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INTRODUCTION

IT IS A STRIKING FACT that in the various
papers and books on the nature of organic
symmetry, both recent and ancient, there is
surprisingly little comment on pentagonal or
pentamerous forms. This is not because of a
rarity of occurrence of objects displaying
such characteristics, for, although not ubiqui-
tous, five-part units are certainly common in
both animal and plant design.

Considering only fairly recent contribu-
tions, one may take, as an example, the 1116-
page volume of Thompson (1942) and fail to
find any full discussion of the nature of this
type of organic partitioning. Essentially the
same situation is to be found in other recent
but more specialized considerations of the
properties of space, such as Breder (1947),
Steinhaus (1950), Bonner (1952), and Weyl
(1952). This is also true of the earlier discus-
sions of Hilbert and Cohn-Vossen (1932), of
which there is a recent English translation
by Nemenyi (1952), and of Lartigue (1930).
The last-named, however, in his somewhat
mystical approach, does consider a few inter-
esting aspects of five-part designs. Writers
on the broad aspects of morphology in refer-
ence to animal evolution, such as Swinnerton
(1949) and Gregory (1951), likewise do not
take up a consideration of the causes or con-
sequences of pentagonal organization.

In the study of developmental mechanics,
echinoderm larvae have been used exten-
sively. Although the work has been directed
to these forms before the assumption of the
pentagonal design by the adults, there is a
notable absence of any consideration of the
cause for the transformation of the early
stages into a five-part adult. Child (1941), in
summarizing a large part of this field of study,
writes, "Echinoderm development presents
perhaps the most remarkable sequence of
symmetries and asymmetries of any animal
group," but does not develop the discussion
into any possible reasons why this fact might
be associated with a pentamerous adult.

Evidently at least one of the reasons for
such a situation is that the pentagon does not
lend itself to readily understood physical and
mathematical notions of utility and function
as do the hexagon and equilateral triangle,
which are treated extensively in most of the

above-mentioned discussions. None the less,
several groups, including both animals and
plants, have developed a five-part symmetry
as a whole or special structures with a five-
part symmetry. The present contribution is to
be considered as a first specific approach to
the problem.
The number five and pentagonal designs

have figured prominently in ancient mythol-
ogy, magic, and theology and still exist in
numerous present-day symbolic designs. Not
the least interesting aspect of such considera-
tions can be found in some of the dynamic
consequences of five-part symmetry. These
consequences extend into the behavior pat-
terns both of those organisms possessing it in
some form and of those reacting in some way
to designs of this order. Organisms as differ-
ent as honeybees and men clearly show strik-
ing attitudes and responses with respect to
this form of symmetry.

Because it is impossible to understand the
purposes of this paper without a solid grasp
of the simple geometric peculiarities of both
pentagonal and dodecahedral constructions,
all necessary elementary geometrical and
trigonometrical details are included, and be-
cause most of its readers will not be mathe-
maticians, all the geometrical details necessary
to follow the discussion have been diagramed
in such a way as to make the meaning clear.
Most of the material on which these stud-

ies were made was obtained at the Lerner
Marine Laboratory at Bimini in the Ba-
hamas, where an abundance of five-part
organisms is especially conspicuous. There is,
of course, the prominent and varied echino-
derm fauna as well as a striking number of
obviously five-petaled flowers, such as Hi-
biscus. It is probable that this notable display
of five-part symmetry was instrumental in
initiating the present study.

Invaluable advice and criticism of the
manuscript was given by Mr. James A. Fowl-
er on the mathematical aspects of the sub-
ject. Dr. Bobb Schaeffer read and criticized
the manuscript as a whole, Dr. Mont A.
Cazier and Dr. Theodore Schneirla examined
the entomological allusions, and Mr. W.
Clarke checked the identity of the echino-
derms mentioned.
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GEOMETRICAL CONSIDERATIONS

BEFORE THE IMPLICATIONS inherent in the
appearance of pentagonal structures in nature
are considered, the geometrical characteristics
of five-part forms are reviewed, with empha-
sis on the features that are found to be pri-
marily concerned with the structural possi-
bilities of organisms and the nature of the
spatial limitations that a pentamerous design
imposes.
A regular pentagon is shown in figure 1,

with the incommensurate relationships be-
tween its radius (and that of a circumscribed
circle), its apothem (and the radius of an in-
scribed circle), and its face. This figure is the
regular polygon with the least number of
sides that cannot be fitted as a mosaic to
cover a surface completely. Polygons of four
sides and of three sides can do this and,
because a hexagon is made up of six equi-
lateral triangles, it, too, can cover a surface
completely, as is indicated by the diagrams
of figure 2. All regular polygons of a larger
number of sides agree with the pentagon in
leaving some surface area uncovered by any
possible arrangement.

If the sides of a regular pentagon are ex-
tended, they each meet the extensions of

FIG. 1. Basic pentagon showing relationships of
parts to the radius and to inscribed and circum-
scribed circles.

alternate sides to form a five-rayed star as
shown in figure 3. Here is indicated the rela-
tionship between various parts of the design
additional to the relationships indicated in
figure 1, together with an inscribed and cir-
cumscribed circle about the star. The rela-
tionship of inscribed and circumscribed stars
to each other is shown in figure 4. This obvi-
ously provides a different and more rapidly
expanding series than does a nest of simple
circumscribed pentagons. The further details
of these numerical relationships are given in
the Appendix. Considered another way, the
five-pointed star is formed of all diagonals
that can possibly be drawn in a pentagon.
That is, each apex is connected with every
other apex; together they form the star in-
scribed in a pentagon. The two inner stars of
figure 4 illustrate this. The number of diago-
nals is equal to the number of sides. In poly-
gons other than the pentagon, the number of
diagonals may be either greater or less than
the number of sides, less than the number of
sides in polygons of fewer than five sides, and
greater than the number of sides in polygons
with more than five sides. The number of
diagonals in a polygon may be expressed by

d=n(n-3)
2

where d =the total number of diagonals and
n = the number of sides. The pentagon is seen
to be at a point of change of relationships,
that is, where the number of diagonals
switches from less than the number of sides
to more than the number of sides.
A regular polyhedron with each face a

pentagon, the dodecahedron, which has 12
such faces, is shown in three aspects in figure
5. This is the regular polyhedron made up of
faces having the largest number of sides pos-
sible, but not the largest number of faces.
The icosahedron, with 20 faces, that is made
up of equilateral triangles is the one with the
largest number of faces possible. Thus the
pentagon represents the figure that breaks
with the possibility of an all-over surface
coverage and is the polygon with the maxi-
mum number of sides possible in the construc-
tion of regular polyhedra. The development
of the surface of the dodecahedron is shown

178



BREDER: PENTAGONAL SYMMETRY

in figure 6; the relationship to the third illus-
tration in figure 2 is clear. A cross section of
the dodecahedron is indicated in figure 7,
together with the relationships of the various
dimensions. It is to be especially noted that
the section is an irregular but symmetrical
hexagon, in which one pair of opposite sides
is shorter than the other two pairs. Fifteen
such sections are present in a dodecahedron.

If the surfaces of the 12 pentagons be ex-
tended in a manner comparable to the ex-
tension of the edges of the two-dimensional
pentagon, a stellate figure results, three as-
pects of which are shown in figure 8. For con-
venience, it can be thought of as 12 mutually
intersecting stellate pentagons or as a do-
decahedron, on each face of which is con-
structed a five-sided pyramid. The develop-
ment of the surface of this figure is shown in
figure 9; this development is comparable to

7Vl lA77
A A A 1\ 1-

IIT I

FIG. 3. Basic stellate pentagon showing rela-
tionships of parts to the radius and to inscribed
and circumscribed circles.

that of the dodecahedron of figure 6. A cross
section of the stellate dodecahedron is shown
in figure 10 to be that of the inscribed dodeca-
hedron, with the addition of four equilateral
triangles on the four long sides of the basic
hexagon. This is strictly comparable to figure
7. The numerical relationships of the parts are

FIG. 2. Mosaic coverage of a surface of the first
five regular polygons. See text for explanation.
After Breder (1947).

FIG. 4. A series of three inscribed stellate pen-
tagons showing their mutual relationships and
radii.

\// /A\
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cumscribed tetrahedron is another tetra-
hedron. These features are very explicitly
illustrated by Steinhaus (1950), who also
illustrated the relationship of the cube to the
rhombic dodecahedron. The latter can be
constructed by the addition of a pyramid to
each face of a cube and is not to be confused
with the regular or pentagon-dodecahedra
discussed here. In a similar manner a rhombic
triacontahedron can be built with a regular
dodecahedron as a basis. In all such construc-
tions the face of the new figure is a plane at
right angles to the plane of symmetry of edge
included. The new figure differs from that pro-
duced by the extension of the faces of a do-
decahedron, which is the stellate dodeca-
hedron discussed above. Such a stellate do-
decahedron can be inscribed in a regular
icosahedron where every point of the star is
at the corner of the icosahedron.
The isosceles triangle which forms each

point of the stellate pentagon has an apical
angle of 36 degrees and two basal angles of
72 degrees each, that is, each is twice the size
of the apical angle. Bisecting one of the basal
angles and producing the line to the other

FIG. 5. Three perspective views of a regular
dodecahedron: edge, face, and corner, respec-
tively, facing the viewer. The three views from the
top down may be considered as successive appear-
ances as the figure rotates on a horizontal axis in
the plane of the paper passing through the cen-
ters of the two vertical edges of the top picture.
Rotation of near side is downward. The mark on
one face is the same in each view and serves to
orientate the viewer.

indicated. Further details of this sort are
given in the Appendix.

In such considerations, it should be re-
called that the regular polyhedra bear polar
relationships to one another in the following
specific ways. That is, a polygon inscribed in
a dodecahedron so that its corners are at the
centers of each of 12 pentagonal faces is an
icosahedron. Conversely a dodecahedron can
be inscribed in an icosahedron in an identical
fashion. The cube and octahedron bear simi-
lar mutual relationships. An inscribed or cir-

FIG. 6. Development of a dodecahedron. Note
the relationship to the arrangement of pentagons
in figure 2. b
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side divides the triangle into two other tri-
angles, one of which is a gnomon of the first
and the other is similar to the large triangle.
This bisecting line, common to the two tri-
angles, is parallel to the face on the other
side of the pentagon and lies in the face of a
pentagon circumscribing the first.
The chord of the angle between the radius

and the apothem equals the continuing frac-
tion 0.6180.... This same value is shown in
the relationship between the angle at the tip
of the stars in the stellate forms with the face
of the pentagon forming its base, i.e., f/s as
in figures 1, 3, and 4 yields this same decimal.
This value, the final term in the famed
Fibionacci series, must appear in any discus-
sion even touching on considerations related
to the study of phyllotaxis.

Repeated bisections of the basal angles of
the successive triangles of the stellate point,
with angles of 36, 72, and 72 degrees as shown
in figure 11, produce a geometrical series with
some interesting features. As noted above,
such a bisection produces two triangles, one
similar to the original and the other its
gnomon. Obviously, two such series can be
obtained which are mirror images of each
other depending on which of the two basal
angles is bisected successively. Equivalent
points on these successive figures lie on a
logarithmic spiral, which necessarily is the
case in any geometrical construction of this
sort, a matter that has been extensively dis-
cussed by Thompson (1942). In this triangle
the side is 1.6180 . . . times the base, which is
the face of the generating pentagon. Succes-
sive sides and successive bases in this series
of triangles bear the following relationship to
one another:

Next higherf and s= 1.6180f or s;
next lower =f or s/1.6180.

