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Comparative Meristic Variability in Whiptail Lizards
(Teiidae, Aspidoscelis): Samples of Parthenogenetic A.
tesselata Versus Samples of Sexually Reproducing A.

sexlineata, A. marmorata, and A. gularis septemvittata
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ABSTRACT

Is it correct, as is often assumed, that the clonal form of inheritance in parthenogenetic
lizards results in less variability than occurs with genetic recombination in their sexually repro-
ducing (gonochoristic) relatives? We tested this hypothesis by comparing morphological vari-
ability in samples of parthenogenetic Aspidoscelis tesselata and several gonochoristic species of
whiptail lizards. To control for environmental factors that might differentially affect embryonic
development of morphological characters, we compared samples obtained from the same or
geographically adjacent localities. In addition, we compared apparently “uniclonal” and multi-
clonal samples from each of two color-pattern classes (C and E) of A. tesselata.

For univariate meristic characters, parthenogenetic A. tesselata matched the variability of
a sympatric gonochoristic species in 11 of 20 comparisons, had lower variability in six com-
parisons, and was more variable in three. For multivariate characters derived from principal
components analyses (PCA), the relative meristic variability of samples of A. tesselata could not
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be predicted by its reproductive mode, color-pattern class, apparent “uniclonal” or multiclonal
state, or geographic location.

In addition, we compared A. tesselata, A. sexlineata, A. marmorata, and A. gularis septemvit-
tata in a single PCA, with the latter two species representing the two ancestral taxa from which
A. tesselata was derived through hybridization. Once again, relative variability of A. fesselata was
not always predictable based on its reproductive mode. It had greater variability than A. sexlineata,
equivalent variability with A. gularis septemvittata, and less variability than A. marmorata.

DEDICATION

It is with great pleasure that we dedicate this work to two North American herpetologists who
were pioneers in recognizing that some species of whiptail lizards are unisexual, which challenged
everything they had learned about reproduction of tetrapods. These two scientists were also among
the first to provide comparative analyses of variation involving Aspidoscelis tesselata, wondering
whether it would have less variation than gonochoristic species. One was T. Paul Maslin (deceased),
University of Colorado, in whose memory we make this dedication, and the other is Richard G.
Zweifel, American Museum of Natural History, who is retired and living in Portal, Arizona.

Zweifel, on October 10, 1958, wrote to colleagues and announced that 1.S. Darevsky (1958)
had reported probable parthenogenesis in some Armenian lacertid lizards, indicating that this
might explain samples of whiptail lizards from North America that lacked males (Lowe, 1993).
Later, in Duellman and Zweifel (1962), Zweifel reported that several species of Aspidoscelis are
all-female species, and they might be parthenogenetic; however, at that time, Duellman did not
believe the material on all-female populations that Zweifel put in their paper (personal commu-
nication from Duellman to C.J.C.). In addition, Zweifel (1965) analyzed comparative morphologi-
cal variation in lizards, including A. tesselata, to see if samples were less variable than samples of
gonochoristic species. We know that study had been underway since the late 1950s, because
Zweifel took C.J.C. as an undergraduate student assistant to one of his New Mexico study sites in
1960 while discussing emerging thoughts about parthenogenesis in whiptail lizards.

Maslin (1962) first reported that some species of Aspidoscelis, including A. tesselata, are
all-female species. He then used skin grafting experiments to test whether individuals might
be genetically identical (Maslin, 1967), and contributed a seminal position paper on taxonomic
problems in parthenogenetic vertebrates, in which he also discussed relative variability and
reproductive mode (Maslin, 1968).

INTRODUCTION

A fundamental problem in vertebrate biology is how sexual and parthenogenetic modes
of reproduction can each maintain ecologically successful species in nature (White, 1973), as
seen in lizards of the genus Aspidoscelis. With genetic recombination present in the former and
absent in the latter, among clonal lizards (Cuellar, 1971; Lutes et al., 2010), one would expect
fundamental differences in evolution of genetically based phenotypic variation. In clonal forms,
evolution would be based only on natural selection acting on mutation products, whereas both
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mutation and genetic recombination in gonochoristic forms should produce considerably more
genetic and phenotypic variation for exposure to natural selection. The word bisexual has often
been used to refer to sexually reproducing species, but it has also been widely used to signify
hermaphrodites. Therefore, we use the term gonochoristic to refer to sexually reproducing spe-
cies (Tomlinson, 1968).

We used pattern classes C and E of Aspidoscelis tesselata (Zweifel, 1965; Walker et al., 1997;
Cordes and Walker, 2006) as our parthenogenetic comparators because they include tokoge-
netic arrays that illustrate evolutionary changes in meristic characters and life history charac-
teristics of clonal lizards (Taylor et al., 2003, 2005). The term tokogenetic array (or simply array)
is used sensu Frost and Hillis (1990) to refer to the pattern of mother-daughter relationships
in parthenogenetic lizards. Our samples of A. fesselata represent arrays that have genotypic
information known from electrophoretic analyses of protein phenotypes. Rationale for selec-
tion of gonochoristic species and samples to provide a “common garden” approach for the
statistical comparisons is explained in Materials and Methods.

The application of statistics to meristic variation in Aspidoscelis was introduced as a tool
for resolving species boundaries among members of a sympatric assemblage of five species in
New Mexico (Lowe and Zweifel, 1952; Lowe, 1993). It is of historical interest that three of those
five species were not recognized as parthenogenetic at the time, i.e., parthenogenesis was not
suggested by external morphology. One of those parthenogens was A. tesselata, the first teiid
lizard suspected of being unisexual (Minton, 1958 [1959]; Maslin, 1962; Duellman and Zweifel,
1962) and one of two parthenogenetic lizards whose meristic variability was initially compared
to a gonochoristic congener (Taylor, 1965; Zweifel, 1965).

Aspidoscelis tesselata originated from a hybridization event between a female of A. marmo-
rata and a male of A. gularis septemvittata (Neaves, 1969; Parker and Selander, 1976; Brown
and Wright, 1979; Dessauer and Cole, 1989; Dessauer et al., 1996). Current evidence suggests
that there was a single origin (Maslin, 1967; Taylor et al., 1997, 2005; Cordes and Walker, 2003,
2006), and there is a clonal mode of inheritance (Dessauer and Cole, 1986; Taylor et al., 2003).
With these possibilities in mind, early initiatives to elucidate relative phenotypic variability
between parthenogenetic and gonochoristic congeners were followed by three comprehensive
investigations of genotypic and phenotypic variation in A. tesselata, A. marmorata, and A.
gularis septemvittata (Parker and Selander, 1976; Parker, 1979a, 1979b). In Parker (1979a),
color-pattern classes (sensu Zweifel, 1965) and genotypic variation (Parker and Selander, 1976)
were used to classify A. tesselata into uniclonal or multiclonal categories for comparisons of
phenotypic variability with gonochoristic A. tigris (including A. marmorata sensu Hendricks
and Dixon, 1986). As hypothesized by Parker (1979a), meristic variability increased through
the sequence: uniclonal A. tesselata < multiclonal A. tesselata < A. tigris.

