Article XXI.- A REVISION OF THE BUNODONT ARTIODACTYLA OF THE MIDDLE AND LOWER EOCENE OF NORTH AMERICA.

By William J. Sinclair, Princeton University.

Introduction.

The collections of the American Museum of Natural History from the Bighorn and New Mexican Wasatch, the Wind River and the Bridger contain a number of new genera and species of bunodont artiodactyls which it is the purpose of the present article to describe. The writer's acknowledgements are due to Professor Henry F. Osborn for the opportunity to study the collections here reported on, to Dr. W. D. Matthew and Mr. Walter Granger for many helpful suggestions, and to Professors Charles Schuchert and R. S. Lull for permission to examine the Marsh types in the Peabody Museum of Yale University.

With the exception of Trigonolestes ($=$ Diacodexis Cope) our knowledge of Lower Eocene artiodactyls has hitherto been limited to a few specimens described by Professor Marsh under the names Eohyus distans, Eohyus robustus, Parahyus vagus and Parahyus aberrans. ${ }^{1}$ Of these, Eohyus distans is based on a single third upper molar wholly unlike that of any of the artiodactyls in the American Museum collection and may be regarded for the present as of uncertain systematic position. Eohyus robustus is, unquestionably, referable to Periptychus, and both species of Parahyus far exceed in size any of the forms here discussed and are probably Achænodonts. The American Museum collections have added three new genera and seven new species to the list besides increasing our knowledge of the skull and skeletal characters in some of the forms already known.

If more or less uncertainty still exists regarding the systematic position and relationships of the new forms here described, it is because of the fragmentary character of the material, mainly parts of jaws unassociated with remains of the skeleton. In but few instances has the typical artio-

[^0]dactyl astragalus been found in undoubted association with the toothbearing parts of the skull. The reference of these Lower and Middle Eocene bunodonts to the Artiodactyla must, therefore, largely depend on such dental characters as can be worked out from specimens in which the teeth are positively associated with foot-bones of artiodactyl type.

Family DICHOBUNIDe.

Wasatchia new genus.

Dentition $\frac{?}{?}, \frac{?}{?}, \frac{4}{4}, \frac{3}{3}$. P^{3} trenchant, with small deuterocone and slight posterior cuspule. Anterior cuspule, if present, broken off; p^{4} with large deuterocone and broad antero-external cuspule. M^{1} and m^{2} quadritubercular with small hypocone; m^{3} tritubercular with incipient hypocone. Small intermediates apparently present. Cusps bunoid. Cingula on molars continuous except for slight interruption internally on m^{1} and m^{2}.

Lower premolars, except the first, double-rooted, separated by short diastemata; p_{2} simple, trenchant, without accessory cuspules; p , with laterally compressed crown,

Fig. 1. Wasatchia grangeri, lower jaw, superior view of left ramus with p_{3} reversed from opposite side, and external view of right ramus with p_{4} and m_{3} reversed from opposite side, nat. size. Type specimen No. 15516.
small anterior cuspule and narrow, cingulum-like posterior ledge; p_{4} less compressed, with anterior cuspule a little stronger than in p_{3} and a broader heel-ledge. No deuteroconid.

Paraconid smaller than metaconid but always present on lower molars. Heels of anterior molars wider transversely than trigonids; in m_{3}, heel a little narrower transversely than trigonid. Hypoconid of m_{3} as large as, or larger, than protoconid; hypoconulid and entoconid subequal.

Mandible not strongly convex inferiorly, not increasing rapidly in depth below m_{2}.

Wasatchia grangeri n . sp.

Type. Parts of both rami of the lower jaw (Amer. Mus. Coll. No. 15516). From the Bighorn Wasatch (Gray Bull beds) two miles southwest of St. Joe postoffice (horizon 3 of Sinclair and Granger, Bull. Am. Mus., Vol. XXX, p. 108 and Fig. 2B), Bighorn County, Wyoming. Amer. Mus. Expd. 1910. The species is named in honor of Mr. Walter Granger.

Measurements.

$\mathrm{p}_{2}-\mathrm{m}_{3}$.	$\begin{aligned} & \mathrm{mm} . \\ & .50 \end{aligned}$
$\mathrm{m}_{1}-\mathrm{m}_{3}$.	25.5
p_{3}, long diam.	
p_{4} " "	
m_{1} " "	
m_{2} " "	7.5
m_{3} " " approx.	11
p_{3}, trans. diam.	. 3
p_{4} "	4
m_{1} " " across heel	5.5
m_{2} " " " "	. 7
m_{3} " " "	6.5
m_{3} " " " trigonid	6.8
Depth of mandible below p_{3}.	12
" " " $6 \mathrm{~m}_{2}$.	14

Separable from Wasatchia dorseyana n. sp., which approaches it in dimensions, by the slightly larger size of the teeth, the larger hypoconid on m_{3}, the barely visible anterior basal cuspule on p_{3}, the limitation of a cingulum to the anterior face of m_{1}, and by the slightly greater degree of rugosity of the enamel on the outer surface of the tooth crowns, but this may be a feature due to their almost unworn condition.

Wasatchia dorseyana n. sp.
Type. Palate and fragment of right mandibular ramus with m_{3} (Amer. Mus. Coll. No. 15673). From the Bighorn Wasatch (Gray Bull beds) at the head of Dorsey

Fig. 2. Wasatchia dorseyana, upper jaw and last lower molar (right), nat. size. Type specimen No. 15673.

Creek (horizon 3 of Sinclair and Granger, Bull. Am., Vol. XXX, p. 108 and Fig. 2B), Bighorn County, Wyoming. Amer. Mus. Exp. 1911.

Two other specimens in the collection seem referable to this species:-
No. 15517, including a lower jaw, the distal end of a tibia and an astragalus of the usual artiodactyl pattern from the same horizon as the type of the species, but a different locality, 2 miles south of St. Joe postoffice, Bighorn County, Wyoming.

No. 16295, the right ramus of a lower jaw with $p_{2}-p_{4}$, part of m_{2}, and m_{3} from the upper levels of the so-called New Mexican Wasatch (Largo beds = Lost Cabin, Wind River), about 10 miles west of Laguna Colorado, Rio Arriba County, New Mexico. American Museum Expedition, 1912.

Measurements.