These relationships for three successively
larger and three successively smaller triangles
are given below.

f
4.2357
2.6179
1.6180
1.0000
0.6180
0.3813
0.2295

s

6.8534
4.2357
2.6179
1.6180
1.0000
0.6180
0.3813

FIG. 7. Cross section of a dodecahedron through
any two opposite edges showing relationships of
the parts and to an inscribed and a circumscribed
sphere. Note the relationship to the top view of
figure 5.

The values of f and s on one line represent
those of one triangle. Note that the two
columns of figures are identical, displaced by
one line. This is because the side of one tri-
angle becomes the base of the next larger.
Each of the sides and bases of the nested

triangles represents the face of the pentagon
with which the stellate form is associated. The
pentagons, which are shown separately in
figure 12 for the sake of clarity, have their
centers, or for that matter any other homolo-
gous points, lying on another logarithmic
spiral, as is indicated. Each successive penta-
gon, numbered in the figure for easy reference,
touches its next larger and its next smaller
member at an apex, the angles between them
being 72 degrees. If the series of pentagons is
counted along one of the five axes of sym-
metry which pass through the centers of these
pentagons, it is found that, when counted
from the low numbers to the higher, as indi-
cated, there are series of three figures along
each axis differing by three and one. Series
separated by three have their faces in one
line and those separated by one have an apex
in common. That is to say, the series in figure
12 run as follows: 1-4-3, 2-5-4, 3-6-5, 4-7-6,
5-8-7.

In a continuation of this series of penta-
gons, no further centers lie on these lines.
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symmetrically at the centers of these penta-
gons and any other pentagons on the vertical
axis of the figure.

If the generating triangle, instead of being
"rotated" in one direction, is alternated to
right and left, a series of nesting pentagons is
produced which pinch out to one of the basal
angles of the star-pointed triangle shown in
figure 13. The dotted series of pentagons re-
sult from counterclockwise movement, while
the solid pentagons, with which they alter-
nate, result from clockwise movement. Note
that the centers of the pentagons are respec-
tively on a line above and on a line below the
bisection of the basal angle by an equal
amount. By elementary trigonometry this
can be shown to bear the following relations:
Centers of upper pentagons (solid lines) 40°23'+
Bisection of basal angle 360
Centers of lower pentagons (dotted lines) 31°37'-

FIG. 8. Three perspective views of a stellate
dodecahedron comparable with those of the do-
decahedron of figure 5. The rotation and the
marked face is the same as in that figure.

Other centers in sets of three with the above
numerical relationships lie on lines parallel to
those drawn in figure 12. For example, a line
drawn through centers 2 and 3 and produced
to the right would intersect the next larger
pentagon (not drawn), which in this notation
should be 0. The same relationship would
exist, namely, 0-3-2, and so on indefinitely.
These pentagon centers are also spaced at the
apices of isosceles triangles similar to the ones
that form their faces, as, for example, tri-
angles 3-4-5, 5-6-7; also the triangle 1-2-3, not
drawn; and the smaller one, 7-8-9. Note that
these are all in normal numerical order. Obvi-
ously a mirror-image series with a reversed
spiral could be constructed but has been
omitted for the sake of simplicity; its nature
can be readily understood by reference to the
simpler figure 11. Pentagons in figure 12 num-
bered 1, 4, and 3 would be common to both
spirals. That is, the spirals would intersect

FIG. 9. Development of a stellate dodecahedron.
As with the simple dodecahedron of figure 6, this
divides into two halves but cannot be so drawn as
a unit because of overlapping. Each element in the
two halves is numbered, with its opposite number
primed. If 3' is attached to 2' as 3 is attached to
2 and 4' cut away from 5, it will be seen that there
are two congruent figures.
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FIG. 10. Cross section of a stellate dodecahedron
comparable to that of the dodecahedron of fig-
ure 7.

Obviously another like series could be con-
structed from the other basal angle, and it
would bear a mirror-image relationship to the
first. It would differ from the previous con-
struction in that there would be no pentagons
in common with both series. This can readily
be seen from the disposition of the one set
shown in figure 13. As this series has been
produced by what might be thought of as an
oscillating movement, it is not surprising that
no logarithmic or other spiral is discernible

FIG. 11. Diagram of the successive bisection of
a basal angle of the triangle forming the point of
the star in a stellate pentagon. The left-hand
spiral results from a clockwise "rotation" of the
triangle; the right-hand spiral from a counter-
clockwise "rotation" of the triangle, shown by
dotted line.

and that the centers and other points of refer-
ence lie on straight lines radiating as a pencil
of rays from the angle of derivation.
With this much elementary geometry for

convenient reference, a consideration of the
physical manifestations of pentagonal de-
signs in organisms may be undertaken. An
attempt is made to recognize, first, the
general pattern of pentagonal design and,
second, what restrictions this kind of organi-
zation implies.
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MANIFESTATIONS IN ORGANISMS

THE FAMILY OF CURVES generally known as
Grandus' curves, considered by him in 1728
in reference to the arrangements of the parts
of flowers and most recently discussed by
Thompson (1942), forms a convenient point
of departure for a preliminary examination of
five-fold symmetry. The equation of this
curve is

r=a+b cos nO.
Figure 14 illustrates the general nature of the
curves it produces, all scaled so that r does
not exceed unity. The upper figure represents
various values of a greater than or equal to 1,
with b equal to 1 and n equal to 5. The lower
figure represents various values with a less
than 1 and the other values as before. It is
evident that as a approaches oo or b ap-
proaches 0, a circle becomes the limiting
value of this family of curves. As a approaches

:
I.:
..I

I
I

0 the equation approaches cos 0 as a limiting
value. The value of n determines the number
of parts the figure shows, here held at S.
When a equals 500 the lowest value of r equals
0.999 (when scaled so r is equal to or less than
1.0), while other values show changes only in
the fourth place.
One feature to be noted in the "growth" of

such curves is that where a is equal to or
greater than 1, each leaf is in regular sequence
as the curve is drawn, as it must necessarily
be in order that curves such as are shown in
the upper part of figure 14 will result. When a
is less than 1, as in the lower part of figure 14
where there are 10 leaves, five large and five
small, the curve, as it normally would be
drawn through a series of successive points,
crosses the center of the figure and traces
alternately a large and a small leaf. When a
equals 0, what were the large and small leaves

FIG. 12. Diagram of the deployment of the
pentagons of which one stellate point is shown in
figure 11. The centers of these pentagons neces-

sarily lie on another logarithmic spiral. How these
line up on the five pentagonal axes is indicated by
the dot-and-dash lines.

FIG. 13. Diagram of the nesting of pentagons
that results from an alternating right and left
turning of the "rotating" triangle. The dotted
series are derived from a counterclockwise move-
ment and the solid series, with which they alter-
nate, from a clockwise movement. The centers of
both series lie on axes that are an equal angular
distance above and below the bisection of a basal
angle of the stellate triangle.
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are identical in size, and again a five-petaled
figure is obtained. This differs from the
figures in which a is equal to or greater than
1, in that it resembles those in which a is
less than 1, for, in following the line, one
alternately traces the leaves first to one side
and then to the other, and it may be thought
of as having double values or tracing twice
around to trace to completion. This is actu-
ally, of course, merely the limiting case for
values of a that are less than 1 but greater
than 0.
An example of how some of these curves

approximate organisms is given by Thompson
(1942). He shows the graph of

r=sin 5/30

as an illustration of one of Grandus' curves
representing a five-petaled flower. Without
modification this is already a close approxi-
mation to the basic outline of the petals of a
blossom of Hibiscus rosa-sinensis Linnaeus.
This curve is redrawn as figure 15, with the
measured values of a comparable Hibiscus
flower indicated as dots. The means of these
values compared with the values given by
the equation are shown below; the radii of
the petals of both flower and equation are
reduced to unity for purposes of easy com-
parison.

Radius of petals
Greatest width of

petals
Radius of greatest

width
Radius of crossing

curves

FIG. 14. Graphs of the equation r=a+b cos nO.
e-m In all, b =1 and n 5, all reduced to the same scale,TION MENT i.e., with the maximum value of r= 1. Upper:

1.0000 1.0000 0.0000 a=1, 2, 4, 8, 16, 32. Lower:a=0.64. With values
of a less than 1, the figures cross the center to form

0.6103 0.6809 -0.0706 a smaller "leaf," as shown. Because of the compli-
cations this introduces, only one curve is shown

0.6444 0.6729 -0.0285 here, but it is obvious that where a= 1, as above,
the small leaves have an r =0, while as a grows

0.5000 0.5319 -0.0319 smaller and smaller the smaller leaves enlarge
until, where a = 0, there are again five equal leaves.

It is to be noted that, although the means
of the flower values are all greater than those
expressed by the equation, the difference in
no case exceeds a figure in the second decimal
place. Figure 15, which shows the measured
values on each petal, indicates the extent of
variation both plus and minus. When the
inherent variability of flowers such as this
and the natural difficulties in taking meas-
urements of them are considered, it would
seem that this flower is in close agreement
with the above expression.

Greater refinement could, of course, be

achieved by measuring a statistically signifi-
cant number of flowers such as this and thus
obtaining a measure of the departure from
the equation that the group of blossoms
showed. For the present purposes this would
be of no value for, as is shown below, such
differences would require only the introduc-
tion of small modifications of the primary
formula in order to bring the equation in as
close agreement with the growth as might be
desired. The emphasis here is rather on how
close these natural objects approximate sim-
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FIG. 15. Curve of the equation r= sin 5/30.
Points indicate measured length of petal, greatest
width of petal, and the distance of the latter from
the center. A triangle on one of the leaves (dashes)
indicates the greatest width of the figure based
on the equation and its relationships. With the
radius of the leaf= 1.0000, the following values
obtain: radius of greatest width down center of
leaf= 0.6103; one-half of greatest width of leaf
=0.3222; radius to edge of leaf=0.6901. See text
for full explanation.

ple equations. The points of reference taken
(the greatest petal width, its distance from
the center, the length of the petal, and where
its outline crosses its fellows on either side),
it should be noted, suffice to determine the
basic nature of the curve.

In connection with the modification of this
equation and others similar to it, any new
algebraic or trigonometric quantities that
are introduced need be restricted only by the
consideration that the resulting figure must
cleave to the five-part division of a circle. If
the value 5 is not integral with reference to
the circle some other symmetry appears, and
if incommensurate values appear special diffi-
culties arise. If the values are commensurate
but involve a much higher order, rosettes are
formed. A very slight fractional departure
from any commensurate relationship may im-
mediately lead to a very complex formation,
a matter discussed at some length by Breder
(1947).

