, 163.
cazioti, 68.
convoluta, 126, 127, 133, 200.
crassa, 127, 133, 189.
cupula, 163, 164, 189, 201.
damæcornis, 126.
distans, 162.
macrommata, 189, 201, 238.
papillata, 189.
phillipsi, 162.
plicata, 163.
pustulosa, 126.
reussii, 189.
seriatopora, 161-163, 189, 201.
tenuis, 125, 126, 133, 161, 200.
Verticaria
cærulea, 472.
sericea, 474.
Vespertilio mastivus, $63 \dot{6}$.
Villa
bigradata, 429.
delicatula, 429.
lateralis, 429.
lucifer, 429.
trimaculata, 429.
Voliceramus lamarchki, 70.
Volucella
abdominalis, 434, 435.
eugenia, 435.
haagii, 435.
obesa, 435.
pallens, 435.
picta, 435.
purpurascens, 435.
sexpunctata, 435.
spiniger, $434,435$.
vacua, 435.
Winthemia quadripustulata, 437.
Wollemannia araneosa, 173, 256.
Wyeomyia
grayii, 422.
mitchellii, 422.

Yoldia
arctica, 484.
frigida, 484.
glacialis, 484.
Zibethailurus, 340.
Zonitoides arborea, 537.

# PUBLICATIONS 

OF

## THE AMERICAN MUSEUM OF NATURAL HISTORY

Memoirs<br>Volume I. Zoology and Palæontology. Volumes II-VIII. Anthropology. Volume IX. Zoology and Palæontology. Volumes X-XIV. Anthropology.

Volumes II, IV, V, VII, VIII, X-XIV, and an Ethnographical Album form Volumes I-X of the Memoirs of the Jesup North Pacific Expedition.

> Memoirs-New Series
> Volumes I and II. Zoology and Palæontology.
> Volume III, part 1, Entomology.

## Bulletin

Volumes I-XXIV, XXV, parts 1 and 2, and XXVI-XL.

## Anthropological Papers

Volumes I-XI; XII, parts 1-5; XIII; XIV, parts 1 and 2; XV, part 1; XVI, parts $1-3$; XVII, parts $1-4$; XVIII; XIX, parts $1-3$; XX, part 1 ; XXI, part 1 ; XXII, parts 1-3; XXIII, parts 1-2, XXIV, parts 1-2; XXV, part 1; XXVI, part 1.

## Monographs

A Review of the Primates. By D. G. Elliot. 3 volumes.
Hitherto Unpublished Plates of Tertiary Mammals and Permian Vertebrates. By E. D. Cope and W. D. Matthew.

## The American Museum Journal

Volumes I-XVIII. The Journal is a popular record of the progress of The American Museum of Natural History, issued bimonthly from October to May.

Handbooks. Numbers 1-8.
Guide Leaflets. Numbers 1-50.
Annual Reports. First (1869) to Fifty-first (1919).
A more detailed list, with prices, of these publications may be had upon application to the Librarian of the Museum.


[^0]:    11917, Bull. Amer. Mus. Nat. Hist., XXXVII, p. 337; May 28.

[^1]:    ${ }^{1}$ A Revision of the Mammalian Genus Macrotus, 1904, Proc. Acad. Nat. Sci. Philadelphia, p. 463.

[^2]:    11902, Proc. Acad. Nat. Sci Philadelphia, p. 409; September 12.

[^3]:    ${ }^{1}$ First measurement given is that of type, second of topotype.
    ${ }^{2}$ Measurements of type mandible of Natalus major Miller, kindly loaned me for comparison by Mr. Gerrit S. Miller, Jr. of the United States National Museum.