$\mathrm{p}^{3}-\mathrm{m}^{3}$, length.	$\begin{gathered} \text { No. } 15673 \\ \text { mm. } \\ \ldots .33 .3 \end{gathered}$	No. 16295 mm.
p^{3} long diam.		
p^{4} " "	. 6	
m^{1} " "	. 6.5	
m² " ${ }^{\text {² }}$		
m^{3} " "	. 7	
p^{3} trans. diam.	. 4	
p^{4} " "	. 7.3	
m^{1} " "	.8.3	
m^{2} " "	. 9	
m^{3} " " at widest part.	.8.5	
$\mathrm{p}_{2}-\mathrm{m}_{3}$, length.		43
p_{2} long diam..		4.6
p_{3} " "		7.2
p_{4} " " (approx.).		7
m_{3} " "		8.5
m_{3} trans. diam. of trigonid.	. 6.2	5.3
" " " "heel.	5.2	5

Assuming that Nos. 15517 and 16295 are correctly referred here, the characters of this species may be summed up as follows:-

Readily separable from Wasatchia grangeri by its smaller size, large anterior cuspule on p^{3} and the development of a slight external cingulum on the molars, so far as preserved, though, with respect to this last mentioned character, some variation may occur, as in a specimen from the same horizon in the Bighorn Wasatch as the type, but from a different locality (Amer. Mus. Coll. No. 15,517, Fig. 3), the cingulum is absent.

The upper dentition has already been characterized in defining the genus. Except for their smaller size, the teeth closely resemble those of Helohyus, a Bridger bunodont artiodactyl, undoubtedly related to Wasatchia. In noth, the tooth cusps are bunoid, the third premolar is trenchant with a
slight deuterocone, the fourth has a large, conical deuterocone and prominent anterior basal cuspule, the first two molars are quadritubercular, with a small hypocone rising from the cingulum while the third is tritubercular, with the hypocone faintly indicated. In both, the cingulum is more or less complete, except internally. Intermediate cuspules seem to have been present in Wasatchia but their character is obscured by the wear to which the tooth-crowns have been subjected.

The characters of m_{3} are the same as in the genotype with the addition of anterior and external cingula. As already noted, these appear to vary. $\mathrm{P}_{2^{-}}$, preserved in No. 16295 from New Mexico, are laterally compressed blades without accessory basal cuspules in p_{2}, but with these well developed in $p_{3} . \quad P_{4}$ has the characteristic cingulum-like heel, but the anterior cuspule is broken off.

Fig. 3. Artiodactyl referred to Wasatchia dorseyana. Astragalus, distal end of tibia, outer and superior views of lower jaw, nat. size. No. 15517. Gray Bull beds, Bighorn Wasatch, Wyoming.

Fig. 4. Artiodactyl inseparable from Wasatchia dorseyana. Lower jaws, external and superior views, nat. size. No. 16295. Largo beds ($=$ Lost Cabin, Wind River), New Mexico.

Wasatchia lysitensis n. sp.
Type. Fragments of right and left mandibular rami with m_{1-3} (Amer. Mus. Coll. No. 15660). From the Lysite formation (Wind River group) on Fifteen-mile Creek otherwise known as Dry Cottonwood Creek, Buffalo Basin, Wyoming. Amer. Mus. Exp. 1911.

Paratype. Fragment of the right maxilla with $\mathrm{m}^{1}, \mathrm{~m}^{2}$ and part m^{3}, lower m_{2}
and parts of m_{1} and m_{3} and a small incisor, probably a lower (Amer. Mus. Coll. No. 14936). From the Lysite formation (Wind River group), upper part of the section, Cottonwood Draw, Wind River Basin, Wyoming. Amer. Mus. Exp. 1909.

Measurements.

Closely approaching Helohyus plicodon in size, but undoubtedly referable to Wasatchia (of which it is the largest known species) from the character of the heel of the last lower molar which differs from that of Helohyus in the

Fig. 5.

Fig. 6.

Fig. 5. Wasatchia lysitensis, m_{1-3} of right side, superior view, nat. size. Second molar reversed from opposite side. Type specimen, No. 15660.

Fig. 6. Wasatchia lysitensis, upper molars, nat. size. Paratype, No. 14936.
reduction of the hypoconulid and entoconid and the closer juxtaposition of these cusps. Except in badly worn teeth, a small paraconid is always present. Traces of anterior and external cingula appear on the lower molars. The enamel is almost smooth.

No. 14936 is associated as paratype from the shape of the heel of m_{3}, which, although somewhat more worn, is indistinguishable from that of the type. The upper molars are suggestively like those of Helohyus, differing in having the greatest anteroposterior diameter through the outer cusps while those of Helohyus are squarer, their anteroposterior diameters at the center being the same as at the outer margin. $\quad \mathbf{M}^{1}$ and m^{2} are quadrituber-
cular with hypocones as large as in Helohyus. \mathbf{M}^{3} seems to have been tritubercular, but the posterior portion of the crown is broken off. Prominent tubercles rise from the external cingulum at the base of the metacone in m^{2} and m^{3}. A similarly situated tubercle has been observed in m^{2} of Helo hyus and perhaps may be found to occur occasionally on some of the other molars. Cingula probably complete except, perhaps, internally. Small tubercle on anterior cingulum opposite notch between protocone and protoconule absent. The presence of this tubercle is a specific character in Helohyus plicodon. It is not found in H. milleri and will serve to separate the teeth of H. plicodon from those of Wasatchia lysitensis which approach them so closely in size. Enamel almost smooth.
The incisor is a small spatulate tooth, probably referable to the lower series.
Bunophorus new genus.
Dentition $\frac{?}{2}, \frac{?}{3}, \frac{?}{4}, \frac{?}{3}$. Upper teeth unknown. Lower premolars, except probably the first, double-rooted, not separated by diastemata; premolars not much compressed laterally, anterior basal tubercles small or absent, heelsc ingulum-like ledges broader in p_{4} than in p_{3}; no deuteroconid on lower premolars.

Molar cusps bunoid; paraconid vestigial or absent; heels of anterior molars as wide as or a little wider than trigonids; in m_{3} heel much narrower than trigonid, with hypoconid smaller than protoconid and hypoconulid exceeding in size the entoconid.

Mandible strongly convex inferiorly, rapidly increasing in depth below m_{2}.

Bunophorus etsagicus (Cope).

Type. Trigonolestes etsagicus Cope, right and left halves of the mandible (Amer. Mus. Coll. No. 4698). From the Bighorn Wasatch, Bighorn Basin, Wyoming. J. L. Wortman collector, 1881.