Figure 16 shows a first approximation to
the outline of the sea urchin, Lytechinus
variegatus (Lamarck). The small circles along

the curve indicate the position of the edge of
the shell at its high and low points of fluting
and their departure from a separation of 36
degrees. Where there is a difference in the
latter, a short line indicates the true position
of such a figure of five parts. The solid curved
line is the graph of the equation

r=65.45-cos 50.
The closeness of fit is obvious, and it is
doubtful if any method of measuring and the
variation of one animal from another would
permit a much closer approximation, by the
very nature of the material. The value for a
was derived from the measurements in the
following manner. The mean of all 10 radial
measurements was equated to a from which
the value of r in the equation could be calcu-
lated. The mean of the measurements differed
from the calculated values by 0.05+, where
the maximum value of the equation is reduced
to 1, while the mean of the measured angles
differed from true pentagonal values by a
mean of 0.4 degree. The small spread of the
extremes is well indicated in figure 16. Only
three are sufficiently removed from the theo-
retical values of r not to be on or in contact

FIG. 16. Outline of a Lytechinus variegatus
shell. Solid line is polar graph of the equation
r=65.45+cos 50. Small circles represent actual
measurements of an individual. Angular displace-
ments of the measured high and low points, where
present, are indicated by short radial lines mark-
ing the true symmetrical division.
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BREDER: PENTAGONAL SYMMETRY

with the line of the equation, while five for 0
are evident. In the actual calculations the
mean of five larger values of r was equated to
unity. This is a mere convenience for propor-
tionality, as appears below, and the equation
is transformed to

64.45- cos 50
65.45

If another, and rather similarly shaped,
echinoid be taken, such as Tripneustes ventri-
cosus (Lamarck), the equation for its outline
is closely defined by

84.66-cos 50r=- 85.66
The outline of this equation, together with
the measured points of the example with re-
spect to both the radii and their angular dis-
tances, is shown in figure 17. A photograph of
this specimen is shown in plate 1, figure 1.
The genital pores, arranged in a group of five
about the proctal plates, are seen to have the
apices of the pentagon they form along the
radii of the least diameters, while the
apothems are measured along the larger
radii. This is, of course, the arrangement to
be found in a stellate pentagon, as in figure 3,
where the inscribed pentagon has its greatest
radii along the least radii of the star and vice
versa.
The nearly circular proctal opening is

0.086 that of the mean of the larger radii.
These relationships are shown both in the
plate referred to and in figure 17. Evidently
(without further emphasis on the subject)
echinoids of this general type differ only in
slightly changed numerical values for a and
b in the equation under consideration. The
outlines of these urchins, although clearly on
a pentagonal basis, do not depart widely
from the limiting circle.

In this particular case, it is notable that
angles of the set of shorter radii vary more
from the theoretical than do those of the set
of larger radii. As measured from a starting
point, the top position of figure 17, where
there is a difference between the ideal and
actual, the latter all fall short of the former,
as can be noted from the relative positions of
the small circles and the short lines cutting
the curve. Also, the lengths of the set of
shorter radii vary more from their mean

FIG. 17. Outline and some details of a Trip-
neustes ventricosus shell. The solid line is the polar
equation of the equation r=65.45+cos 50. The
pentagon has a radius of 0.086 of the greater
radii. As in figure 12, the small circles and short
lines indicate the true positions of these elements
as measured on a test.

than do those of the set of larger. Sign con-
sidered, the sum of the differences from the
mean of the set of smaller radii is 1.5, while
that of the larger set is 0.0, their plus and
minus differences being equal. Also, in abso-
lute terms, the maximum deviation of the
smaller is 1.5 and that of the larger 0.9.
The departure from a pentagon of the

spacing of the genital openings is obviously
involved with the introduction of some asym-
metry by the nature of the madreporite.
The small size of these central structural fea-
tures cannot be handled in satisfactorily fine
detail by measurement with simple instru-
ments.
The form of Clypeaster rosaceus (Linnaeus),

shown in plate 1, figure 2, for example, evi-
dently does not fit into the above scheme.
It is, furthermore, clearly and unequivocally
bilateral. If, for purposes of analysis, it is
assumed that this form is an elliptical modifi-
cation of practically circular forms, the fol-
lowing calculations can be shown to yield
some rather striking results. The polar equa-
tion of such an ellipse with, from column 1 of
table 1, M (the semi-major diameter) equal to
2.00 and m (the semi-minor diameter) equal
to 1.56 reduces to
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p

65.45 +cos 50+ 0.6084

-80.6258 cos0
68.0758

FIG. 18. Curve of the equation

65.45 +cos 50+1-0.6258 cos

68.0759

Means of the measurements of two Clypeaster
rosaceus are indicated at intervals of 360 from M
and at m. Curve of the equation is drawn from
values calculated for every 180.

0.6084
' 1-0.6258cos0

If this is added to the equation that has
already been shown to hold for Lytechinus,
quite arbitrarily as a point of departure, the
values that result approach those of Cly-
peaster, but not quite close enough to be con-

sidered an excellent approximation. Inspec-
tion shows, moreover, that the differences
between the values measured and those ob-
tained by the equation

p= 65.45 +cos 50+ 10.608
-0.6258 cos0

bear a fractional sine relationship to each
other. The greatest difference between the
values calculated and those measured is 0.19,
where 0 equals 90 degrees. If this fractional
sine value is subtracted from the above equa-

tion and divided by 68.0759 to reduce the
value where 0 equals 0 degree, the following
full expression is obtained:

As is indicated in table 1 and illustrated in
figure 18, this equation, based on the test of
Lytechinus, modified by the equation for the
appropriate ellipse, and with the introduction
of a minor sine modification, approximates
the outline of Clypeaster rosaceus very closely.
It will be noted that there are departures
only in the second decimal place for only four
of the values, and the mean divergence
from the measured values is only - 0.004.
These indicate clearly that the variation in
these creatures is greater than the difference
of the equation from their mean, which sug-
gests that the proximation is as close as the
material involved could possibly permit.
A single individual of Clypeaster (Stolono-

clypus) subdepressus (Gray) (pl. 1, fig. 3) re-

ferred to this same system does not show so

close a fit. It happens that the major and
minor elliptical axes in all three individuals
used were identical, so that it was not neces-

sary or possible to modify the basic ellipse.
Two values differed by more than 0. 1, and the
rest by less than that, with a mean diver-
gence of -0.013. If anything, it would be
surprising if this highly modified form re-

tajned so close a resemblance in outline to the
comparatively little-modified Clypeaster rosa-

ceus.
The use of the Grandus equation and its

modification by the introduction of the equa-
tion of an ellipse of the eccentricity of the
Clypeaster shell would appear to be easily
understood and justified. The justification
for the further introduction of fractional
sine values may not be so evident, which
bears on the fact that, as a starting point in
these considerations, the specific equation
developed around one form of Regularia was

used to develop the equation of one form of
Clypeastridea, namely, Lytechinus. The frac-
tional sine values that it was necessary to
introduce evidently bear on the nature of
this basic equation. It is conceivable that
these modifications of the basic equation indi-
cate more than incidental transformation
constants. They may reflect some presently
obscure biological or physical influences.

Likewise it is obvious that the equation

-0.19 sin 0.
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Specimens used for the calculations in the present paper. 1. Shell of Tripneustes ventricosus. 2. Shell of
Clypeaster rosaceus. 3.. Shell of Clypeaster subdepressus. 4. Medium-sized individual of living Oreaster reticulatus
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1. Living individual of Astropectin duplicatus similar to the one used in the calculations for the present paper
2. Living Astrophyton muricatum from which the measurements in this paper were taken
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BREDER: PENTAGONAL SYMMETRY

TABLE 1
COMPARISON OF MEASUREMENTS AND CALCULATIONS FROM

SIMPLE EQUATIONS OF Clypeaster

O Measureda Calculated Difference NNdi2idualsNo. 1 No. 2 No. 3

0 1.00 1.00 0.00 1.00 1.00 1.00
36 0.89 0.85 +0.04 0.89 0.89 0.89
72 0.81 0.81 0.00 0.83 0.79 0.80
90 0.78 0.78 0.00 0.81 0.75 0.78
108 0.77 0.80 -0.03 0.81 0.77 0.82
133 0.89 0.87 +0.02 0.94 0.85 1.03
180 0.89 0.95 -0.06 0.95 0.83 0.83

a This column is the mean of individuals No. 1 and No. 2, both Clypeaster rosaceus. The mean difference between
this column and the calculated values is -0.004.

b Individual No. 3 is Clypeaster subdepressus. The mean difference between this column and the calculated values
is +0.013.

here given for Clypeaster could be reduced to
still simpler terms. For present purposes,
further analysis would be merely diversion-
ary, as the equations are developed here only
for purposes of illustration. Their further ex-
tension would only lead into the general
province of equation transformations which
have no specific bearing on the particular
nature of five-part symmetry.

If the petaloid ambulacrum which forms a
design on the dorsal surface of these creatures
is treated in a similar manner,

2.69
=

.13-cos 0

because the largest "petal" is the anterior one
and it is 0.86 of the radius of the test on which
it lies which has been equated to 1.00. The
extreme values of each "petal" compared
with the mean of the measurements of the
two examples are compared below:

PETAL VALUE OF P DIFFERENCE
NUMBER Calculated Measured C-M

1 0.86
2 0.70
3 0.82
4 0.82
5 0.70

0.86
0.70
0.73
0.73
0.70

0.00
0.00
0.09
0.09
0.00

Likewise, if similar values are calculated
for the considerably different petaloid ambu-
lacrum of Clypeaster subdepressus, based
also only on the extent by which it is shorter
than the radius of the test on which it lies,

the following similar tabulation
played, based on the equation

may be dis-

2.03
r 4.13-cos 0

PETAL VALUE OF p DIFFERSNCE
NUMBER Calculated Measured C-M

1 0.65
2 0.39
3 0.61
4 0.61
5 0.45

0.65
0.47
0.55
0.55
0.47

0.00
-0.08
0.06
0.06

-0.02

Here, again, the departures are greater
than in the case of C. rosaceus, as would be
expected. That form showed a mean depar-
ture of 0.036, evidently because of the slight
influence of some fractional cosine variant
not readily measured. Clypeaster subdepressus,
although with greater variation, hovered
closely about the measured values, so that the
mean departure was only 0.005.

It is clear that an introduction of the proper
Grandus equation could be made here with
appropriate modifications to illustrate the
petalation of the ambulacral pattern. It is,
however, not the present intention to discuss
the various and multitudinous ramifications
of mathematics more than is necessary for the
proper development of the discussion on the
nature of pentagonal symmetry as displayed
by organisms.
The curves, in view of the manner in which

they were produced, are remarkable fits. For
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FIG. 19. Outlines of three living Oreaster reticu-
Watus of different sizes concentrically arranged for
comparison with appropriately proportioned stel-
late pentagons. Each Oreaster has two attendant
stellate figures, one based on the radius of each
star point and the other on the radius of the low
point midway between two successive star points.

the outline of the shell itself an equation
based on the mean of a very distantly related
form was modified only to the extent of in-
cluding the changes brought on by reference
of it to the values of an ellipse as long and as

broad as the sea-bisquit. The central design
was produced by similar means by invoking a

Grandus curve limited only by the greatest
and least values of r derived from the object
itself. Considered this way it is surprising that
the divergencies are not greater than were

found and can be taken as good evidence that
these forms are controlled to a considerable
extent by transformations in the elemental
geometry of the system.
The following paragraph explains in detail

the mathematical procedures employed.
All calculations have been carried out to

the fourth decimal place but have been re-

duced to two for this paper. The form of the
equation for the curves of Grandus as here
used makes b a divisor of the rest of the terms

rather than a factor of the cos, i.e.,
a+cos 50

b

The limitation of extent of the Grandus
curves was done in the following manner,
where rM and rm are the maximum and mini-
mum values of r as measured on the object:

a+cos 50=rMb
a-cos 50 =rmb

or
a+1 =rmb
a-i =rmb.

When these two simultaneous equations are
subtracted, a is eliminated and, with the
values for rM and ri inserted, b is found. The
equation of the ellipse is derived as follows:

a
b-cos 0

where a and b are derived from M/2 and m/2,
the major and minor semi-diameters meas-
ured on the ellipse, as below

cos00 1
cos 0°-m/2 1-m/2

a=b-cos 0°=b-1.
It is interesting to note that Thompson

(1942) devoted four pages inlhis great work
on the form of sea urchins without once men-
tioning the ubiquity of pentagonal design in
the group. He confined himself entirely to a
consideration of the form of sea urchins in
reference to the influence of gravity on a de-
formable test of varying absolute size and
contents. The treatment would be equally
applicable to any similar object without ref-
erence to its degree of symmetry.
The large starfish, Oreaster reticulatus

(Linnaeus), shown in plate 1, figure 4, some-
what approximates a stellate pentagon. The
extent of this approach is indicated in figure
19, which shows three different-sized indi-
viduals with comparable stellate figures. For
each starfish there are two figures, one star
based on the radii of the arms and the other
based on the radius of the included penta-
gons, that is, they are based on the radii
midway between the arms. The outlines of
the three Oreaster have been traced from
photographs of living individuals as found on
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the sea floor. Part of the irregularity of posi-
tion is due to the fact that the starfish were
not relaxed, so that the arms were not neces-
sarily in their precise median position. Meas-
urements as used here are given in table 2,
together with various calculations based on
them.