When Parker’s studies were conducted, the name A. tesselata was used for both diploid and
triploid entities, the latter containing an A. sexlineata genome from its A. tesselata X A. sexlin-
eata origin (Neaves, 1969; Neaves and Gerald, 1969; Parker and Selander, 1976; Dessauer and
Cole, 1989). As a consequence of that taxonomy, inclusion of triploid individuals in the sample
of “multiclonal” A. tesselata from Higbee, Colorado (Parker, 1979a; Walker et al., 1995), inflated
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meristic variability of Parker’s multiclonal category (Taylor, personal obs.). It was not until
triploid entities were removed from A. tesselata and described as A. neotesselata that the name
A. tesselata was reconciled with evolutionary history (Walker et al., 1997).

In the present study, we used multivariate statistics to summarize phenotypic variability.
Specifically, we used principal components analyses to describe patterns of meristic variability
in A. tesselata, as presently understood: (1) among “uniclonal” and multiclonal arrays of two
color-pattern classes of A. tesselata, (2) between each of four geographically disjunct arrays of
A. tesselata and a sympatric gonochoristic species, and (3) among A. tesselata, its progenitors,
A. marmorata and A. gularis septemvittata, and A. sexlineata.

MATERIALS AND METHODS
TaxoNOMY, PATTERN CLASSES, AND GEOGRAPHICAL RELATIONSHIPS

We assessed variability in meristic characters in representatives of the sexlineata, tigris, and
tesselata species groups (Lowe et al., 1970) in the recently revived genus Aspidoscelis (Reeder et
al., 2002) of North and Central America, using four samples of A. fesselata as parthenogenetic
comparators. Aspidoscelis tesselata is distributed as disjunct arrays over an 1100 km latitudinal
range from northern Chihuahua, Mexico, northward through areas in western Texas, much of
New Mexico, and extreme western Oklahoma, with its northern limit in southeastern Colorado,
United States. Throughout its range, three color-pattern classes (i.e., variants C, D, and E) are
syntopic or sympatric with each other and/or different combinations of four gonochoristic con-
geners (i.e., A. gularis, A. inornata, A. marmorata, and A. sexlineata) and six hybrid-derived
parthenogenetic congeners (A. dixoni [2n], A. exsanguis [3n], A. neomexicana [2n], A. neotes-
selata [3n], A. uniparens [3n], and A. velox [3n]). In southeastern Colorado, northeastern New
Mexico, and western Oklahoma, A. sexlineata is the only gonochoristic species with which A.
tesselata is syntopic. Aspidoscelis sexlineata is the most widely distributed member of the A.
sexlineata species group ranging from coastal Tamaulipas, Mexico, into the United States and
north to Michigan, and from the foothills of the Rocky Mountains in Colorado and the High
Plains of New Mexico to the Atlantic Coast (Wright, 1993: map; Conant and Collins, 1998: map;
Pérez-Ramos et al, 2010). As previously noted, this taxon, with three subspecies, is allopatric to
parthenogenetic congeners except near the Rio Grande Valley of Texas, and along the western
periphery of its range. For comparisons of variability between A. tesselata C and A. sexlineata
viridis, which hybridized in the past and produced A. neotesselata in southeastern Colorado
(Parker and Selander, 1976), we used samples of A. tesselata from the canyonlands of Otero
County, Colorado, and the high plains of San Miguel County, New Mexico (appendix 1).

In northern Chihuahua, southwestern Trans-Pecos Texas, and southern New Mexico, either
syntopic or parapatric associations of A. tesselata and its maternal progenitor A. marmorata can
be commonly observed; however, associations of the latter and A. sexlineata have not been
reported. The A. tigris species group occurs in western North America, usually at low elevations
in arid and semiarid environs (Dessauer et al, 2000). Although the overall range of the group
includes much of the combined areas of the Great Basin, Mohave, Sonoran, and Chihuahuan des-
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erts in Mexico and the United States, these lizards also occur in semidesert areas and on islands
in the Gulf of California and eastern Pacific Ocean (Wright, 1993 map; Dessauer et al., 2000:
map). Whether the name A. tigris should be applied as a single species (Wright, 1993, 1994) or
as a complex of closely related species (Walker and Maslin, 1981; Grismer, 1999) has remained
controversial, and the question is relevant to this study. Aspidoscelis marmorata is the sister group
of other North American representatives of A. tigris and is relatively distantly related to these
entities (Reeder et al., 2002).We use the name A. marmorata (sensu Hendricks and Dixon, 1986:
map) rather than A. tigris (sensu Wright, 1994: map; Dessauer et al., 2000: map; Taylor et al.,
2001). However, contra Hendricks and Dixon (1986), we did not use subspecific designations for
A. marmorata for our samples from Chaves and Sierra counties, New Mexico, for comparisons
with samples of A. tesselata E from the same counties (appendix 1).

A single, local site of syntopy (in Presidio County, Texas) has been reported for A. tesselata
and its paternal progenitor A. gularis septemvittata (Scudday, 1973), the third and largest gono-
choristic form used in our analyses. It is part of a complex of striped-spotted lizards with a vast
distribution area in many states in Mexico in the central plateau south to Mexico (state), and
eastern coastal lowlands south to Tamaulipas and Veracruz states, respectively, then from
Jalisco to the eastern gulf coast. The name septemvittata remains at the center of controversy,
the question being whether it be used as the name of a species (Wright, 1993, 1994; Forstner
et al., 1998) or the name of a subspecies (Walker, 1981a, 1981b; Walker et al., 2001; Reeder et
al., 2002). In this report, we use the name A. gularis septemvittata for the paternal progenitor
of A. tesselata with a distribution encompassing parts of northern Mexico (i.e., northeastern
Chihuahua and adjacent Coahuila) and the Big Bend region of Texas (i.e., mostly in Brewster
and Presidio counties; Walker, 1981a, 1981b ; Walker et al., 2000, 2001). Our representative
sample of A. g. septemvittata is from the topographically complex Chinati Mountains region
of Presidio County (appendix 1), where it is occasionally found in syntopy with some combina-
tion of two gonochoristic species (i.e., A. inornata and A. marmorata) and three parthenoge-
netic species (i.e., A. dixoni, A. exsanguis, and at one site with A. tesselata; see Scudday, 1973).