Measurements.

Cope's original description is, in part, as follows: -
"The heel of the third premolar is obsolete, and that of the fourth is a wide cingulum. Neither exhibit an anterior basal tubercle, and in both the principal cusp is stout. The true molars widen posteriorly to the anterior part of the last molar. The latter contracts rapidly to a narrow heel. The tubercles are all subconic, and the median ones of the last molar are small. There are no cingula and the enamel is smooth.
"The ramus is not robust, and is of moderate depth. Its inferior border rises below the middle of the last molar tooth, and posteriorly. There is a 'mental' foramen below the

Fig. 7. Bunophorus etsagicus, outer side of left ramus with p_{4} reversed from opposite side and superior view of right ramus, nat. size. Type specimen No. 4698. contact of the fourth premolar and first true molar."

The generic distinctness of B. etsagicus was recognized by Wortman in 1898. Referring to Pantolestes (i. e. Trigonolestes) he writes: "From this genus I exclude the type of Pantolestes etsagicus Cope as belonging to a distinct genus ancestral to and leading directly up to the bunodont Artiodactyla. It is very probably synonymous with Eohyus distans Marsh, who properly placed it among the Bunodonts."

But little need be added to Cope's description. In his figure (Tertiary Vertebrata, pl. xxve, fig. 24a) only one alveolus for p_{2} is shown whereas the specimen shows a second alveolus for the anterior root of this tooth. The advanced state of wear of the anterior molars has destroyed all trace of the paraconid if this cusp was ever present in a vestigial condition as seems possible from what has been observed in the other species of Bunophorus. Not the slightest trace of paraconid is seen in the almost unworn third molar. Cingula, though feebly developed, are not entirely wanting. A faint anterior cingulum occurs on m_{2} and may have been present on m_{1}. Faint traces of discontinuous external cingula may be seen on all the molars. Enamel practically smooth.

Bunophorus macropternus (Cope).

Type. Phenacodus macropternus Cope, a fragment of a right mandibular ramus with m_{1-3} (Amer. Mus. Coll. No. 4395). From the Bighorn Valley, Wyoming. It is not certain to what horizon the specimen belongs (i. e. whether Wasatch, Lysite or Lost Cabin). J. L. Wortman collector, 1881.

Measurements.

Original description.- "This species is apparently rare, being represented by only one mandibular ramus, which supports the posterior three molars, and a possible second ramus with molars IV and V. The first and second true molars are much like those of P. vortmani, but the third is relatively larger, and has an especially elongate heel. In P. vortmani the last molar is constricted, and narrower than the penultimate. In P. macropternus there is a weak external and no internal cingulum. The tubercles of the last two molars are quite regularly conical, while the external pair of the first molar wear into crescents. Smaller than P. vortmani."

Readily separable from Phenacodus, to which it has been erroneously referred, by the increase in size posteriorly of the molars (instead of decreasing in size as in Phenacodus), by the bunoid

Fig. 8. Bunophorus macropternus, part of right mandibular ramus, superior view, nat. size. Type specimen No. 4395. outer molar cusps in contrast with their bunocrescentic character in Phenacodus, and, finally, in the greater posterior extension of the hypoconulid in m_{3} and its greater degree of isolation from the remaining cusps of the heel than in Phenacodus.

Owing to the incompleteness of m_{3} in the type of B. macropternus, comparison with B. etsagicus cannot be made as closely as might be desired, but in all respects in which the specimens can be compared there is not sufficient difference to warrant more than a specific separation. The teeth of B. macropternus are somewhat smaller than those of B. etsagicus. A minute paraconid seems to have been present in m_{1} of the type, but this cusp is
entirely wanting in m_{2}. A vestige of it is found in m_{3}. In the smaller species of Wasatchia, which approach B. macropternus in size, the paraconid, though small, is present in all the molars. Cingula are more strongly developed than in B.etsagicus, both anteriorly and externally; but are lacking internally. A continuous external cingulum is present about the outer cusps of m_{3}, while in m_{1} and m_{2} it is interrupted about the base of the hypoconid. The enamel is slightly rugose.

Cope's second specimen (No. 4394 Am. Mus.), a fragment of the right mandibular ramus with the first and second molars, has the teeth badly worn and lacks the diagnostic third molar. As m_{2} shows a well marked trace of the paraconid, a cusp which is absent or at best but slightly indicated in the molars of Bunophorus, we may be justified in referring the specimen in question to Wasatchia.

Lophiohyus new genus.

Dentition $\frac{3}{2 \text { or } 3}, \frac{1}{1}, \frac{\text { probably 4 }}{4}, \frac{\text { probably } 3}{3}$. Upper dentition almost unknown. Incisors spaced, crowns small, second conical, recurved. Canine large, long, perhaps laterally flattened (only a fragment, split longitudinally, is preserved). Anterior premolars double-rooted, widely spaced and trenchant. Molars known only from a fragment or two, not unlike Helohyus.

In the lower series, the tips of the alveoles of two incisors and the alveolus of a small canine are preserved. P_{1} single-rooted, p_{2-4} double-rooted. Wide diastemata behind c, p_{1} and p_{2}. No anterior basal cuspule on p_{3}, posterior cuspules cingulumlike, broader in p_{4} than in p_{3}. Crowns moderately compressed laterally. No deuteroconid.

Lower molars with very small paraconid. Heels of anterior molars wider than trigonids, that of m_{3} with large hypoconulid supporting several minor tubercles. External, anterior and posterior cingula present on the molars. Enamel finely rugose.

Mandible decreases slightly in depth anterior to p_{3}, but otherwise is of about the same depth throughout. Skull with high, thin sagittal crest, rapidly sloping downward and forward to its point of divarication back of the postorbital processes, between which the inclosed frontal tract is smooth.

Lophiohyus alticeps n. sp.

Type. An incomplete crushed skull, lower jaws and fragments of cervical vertebrae (Amer. Mus. Coll. No. 1518). From the Bridger formation, Twin Buttes, Sweetwater County, Wyoming. Amer. Mus. Exp. 1893.

Fig. 9. Lophiohyus alticeps, : ide view of skull and lower jaw, nat. size. Type specimen, No. 1518.

Fig. 10.

Fig. 11.