If the radius of the pentagon forming the
central portion of such a star-shaped figure
is made equal to 1.0000, then the radius of a
circle circumscribed about the points of the
the stars equals 2.6181, i.e., the sum of the
altitude of the star, 1.8090+, and the apo-
them of the pentagon, 0.8090+. This ratio
may be expressed as

Y= 0.3820X

where X = the radius of the star tips and
Y=the radius of the figure at points halfway
between successive tips. This is shown graphi-
cally in figure 20, together with the three
ratios of the three Oreaster. From table 2, it
can be calculated that the preceding equation
must be multiplied by 1.3686 to fit the pro-
portions of this starfish. The equation then
becomes

Y=0.5228X.

It is evident from this and figure 19 that as
this organism grows, through the size range
considered here at least (a 5.22+-times in-
crease from the smallest to the largest), there
is little evidence of any heterogony. It is also
evident that the bulk of the departure from
the stellate figure is in the failure of the arms
to grow to a relatively attenuated tip and
of the reentrant angle to fill in. In figure 19,
it would appear that the filling-in of the re-
entrant angle increases with age. The smallest
figure shows the arms to be very nearly
straight lines closely paralleling the attend-
ing stellate figures, a feature obviously not so
in the two larger figures. This apparent filling-
in, however, is spurious, as is clear from a
consideration of table 2 and figure 20. The
change that takes place, which causes the
appearance, is that the tips of the arms be-
come more pointed; the result is that the arms
taper not so nearly parallel to the sides of
the stellate figures. The arm tips of the
smallest size are definitely truncated as com-
pared with those of the larger sizes. Actually,
the two dimensions under consideration hold

FIG. 20. Comparison of the ratio between the
radius of a star point and the radius of the in-
cluded pentagon with the equivalent measure-
ments on Oreaster. The three open circles repre-
sent these values for the three oreasters shown in
figure 19.

to a most pronounced constant relationship,
as indeed they must for the straight line of
figure 20 to be valid.

It might be considered that the outline of
Oreaster actually approaches a hypocycloid.
However, as the generating circle must be
one-fifth of the radius of the base circle to
produce a hypocycloid of five cusps, it fol-
lows that Oreaster is not approaching such a
figure, for the following reasons. With the
radius of the fixed circle = 1.0000, the radius
of the generating circle becomes 0.2000, and
the depth of the intercusp curves becomes
0.4000. Actually the intercusp curves of
Oreaster are much deeper-0.4774 (1.000-
0.5228). These values would seem to require
a prolate hypocycloid, a construction that is
impossible because the tips of the cusps would
then form exterior loops, whereas (if any-
thing) Oreaster, with its rounded tips, seems
to suggest a curtate hypocycloid, but such
curves all have an intercusp depth of less
than 0.4000 and are quite unlike the observed
form.

It can also be easily shown that the curve
between arm tips does not approach a parab-
ola, because the squares of any two chords
perpendicular to the axis of a parabola must
be to each other as their respective distances
from the vertex. When the mean of five
Oreaster interarm curves with the abscissa
as axis is plotted, the following values for X
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and Y can be measured:
x

4.0
5.0
6.0
7.0
8.0

y
2.4
4.0
5.3
6.5
7.9

(2y)2
23.04
64.00
112.36
169.00
249.64

The curve does not approach a parabola be-
cause

4.0 23.04
8.0 249.64

nor does any of the other combinations for
the above list of values. The other conics are
similarly eliminated.
With the elimination of these common

curves, as having no bearing on the question
of the outline of Oreaster, a reference back to
the stellate form first mentioned naturally
leads to a consideration of the applicability of
some form of exponential expression.

It can be demonstrated that the introduc-
tion of cos 50 as an exponent in an equation
of the form

p = a(c-b cos e)
or

p=a(b 005

yields outlines more in accordance with those
of various starfish, including such forms as
Oreaster and Asterias.

For illustration and comparison with fig-
ure 19 a curve drawn according to the follow-
ing equation is shown in figure 21 (upper)

4.14O" 0+4
8.14

In this form, a =4.14, b = 1, and c =4. The
denominator, 8.14, is merely a proportion-
ality factor, useful in the drafting of such
curves to a convenient scale. These values
were obtained by taking the mean length of
the arms and the mean of the low places
between them, which, if the length of arms
is taken as 1, becomes 0.5210. With these two
quantities corresponding alternately to every
rotation of 36 degrees, the equation was
worked backward to determine the absolute
terms of the equation. Its agreement with the
whole form of the Oreaster outline is notable.
It is clear that suitable alterations of the
values of a, b, and c could be used to describe

a large variety of starfishes. Measured and
computed values are shown comparatively in
table 2.

It is not necessary to labor the point or to
indicate that appropriate values lead to
curves closely resembling those developed on
another basis for the echinoids, which is to
say that the exponential equation is a more
general one than equations developed earlier.
The first sufficed for the Echinoidea but does
not suffice for the Asteroidea.
An interesting aspect of this formula is

that if the exponent be made negative then
forms are developed which are not repre-
sented at all in echinoderms. They do appear
with some frequency in flowers, however, in
both basically five-part and three-part forms.
In them are found many of the simple flowers
with pointed or scalloped petals. These varia-
tions have nothing in particular to do with
pentagonal symmetry, however, as they ap-
pear in flowers of other degrees of symmetry
about as frequently as they do in the five-part
flowers. It would seem as though the echino-
derms were able to construct only figures with
positive exponents, while the flowering plants
could with equal facility arrive at designs
that could be expressed by means of negative
exponents. This difference is similar to the
differences illustrated by Breder (1947) ob-
tained by reversing the direction and conse-
quently the sign of one of the components of
his curve-drawing device.
Most of the starfish outlines typified by

Asterias or other more or less similarly formed
genera may be very closely approximated by
this equation

p=ab COS 50+C
with values of a between 7 and 8 and corre-
sponding values of b= 1 and values of c be-
tween 3 and 2. Some, however, do not fit
nearly so prettily as does Oreaster, for exam-
ple. If we examine the case of Astropectin
duplicatus Gray, shown in plate 2, figure 1,
and treat it in a similar manner, about the
closest approximation that could be ob-
tained by the equation

7.43e1 - 2.54
9.97

yields differences from the measured values
shown in table 2. These in some instances
exceed 10 per cent. The disposition of the dif-
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ferences between the calculated values minus
measured values is indicated below:

0
0
9
18
27
36

d
0.000

-0.002
-0.113
-0.064
0.000

It is clear from this tabulation that the influ-
ence that is responsible for this difference is
related to the corresponding values of the sin
of 50. A much closer fit is obtained by intro-
ducing such values into the equation as are
shown in table 2 and figure 21 (lower). This
procedure is related to that used in the con-
sideration of the elliptical influence displayed
by Clypeaster, where sine values found a minor
expression.
Although this agreement is probably as

good as can be readily expected in organisms
with such considerable individual variation,
it seems to be not quite so close as in Oreaster.
The point of this part of the discourse is that
exceedingly simple equations or slight modifi-
cations of them suffice in most cases to define
closely the outlines of these organisms. Obvi-
ously any form such as one of these organisms
could be approximated with increasingly
complex equations up to an expression for the
regular stellate pentagon, where the number
of new members necessary for such an equa-
tion becomes infinite. Although many of
these forms apparently approach such a figure
or other geometrical constructions, they have
not reached a point where a plethora of
trigonometric functions makes calculations
difficult or impossible. Figure 19 should be
referred to in this connection, as it was pre-
pared principally to emphasize the similari-
ties and differences between such an organism
as Oreaster and the straight-line geometrical
figure that could be considered as the limiting
form in the direction of stellate structural
development.

It is also to be noted that both starfishes
under discussion are amply provided with
tubercles, which have not been treated but
undoubtedly could be by an extension of the
equations into sufficient complexity. It may
be noted in passing that in both species the
outlines of the tubercles bear a marked re-

FIG. 21. Curves of exponential cos 50. Upper:
Curve of the equation

4.14ws +4
P= 8.14

Small circles show measured values on Oreaster
reticulatus. Lower: Curve of the equation

7.43Os 0+0.56 sin 50+2.54
9.97

Small circles show measured values on Astropectin
duplicatus.

semblance to the outlines of the respective
arms.

While it is perfectly reasonable to consider
an organism as a tangible graph of the forces
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TABLE 2
MEASUREMENTS OF Oreaster AND Asteropectin

Comparison of Oreaster with stellate pentagon
Object xa yb Re S. E. X S. E. Y

Stellate pentagon 2.618 1.000 2.618 -
Oreaster No.1 2.765 1.445 1.9135 0.01 0.00+
Oreaster No.2 8.990 4.700 1.9128 0.03 0.00+
Oreaster No.3 14.421 7.539 1.9129 0.07 0.04

Comparison of Oreaster No. 3 with exponential equation
o Measured pd Calculated pf Difference, M - C

0 1.000 1.000 0.000
9 0.807 0.827 -0.020
18 0.635 0.614 +0.021
27 0.547 0.536 +0.009
36 0.521 0.521 0.000

2 0.028
Mean 0.006

Comparison of Astropectin with exponential equation
o Measured 0p Calculated pf Difference, M - C

0 1.000 1.000 0.000
9 0.671 0.709 -0.038
18 0.468 0.410 +0.057
27 0.343 0.319 +0.024
36 0.268 0.268 0.000

2 0.043
Mean 0.009

6 X, the mean of the measured lengths of each arm from the center, in centimeters.b Y, the mean of the measured lengths of the low points between successive arms from the center, in centimeters.
e The ratio between the equivalent high and low points in a stellate pentagon when Y= 1.000.
d Mean of p for each corresponding value of 9, reduced to maximum p= 1.
* Calculated from the equation

414 mg±+4
8.14

f Calculated from the equation
7.430wo090.56 sin 50+2.54

9.97

that molded it into the form it displays, that
in itself does not necessarily tell us much
about how they operated to produce the ob-
served result. A mathematical equation de-
scriptive of the outline, for example, of a sea
urchin tells no more about the nature of the
organism than does a graph of population
trends about the food habits of the popula-
tion other than to give a possible suggestion
of its adequacy. This is not a criticism of

either approach to the two subjects but
merely a delimiting of what certain ap-
proaches can and cannot be expected to ac-
complish. Thus far only the final forms in
which organisms are found have been con-
sidered and not by which of a multitude of
different methods they reached the form dis-
played.

If we take, for example, Oreaster and con-
sider not so much its resemblance to stellate
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pentagonal figures but rather the possible
methods which produced the result, we are
led into some rather interesting speculations.
Starting at the time when the bilaterally sym-
metrical pluteus transforms to some pentago-
nal form, whether it be in the form of the
initial pentagonal plate or just an organiza-
tion of five radiating axial gradients, there is
immediately established a primary geometri-
cal problem. Will the gradients be axial to the
corners of the pentagonal structure or nexus
of forces, or will they be at right angles to the
faces of the pentagonal influence? Everything
about the arrangement of plates of both sea
urchins and starfishes seen by us indicates
that the greatest growth is normal to the
pentagonal faces and not from the corners of
the primary pentagon. That is to say, such
pentagons have their faces bisected by lines
through the arms or greatest widths and
points in line with the lesser growths between
them. This would seem to be not unlike the
condition described by Haas (1948) for Bryo-
zoa in which the successive individuals grew
outward primarily in five "arms" from the
originating pentagonal individual, until this
growth was interfered with by outside influ-
ences. (See fig. 22.)