SAMPLES

For the first four of the five following geographic areas, local samples of A. tesselata were
compared with syntopic or adjacent samples of gonochoristic congeners. Comparing samples
from geographically and ecologically identical or similar environmental regimes was intended to
control at least in part for the influence of the environment on embryonic development of mor-
phological characters, aiming for a “common garden” approach. The five geographic areas sam-
pled for our study are: (1) Purgatoire River Valley and associated canyonlands, Otero County,
Colorado: A. tesselata C (pattern class C), “uniclonal” (no allelic variation found at 21 nuclear
gene loci, but we use quotation marks because there could have been clonal variation at loci that
were not examined: Parker and Selander, 1976)—compared to A. sexlineata from assorted sites
in Baca, Las Animas, Otero, and Pueblo Counties, southeastern Colorado; (2) Arroyo del Macho,
Chaves County, New Mexico: A. tesselata E (pattern class E), “uniclonal” (based on absence of
variation at 34 nuclear gene loci; Taylor et al., 2001, 2003)—compared to A. marmorata from this
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locality and a nearby site; (3) Conchas Lake, San Miguel County, New Mexico: A. tesselata C,
multiclonal based on variation at glucose-6-phosphate isomerase (GPI) and muscle esterase
(EST2) loci as determined from independent analyses of 21 nuclear gene loci by Parker and
Selander (1976) and 34 nuclear gene loci by Dessauer and Cole (Taylor et al., 2003) plus variation
at aconitase hydratase (SACOH) and mannose-6-phosphate isomerase (MPI) loci discovered by
Dessauer and Cole (Taylor et al., 2003)—compared to A. sexlineata from a nearby site; (4) vicinity
of Engle, Sierra County, New Mexico: A. tesselata E, multiclonal based on variation at GPI and
leucyl-alanine peptidase (PEP) loci (Parker and Selander, 1976)—compared to A. marmorata
from the same site; and (5) Presidio County, Texas: A. gularis septemvittata, paternal progenitor
of A. tesselata—compared to pooled samples of the other three taxa.

Individual specimens were collected as they were encountered. See appendix 1 for specific
localities and specimen identities including genotypic variation.

MERIsTIC CHARACTERS

We used five meristic characters with proven effectiveness in elucidating patterns of phe-
notypic variation in Aspidoscelis: GAB: number of granular dorsal scales in a single row around
midbody; COS: bilateral total of circumorbital scales as standardized by Wright and Lowe
(1967); LSG: sum of lateral supraocular granules on both sides of the head (these granular
scales are located between the supraoculars and superciliary scales, and the count included all
scales in and anterior to the suture line between the third and fourth supraoculars; Maslin and
Walker, 1973); FP: sum of femoral pores on both thighs; SDL: number of subdigital lamellae
on the fourth toe of the right foot (unless damaged, in which case the left one was used).

STATISTICAL PROCEDURES

Analytical and statistical routines were performed with software from NCSS 2007 (Hintze,
2007), SPSS 17 (SPSS, 2008), and SYSTAT 13 (SYSTAT, 2011). We used principal components
analysis (PCA) to determine patterns of meristic variability. PCA is a multivariate technique
(McGarigal et al., 2000) that uses variance/covariance relationships among variables (e.g., GAB,
FP, COS, LSG, and SDL) to produce new, uncorrelated variables (principal components) that are
linear compounds of the original meristic character scores and coefficients factored to concen-
trate as much of the original variation as possible in the first principal component. The second
principal component conserves as much of the remaining variation as possible, down through
the remaining components. Although the number of components produced in a PCA equals the
number of original characters factored, we selected the first two principal components for inter-
pretation because they summarized at least 85% of the variation in each analysis.

Because all characters were measured on the same scale (discrete counts of scales and
femoral pores), we used variance/covariance matrices to obtain coefficients used to compute
component scores. A variance/covariance matrix retains the relative variances of original char-
acters, so that characters with larger variances are given greater weight in developing the prin-
cipal components (Neff and Marcus, 1980). Specimens are not preassigned to taxon, tokogenetic
array, genotype, or reproductive category in PCA; therefore, all individuals in a PCA are treated
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as a single sample for deriving principal component scores. We coupled PC1 and PC2 scores
to specific specimens, post hoc, to provide statistical and graphical information on the vari-
ability of specific samples. Statistical data (e.g., descriptive statistics in table 1) and all analyses
are based only on specimens with complete data.

Variances of the five meristic characters and two multivariate characters (PC1 and PC2) did
not differ significantly between the two sexes for our samples of Aspidoscelis sexlineata, A. mar-
morata, and A. gularis septemvittata (appendix 2), permitting us to pool sexes for analyses.

Although there were significant differences among sample means, variances were indepen-
dent of means (GAB, P = 0.84; FP, P = 0.67; COS, P = 0.30; LSG, P = 0.07; SDL, P = 0.27; PC1,
P =0.54; PC2, P = 0.30). Therefore, we used untransformed data for our comparisons of vari-
ability (Sokal and Rohlf, 1981). We used a modified Levene test (Hintze, 2007; recommended
by Conover et al., 1981) to determine whether character variances were significantly different
between paired samples from the four sampling localities and among pooled samples of the
four taxa. Most formal tests for homogeneity of sample variances are too strict because they
also assess for normality (Tabachnick and Fidell, 2001). The modified Levene test is an excep-
tion and provides robust testing even with departures from normal distributions (Conover et
al., 1981; Tabachnick and Fidell, 2001).

RESULTS
UNIVARIATE COMPARISONS OF VARIABILITY

With five meristic characters and four groups for comparison, Aspidoscelis tesselata and
sympatric gonochoristic species expressed the same level of meristic variability in 11 of the 20
univariate comparisons, and a gonochoristic species was more variable in six comparisons.
Aspidoscelis tesselata was more variable than the gonochoristic species in only three compari-
sons, all involving pattern class C from the two northern localities (table 1). In one comparison,
“uniclonal” Aspidoscelis tesselata C was more variable in COS than A. sexlineata from south-
eastern Colorado, but the same taxa from Conchas, New Mexico, had equivalent variances for
COS, indicating geographical variation in variability. For the second and third comparisons,
A. tesselata C was more variable in LSG and GAB than A. sexlineata from Conchas, New
Mexico. This high GAB variability in Conchas A. fesselata has been temporally consistent, i.e.,
no difference between our sample (N = 30) collected in 2000, a sample (N = 21) collected in
1958 (Zweifel, 1965: table 3; F,,o = 1.859; P = 0.15), and a sample of genotyped specimens (N
= 21) collected in 1963 and 1978 (appendix 1; F,y, = 1.170; P = 0.69). Although the GAB
variance superficially appeared to be larger in “uniclonal” A. tesselata E than A. marmorata
from Arroyo del Macho, the difference was not significant.

COMPARISONS OF MULTIVARIATE VARIABILITY AMONG TOKOGENETIC
ARRAYS OF A. TESSELATA

Only two meristic characters (GAB and LSG) contributed significantly to the principal
components model, with PC1 and PC2 summarizing 86.3% of univariate variation (table 2).
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TABLE 1. Descriptive statistics of meristic characters and snout-vent length (SVL) in samples?® of partheno-
genetic Aspidoscelis tesselata and Three Gonochoristic Congeners: A. sexlineata, A. marmorata, and A. gula-
ris septemvittata.