Fig. 10. Lophiohyus alticeps, superior view of right ramus of lower jaw, nat. size. Incisor alveoli inserted from opposite side. Type specimen, No. 1518.

Fig. 11. Lophiohyus alticeps, dorsal view of part of skull, nat. size. Type specimen, No. 1518.
Measurements
mm.
Length, lower jaw, incisors to condyles (partly estimated) 133
" lower dentition $\left(\mathrm{p}_{1}-\mathrm{m}_{3}\right)$ 73.5
" premolar series including diastemata 41-43
. true molar series 33
" Alveolus of $\mathrm{p}_{1} 4.5$; Alveolus of $\mathrm{p}_{2} 7 ; \mathrm{p}_{3} 9 ; \mathrm{p}_{4}$ 9
" postcanine diastema 6; 2nd diastema 5 ; 3d diastema 5.5
" $\mathrm{m}_{1} 9 ; \mathrm{m}_{2} 10 ; \mathrm{m}_{3}$ (estimated partly) 14
Depth of jaw at back of symphysis bet. p_{2} and p_{3} 18
" " " " m_{2} 22
Greatest width of $\mathrm{p}_{3}, 3.5 ; \mathrm{p}_{4}, 4 ; \mathrm{m}_{1}, 6.5 ; \mathrm{m}_{2}$, 7.5

As but one specimen of a single species is known, the generic and specific characters cannot be separated at present. Apparently, we have in Lophiohyus a form closely related to Helohyus, but differing, so far as comparison can be made, chiefly in the greater spacing of the anterior lower premolars, the less strongly developed paraconid and the presence of strong external cingula on the lower molars. Probably other differences would appear if both forms were known from more complete material.

The conical, widely-spaced incisors of Lophiohyus resemble in a way those of the type of the problematic Bridger genus Ithygrammodon cameloides (No. 10125 Princeton University Museum, Fig. 12), which is possibly

Fig. 12.

Fig. 13.

Fig. 12. Ithygrammodon cameloides, side view of right premaxilla, nat. size. Type specimen, No. 10125, Princeton University Museum.

Fig. 13. Two upper molars of an artiodactyl from the Bridger Eocene, nat. size. No. 10084, Princeton University Museum.
an artiodactyl resembling Helohyus or Lophiohyus. Two upper molars from the Bridger (No. 10084 Princeton University Museum, Fig. 13) may belong either to Ithygrammodon or to Marsh's Helohyus lentus, or, possibly, to an undescribed genus.

Helohyus Marsh.
Dentition $\frac{?}{?}, \frac{?}{?}, \frac{\text { probably } 4}{4}, \frac{3}{3}$. Upper incisors, canine and anterior premolars unknown; p^{3} trenchant, with small deuterocone; p^{4} with large, conical deuterocone,
slightly trenchant protocone, small, but distinct, prostyle and strong cingulum, incomplete only about inner side of deuterocone.

Molars 1 and 2 quadritubercular with well-developed intermediates; hypocone a small cusp rising from the cingulum, smaller than the posterior intermediate. Hypocone in m^{3} incipient and tooth-crown practically tritubercular. Cingula strong and continuous, except for a slight interruption internally. Enamel finely rugose. Cusps bunoid.

In the lower series, p_{1} is probably single-rooted, the remaining premolars doublerooted, trenchant, with cingulum-like heels in p_{3} and p_{4} and a minute anterior cuspule on p_{4}. Short diastemata back of p_{1} and p_{2}. No deuteroconid.

Lower molars with paraconid always present. Heels wider than trigonids in m_{1} and m_{2}, a little narrower in m_{3}. Hypoconulid in m_{3} large, often bearing accessory tubercles. Slight anterior and discontinuous external cingula. Enamel finely rugose.

Helohyus milleri n. sp.

Type. Left maxilla with $\mathrm{p}^{3}-\mathrm{m}^{3}$, and anterior half of left mandible with $\mathrm{p}_{3}-\mathrm{m}_{2}$. (Amer. Mus. Coll. No. 12151). From the Bridger formation (C5, Lone Tree white layer), Burnt Fork postoffice, Henry's Fork of Green River, Sweetwater County, Wyoming. Amer. Mus. Expd. 1904. The species is named in honor of its collector, Mr. Paul Miller.

Measurements.

Somewhat larger than Helohyus plicodon from which it differs in the stronger development of an accessory tubercle on the low crescentic ridge
sweeping forward and outward from the anterior margin of the deuterocone in p^{4}, in the proportionately less strongly developed hypocone in m^{1} and m^{2}, in the greater degree of enlargement of the metaconule in m^{3}, which gives the posterior margin of this tooth a greater degree of convexity than in H. plicodon, and, finally, in the greater projection externally of the anteroexternal margin of m^{2} and m^{3} than occurs in the species just mentioned.

Except for larger size, the characters of the lower dentition are as in H. plicodon. As m_{3} is not preserved, comparison cannot be made with Marsh's H. validus and H. lentus which are known only from this tooth. Apparently the new species is somewhat larger than Helohyus validus.

Fig. 14. Helohyus milleri, m^{1-3} of left side and outer and superior views of left mandibular ramus, nat. size. Type specimen, No. 12151.

Helohyus plicodon Marsh.

Measurements.

12147 Am. Mus.
mm .
Length, $\mathrm{p}^{4}-\mathrm{m}^{3}$. 31.5
" p^{4}. 7
" m^{1}. 7.5
" m^{2}. 8.5
" m^{3}. 8.5
Greatest width, p^{4}. 7.5

" " m^{2}..................................... . . . 11

Length, $\mathrm{p}_{2}-\mathrm{m}_{2} \ldots \ldots . .$. 43
، p_{3}. 8

The additional material of this species of Helohyus now available has made it possible to separate generic and specific characters to better advantage. The generic characters have already been listed and need not

Fig. 15. Helohyus plicodon, upper $\mathrm{p}^{4}-\mathrm{m}^{3}$, nat. size, No. 12147. Side and superior views of left half of lower jaw, nat. size. No. 12149. Last molar and a small fragment of the jaw supplied from No. 12148.
be repeated. Helohyus plicodon is distinguishable from H. milleri by its smaller size, proportionately stronger development of the hypocone in m^{1} and m^{2}, the straighter posterior border of m^{3} owing to the smaller posterior intermediate, and by the approximately equal projection of the external
cusps in m^{2} and m^{3} while in H. milleri the antero-external projects farther outward than the postero-external. From H. validus it may readily be separated by the very much smaller hypoconulid on m_{3} (see Fig. 16). H. lentus (Fig. 17) if correctly referred to the genus Helohyus, is a very much larger form. A small tubercle occurring on the anterior cingulum of the upper molars opposite the notch between the protocone and protoconule is present in Helohyus plicodon, but absent in H. milleri.