This may in fact be related to certain fea-
tures common to the process of regeneration
in animals. It has been shown that in both
plants and animals growth from a cut surface
strongly tends to be normal to the face of that
surface. In fact, it was demonstrated long ago
by Barfurth (1891) that regrowth could
often be directed merely by placing the cut
at right angles to the direction it was desired
to have the new growth take. Of this, Need-
ham (1952) wrote as follows: "Thus the main
axis of a regenerate is often determined by
the surface of amputation and is normal to it
(Barfurth's rule), even when this is oblique or
even at right angles to the main axis of the
parent. The blastema is symmetrical about its
new axis. Sometimes, however, as in Bi-
palium,... and in other animals .., the
rate of regeneration at each point along an
oblique surface is determined by its level in
the parent axis and the regenerate continues
this axis." The possible relationship of the
tendency of blastema to become organized at
right angles to the cut surface and the con-
flict that sometimes appears because of the

FIG. 22. Growth of the bryozoan Sertella sep-
tentrionalis Harm. After Haas (1948). Upper:
Schematic diagram of an ideal colony. Lower: An
actual colony as found in the open sea. Abbrevi-
ations: A, the originating pentagonal organism,
the "ancestrula"; F, fenestrations in the colony.

axis of organization of the parent material
with the growth of such radiate forms as star-
fish is evident. In these forms the lineal axis,
X axis of a Cartesian graph, becomes angular
displacement, 0 of a polar graph. In Oreaster,
as shown in figure 19 of the three sizes, it
almost seems as if the smallest were growing
arms straight out, normal to each face of the
primary pentagon, which, as time goes on,
will become modified by mutual interference,
so that growth is greatest along a line bisect-
ing each face where it is most remote from its
neighbors and least at the corners where evi-
dently the influence of the adjacent member
is greatest.

Evidently related to, or rather interacting
with, the above growth behavior is a tend-
ency to grow in a circular form. In fact, much
of the difference in form between the echi-
noids and the asteroids seems to be rooted in
the relative strength of the two tendencies.
Thompson (1942) surprisingly dismissed the
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FIG. 23. Diagram of the inversion of a stream
under pressure emerging through a specified ori-
fice. Orifice, in this case pentagonal, is indicated
by heavy line. Outline of emerging stream at
point of full inversion is indicated by lighter line.
The view is with stream issuing perpendicular to
plane of paper.

whole matter of the shapes of sea urchins
with the statement, "We need not concern
ourselves in detail with the shapes of their
shells, which may be very simply interpreted,
by the help of radial coordinates as deforma-
tions of the circular or 'regular' type." He
then went on to discuss the amount of flatten-
ing in terms of the relationship between
gravity and the rigidity of the echinoid test.
An interesting model of the plastic rela-

tionship between a pentagon and a five-
armed radiate figure can be found in certain
studies of hydraulics. A fluid such as water
emerging through a thin plate under consider-
able pressure shows a short distance from the
plate the "vena contracta," where the stream
is smaller in cross section than the orifice,
with the water moving at proportionately
greater velocity. A little beyond this point
occurs the striking phenomena of "inversion."
If, for example, the hole through which the
water is emerging is in the form of a pentagon
(as in fig. 23), after the "vena contracta" is
passed the cross section of the stream is a
series of five ribs which are in the form of a
five-pointed star inverted in reference to the
deriving pentagon. That is, the star points
correspond to the apothems of the orifice.
Farther from the orifice other conditions are
demonstrated, but they do not concern the
present problems. It is to be noted, of course,
that this inversion of high's and low's be-
tween a pentagon and a five-pointed figure,

based on the reaction of a fluid to purely
physical forces, is very suggestive of the con-
ditions found in a starfish in reference to its
central plate and final outline, as indicated in
figure 24.

In further consideration of the starfish,
another feature demonstrated in figure 24 is
that the developing ossicles are not all
pentagonal, but certain of them are hex-
agonal. That is, the secondary radials, five
in number, are elongate hexagons, one oppo-
site each angle of the central plate. The
radials, all pentagons, are deployed to point
alternately to an arm tip and the low point
between arms. Other plates running out to
the terminal are all hexagonal. This scheme,
whatever utility it may have or what struc-
tural bases it may reflect, demonstrates that
it is perfectly possible for the developing
echinoderm to produce both pentagons and
hexagons. This is noted here lest it be incor-
rectly inferred that there is some stricture on
the developmental methods of these animals
that forbids their tissues to produce a six-
sided structure.
The basic tendency towards a pentagonal

construction is evidenced in an interesting
fashion in the so-called basket star, Astrophy-
ton muricatum (Lamarck), usually seen as a
tangled ball of interminably repeated bifurca-
tions of the primary five arms of a starfish. If
such an animal is permitted to move about

FIG. 24. Diagram of the relationship of the cen-
tral plate in a young starfish to its outline. After
Parker and Haswell (1910). Abbreviations: an,
anus; bas, basals; dors, central; madr, madre-
porite; rad, radials; sec. rad, secondary radials
(infra-basals).
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at will in an aquarium, sooner or later it
spreads out one or more of the arms against
the vertical glass sides of the aquarium, as
shown in plate 2, figure 2. Although this is an
active living animal, bending, coiling, and
reaching with its dendritic appendages, it
quickly becomes evident that the angles be-
tween the successive forkings, if a few are
measured, are very regular and similar and in
fact are not far from the central angle of a
pentagon-72 degrees.
Measurement of 50 angles at random

showed an arithmetic mean of 76 degrees, an
excess of 4 degrees in an actively exploring
group of arms.

It might, with considerable reason, be
thought that the angles from base to apex in
the continued branching of an arm of the
basket star are governed by the same princi-
ples as those governing the branching of blood
vessels and not by some seemingly arbitrary
considerations of theoretical symmetry. The
principles of arterial branching, so clearly
summarized by Thompson (1942), could not
be expected to lead to this kind of uniform
branching, with angles between large basal
branches so similar to the finer terminal
branches. A statistical comparison of the
basal halves with the distal halves of the
angles measured shows that there is no signifi-
cant difference between the two,

d/fd = 0.34.

A similar comparison between each half with
72 degrees shows 1.9 and 1.5, respectively.
The lengths of the central segments in any
arm from base to tip clearly follow a regular
decrement. Fifty segments measured succes-
sively along the length of five arms, when
plotted against the number of the segment,
evidently fall along a straight line which fits
closely to the equation

Y= 0.2130X
where X is the number of the segment start-
ing at any place and Y is the length of that
segment; that is, each segment is 0.2130
units less than its predecessor as one moves
from base to tip.
As in the animal kingdom, where one entire

phylum is basically designed around the
salient features of pentagonal symmetry, so
in the plant kingdom one great group is also

dominated by that kind of design-the
exogens, or dicotyledons. The endogens, or
monocotyledons, on the other hand, are
dominated by a tripartite order of symmetry.
Even where there have been great modifica-
tions of the basic patterns in the exogens such
as reduction, reduplication, and the develop-
ment of great asymmetry, in most cases it is
possible to trace the basic five primitive di-
visions. Furthermore, any garden or roadside
will yield an abundance of forms which show
in their inflorescence an expression of simple
pentagonal symmetry similar to that found
in the echinoderms.

Related to the above is the arrangement of
the leaves of a plant. The vast study of this
subject, phyllotaxis, is summarized by
Thompson (1942) and by Richards (1948)
who give a very lucid discussion of the diffi-
culties students are prone to when clear dis-
tinction is not understood between biological
activities and the geometrical characteristics
of space and the nature of number in the
purely mathematical sense. The following
comments are brought into the present study
by the fact that botanists have shown that
there is a marked tendency for leaf arrange-
ments in the dicotyledons to have reference
to the figure five and that this has evidently
an organic connection with pentamerous
flowers.
On a stem, for present purposes considered

as a cylinder, leaves may obviously be ar-
ranged around the diameter in lengthwise
series or spiraling about it, so that the dis-
tance between successive leaves has both a
transverse and a longitudinal component.
Perhaps it is simplest to express it as follows,
with the surface of the stem conceived of as
a developed cylinder, as in figure 25,

d=- V P and tan 0= p/c
a

where d=distance between adjacent leaves,
c= circumference of the stem, p = pitch of the
spiral, i.e., the distance from the first leaf of
reference to the next directly above it meas-
ured longitudinally, and a = number of spaces
between the leaves.

In these formulas the limiting forms are
found as a simple circle about the stem in
which p = 0, and as longituldinal arrays along
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FIG. 25. Diagram of the relationships of parts of
a phyllotactic system related to pentagonal organi-
zation. At left is a phantom view in which the
near points are shown in black and points on the
other side of the cylinder are in outline. At right
is the same construction developed. Numbers
serve to identify points and relationships. Un-
numbered points at extreme right of the developed
cylinder are identical to points numbered at the
extreme left. The dashed line is not shown on the
phantom view, nor the solid line beginning 2, 5, 8,
11. Otherwise the lines shown are the same in
both diagrams.

it in which p= oo*. This does not involve the
number of leaves, which is determined by a,
but only their lineal arrangement on the
stem.

It is, of course, recognized that stems are
properly considered as cones, but in many
cases the sides are more nearly parallel than
can be measured accurately. This formula
represents, then, the limiting form, in which
the slope approaches 90 degrees. The other
limiting form, an extremely flattened cone,
in which the slope approaches 0 degree,
becomes similar to the flat-faced flower dis-
cussed above. Other forms, such as a pine
cone, of which the outline is an ellipse, need
not be discussed here; they are well covered

by Thompson (1942).
In typical pentagonal phyllotaxis the

angular distance between successive leaves,
lengthwise on the stem, is not 72 degrees but
144 degrees. This is expressed by the earlier
students of such matters by a fraction, in
this case i, in which the denominator meas-
ures the number of divisions of symmetry,
and the numerator the number of revolu,tions
that occur before another leaf appears di-
rectly above the first, or the number of spaces
or spirail intersections from one leaf to the
next leaf along the length of the stem. It is
the equivalent of saying that there is a leaf
every 72 degrees, but the next one along the
stem is twice that or 144 degrees around it.