First line: mean + SE; second line: SD and (range of variation). Significantly larger variances (SDs) are

in boldface.
Locality® and
Groups® Charactersd

GAB FP COS LSG SDL SVL
Colorado
TESS C 90.2 = 0.40 41.2 £ 0.36 17.5 £ 0.46 37.5 £0.69 36.3 £0.18 82.8 £2.7
N=31 2.2 (86-95) 2.0 (37-45) 2.6 (13-24) 3.9 (32-49) 1.0 (34-38)  15.2 (57-106)
SEX 75.5 £ 0.97 31.5+0.34 6.3 £0.25 18.0 £ 0.72 26.0 £ 0.25 63.9 1.2
N=31 5.4 (65-86) 1.9 (28-35) 1.4 (4-9) 40 (12-25) 1.4 (23-29) 6.8 (40-74)
Conchas, NM
TESS C 91.1 +1.21 41.0 £ 0.35 18.1 + 0.31 40.1 £ 0.95 36.6 £ 0.23 81.0 £ 2.1
N =30 6.6 (81-104) 1.9 (37-44) 1.7 (14-21) 5.2 (31-52) 1.3 (35-40) 11.4 (65-96)
SEX 73.4+0.71 29.6 + 0.38 7.4+ 0.38 19.0 + 0.62 25.8 +0.28 574 +1.0
N=31 4.0 (65-83) 2.1 (26-35) 2.1 (4-12) 3.5 (14-31) 1.6 (22-28) 5.6 (48-67)
Macho, NM
TESS E 93.6 £ 1.0 41.4 + 0.30 18.0 £ 0.24 35.0+£0.77 37.0 £0.23 89.2 1.6
N=38 6.2 (87-109) 1.8 (37-46) 1.5 (14-20) 4.8 (23-45) 1.4 (35-42) 10.0 (59-109)
MARM 91.5 + 0.84 454 + 0.47 19.3 £ 0.66 41.8+2.0 32.2 £0.35 782+ 14
N=29 4.5 (84-101) 2.5 (41-50) 3.6 (12-28) 10.8 (24-65) 1.9 (26-36) 7.6 (63-92)
Engle, NM
TESS E 97.9 £ 0.43 444 +0.26 20.3 £ 0.34 35.3 +£0.81 38.7 £0.23 86.2 1.3
N=30 2.3(92-104) 1.4 (41-47) 1.9 (15-24) 45(30-48) 1.3 (36-40) 6.9 (68-99)
MARM 94.0 £ 0.97 459 + 0.44 24.4 + 0.46 453+ 1.6 33.0 £ 0.27 814+ 14
N=33 5.5(83-105) 2.6 (40-51) 2.6 (18-31) 9.3 (30-63)  1.6(30-37) 7.9 (67-97)
Presidio, TX
SEP 87.0 £ 0.75 37.3+£0.42 13.2 + 0.30 30.1 £0.93 32.2+£0.31 89.1+24
N =40 4.8 (77-96) 2.7 (33-42) 1.9 (10-18) 5.9 (19-49) 1.9 (28-37) 15.4 (69-114)

aSamples comprise only specimens with complete data, i.e., those used in principal component analyses.

bSampling localities (see appendix 1 for specifics): Colorado (southeastern Colorado); Conchas, NM (vicinity of Con-
chas Lake, San Miguel County, New Mexico); Macho, NM (Arroyo del Macho, Chaves County, New Mexico); Engle,
NM (vicinity of Engle, Sierra County, New Mexico); Presidio, TX (Presidio County, Texas).

‘Groups compared were TESS C (Aspidoscelis tesselata pattern class C), SEX (A. sexlineata), TESS E (A. tesselata pattern
class E), MARM (A. marmorata), and SEP (A. gularis septemvittata). See appendix 1 for sample compositions.

dCharacters: GAB, number of granular dorsal scales around midbody; FP, total number of femoral pores on both thighs;
COS, total number of circumorbital scales; LSG, total number of lateral supraocular granules; SDL, number of subdigital
lamellae on fourth toe of one foot (right was chosen unless damaged); SVL body length (mm) from snout to vent. See
Materials and Methods for details.
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The pattern of variation resolved itself as two pairs of samples, each pair having similar distri-
butions of principal component scores (fig. 1).

Colorado A. tesselata C (“uniclonal”) and Engle A. tesselata E (multiclonal) was the less
variable pair of samples, and Conchas A. tesselata C (multiclonal) and Macho A. tesselata E
(“uniclonal”) was the more variable pair, with their 95% confidence ellipses stretched by varia-
tion in GAB and LSG (fig. 1). Equivalent variability between Conchas A. tesselata C and Macho
A. tesselata E and higher variability between these two arrays and the other two was verified
statistically (table 3). As noted previously, A. tesselata C was more variable than A. sexlineata
for COS in Colorado, but COS was not a meaningful contributor to the pattern of meristic
variation across the four samples of A. tesselata (table 2).

4 | [ [ [ [ [
COTESS C O Engle TESS E [:|

PC2 (30.4%)

Macho TESS E |l Conchas TESS C @

4 | | | | | I |
-4 -3 -2 -1 0 1 2 3 4

PC1 (55.9%)

FIGURE 1. Pattern of meristic variation among four tokogenetic arrays of Aspidoscelis tesselata depicted by
the projection of principal component scores on PC1 and PC2 axes: southeastern Colorado, N = 31 (O);
Conchas, New Mexico, N = 30 (@); Engle, New Mexico, N = 30 ([]); and Macho, New Mexico, N = 38 (H).
Percentages represent the proportion of meristic variation summarized by each principal component, and
ellipses define the 95% confidence limits for score distributions.
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TABLE 2. Loadings (correlations between meristic characters and principal components) from a principal
components analysis of 129 lizards.

Species Characters PC1 loadings PC2 loadings
Aspidoscelis tesselata GAB 0.762 0.560

FP 0.055 0.083

COS 0.049 0.013

LSG 0.400 -0.935

SDL 0.023 0.058
Eigenvalues 38.4 209
Total meristic variation explained 55.9% 30.4%

TABLE 3. Comparisons of meristic variability (summarized by principal components) among samples of
two color pattern classes of parthenogenetic Aspidoscelis tesselata.

Standard deviations are listed in group sequence. Groups in boldface have significantly greater variances
(SDs).