Fig. 16.

Fig. 17.
Fig. 16. Helohyus validus, last, right, lower molar, nat. size. No. 12694.

Fig. 17. Helohyus lentus, last, right, lower molar, nat. size. No. 12150.

Helohyus validus and Helohyus lentus.

Each of these species is represented in the American Museum collections by a single tooth. That referred to Helohyus lentus (No. 12150, Amer. Mus. Coll., Fig. 17) is from the Bridger formation (D3), Henry's Fork Hill, Sweetwater County, Wyoming. A fragment of the right mandibular ramus with the last molar in place (Amer. Mus. Coll. No. 12694, Fig. 16) from the Bridger formation (B3), on the middle portion of Cottonwood Creek, Bridger Basin, Sweetwater County, Wyoming, apparently pertains to H. validus.

The Skull of Helohyus (?).
The posterior half of a skull (Amer. Mus. Coll., No. 13079) associated with an upper p^{3} from the Bridger formation (B5, mouth of Summers' Dry Creek, Sweetwater County, Wyoming, Amer. Mus. Exp., 1906) is probably referable, from its size, either to Helohyus or Lophiohyus.

Fig. 18. Helohyus (?), basicranial surface of skull, nat. size. No. 13079.

In the basicranial region (Fig. 18) many striking resemblances are found to the structure of the same tract in Dichobune leporina, as figured by Stehlin. The most noticeable of these resemblances appears in the absence of an ossified bulla and auditory meatus. What seems to be the bulla is really the petrous as shown by an orifice (the fenestra rotunda) on its lower surface, posteriorly. As Stehlin observes, this structure may have been, originally, common to all the Artiodactyla. It is perhaps, therefore, not to be regarded as peculiarly dichobunid though certainly retained in this family. As will be seen, later, it occurs also in Homacodon. The large postglenoid foramen, the long, broad paramastoid processes and the overlapping of the mastoid process by a lamella of the squamosal are found in Dichobune, Helohyus (?) and Homacodon. The remaining features of the basicranial region can be ascertained to better advantage from the drawing (Fig. 18) and need not be described in detail. On the dorsal surface of the skull fragment, the temporal ridges resemble those of Lophiohyus. The sagittal crest is considerably lower and the skull seems to have been somewhat shorter proportionately than in that genus.

Homacodon Marsh.

Dentition $\frac{?}{9}, \frac{1}{1}, \frac{4}{4}, \frac{3}{3}$. Upper incisors unknown; canine about equal to p^{1} in anteroposterior diameter; anterior premolars probably trenchant and but little spaced.
P^{3} triple-rooted, trenchant, with small deuterocone and, in some specimens, a faintly-indicated tritocone; anterior basal cuspule very small; cingulum continuous.
P^{4} with large, conical deuterocone, slightly trenchant protocone, prominent antero- and postero-external cuspules and a cingulum continuous except for internal interruption.
M^{1} and m^{2} quadritubercular with conical cusps, the outer pair slightly trenchant anteroposteriorly, well-developed intermediates and prominent, though small, hypocone, indicated as a well-differentiated conical cusp. In m^{3}, the hypocone is entirely absent, the posterior intermediate being as large as the protocone in some specimens. Cingula heavy and complete except internally around base of protocone. Prominent parastyle, no mesostyle unless a conical tubercle sometimes seen between the outer cusps in m^{3} may be so interpreted; incipient to small metastyle.

Lower incisors unknown but probably three. Canine as large in cross-section as first premolar. P_{1} single-rooted, remaining premolars double-rooted, trenchant. P_{3} with cingulum-like heel and prominent anterior basal tubercle; p_{4} without deuteroconid, but with prominent anterior tubercle and almost as prominent posterior basal tubercle rising from cingulum-like heel. Premolars practically in close series. A short diastema between c and p_{1}.

Lower molar cusps bunoid internally, slightly buno-selenodont externally, paraconid absent on anterior molars and but feebly developed in m_{3}; heels wider than
trigonids in m_{1} and m_{2} and of about the same width in m_{3}. Hypoconid the largest cusp in the heel; in m_{3} hypoconulid slightly smaller than entoconid and all the cusps of the heel high and conical. No internal cingula; slight, discontinuous anterior, external and posterior cingula. Enamel smooth.

Fig. 19. Homacodon vagans, skull, nat. size, side, lower and superior views. No. 12695.
Skull. The skull of Homacodon, here figured for the first time, though somewhat damaged, is quite uncrushed. Its salient features may be summarized as follows:-

Basifacial and basicranial axes inclined to each other at a broadly obtuse angle; orbits large, without postorbital processes; temporal ridges low and straight; sagittal crest broken off; brain case depressed posteriorly especially along junction of parietal and squamosal; ossified bulla and auditory meatus absent as in Dichobune and Helohyus (?) the exposed petrous occupying its place; structure of basicranial region much the same as in Helohyus (?)

Homacodon vagans Marsh.

Plesiotype. Skull (Amer. Mus. Coll. No. 12695) from the Bridger formation on Henry's Fork opposite the mouth of Burnt Fork, Sweetwater County, Wyoming. Amer. Mus. Expd. 1905.

Fig. 20. Homacodon vagans, left upper $\mathrm{p}^{4}-\mathrm{m}^{3}$, twice natural size. No. 12695. Lower m_{1-3}, superior view, twice natural size. No. 12139.

Measurements.

mm .
Skull, length from anterior border of canine to condyle. 71
" width between orbits 24
" " at postorbital constriction 14
" height above m^{3}. 22
$\mathrm{c}-\mathrm{m}^{3}$, length 35
p^{3}, length 4.5
$\mathrm{p}^{4} \quad$ " 4.2
m^{1} " 4.4
m^{2} " 4.9
m^{3} 5.5
p^{3} width. 3
$\mathrm{p}^{4} \quad$ " 4.5
m^{1} " 5
m^{2} " 6
m^{3} " anteriorly 6

Generic and specific characters not separable at present.

Nanomeryx Marsh.