If, however, the leaves are counted in an-
other way, that is, to the next nearest leaf,
not along the axis but around the stem, a
rather pretty difference becomes apparent.
This is perhaps most easily demonstrated
by figure 25; in this development of a stem,
small circles marking leaf scars have been
numbered serially according to the i phyllo-
taxis noted above. The value assigned to p
has been made equal to w, the arc subtending
0, for convenience in drawing but could be as-
signed any ratio. This then makes the nearest
leaf p/2 farther along the stem and i around
the stem. A spiral connecting them is shown
as a solid line, and the numbers along it run
sequentially, 1, 2, 3, etc. If counted the other
way, i.e., to the nearest leaf around the stem,
the numbers run, as indicated by the solid
line, 1, 4, 7, etc., and the pitch of the spiral is
much steeper. Here p = 6w and the phyllo-
tactic fraction = J. Instead of a single spiral
there are three spirals which wind around
like multiple screw threads. The other two
series have the sequences 2, 5, 8, etc., and
3, 6, 9, etc. It is obvious that whichever
method of measuring is chosen is perfectly
arbitrary. Nor is this all. A similar series
winds about the cylinder in the opposite
direction. This series of "left-handed" threads
is indicated by the dotted lines bearing to the
left and passing through numbers 2, 4, 6, etc.,
and 1, 3, 5, etc. If measured to the next near-
est, along the axis the series appears in regu-
lar numerical order, as in the first series men-
tioned but separated by , as is indicated by
the dashed line. This indicates the complica-
tion inherent in phyllotaxis and is as far as
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we need penetrate for present purposes. The
above is a mere suggestion of what is carried
out to its logical conclusion involving the
Fibionacci series by Thompson (1942) and
Richards (1948). Similar matters in reference
to the placement of the scales of fishes are
discussed by Breder (1947). The elongate
holothurians, especially Synapta, show no
spiraling of structures; all subscribe to the
formula given in which p equals o.
As pointed out above, it is not the present

purpose to go into a statistical or phylogenetic
analysis of pentagonal organic forms. The
foregoing analysis is sufficient for the demon-
stration of principles and for reconnoitering
the field to determine if a rational explanation
could be developed for the widespread occur-
rence of five-part organic constructions. It is
possible to develop index numbers, such as
the values of a, b, and c in the equations, that

would be expressive of form. Such index num-
bers might make possible more precise phyllo-
genetic analysis than verbally described dif-
ferences permit. It is moreover, interesting
to note that the ancestral and all extinct
Cystoidea showed as perfectly developed a
pentagonal symmetry as do recent forms.
While for purposes of studies of the evolve-
ment of this geometrical system such a situa-
tion would be useful, it gives no clue to the
origin of this tendency. Apparently the Class
Cystoidea developed, in its ontogeny, from
a dipleurula-like larva from which it was
evidently derived phylogenetically. This
would seem to refer the efficient cause of the
five-part pattern to some mechanism brought
into play at the time of metamorphosis
throughout the group during its whole exist-
ence, suggesting a rather remarkable stability
for this type of symmetry.
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STRUCTURAL CONSEQUENCES

IN GENERAL TERMS the geometry of pentago-
nal symmetry has been reviewed, and a few
examples of its manifestation in both animals
and plants have been given in the preceding
pages. Some attempt to discern the underly-
ing reasons for its presence at all, for its re-
striction to certain groups, and for its almost
complete dominance within those groups can
now be made. First, some reference must be
made to the theory of polyhedra and the ab-
sence of regular polygonal or regular polyhe-

NAME OF BODIES ANGLES

Platonic Isogonal
Archimedean Isogonal
Catalonian Not isogonal

dral symmetry in crystal structure. Of this
Weyl (1952) wrote: "While pentagonal sym-
metry is frequent in the organic world, one
does not find it among the most perfectly
symmetrical creations of inorganic nature,
among crystals. There no other rotational
symmetries are possible than those of order 2,
3, 4 and 6." In writing of architecture, the
same author considered pentagons very rare
and said that formerly he " . . . knew of only
one example and that a very inconspicuous
one, forming the passageway from San
Michele di Murano in Venice to the hex-
agonal Capella Emiliana. Now, of course, we
have the Pentagon building in Washington."
There is little doubt that such structures are
uncommon, but a variety of others could no
doubt be found on a thorough search, prob-
ably most of which would be more or less
irregular pentagonal outlines, such as old
Fort Pitt on the site of present Pittsburgh.
(See, for example, Anon., 1954.)
That crystals cannot form regular pentago-

nal structures is evidently related to the con-
straints on the crystal-forming molecules
which force them into the well-known crystal
lattice structures. That it is impossible to
fill space completely or to cover a surface
completely with regular dodecahedra or regu-
lar pentagons, respectively, is apparently
basic to the impossibility of inorganic ma-
terials to develop this type of symmetry.

How organisms, both plant and animal, have
avoided this restriction is one of the more
intriguing questions which arise in delibera-
tions of this kind.

Related to this is the limit placed on the
design of the so-called regular and semi-
regular polyhedra which are discussed at some
length in terms of their biological implica-
tions by Thompson (1942). For the moment
we need only recall their general nature by
means of the following tabulation:

SIDES
Isohedral
Not isohedral
Isohedral

NUMBER POSSIBLE
5

13
13

The Archimedean bodies can be considered
primarily as Platonic bodies with their cor-
ners truncated in various ways so that new
but not equal sides appear. The Catalonian
bodies on the other hand may be considered
as Platonic bodies with appropriate additions
reciprocal to the Archimedean bodies. Still
another family of bodies can be produced by
extension of the surfaces of the above bodies
to their intersection with other faces. These
bodies have reentrant angles, of which the
stellate dodecahedron is an example. In the
case of the cube, such a construction is im-
possible, because it would result in a three-
way cross with each arm extending to in-
finity.
The failure of these restraints at various

levels to obtain in organic structures is evi-
dently rooted in two primary facts-the
nature of the materials involved and the na-
ture of the forces involved-and the further
fact that neither confines the construction to
the use of strictly straight lines.
Thompson (1942) shows a photograph,

after Leduc (1911), of an "artificial cellular
tissue" formed of a potassium ferrocyanide
diffusion in gelatin in connection with his dis-
cussion of hexagonal symmetry in such struc-
tures. When all the complete polygons in the
figure in reference to the number of sides are
counted, the tabulation that is shown at the
top of the next page is possible:
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NUMBER OF SIDES
5
6
7

FREQUENCY
7

37
12

PER CENT OF TOTAL
12.5
66.1
21.4

REMARKS
33.9% have other than

six sides by actual
count

Writing about this illustration, Thompson
noted merely, rather picturesquely, the fol-
lowing: "The regularity leaves something to
be desired; there are even places where a
pentagon is smuggled in instead of a hexa-
gon."

It would appear that such surface coverage
is related not so much to some uniform
geometrical configuration as to the deploy-
ment of units on a flat surface according to
the Fibionacci angle which is so elegantly
shown by Richards (1948). He shows that in
such a system the maxitinum number of con-
tacts is seven and the minimum is five, with
transitionals of six sides. This is in close
agreement with the counts made of the gela-
tin structure. Thus even in an artificial
physicochemical situation, which was used
for illustrating the hexagonal principle, it is
seen that the hexagon does not have an over-
whelming majority.
From part of a dragonfly's wing, again

from Thompson (1942), which presents a
much more complicated situation involving
marginal members which are often four-
sided figures, the following tabulation can be
made:

Number of sides
to polygon 3 4 5 6 7 8 >8

Per cent of
total
polygons 1+ 8+ 29- 43- 12- 4+ 2-

It is to be especially noted that, while the
hexagons are most numerous (almost one-
half), pentagons are next (over one-quarter);
also, that the polygon with seven sides is less
than one-eighth of the whole, and all the re-
maining forms are much fewer in number.
Because of- the manner in which these nets
are formed, which is discussed at length by
Bonner, the above figures may be taken as
fairly representative of the ratios of the vari-
ously sided polygons to be expected in more
or less generalized organic packings. The
number of pentagons present is 67+ per cent
of the number of hexagons, while the seven-
sided figure is only 28+ per cent, and all the
others taken together constitute only 35-
per cent.
Comments by other students of these

problems indicate the general attitude to-
wards pentagonal structures. For example,
Weyl (1952) states simply, "The symmetry

NUMBER OF SIDES
4
5
6
7

FREQUENCY
27

136
182
36

PER CENT OF TOTAL
7.1

35.9
47.8
9.2

REMARKS
52.2% have other than

six sides, with a con-
siderable bias towards
S

Because the marginal cells tend to be four-
sided and the internal ones to be six-sided, it
is natural that in the transition the number
five is relatively large, a feature not present
in the gelatin model. The pentagonal cells
were found to be principally located close to
four-sided ones.

Harper (1908), quoted by Bonner (1952),
gave comparative figures for the number of
sides to the polygons formed by the alga
Hydrodictyon, the so-called water net, as fol-
low:

of 5 is most frequent among flowers," or, "A
page like the following (fig. 36) from Ernst
Haeckel's Kunstformen der Natur seems to
indicate that it also occurs not infrequently
among the lower animals. But biologists warn
me that the outward appearance of these
echinoderms of the class Ophiodea is to a
certain degree deceptive; their larvae are
organized according to the principle of bi-
lateral symmetry." This is, of course, true
but actually beside the point. The develop-
mental history of any organic or inorganic
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symmetrical structure could be similarly in-
cluded, but it is of interest only from the
standpoint of developmental mechanics. Also,
the fact that probably no organic symmetry
is absolute only underlines the evidently com-
pulsive nature of the influences driving any
form to its given kind of general symmetry.
It is easy to infer a functional necessity for
such polarized motile bilateral structures as
ships, airplanes, spermatozoa, or beetles. In
five-sided organisms, or those of any degree
of symmetry above two, it is not easy to de-
velop a valid reason why any particular de-
gree of symmetry was selected as against all
others, for all seem equally well prepared "to
march off in all directions at once." Never-
theless, many, if not all, starfish have a pre-
ferred orientation in reference to movements
of translation.
A tendency to develop reduplicative parts

is a strongly marked feature of both plants
and animals. These repetitional units have
been designated "polyisomeres" when they
are similar and "anisomeres" when some of a
series have undergone modification. A review
of considerations such as these is in the 1951
book by Gregory, which is the most recent
treatment of the matter by the creator of
these two very useful terms. Their relation-
ship to the present study is clear and their
relationship to general concepts of symmetri-
cal organization is discussed by Breder (1947).
In one sense this investigation of pentagonal
symmetry may be considered a study of how
such units behave under the constraints im-
posed by the nature of space and specific
geometrical limitations.

Pertinent to this problem also is the fact
that usually the outside form of an animal
shows its most nearly perfect display of sym-
metry. As noted above, this is certainly an
important feature to active bilaterally sym-
metrical animals, a condition essential to the
development of any considerable speed.
Such animals are of course markedly asym-
metrical in their various internal organ sys-
tems. The "plumbing" is fitted in where
needed and where space permits without de-
struction of the outer contour. This is as true
of a fish as it is of a submarine. The fact that
each detail of an organ or bit of apparatus
has its own symmetry, its components have
their own symmetry, and so on can usually

be related to some evident structural or, in
the case of the vascular system and the diges-
tive tract, various hydrostatic and hydro-
dynamic principles. The point of the above
is that in the case of bilaterally symmetrical
animals there are evident clear reasons for all
the symmetry externally and the absence of
it internally. A consideration of the echino-
derms shows a similar situation where the
external form in general terms is just as
allegiant to its chosen degree of symmetry. It
is the internal parts that show deviation from
its basic geometry in a manner quite analo-
gous to that shown by bilateral animals. Be-
cause this is so, as any reference to echino-
derm anatomy will show, it would seem un-
likely that the locomotor needs of bilateral
animals are the only, or even the dominant,
influences at work in molding the definite
patterns the animals will take. At this stage,
it seems to be impossible to ascribe a reason
or a multitude of influences to explain the
basis of biological and environmental forces
demanding a pentagonal symmetry. How-
ever, as is developed below, from an unex-
pected source, a not unplausible basis is
available for building a hypothesis.
That organisms, both plant and animal,

cleave to certain types of symmetry accord-
ing to their kind is shown in a highly abridged
summary in table 3. Those that have de-
parted from it to a greater or less extent still
show the evidences of phyletic impressment,
either in the detail and suppression of struc-
tures no longer of major importance or in the
overriding emphasis of some part at the ex-
pense of others. The fact that there is this
retention of the basic pattern, even when the
animal has evolved into something quite dif-
ferent, is, of course, a measure of the strength
of the controlling influence, probably often
but not necessarily the same one that caused
a particular symmetry to develop in the first
place.
That so many echinoderms approach either

a pentagon or its stellate form is of consider-
able theoretical interest. It would seem that
among the starfish and sea urchins at least,
the pentagon, the stellate pentagon, and the
circle formed mathematical limiting outlines
which many species approximated but never
quite reached, with series of forms extending
from one to the other by easy transforma-
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TABLE 3
DISTRIBUTION OF ORGANISMS BY DEGREE OF SYMMETRY

Degree" Formb Anglec Diagonalsd Illustrations and Notes

A - Amoeba. amorohous forms in general and

I1 EIID

2

4

5 9

6*

7 6

8*

9e

10

00

360

180

120

90

72

60

51 3/7

45

40

36

0

where no axis or plane of symmetry is
present

- Bilateral forms in general, nearly all animals
not specially mentioned elsewhere in this
table, but which show polarization

- Double-ended forms, as some diatoms, etc.