Groups Standard deviations Variances different?
Colorado C and Conchas C N=3land N =30 PC1 0.54 1.24 Yes P <0.001
PC2 0.68 0.65 No P =052
Colorado C and Engle E N=3land N=30 PC1 0.54 0.51 No P=0.68
PC2 0.68 0.87 No P =050
Colorado C and Macho E N=3land N=38 PC1 0.54 1.15 Yes P=0.02
PC2 0.68 0.73 No P=0.84
Conchas C and Engle E N=30and N =30 PC1 1.24 0.51 Yes P <0.001
PC2 0.65 0.87 No P=0.24
Conchas C and Macho E N=30and N =38 PC1 1.24 1.15 No P=0.35
PC2 0.65 0.73 No P=0.40
Engle E and Macho E N=30and N = 38 PC1 0.51 1.15 Yes P=0.01
PC2 0.87 0.73 No P =0.60

The pattern of variability was as follows: [“uniclonal” Colorado A. tesselata C = multiclonal
Engle A. tesselata E] < [multiclonal Conchas A. tesselata C = “uniclonal” Macho A. tesselata E]
(fig. 1). The pattern of variability demonstrated that these “uniclonal” and multiclonal catego-
ries were not helpful in explaining patterns of meristic variability, and that relative variability
could not be predicted by color-pattern class.

MULTIVARIATE COMPARISONS OF VARIABILITY BETWEEN A. TESSELATA
PATTERN CLASSES C AND E AND SYMPATRIC GONOCHORISTIC CONGENERS
Comparisons of A. tesselata C and A. sexlineata

Representative specimens are shown in figure 2. Over 91% of the variation was summarized by
PC1, with all five meristic characters making significant contributions in each of the Colorado, and
Conchas, New Mexico, comparisons (table 4, note large loadings). Separation of individuals into



2012 TAYLOR ET AL.: MERISTIC VARIABILITY IN WHIPTAIL LIZARDS 11

TABLE 4. Loadings (correlations between meristic characters?® and principal components) from four princi-
pal components analyses.

Groups compared Characters PC1 loadings PC2 loadings
SE Colorado: A. tesselata C (“uniclonal”) GAB -0.935 0.340
and A. sexlineata FP -0.936 0.009
COS -0.960 -0.020
LSG -0.972 -0.209
SDL -0.944 0.017
Eigenvalues 251.3 13.2
Total meristic variation explained by component 91.1% 4.8%
Conchas, NM: A. tesselata C (multiclonal) GAB -0.952 -0.293
and A. sexlineata FP -0.913 0.276
COS -0.932 0.269
LSG -0.985 0.047
SDL -0.938 0.230
Eigenvalues 313.3 16.5
Total meristic variation explained by component 91.7% 4.8%
Macho, NM: A. tesselata E (“uniclonal”) GAB 0.502 -0.852
and A. marmorata FP 0.592 0.137
COS 0.656 0.053
LSG 0.983 0.160
SDL -0.122 -0.695
Eigenvalues 85.3 28.7
Total meristic variation explained by component 66.2% 22.2%
Engle, NM: A. tesselata E (multiclonal) GAB -0.059 -0.969
and A. marmorata FP 0.173 0.010
COS 0.540 0.345
LSG 0.994 -0.082
SDL -0.563 -0.590
Eigenvalues 85.0 26.2
Total meristic variation explained by component 67.1% 20.7%

4Characters: GAB, number of granular dorsal scales around midbody; FP, total number of femoral pores on both thighs;
COS, total number of circumorbital scales; LSG, total number of lateral supraocular granules; SDL, number of subdigital
lamellae on fourth toe of one foot (right was chosen unless damaged). See Materials and Methods for details.

two nonoverlapping clusters (fig. 3) reflects pronounced meristic differences between A. tesselata
and A. sexlineata, with little or no overlap between ranges of variation for each character (table 1).

In Colorado, variability in PC1 was essentially the same for Aspidoscelis tesselata C and A.
sexlineata, but A. sexlineata was more variable for PC2 (table 5). Although 95% confidence
ellipses differ in size (fig. 3A), the critical feature is the spread of PC1 scores projected on the
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PC1 axis, as more than 90% of the variability is explained there, and this is similar for the two
species. In contrast, A. tesselata C from Conchas was significantly more variable than A. sex-
lineata in both PC1 and PC2 (fig. 3B; table 5).

Comparisons of A. tesselata E and A. marmorata

Representative specimens are shown in figure 4 (A-D). The pattern of variation between
A. tesselata E and A. marmorata was fundamentally different than was found for A. tesselata C
and A. sexlineata. The greater meristic resemblance between A. tesselata E and A. marmorata
(table 1) required both PC1 and PC2 to summarize more than 85% of the original variation
(table 4). This probably results from the greater amount of genetic information shared between
A. tesselata and A. marmorata, its maternal progenitor species.

PC1 and PC2 summarized similar proportions of meristic variation in each pair of samples,
but certain characters important to the summaries differed between them. Both LSG and COS
were important contributors to PC1 for each of the Engle and Arroyo del Macho comparisons,

FIGURE 2. Representative specimens used in this study. Southeastern Colorado: A. Aspidoscelis tesselata C
(RU 0198; 93 mm SVL); B. A. sexlineata (RU 0334; &, 71 mm SVL). Conchas Lake, New Mexico: C. A. tes-
selata C (RU 0003; 86 mm SVL); D. A. sexlineata (GM 236 [UADZ 7405]; ?, 61 mm SVL).



2012

A
X
o0
X
AN
O
T

B

X
@
NS
AN
$)
[

TAYLOR ET AL.: MERISTIC VARIABILITY IN WHIPTAIL LIZARDS 13

A. sexlineata

A. tesselata C

0
PC1 (91.7%)

1

FIGURE 3. Pattern of meristic variation
between parthenogenetic Aspidoscelis tesselata
C (O) and gonochoristic A. sexlineata (Q): A.
southeastern Colorado (N = 31 for each sam-
ple); B. Conchas Lake, New Mexico (N = 30
and N = 31, respectively). Percentages repre-
sent the proportion of meristic variation sum-
marized by each principal component, and
ellipses define the 95% confidence limits for
score distributions.

with SDL also being important for Engle
and FP and GAB for Macho. PC2 sum-
marized variation in GAB and SDL for
both pairs of samples, with COS making
a lesser contribution to the Engle sample
(table 4).

The close meristic resemblance
among individuals of A. fesselata and A.
marmorata at each locality was illus-
trated graphically by extensive overlap
of 95% confidence ellipses for PC score
distributions (fig. 5). Aspidoscelis mar-
morata was more variable in PC1 at
Arroyo del Macho and in both PC1 and
PC2 at Engle (table 5; fig. 5).

Of the four pairs of parthenogenetic
and gonochoristic samples, the Conchas
pair was the only one in which A. fesse-
lata was clearly more variable than its
companion gonochoristic species.