Original description.-"This genus appears to be nearly related to Homacodon, with which it agrees in several respects, but may be distinguished from it by the fact that the fibula is reduced, and coössified distally with the tibia. The lower jaws are more slender and compressed than in Homacodon, and there is a short diastema between the canine and the first lower premolar. The bones of the skeleton, even the vertebræ, are very hollow.

The humerus is perforated above the lower condyle, and the inner condylar margin is without the process characteristic of Homacodon. The radius and ulna are separate, but the latter bone is quite slender. The fibula is incomplete. The lower part has coalesced entirely with the tibia, but the suture remains distinct, except in very old individuals . . . The present species is only about half as large as Homacodon vagans, and is thus one of the smallest Eocene Artiodactyles known."

A fragmentary specimen in the American Museum collection (Nó. 12375, Bridger C1, Twin Buttes, Sweetwater Co., Wyoming, Exp. 1904) agreeing in size with Homacodon, has the tibia and fibula fused distally. Another specimen of Homacodon has the humerus perforated by a supra-condylar foramen. Until better material is available, Nanomeryx may be regarded as rather doubtfully separable from Homacodon.

Sarcolemur Cope.

It seems probable that this genus, formerly regarded as a primate, should be included among the Artiodactyla and, possibly, referred to the Dichobunidæ, although the artiodactyl type of astragalus has not yet been found in association with the teeth. It may be readily recognized by the development of a prominent deuteroconid on p_{4}, by the retention of a well-marked paraconid on all the lower molars and

Fig. 21. Sarcolemur pygmexs, right, upper $\mathrm{p}^{4}-\mathrm{m}^{3}$, twice natural size. No. 12043. by the more strongly marked bunoselenodont character of the outer molar cusps than is found in Homacodon.

A maxillary fragment with $\mathrm{p}^{4}-\mathrm{m}^{3}$ (Amer. Mus. Coll., No. 12043) from the Bridger formation, C3 on Henry's Fork at Burnt Fork postoffice, Sweetwater County, Wyoming is probably referable to Sarcolemur (Fig. 21). P ${ }^{4}$ resembles that of Homacodon, but the deuterocone is higher. M^{1} and m^{2}
are quadritubercular with a small conical hypocone and a prominent style on the anterior cingulum opposite the notch between protocone and protoconule. A smaller style is found on the outer cingulum of m^{1} between the paracone and metacone. This portion of the crown is broken off in the remaining teeth. In m^{3} the crown is tritubercular, the metaconule is no larger than the protoconule and the hypocone is absent, unless a very slight elevation of the posterior cingulum is to be interpreted as an incipient (or should it be vanishing?) hypocone.

Measurements.

No. 12043
mm .
$\mathrm{p}^{4}-\mathrm{m}^{3}$, length... . . 17.5
p^{4}, length (approx.).. . . 4.4
m^{1} " " ... 4.9
m^{2} " .. . 5
m^{3} " .. . 4.8
p^{4}, width. 5.3
m^{1} " 5.3
$\mathrm{m}^{2} \quad$ 6 . 6
m^{3} " anteriorly . 6

Microsus Leidy.
Two mandibular fragments from the Bridger are, apparently, referable to this little known genus. One of them with m_{2} and m_{3} (Amer. Mus. Coll.,
 size. No. 12143.

Mus. Coll., No. 12144) from Bridger D4 on Henry's Fork Hill, is smaller. Microsus resembles Sarcolemur in retaining a large deuteroconid on p_{4} but has lost the paraconid on the posterior molars, retaining but a trace of it on m_{1} (Fig. 23).

Measurements.

Microsus ? sp.

A fragment of a right half of a mandible with m_{1-3}, from Bridger C5 on Henry's Fork Hill (No. 12145, Am. Mus. Collection) is perhaps referable to Microsus. It has a fairly strong paraconid on the first molar, with faint indications of this cusp on the remaining teeth. As the range of cusp variation in this genus is not yet known, the specimen is, for the present, referred doubtfully as above.

Fig. 24. Microsus ? sp., fragment of right mandible with m_{1-3}, superior view, twice natural size, No. 12145.

Measurements.

mm .

Diacodexis Cope.

Dentition $\frac{?}{?}, \frac{?}{?}, \frac{?}{4}, \frac{3}{3}$. Of the upper premolars only the third and fourth are known. P^{3} crescentic-trenchant, with small deuterocone and antero-external style; p^{4} with large deuterocone and medium sized antero-external style; outer cusp crep-centic-trenchant, inner cusp buno-selenodont; cingulum continuous.

Upper molars tritubercular; hypocone not yet differentiated from cingulum; internal cusp buno-selenodont, external cusps bunoid with trenchant edges. Intermediates well developed. Cingulum interrupted internally on m^{1} and m^{2}, continuous on m^{3}.

Lower molar cusps bunoid with slight suggestion of buno-selenodont pattern externally. Parraconid usually well developed and present on all the molars (exceptionally absent.) ${ }^{1}$ Heels of anterior molars wider than trigonids; in m_{3}, heel a little narrower than trigonid, hypoconid as large as protoconid, hypoconulid either larger than, or equal to, entoconid.

Mandible with medium inferior convexity, gradually increasing in depth posteriorly.

The type specimen of the genus Diacodexis is a composite, originally described as Phenacodus laticuneus, and combines upper premolars of Eohippus, upper molars of Hyopsodus and the last lower molar of an artiodactyl. The lower molar was used by Cope in defining his P. laticuneus. Later (1882), the reference of this species to Phenacodus was dropped and the new genus Diacodexis substituted. As indicated above, the only portion of the type specimen to which this name is applicable is the last lower molar which does not seem to be generically distinct from that of Trigonolestes. As the latter genus was not proposed until 1894, Diacodexis has priority. Whether D. laticuneus is determinable specifically may be open to question, though its generic position is clear. It is of about the same size as D. (Trigonolestes) chacensis and, eventually, may prove to be identical with it.

Diacodexis chacensis Cope.
I am wholly unable to separate this species from D. metsiacus and D. brachystomus on the basis of size nor have I found a single morphologic character whereby they can be differentiated. When taken by themselves, the types seem to differ specifically, but

Fig. 25. Diacodexis chacensis, right upper $\mathrm{p}^{3}-\mathrm{m}^{3}$, twice natural size. No. 15671. the large series of specimens at my disposal has made it possible to connect them by transitional forms. Eighteen specimens, in addition to the types, were subjected to careful measurement and the results are tabulated below. Completeness of preservation was the sole basis of selection. The series is arranged in the order of increasing length of the tooth row $\left(p_{4}-m_{3}\right)$ and the value of each dimension given both in millimeters and as a percentage of the length of the tooth row $\left(p_{4}-m_{3}\right)$, taking the latter as 100 .