0 Basic pattern of flowers of monocotyledons

2 Basic pattern of certain coelenterates, or as
multiples of this degree

Sponge spicula in the Tetractinellida; also
as multiples of degree 2

5 Basic pattern of flowers of dicotyledons, of
echinoderms, of vertebrate body section
of distal ends of tetrapod limbs and of
oral armature of priapulids

9 Basic pattern of certain coelenterates, es-
pecially Hexactinia, and the details of
many packed structures as honeycombs;
also as multiples of degree 3

14 Structures of this order or higher, except
those that can be considered as multiples
of the above are rare or absent

20 Multiples of degree 4, or degree 2

27 Multiples of degree 3

35 Multiples of degree 5

0o Limiting form-a circle

3

o Degree of symmetry as defined by Breder (1947). Also number of sides of the corresponding polygon, from degreee
3 on. b Diagram of representative form of basic symmetry. O Angle between identities in degrees.

d Total number of diagonals of the corresponding polygon d= n(n-3)*
2
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tions. The fact that the star represents all the
diagonals of a pentagon, which in this poly-
gon alone are equal in number to its sides,
suggests various possibilities in the nature of
their growth and the establishment of gradi-
ents varying in strength between a pentago-
nal and a stellate configuration. This feature
alone suggests one possible physical reason
for the tenacity to which these and other or-
ganisms cleave to their five-part condition.

can easily be shown to represent a parabola
in which

n2-3n = 2pd
where p is the distance from the focus to the
directrix. The focus of this parabola lies at
-I,12. and the directrix lies along d= 15.
The parabolic vertex is - 18, 12, and the
latus rectum extends from 2 to 22 on n =-
The corresponding values for d and n of

7,14
--O0

FIG. 26. Parabola of the equation

n(n-3)d=-
2

indicating its relationship to ratio of sides to diagonals in
polygons. See text for full explanation.

Obviously, if in the phylogeny or ontogeny
of such animals the strains between adjacent
points are overridden by the strains between
diagonal points, the form continues to be of
five parts, and the transformation is from
pentagon to its stellate form, a situation that
no other polygon provides. If such behavior
occurred in forms of some other order of sym-
metry, such a change would include a numeri-
cally different order of symmetry readily cal-
culable from the formula given in the re-
marks above on the basic geometry of a five-
part object. Table 3 indicates the relation-
ships between polygons and the sum of all
their diagonals.
An interesting aside to the relationship of

the number of sides of a polygon to the num-
ber of diagonals possible is that the expression

n(n-3)
2

polygons lie at integral points along the only
part of the curve which has both ordinates
positive. This is shown in figure 26 and indi-
cates graphically the unique position of
pentagonal figures in reference to the rela-
tionships between the number of their sides
and diagonals.
The part of the curve below the axis of the

parabola passes through the origin, n and
d both = 0, opposite to the point expressive of
the triangle, at 0.3.
The distances and mutual relationships

between the five vertices of a pentagon and
the significance for the purposes of this dis-
cussion may be most easily appreciated by
reference to figure 27. Here the five vertices
of a pentagon are represented by five small
circles lettered from A to E. Vertex A has
been connected with each of the other four
by a heavy line. Thus the two sides and two
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diagonals that it is possible to draw from a
single point are indicated. Three more of each
are possible from the other points which, when
drawn, complete the pentagon and its in-
scribed star. These have been omitted from
the diagram for, at the moment, it is more
convenient to consider the relationships of a
single point to the four others. If this group
of lines be treated as though they were vec-
tors, three different parallelograms can be
drawn. One of these (AD GE) appears twice;
its mirror image, not constructed, would be
drawn about angle BA C. The other two and
different parallelograms are colinear and form
parallelograms A BHE and A CFD. These
parallelograms bear certain interesting and
significant relationships to both pentagons
and stellate pentagons as reference to figures
1, 3, and 4 will demonstrate. Triangle DFC
is the stellate extension on side-DC of penta-
gon AB CDE. Point H is at the juncture of
two rays of a stellate pentagon inscribed in
pentagon A BCDE. Point G is on a straight
line passing through BHD where this inter-
sects the side of a pentagon circumscribed
about a stellate pentagon, of which F repre-
sents one ray and the central pentagon of
which is ABCDE. Line DG is equal to a

FIG. 27. Distances and relationships from one
vertex (A) of a pentagon to the other four (B, C,
D, E) and their resultants.

FIG. 28. Reciprocals of the distances used in
figure 27 drawn as vectors. Primary angles as in
that figure.

side of that pentagon by construction. With
the radius of pentagon A BCDE equal to
1.000, the following values appear
AH= 1.3820, AF= 3.6180 or 2(a+r), AG = 3.0777.

If instead of the distances between the five
vertices, their reciprocal values be taken, an
inverse parallelogram of forces can be con-
structed. If it is assumed that they are all
equipotential, the relative influence on a ver-
tex of the other four can be calculated. Inter-
estingly, this comes out to be equal for the
two colinear parallelograms and equal to r of
the generating pentagon. The resultant be-
tween the adjacent vertex and the nearest
diagonal is nearly a third more, as is indicated
in figure 28, which represents the reciprocals
of the distances shown in figure 27.

If the inverse of the squares of these dis-
tances be taken, instead of the simple recipro-
cal values, that one corresponding to AH of
figure 27 becomes 0.5259, that of AF be-
comes 0.8505, and that of A G is 0.9168. The
value of AH (0.5259) which was unity in the
simple reciprocal treatment, there appeared
as the reciprocal of the diagonals. A similar
relationship is borne between the correspond-
ing values of A F and A B, 0.8505 represent-
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ing A B in the first and A F in the second.
No such simple relationship appears between
the corresponding values of AG and AD.

It is not necessary to labor the point at
this time that these differing values, which
measure the influence between these pen-
tagonal points, must be considered in any
study of the mechanics of development, a
matter not examined in detail in this paper.
It should be apparent from the preceding
discussion, however, that the spatial relation-
ships of the sides of a pentagon to its diago-
nals provide a very suggestive point of depar-
ture for a study of the reasons for the mainte-
nance of a pentagonal organization when once
established. Such a view would refer these
reasons not so much to some peculiarity of the
organisms involved, but rather to the proper-
ties of space and the unique features of the
pentagon as compared with any other poly-
gon. Here alone the sides show the same de-
gree of symmetry as the diagonals. The "un-
expected source" of the stability of pentag-
onal organization mentioned abovewould thus
be the response of a dynamic physiological
system to these geometrical features. This
may be conceived of as "trapping" the struc-
ture or organism which has hit upon five as
a divisional number.

If table 3 be referred to again, it becomes
apparent that the vast majority of organisms
show a very limited number of basic kinds
of symmetry. These are degrees 1, 3, 5, and
6. All others are of much less frequent
occurrence. The geometry of the stresses
and strains in a dynamic structure of degree
5 has just been considered. Organisms of
degree 1, the polarized bilateral organisms,
are the only ones in which even a modicum
of speed can be developed. Degrees 3 and 6,
although geometrically very different from
pentagonal construction, have their own
unique qualities. In the case of degree 3, there
can be no "competition" between points of
influence as found in the pentagon. This cir-
cumstance produces another kind of stability
and, unlike the pentagon, there is no possi-
bility of switching between two designs of
the same degree of symmetry. Degree 3,
unlike degree 5, can cover a surface com-
pletely, as indicated in figure 2, and in so
doing forms degree 6. This higher degree, the
sides of which are twice those of degree 3 and

the diagonals of which are the square of the
sides of degree 3, merely makes a compound
structure with the basic stability of lower
number. The described geometrical charac-
teristics of these degrees of symmetry and the
absence of them from all other degrees sug-
gest possible explanations as to why these
few types of symmetry find expression over
and over again in the most diverse kinds of
structures to the virtual exclusion of the
others.

It could be anticipated from general con-
siderations that an exponential would ap-
pear, for the reason that much of organic
growth is such that within very broad limits
an individual of a given size is a gnomon of
similar larger and smaller individuals or of
itself at different ages. Some of the figures
indicate the geometrical basis of gnomonic
relationships which in fact represent a graphic
basis of the exponential equations continu-
ally appearing in considerations of the growth
of living forms.

It is of interest to note that the vertebrates,
which are certainly as bilateral a group as
any, have a very considerable disposition to
divisions of five parts. The pentadactylate
limb of the tetrapods is a striking example of
division into five primary units which, once
developed, has persisted through very diverse
modifications while retaining or showing
clear evolutionary evidences of its basic five-
partness. This retention of five-partness has
been traced back to the rhipidistian paddle
by Gregory and Raven (1941). In one earlier
classification the tetrapods were actually
designated the Pentadactyla. A cross section
of the primary vertebrate trunk shown dia-
grammatically in figure 29 again shows a
basic division into five regions. The verte-
brates show no other regular systematic
tendency towards any of the other possible
symmetries.
With such a condition and the recognized

indications of affinities between the echino-
derms and the chordates, and bearing in mind
the fact that the bilateral pluteus echinoderm
larva has in its being directives which in
ontogeny cause it to become pentamerous,
one is tempted to think that there must be
some further evidence here of fundamental
similarity. It is true that early fishes do not
show this five-part condition of the basal
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bones of the fins and that modern teleosts are
not notable for any conspicuous or general
tendency to develop organs in groups of five,
although five soft fin rays in the pelvics is
characteristic of the acanthopterygians. From
this some persons would no doubt wish to
consider the pentadactylate limb as a devel-
opment de novo. That it realized the figure
five and not some other number in a group
evidently akin to a group so five-dominated
can equally well suggest that there may be
some feature in the physicochemical struc-
ture of these two groups, at the molecular
level, which tends to divide them into five-
part structures when other influences do not
suppress it, and to cause the number to re-
appear in some other mode when phylogeny
has progressed to a point where such sup-
pression no longer obtains.

Insects show a considerable tendency to
have five-segmented legs and antennae, which
is perhaps most marked in the Coleoptera, a
group that may be used as an illustration.
Six of the 12 superfamilies of beetles possess
exactly five tarsal segments. The other six
superfamilies contain at least some members
which show reductions of various degree, ac-
cording to the classification of Essig (1942).
In his definition of the Coleoptera he wrote,
" . . . tarsi one- to five-segmented, normally
five....." The five-segmented forms were
once classified in the Pentamera, a group now
considered purely artificial. Linnaeus simi-
larly named a class of plants with five
stamens, based on this pentandrous condition,
the Pentandria, a name also now no longer
used.
The beetle superfamilies in which all six

tarsi have uniformly five segments are the
Hydrophyloidea, Elateroidea, Dryopoidea,
Dascilloidea, Ptinoidea, and Scarabaeoidea.
Those in which various kinds of reduction
have occurred are the Staphylinoidea, Can-
thoroidea, Cucujoidea, Mordelloidea, Teni-
brionoidea, and Cerambycoidea. Evidently
the original condition in beetles was one of
five segments which has persisted strikingly,
with reduction occurring as above described
but with no evidence of any increase above
five. There appears to have been no study
given to possible reasons for this situation
from the standpoint of locomotor advantage
or any other functional utility.

FIG. 29. Schematic transverse section of a fish
indicating the basic five-partness of the structure
despite its great restriction of areas for specific
purposes.