MULTIVARIATE COMPARISONS OF VARIABILITY AMONG A. TESSELATA, A. SEXLINEATA,

A. MARMORATA AND A. GULARIS SEPTEMVITTATA

Representative specimens are shown in figures 2 and 4. All five meristic characters made
important contributions to variation summarized by PC1, while SDL, GAB, and LSG also
contributed to the smaller percentage of variation summarized by PC2. Because of the close
genetic relationship among A. tesselata and its progenitor species, it took both components to
summarize more than 85% of univariate variation (table 6). As gauged by 95% confidence
ellipses (fig. 6), A. tesselata and A. gularis septemvittata (its paternal progenitor) were similar
in meristic variability and intermediate to the lower variability of A. sexlineata and higher vari-
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FIGURE 4. Representative specimens used in this study. Engle, New Mexico: A. Aspidoscelis tesselata E (RU
9546; 87 mm SVL); B. A. marmorata (RU 9262; ¢, 84 mm SVL). Arroyo del Macho, New Mexico: C. A. fes-
selata E (RU 0228; 84 mm SVL); D. A. marmorata (RU 0390; 9, 79 mm SVL). Presidio County, Texas: E. A.
gularis septemvittata (UADZ 8115; &, 90 mm SVL).

TABLE 5. Comparisons of meristic variability (summarized by principal components) between two color
pattern classes of parthenogenetic Aspidoscelis tesselata and sexually reproducing congeners.

Standard deviations are ordered by taxon sequence. Groups with significantly greater variances (SDs)
are in boldface.

Sampling site(s) Comparison N Standard deviations Variances different?
Colorado TESS C and SEX 31 and 31 PC1 0.24 0.28 No P =048
PC2 0.66 1.26 Yes P =10.03
Conchas, NM TESS C and SEX 30 and 31 PC1 0.38 0.23 Yes P =0.01
PC2 1.19 0.74 Yes P =0.004
Macho, NM TESS E and MAR 38 and 29 PC1 0.65 1.22 Yes P =0.003
pPC2 0.95 0.70 No P =059
Engle, NM TESS E and MAR 30 and 33 PC1 0.48 0.97 Yes P <0.001
PC2 0.44 1.14 Yes P <0.001

ability of A. marmorata. The ordination of PC scores revealed an apparent intermediate posi-
tion of A. tesselata to its progenitor species, A. marmorata and A. gularis septemvittata (fig. 6),
although there is extensive overlap among the three of them (this intermediate position is
clearly depicted by a canonical variate analysis in Walker et al., 2000; fig. 2). The pattern of
variability (table 7) was as follows: A. marmorata, maternal progenitor of A. tesselata, was more
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FIGURE 5. Pattern of meristic variation
between parthenogenetic Aspidoscelis tesse-
lata E (O) and gonochoristic A. marmorata
(d) depicted by the projection of principal
component scores on PC1 and PC2 axes: A.
Arroyo del Macho, Chaves County, New
Mexico (N = 38 and N = 29, respectively); B.
vicinity of Engle, Sierra County, New Mexico
(N =30 and N = 33, respectively). Percent-
ages represent the proportion of meristic
variation summarized by each principal com-
ponent, and ellipses define the 95% confi-
dence limits for score distributions.

variable than the other three taxa, while
A. tesselata was more variable than A.
sexlineata and equivalent in variability
to A. gularis septemvittata, its paternal
progenitor.

DISCUSSION

This study addressed four major
questions: (1) Are there individual
meristic characters in which A. fesse-
lata is more variable than a sympatric
gonochoristic species? We found two
examples. One was COS, which in A.
tesselata C was more variable than A.
sexlineata in southeastern Colorado,
but any significant contribution of
COS to multivariate variation disap-
peared in a PCA of all four samples of
A. tesselata. The best example involves
high variability in Conchas A. tesse-

lata, for GAB (Zweifel, 1965) and GAB and LSG (Parker, 1979a; Taylor et al. (2003).
Zweifel (1965) noted the high GAB variance in A. tesselata C from Conchas, and it was
sufficiently unusual that he hypothesized that this particular population might be genotypically
multiclonal. This prediction was confirmed by the discovery of genotypic variation at glucose-
6-phosphate isomerase (GPI) and muscle esterase (EST2) loci (Parker and Selander, 1976),
which enabled Parker (1979a) to discover congruence between meristic variability and geno-
typic variation at the GPI locus. Subsequently, Dessauer and Cole discovered additional varia-
tion at SACOH and MPI loci in Conchas A. tesselata C and confirmed genotypic variation at
the GPI locus (Taylor et al., 2003). The sSACOH and MPI genotypes are available for samples
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4
| | | | | |

A. gularis septemvittata

A. tesselata

A. marmorata

PC1 (10.2%)

3 |- A sexlineata

PC1 (82.1%)

FIGURE 6. Pattern of meristic variation among Aspidoscelis tesselata, N = 129 (@); A. sexlineata, N = 62 (0);
A. marmorata, N = 62 (L); and A. gularis septemvittata, N = 40 (A), depicted by the projection of principal
component scores on PC1 and PC2 axes. Percentages represent the proportion of meristic variation sum-
marized by each principal component, and ellipses define the 95% confidence limits for score distributions.

of A. tesselata from Conchas, and Macho, New Mexico, but not for samples from southeastern
Colorado, and Engle, New Mexico. High meristic variation associated with the presence of GPI
ac and GPI ab genotypes at Conchas (Parker, 1979a; Taylor et al., 2003) was mirrored by the
presence of MPI ac and MPI ab genotypes at that locality (Taylor et al., 2003: fig. 5). In addi-
tion, A. tesselata E from Arroyo del Macho matched the high GAB and LSG variances seen in
A. tesselata C from Conchas, although there was no allelic variation observed at GPI, EST2,
sACOH, or MPI among the 11 individuals of A. tesselata E tested from Macho. However, this
fact was somewhat obscured by having A. marmorata, rather than A. sexlineata, as the local
gonochoristic comparator at Arroyo del Macho.

Although EST?2 variation was also present at Conchas Lake, GAB variation was not cor-
related with variation at the EST2 locus. Of the genotyped specimens from Conchas (appendix
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TABLE 6. Loadings (correlations between meristic characters?® and principal components) from a principal
components analysis of 293 lizards.

Species Characters PC1 loadings PC2 loadings
A. tesselata, A. sexlineata, GAB 0.906 0.376
A. marmorata, and FP 0.894 0.124
A. gularis septemvittata COS 0.906 -0.009

LSG 0.932 -0.351

SDL 0.770 0.378
Eigenvalues 237.8 29.5
Total meristic variation explained 82.1% 10.2%

ACharacters: GAB, number of granular dorsal scales around midbody; FP, total number of femoral pores on both thighs;
COS, total number of circumorbital scales; LSG, total number of lateral supraocular granules; SDL, number of subdigital
lamellae on fourth toe of one foot (right was chosen unless damaged). See Materials and Methods for details.

TABLE 7. Comparisons of meristic variability (summarized by principal components) between parthenoge-
netic Aspidoscelis tesselata and sexually reproducing A. sexlineata, A. marmorata, and A. gularis septemvittata.

Standard deviations are ordered by taxon sequence. Groups with significantly greater variances (SDs)
are in boldface.