[^1]Variation table for Diacodexis (Trigonolestes) chacensis from the Wasatch and Wind River groups of

$\begin{aligned} & \text { Am. Mus. } \\ & \text { No. } \end{aligned}$	Length, $\mathrm{p}_{4}-\mathrm{m}_{3}$		Length, $\mathrm{m}_{1}-\mathrm{m}_{3}$		Long diam., p4		Long. diam., m m_{3}		Depth of jaw at p 4		Depth of jaw at m_{3}		Horizon
	mm .	\%	mm .	\%	mm .	\%	mm.	\%	mm .	\%	mm		
15533	17.9	(100)	13.4	(74.8)	4.4	(24.5)	5.4	(30.1)		(39.1)	8.3	(46.3)	Wasatch (horizon 2) ${ }^{4}$
15669	18.4	،	13.4	(72.8)	4.9	(26.6)	5.4	(29.3)	6.9	(37.9)	7.5	(40.7)	" (horizon 3)
15666	18.5	"	13.4	(72.4)	5	(27.0)	5.3	(28.6)	7.2	(38.9)	8.	(43.7)	" "
1535	18.5	"	13.5	(72.9)	5	(27.0)	5.1	(27.5)	6.5	(35.1)		(43.2)	Lower Gray Bull Valley
15522	18.5	"	13.7	(74.0)	4.9	(26.4)	5.4	(29.1)	6.5	(35.1)	7.7	(41.6)	(horizon 3)
15668	18.8	،	13.3	(70.7)	5.3	(28.0)	- 5	(26.5)	6.6	(35.1)			" "
15671	18.8	،	13.8	(73.4)	5.1	(27.1)	5.8	(30.8)	6.7	(35.6)		(45.7)	" Shoshone R.
$4696{ }^{1}$	19	"	14.2	(74.7)	4.8	(25.2)	5	(26.3)		(31.5)		(36.8)	Bighorn Valley
15527	19	"	14.5	(76.3)	4.5	(23.6)	6.1	(32.1)		(36.8)			(horizon 1)
4700^{2}	19	،	14.4	(75.7)	4.2	(22.1)	5.4	(28.4)	8.2	(43.1)		(48.9)	Bighorn Valley
15523	19	*	14.3	(75.2)	4.7	(24.7)	5.7	(30.0)	7.4	(38.9)	9.	(48.9)	(horizon 1)
15521	19.1	"	14.6	(76.4)	4.5	(23.5)	5.1	(26.7)	6.4	(33.5)		-	(horizon 2)
15524	19.2	،	14.6	(76.0)	. 4.5	(23.4)	6	(31.2)	7.2	(37.5)	8.2	(42.7)	(horizon 1)
15672	19.2	"	14.8	(77.0)	5.5	(28.6)	6	(31.2)	7.1	(36.9)		(41.6)	Shoshone R.
15662	20	"	15	(75.0)	5	(25.0)	5.7	(28.5)	8.1	(40.5)	9.2	(46.0)	Lysite, Buffalo Basin
15531	20.2	"	15.2	(75.2)	5	(24.7)	5.7	(28.2)	6.1	(30.1)	7.2		Wasatch (horizon 1)
15661	20.4	،	15	(73.5)	4.8	(23.5)	5.8	(28.4)	6.9	(33.8)	8.4	(41.1)	Lysite, Buffalo Basin
1559	20.5	،	15.4	(75.1)	4.8	(23.4)			8.4	(40.9)	9.4	(45.8)	" ، "
$4691{ }^{3}$	20.6	،	15.4	(74.7)	4.8	(23.3)	5.7	(27.6)				(40.2)	Wasatch, Bighorn Valley
297	20.7	"	15.1	(72.9)	5.3	(25.6)	5.9	(28.5)	7.4	(35.7)		(40.0)	
15520	22.5	*	17.3	(76.8)	5.2	(23.1)	6.5	(28.8)	8.2	(36.4)			(horizon 3)

[^2]An examination of the table will show that it is quite impossible to draw even arbitrary lines separating the three species recognized by Cope. Nor does the series seem to be varying in any particular direction. Large forms occur both in the Lysite and in horizons 1 and 3 of the Wasatch. Small forms are found in all the Wasatch horizons and in the Lysite also, but the small specimens from the Lysite have been omitted from the table because they were not complete enough to give a full set of measurements.

Diacodexis (Trigonolestes) chacensis, metsiacus and brachystomus may be regarded as variants of a single type illustrating the artificial character of most specific distinctions, which blend as soon as a sufficiently large series of forms is examined. T. chacensis was first described, T. metsiacus next and, finally, T. brachystomus which was later designated as type of the genus. Under these circumstances there may well be some question as to which name should be retained. For the present, Diacodexis (Trigonolestes) chacensis may be used, and D. metsiacus and D. brachystomus included as synonyms.

Diacodexis olseni n. sp.

Fig. 26. Diacodexis olseni, lower $\mathrm{p}_{4}-\mathrm{m}_{3}$, superior view, twice natural size. Type specimen. No. 14937. of m_{3} (Amer. Mus. Coll. No. 14937). From the Lost Cabin formation (Wind River group), Davis ranch, Alkali Creek, Wind River Basin, Wyoming. Amer. Mus. Exp. 1909. The species is named in honor of its collector, Mr. George Olsen.

Measurements.

Additional material may show that this species is connected by intermediate gradations with the larger members of the D. chacensis series, but, at present, it is well characterized by the fact that the molars, though of much the same length as in D. secans and some of the larger specimens in
the chacensis series, are considerably wider transversely than even the largest of these, giving the tooth crown a square outline. The paraconid shows a tendency toward reduction, for it is quite small in m_{2}, but this may be an individual peculiarity (see note, p. 290). The slight spacing of the molars seen in the figure (Fig. 26) is the result of calcite infiltration into cracks which have spread apart the fractured sections. Readily separable from Pelycodus, which it resembles in the square-shaped molars, by the absence of deuteroconid on p_{4}.

Diacodexis robustus n. sp.