Samples N Standard deviations Variances different?
TESS and SEX 129 and 62 PC1 0.37 0.28 Yes P =10.008
PC2 0.85 0.70 No P=0.127
TESS and MAR 129 and 62 PC1 0.37 0.61 Yes P <0.001
PC2 0.85 1.17 Yes P =10.003
TESS and SEP 129 and 40 PC1 0.37 0.37 No P=0.74
PC2 0.85 0.85 No P=072
SEX and MAR 62 and 62 PCl1 0.28 0.61 Yes P <0.001
PC2 0.70 1.17 Yes P <0.001
SEX and SEP 62 and 40 PCl1 0.28 0.37 No P=0.08
PC2 0.70 0.85 No P=0.39
MAR and SEP 62 and 40 PC1 0.61 0.37 Yes P =0.003
PC2 1.17 0.85 Yes P=10.02

1), 10 were GPI ac EST2 bc and four were GPI ac EST2 bb. There was no significant difference
between these two groups in either mean GAB (85.3 vs. 86.0; t;, = 0.591, P = 0.56) or GAB
variances (SDs = 2.0 for each sample, L = 0, P = 1).

(2) Do multiclonal arrays of A. tesselata express greater meristic variability than “uniclonal”
arrays? We did not find consistent differences in meristic variability between either color-pattern
classes or “uniclonal” and multiclonal categories. There was equivalent variability between (a)
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“uniclonal” Colorado A. tesselata C and multiclonal Engle A. tesselata E and (b) “uniclonal”
Macho A. tesselata E and multiclonal Conchas A. tesselata C. Samples from Arroyo del Macho
and Conchas Lake were more variable than samples from southeastern Colorado and Engle.
Allelic variation in GPI and MPI at Conchas can be explained by postformational mutations of
structural genes; these alleles are equally functional (Dessauer and Cole, 1984). While increased
variability of GAB and LSG characters is congruent with genotypic variation at GPI and MPI loci
in some instances (Parker, 1979a; Taylor et al., 2003), we lack evidence that the isomerase prod-
ucts of these loci are involved in developmental processes affecting meristic variation. In addition
to genetic and environmental interactions, there are various possible genetic and epigenetic
mechanisms that might increase phenotypic variability by affecting gene expression (e.g., see
Cole, 1980; Kearney et al., 2009: 463), but none of these has yet been demonstrated to be con-
tributors to phenotypic variation within tokogenetic arrays of lizards.

(3) Are differences in meristic variability between A. tesselata and sympatric gonochoristic
species congruent with reproductive mode? This was not predictable. Gonochoristic A. mar-
morata was more variable in PC1 and PC2 than multiclonal A. tesselata E from Engle and for
only PC1 in “uniclonal” A. tesselata E from Macho. The variability of Aspidoscelis tesselata
exceeded that of gonochoristic A. sexlineata from Conchas Lake, but this was not the case for
samples from southeastern Colorado.

(4) How does A. tesselata rank on a scale of relative meristic variability with gonochoristic
A. sexlineata, A. marmorata, and A. gularis septemvittata? We are in agreement with Parker
(1979a) that A. marmorata is more variable than A. tesselata, and A. marmorata is also more
variable than the other two gonochoristic species examined. However, for pooled samples, the
meristic variability of A. tesselata exceeded that of A. sexlineata and was equivalent to that of
A. gularis septemvittata. Aspidoscelis tesselata comprises collections of independent tokogenetic
arrays, each with the potential to evolve by accumulating different combinations of random
mutations. This means that the relative meristic variability of a particular tokogenetic array
may not be predictable by reproductive mode, color-pattern class, or geographic location. This
was confirmed by the present study.
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APPENDIX 1
SAMPLING LOCALITIES AND SPECIMENS IN THIS STUDY
Coordinates based on WGS84 datum.

SOUTHEASTERN COLORADO SAMPLES

Otero County: Aspidoscelis tesselata C: Ninemile Valley of the Purgatoire River, 11.5-13.0 km SW
Colorado Hwy. 109, on road 804; UTM 13S 630854E, 4175545N: Regis University (RU) 0122, 0125, 0127,
0130, 0131, 0164, 0167; Purgatoire Canyon of the Purgatoire River, accessed from Withers Canyon (this
site is approximately 6.5 km SW of the Ninemile Valley collecting locality.); UTM 13S 626757E, 4169176N:
RU 0077, 0084, 0169, 0170, 0198, 0199, 02006-02008, 02015, 02016, 02082-02085; Withers Canyon Trail-
head to Purgatoire Canyon; UTM 13S 626030E, 4169132N: RU 0172, 02010, 02013, 02014, 02019-02022,
02089. Aspidoscelis sexlineata. Vogel Canyon Picnic Grounds; UTM 13S 631004E, 4181319N: RU 0117,
0128, 0129; Purgatoire Canyon accessed from Withers Canyon; UTM 13S 626757E, 4169176N: RU 02004,
02005, 02017, 02087, 02088, RU 0173, 0200; Withers Canyon Trailhead to Purgatoire Canyon; UTM 13S
626030E, 4169132N: RU 02018, 02024, RU 0078; Lockwood Canyon; UTM 13S 602968E, 4150335N: RU
0151; Rourke Road; UTM 13S 629191E, 4179916N: RU 0332; Off Hwy. 109; UTM 13S 633315E, 4182719N:
RU 0334. Pueblo County: Aspidoscelis sexlineata: Pueblo Chemical Depot, Chico Creek, UTM 13S
554856E, 4236332N: RU 0007-0010, 0015-0017, 0023, 0024, 0075, 0137, 0138; Lime town-site; UTM 13§
532904E, 4222325N; RU 0052. Baca County: Aspidoscelis sexlineata: County road north of Carrizo Creek;
UTM 13S 672499E, 4107475N: RU 9282. Las Animas County: Aspidoscelis sexlineata: slope NW Cotton-
wood Creek; UTM 13S 669753E, 4112069N: RU 953.
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ConcHAS LAKE, NEw MEXICO, SAMPLES

San Miguel County: Aspidoscelis tesselata C: along Army Corps of Engineers road east of and paral-
leling hwy 433 (the entrance road to Conchas Lake State Park), approximately 1 km from the junction
of this road and hwy 433; UTM 13S 574628E, 3916332N. RU 0001-0003, 0008-0022, 0027-0033, 0037-
0041. A. sexlineata: vicinity of South Campground, Conchas Lake State Park (component CL-2 of Man-
ning et al., 2005). University of Arkansas Department of Zoology (UADZ) 7343, 7346, 7348, 7351, 7356,
7375, 7379, 7381, 7382, 7391-7396, 7399, 7401, 7402, 7405, 7409, 7413, 7414, 7443, 7444, 7447, 7577,
7578, 7582, 7584, 7674, 7692. Aspidoscelis tesselata C with electrophoretic data: around picnic tables
south of Conchas Dam: Clone GPI ac, EST2 bc: UADZ 5418, 5419, 5421-5423 (= EDP 836, 837,
839-841), 5420, 5424, 5425, 5428; Clone GPI ac EST2 bb: UADZ 5420, 5424, 5425, 5428 (= EDP 838,
842 [842 was identified as a pattern class D in Parker and Selander, 1976; Parker, 1979; and Parker et al.,
1989], 844, 850); Clone GPI ab, EST2 bc: UADZ 5415-5417, 5426, 5427 (= EDP 830, 831, 834, 845,
849); Conchas Lake at South State Park campground: Clone GPI ab, MPI (ab), EST2 bc, sACOH (bc):
AMNH R-136875, R-136878; Clone GPI ac, MPI (ac), EST2 bc, sACOH (bc): AMNH R-123029,
R-136877; Clone GPI ac, MPI (ac), EST2 bc, sSACOH (ac),: AMNH R-123033, R-136876, R-136879.