Type. A fragment of the left mandibular ramus with $\mathrm{m}_{2}, \mathrm{~m}_{3}$ (Amer. Mus. Coll. No. 15514). From the Bighorn Wasatch (Gray Bull beds) Lower Gray Bull Valley, Wyoming. Amer. Mus. Exp. 1910.

Additional referred specimens. No. 15510 Am. Mus., maxillary fragment with $\mathrm{m}^{2}, \mathrm{~m}^{3}$, Gray Bull beds, Wasatch (horizon 2) 5 miles south of Otto, Bighorn Co., Wyo.; No. 15511 Am. Mus., part of right mandibular ramus with $\mathrm{m}_{2}, \mathrm{~m}_{3}$, Gray Bull beds, Wasatch (horizon 3), near St. Joe postoffice, Bighorn Co., Wyo.; No. 15512 Am. Mus., mandibular fragment with $\mathrm{p}_{4}, \mathrm{~m}_{1}$, and No. 15513, also a fragment of the mandible with m_{1} and m_{2}, both from the Gray Bull beds, Wasatch, lower Gray Bull Valley, Wyoming.

Fig. 27. A. Diadodexis robustus, left $\mathrm{m}_{2}, \mathrm{~m}_{3}$, twice natural size. Type specimen, No. 15514. B. Right $\mathrm{m}_{1}, \mathrm{~m}_{2}$, twice natural size. Paratype, No. 15513. C. Right $\mathrm{p}_{4}, \mathrm{~m}_{1}$, twice natural size. Paratype, No. 15512.

Measurements.

	No. 15510 Amer. Mus. mm .
m^{2} long diam. externally	6
m^{3} " "	5.5
m^{2} greatest trans. diam.	7.5
m^{3} " " "	6.2

No. 15510
Amer. Mus.
mm .
m^{2} long diam. externally . 6
m^{3} " " ".................................5.5
m^{2} greatest trans. diam. 7.5
m^{3} " " " 6.2
A species of Diacodexis larger than any previously described Wasatch form is indicated by various fragmentary specimens

Fig. 28. Diacodexis robustus, right upper m^{2}, m^{3}, twice natural size. Paratype, No. 15510. collected by the American Museum Expedition of 1910. The teeth are wider both anteroposteriorly and transversely and the jaw heavier than in the largest member of the chacensis series. From D. olseni it is readily distinguished by the greater anteroposterior diameter of the molars in proportion to their width.

The two upper molars referred to D. robustus (No. 15510, Fig. 28) do not differ, except in size, from the corresponding teeth in the other species of Diacodexis in which the upper dentition is known.

Relationships of the American Dichobunids.

The resemblance in tooth pattern of the American genera here described to the European dichobunids and, especially, the close agreement in basicranial structure of Dichobune, Helohyus (?) and Homacodon, renders it highly probable that the closely allied American genera Wasatchia, Bunophorus, Helohyus, Lophiohyus and Homacodon should be referred to the Dichobunidæ. Diacodexis should also, probably, be included in this family. Though somewhat larger than Protodichobune, Wasatchia shows a considerable degree of resemblance to a specimen figured by Stehlin ${ }^{1}$ from the Upper Ypresien of Monthelon near Epernay and provisionally determined as Protodichobune. Less certainty exists regarding the systematic position of Sarcolemur and Microsus which are referred to the Artiodactyla on dental characters only and may, for the present, be classed as dichobunids. Owing to the fragmentary character of the available material, it is unsafe to dogmatize on matters of phylogeny, but several divergent lines of evolution appear to be indicated. A close relationship seems to exist between the Lower Eocene genus Wasatchia and the Middle Eocene Helo-

[^3]hyus and Lophiohyus, perhaps sufficiently close to warrant the inference that the latter are derived from the former. Bunophorus, a contemporary of Wasatchia, has diverged from the Wasatchia-Helohyus line in the loss of the paraconid in the lower molars. Unfortunately, the upper dentition of this form is unknown so we cannot be sure of its relationship to Homacodon which has also lost the paraconid in the lower molars, or almost so. Homacodon departs from the structure of the last upper molar found in Wasatchia and Helohyus in the enlargement of the metaconule, thereby developing a quadritubercular crown in which the undeveloped or lost hypocone takes no part. It may, perhaps, represent still another divergent evolutionary line, though from the fact that its Lower Eocene predecessors are unknown, this is uncertain. Diacodexis (Trigonolestes) differs from all its contemporary artiodactyls, so far as known, in the trigonodont character of the upper molar crowns. I am not prepared to add anything to Stehlin's suggestion that it could, possibly, represent the stem-group of the dichobunids, with nearer relationships to Protodichobune. Finally, in Sarcolemur and the allied Microsus still other variations appear in the development of a large deuteroconid in p_{4} coupled either with the presence or the absence of a paraconid in the lower molars. It is, perhaps, among the members of this last group, rather than in Homacodon, that the ancestor of the Unita selenodonts is to be found.

[^0]: ${ }^{1}$ The types of both Eohyus distans and E. robustus are said to be from the Lower Eocene (Wasatch) of New Mexico. Some doubt seems to exist regarding the horizon of the two species of Parahyus. Marsh states that they are from the Coryphodon beds of Wyoming. Hay's catalogue locates them in the Bridger, while Matthew's checklist (U. S. G. S. Bulletin 361) gives the locality as Coryphodon zone, Black Buttes, Washakie Basin, Wyoming. Professor R. S. Lull kindly informs me that the type of P. vagus, catalogue No. 10972 Yale University Museum, comes from Bitter Creek Station, Wyoming. P. aberrans, catalogue No. 10027, was shipped from Fort Bridger, Wyoming, and this is the only record regarding its geographic locality.

[^1]: ${ }^{1}$ As on m_{2} in the type specimen of D. (Trigonolestes) secans, where it is hardly visible.

[^2]: Cotype of T. metsiacus. ${ }^{2}$ Type of T. brachystomus.
 Wefers to the three horizons in the Bighorn Wasatch (Gray Bull beds) shown in Fig. 2B. Bull. Am. Mus. XXX, Article VII. Horizon 1 is the oldest.

[^3]: ${ }^{1}$ Stehlin. Die Saugetiere des schweizerischen Eocaens, Vierter Teil, Abhandlungen der Sch. Pal. Gesellschaft, XXXIII, fig. xciii, p. 668, 1906.