ARROYO DEL MACHO, NEW MEXICO, SAMPLES

Chaves County: N side Arroyo del Macho; UTM 13S 541582E, 3723117N; approximately 22 km N
on Hwy. U.S. 285 from junction with Hwy. U.S. 70 N of Roswell, New Mexico, then 0.8 km E on Eden
Valley Road. Aspidoscelis tesselata E: RU 96053, 96054, 97155, 97157, 97159, 97161-97165, 97167,
97169-97171, 97173, 97175, 97176, 98020-98025, 98034-98037, 98041, 98043-98048, 98050, 99004,
99007, 99009 (American Museum of Natural History [AMNH] R-145142-145144, 146612-146629,
146631-146639, 146641-146647, 146649). Aspidoscelis marmorata: RU 98028, 98029, 98046, 98047
(AMNH R-146650-146653), RU 0228; approximately 1.6 km W Pecos River, north side of Hwy. U.S. 70,
approximately 16.1 km east of Hwy. U.S. 285 and U.S. 70 interchange; UTM 13S 556511E, 3713689N.
Aspidoscelis marmorata: RU 98051, 98052, 98055, 98057-98060, 98062-98076 (AMNH R-146654,
146655, 146658, 146660-146663, 146665-146679); RU 0366, 0389, 0390.

VICINITY OF ENGLE, NEW MEXICO, SAMPLES
Sierra County: Approximately 14 km S Engle on County road A013, then 1.3 km W on county road
A038; UTM 13S 310293E, 36593783N. Aspidoscelis tesselata E: RU 9234-9259, 9271-9277, 9544-9559,
RU 0378. A. marmorata: RU 9242-9253, 9260-9270, RU 0379-0388.

PrEsIDIO COUNTY, TEXAS, SAMPLE

Aspidoscelis gularis septemvittata. Mesquite Ranch, San Antonio Canyon, Campo Nuevo: University
of Arkansas Department of Zoology (UADZ) 4420 (American Museum of Natural History [AMNH]
147594; 1.0 km N Campo Nuevo: UADZ 4362, 4396, 4406 (AMNH 147595-147597; 3.2 km N Campo
Nuevo: UADZ 4351, 4353, 4355-4358, 4363, 4369, 4370, 4373, 4434, 4435, 4440 (AMNH 147581~
147592, 147594; 3.3 km N Campo Nuevo: UADZ 4372, 4395, 4402 (AMNH 147598-147600); 3.4 km N
Campo Nuevo: UADZ 4371, 4393, 4394, 4438 (AMNH 147601-147604); 4.2 km N Campo Nuevo:
UADZ 4361 (AMNH 147605); 1.5 km W Campo Nuevo: UADZ 4364, 4365 (AMNH 147606, 147607);
Pelillos Canyon, 0.3 km S Campo Nuevo: UADZ 4381, 4386 (AMNH 147608, 147609); boundary Mes-
quite Ranch and Rancho Chaa, 6.3 km E Mesquite Ranch proper: UADZ 4413-4416, 4423, 4430-4432
(AMNH 147610-147617); 3.8 km S head of Pelillos Canyon, 4.1 km S Campo Nuevo: UADZ 4421, 4424,
4441 (AMNH 147618-147620); near road to Upper San Antonio Canyon: UADZ 5293; upper San Anto-
nio Canyon: UADZ 8115.
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APPENDIX 2
EVIDENCE FOR ABSENCE OF SEXUAL DIMORPHISM IN MERISTIC VARIABILITY
The modified Levene test was used to test for homogeneous sample variances.

SOUTHEASTERN COLORADO
Aspidoscelis sexlineata viridis (N = 20 males; 10 females)

GAB (L =0.0478, P = 0.83); FP (L = 0.3530, P = 0.56); COS (L = 1.6779, P = 0.21); LSG (L = 0.1699,
P =0.68); SDL (L = 0.0, P = 1.0); PC1 (L = 0.6603, P = 0.42); PC2 (L = 0.6033, P = 0.44).

CoNcHAS LAKE, NEw MEXICO
Aspidoscelis sexlineata viridis (N = 17 males; 14 females)

GAB (L =0.2709, P = 0.61); FP (L = 0.0096, P = 0.92); COS (L = 0.8526, P = 0.36); LSG (L = 0.3993,
P =0.53); SDL (L = 0.9891, P = 0.33); PC1 (L = 0.1017, P = 0.75); PC2 (L = 0.1841, P = 0.67).

ARROYO DEL MACHO, NEw MEXICO

Aspidoscelis marmorata (N = 19 males; 10 females)
GAB (L =0.0125, P=0.91); FP (L = 0.9490, P = 0.34); COS (L = 0.2596, P = 0.61); LSG (L = 0.0450,
P =0.83); SDL (L = 0.0101, P = 0.92); PC1 (L = 0.1587, P = 0.69); PC2 (L = 0.2837, P = 0.60).

ViciNITY OF ENGLE, NEw MEXICO

Aspidoscelis marmorata (N = 19 males; 14 females)
GAB (L = 0.0011, P = 0.97); FP (L = 1.3294, P = 0.26); COS (L = 0.0419, P = 0.84); LSG (L = 0.0024,
P =0.96); SDL (L = 0.0696, P = 0.79); PC1 (L = 0.0037, P = 0.95); PC2 (L = 0.5983, P = 0.44).

PresipiIo COUNTY, TEXAS

Aspidoscelis gularis septemvittata (N = 25 males; 15 females)

GAB (L =0.1541, P=0.70; FP (L = 1.7674, P = 0.19); COS (L = 2.8899, P = 0.10); LSG (L = 1.9421,
P =10.17); SDL (L = 0.5726, P = 0.45); PC1 (L = 0.2509, P = 0.62); PC2 (L = 1.4781, P = 0.23).

Complete lists of all issues of Novitates and Bulletin are available on the web
(http://digitallibrary.amnh.org/dspace). Order printed copies on the web from
http://www.amnhshop.com or via standard mail from:

American Museum of Natural History—Scientific Publications
Central Park West at 79th Street
New York, NY 10024
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