The oral armature of the priapulids is ar-
ranged in a pentagonal design in which suc-
cessive pentagons are nested, each smaller
one rotated through 36 degrees from the po-
sition of the next larger. This was illustrated
by Th6el (1911). According to Hyman (1951),
who puts these creatures in the Phylum
Aschelminthes as a Class Priapulida next to
the Nematoda, the genus Priapulus has five
to seven of these pentagonal designs, while
the only other genus (Halicryptus) in this
small group has three or four. Figure 30, after
Theel, shows the nature of this pentamerity.
The following quotation from Hyman, on the
history of our knowledge of the priapulids,
bears on ideas in the present paper that are
more fully stated below.
"The animal now called Priapulus cau-

datum is common in northern European
waters and has been known to zoologists
since the days of Linnaeus. It appears in
Linnaeus's Systema Naturae first under the
name Priapus humanus, later under the name
Holothuria priapus, placed under the group
Vermes Mollusca, a heterogeneous assem-
blage of soft-bodied invertebrates. The name
Holothuria priapus was also employed by
Fabricus (1870) who recorded the animal from
Greenland waters, and by 0. F. Miiller
(1806), who described and figured it from
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FIG. 30. The pentagonal oral armature of
Priapulus caudatus Lamarck. After Theel (1911).
D, dorsal side; V, ventral side; 1-7, the seven
interlaced pentagons of teeth.

Danish waters. The animal was generally be-
lieved to be related to echinoderms. Lamarck
in 1816 realized that the animal was not a
holothurian and gave it the name now in use,
Priapulus caudatus; but it appears to the au-
thor, as also remarked by Theel, that Priapus
is the valid generic name, not Priapulus.
Cuvier continued calling the creature Holo-
thuria priapus and to place it among the
footless echinoderms, close to Sipunculus."
The nested pentagons of denture at first

glance may appear to be inscribed serially in
such a manner that the radius of one is the
apothem of the next larger, but actually this
is only a very rough approximation of the
condition found. Measuring the successive
radii, beginning with the innermost, shows
the nested pentagons of denture, except for
the last three, to be larger than those of a
geometrical construction of inscribed penta-
gons. The excess decreases regularly from the
least to the largest as may be clearly seen in
figure 30, in which the vertices of the inner-
most pentagons do not nearly reach the sides
of the next, while the fifth pentagon just
touches the sides of the sixth, and that one

penetrates through the sides of the seventh,
or outermost, pentagon.
Haas (1948) has demonstrated that the in-

dividual trochopore of the bryozoan Sertella
septentrionalis Harm, which attaches itself to
a solid to start a new colony, is pentagonal
in outline. This original individual gives rise
to five new individuals, one on each face of
its pentagonal form. These new individuals
and all subsequent ones are hexagonal. Haas's
figures are reproduced here as figure 22, in-

cluding his schematic diagram of the geo-
metrical plan and an actual colony which
departs rather far from the theoretical be-
cause of a wide variety of influences, which
he discusses at some length. As in the case of
echinoderm plutes, there are evidently no
data or reasonable hypotheses as to why
these animals develop into five parts. Good
physical reasons exist, however, for the fact
that in both groups the parts tend to become
hexagonal as they spread out over a surface
in close contact with one another.
At this point a further consideration of the

coverage of a surface by pentagons may be
usefully undertaken, in which are included
mutual influences of adjacent structures such
as those of pressure or other physical effects.
Polyhedra are discussed above as stable
structures not subject to deformation with-
out rupture, which is not true of polygons in
general but only of the first of the series, the
triangle being an inherently stable structure.
If these figures be constructed of rigid rods
held together by pins at their vertices, this
principle becomes mechanically obvious, as
is commonly displayed at every turn, for
example, in the trussing of a bridge or the
behavior of a lazy gate. Casually, one would
think that the upper limiting figure of this
series, the circle, might also be stable. If,
however, it is thought of in the above terms,
as a polygon of infinitely short rods, it de-
forms readily into an ellipse, of which it is
also a limiting form. In this sense a circular
rod has no more stability than a rod made of
a polygon of 20 sides or so, which is not to be
confused with the resistance of a circular rod
to bending, which is in another plane as com-
pared with a flat strip across its least dimen-
sion. In other words, the more sides a polyg-
onally sectioned rod possesses the less it is
polarized towards differential transverse
bending. Thus, a 20-side rod resists bending
in every direction nearly as well as a circular
one. A square rod, on the other hand, bends
most easily in the two planes parallel to the
faces of the section and resists most in the
planes parallel to the diagonals, which is true,
however, only of the polygons with an even
number of sides. Those with an odd number
of sides are so braced by the geometry of
their design for all practical purposes as to
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resist bending in any plane equally well and
in this respect resemble the circle. Because
the resistance to bending is proportional to
the square of the diameter of the section, it
is clear that there is compensation in regular
polygons such as an equilateral triangle and
a pentagon.
When each of these forms is considered, not

as the section of a rod but rather as a geo-
metrical figure or of a rod of extremely short
length so that it is in effect a disc, as for exam-
ple, the Bryozoa above mentioned, it is pos-
sible to define certain physical necessities
which must be observed by both mathemati-
cians and growing organisms. Physical poly-
gons of such a sort, excepting only the tri-
angle, maintain their shape only if the inter-
nal pressure and external pressure are uni-
form throughout. From this fact it follows
that a droplet of oil of the same specific
gravity as the fluid in which it floats becomes
spherical, or, when compressed between two
flat and parallel surfaces, its outline becomes
circular, which of course is true of any drop-
let as its support against the action of gravity
is taken care of by the plates. A fully flexible
bladder performs in the same way. A penta-
gon, for example, composed of jointed mem-
bers, which is the geometrical equivalent of
such a bladder, with five equal rigid edges,
may serve conveniently as a model for this
analysis. If, as shown in figure 31, an equal
pressure is exerted on all five sides from the
interior or exterior, the model will remain a
regular pentagon. However, if, in the case of
the pentagon held symmetrical by equal in-
terior pressure, the pressure on one side is
increased sufficiently the figure will snap into
an isosceles triangle as shown in figure 31B.
Each of the two sides of this triangle will
equal twice its base. The altitude of the tri-
angle will be 1.9364 times its base; its apical
angle, 28 degrees 57 minutes, and the two
basal ones each 75 degrees 311 minutes. If, on
the other hand, the internal pressure on one
side is reduced sufficiently, the external pres-
sure will snap the figure into the form shown
in figure 31C, an equilateral triangle with the
two "lost" pentagonal edges superimposed
and depending from the triangle as a "tail."

Obviously the increase of internal, or de-
crease of external, pressure, in order to pro-

duce the figures shown, must equal or be
greater than the algebraic sum of the pres-
ures on the other sides. If it is less than that
sum, the figures will take a position of equi-
librium at some place between the pentagon
and one or the other of the two distortions,
which will be exactly proportional to the
relative sizes of the two influences and may
be used, in the event such figures are pro-
duced, to determine quite accurately the rela-
tive magnitudes of the forces involved.
The isosceles triangle with the altitude

1.22474 times the base we have not found
represented in a natural object, which could
be supposed to indicate that a bias of pressure
in a cell or system of tissues of the sort de-
scribed is unlikely, which, a priori, it would
certainly seem to be.
The equilateral triangle is certainly abun-

dant in organic forms both in its own right
and as an element of hexagonal symmetry.
Unlike the occurrence of the isosceles tri-
angle noted above, the occurrence of the
equilateral one is, a priori, one that would be
expected. Uniform pressure within cells or
systems of cells is of more common occur-
rence than variations in internal pressure,
and the reverse is generally true of external
pressure. The fate of the "tail" would pre-
sumably be that it would disappear or at
least become indistinguishable from other
separation membranes.
Two other transformations of the penta-

gon are shown in figure 31D and E. The first,
a trapezoid with one base twice the size of the
other, is produced by extra pressure between
any two diagonal apices. This quadrilateral
has angles of 60 degrees and 120 degrees and
is immediately reminiscent of the equilateral
triangle and its associated hexagon. The fig-
ure is obviously just half of a hexagon and
consequently can be decomposed into three
equilateral triangles. This figure appears in
nature not as a trapezoid but either as a frag-
ment of a hexagon or as three equilateral tri-
angles.
The figure illustrated as figure 31E with a

reentrant angle is produced by extra pressure
on the apex and results in two isosceles tri-
angles similar to, but just half of the size of,
B. These figures, with certain exceptions ex-
plained below, are the only regular ones into
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which a pentagon can be transformed, two
from internal polarized pressure, or the equiv-
alent external tension (B from an apex to
the mid-point of the opposite face and D
between two apices), and two from external
pressure, or the equivalent internal tension
(C from between any two alternate apices and
E between an apex and the mid-point of the
opposite face). These figures are thus inverse
to each other, that is, B to E and C to D.
The latter two develop angular features char-
acteristic of hexagonal symmetry; and the

faces involved. Oblique pressures would pro-
duce other figures, but each figure would be
asymmetrical. All these potential figures are
demonstrably intermediate between the fig-
ures actually used and can indeed be re-
garded as a limiting case of a whole series of
transformations. For example, under oblique
pressure E eventually is transformed into C,
in which one triangle has a base small to
vanishing point, and the other is an equi-
lateral triangle. D eventually becomes like E
if pressure on the long side is strong enough.

b

FIG. 31. Diagrams of distortions of rigid-sided pentagons. A. The
primary pentagon overlain on two possible transformations. B. The
resulting isosceles triangle. C. The resulting caudate equilateral tri-
angle. D. The resulting trapezoid. E. The double triangle. Identical
lower case letters have been placed at homologous apices of the figures
for ease in visualizing the transformations.

former, features not recognizable as charac-
teristic of any organic basic symmetry.
There are, of course, in a purely geometri-

cal sense, other possible transformations, but
they seem to have no possible biological sig-
nificance, because they would involve the rup-
ture of whatever organic constituents were
involved. For example, it is possible to
transform the pentagon into another figure
of two triangles identical with those in E but
with one triangle rotated to be opposite the
base line, so that the two triangles touch the
same corners, but oppositely. Obviously, as
stated, all four figures in figure 31 are made
with the pressure or tensions normal to the

Likewise, this same figure reverts to a penta-
gon if the internal pressure is so feeble as to
be balanced by the other forces, so that the
two sides do not lie in a perfectly straight
line but bend outward proportional to the
balance between the forces involved. This is
equally true of B.
A similar study of the other polygons

shows that transformations of the even-
sided ones are all collapsible to a line and all
those of the odd-sided ones are not, for the
simple reason that whatever metamorphoses
are undertaken, an odd number insures that
three sides will remain to form an equi-
lateral triangle, as the pentagonal figures

210 VOL. 106



BREDER: PENTAGONAL SYMMETRY

show. It is obvious that the more sides there
are, the more transformations can be made.
The triangle permits of no such transforma-
tions; the square, only of a collapse through
a series of parallelograms to a straight line;
the pentagon, to the condition discussed
above; and the hexagon, to many more, all of
which include figures of 60 degrees. The
isosceles triangle with side and base in the
ratio of 2 to 1 does not appear again until the
next odd-sided figure, the heptagon, and
from there on alternately, for reasons similar
to those that prevent these odd-sided figures
from collapsing to a line. They all can col-
lapse from this isosceles triangle to some form
of caudate equilateral triangle, as may be seen
from the diagram of the pentagon transfor-
mations.

It would seem entirely possible that the
form of the ossicles developing in young star-
fish, which is discussed above and illustrated
in figure 24, has its roots in the geometry of
transformed figures, with the added ability
to develop on an angle in a side so as to in-
crease the number of polygonal sides.

Still another set of systematic transforma-
tions can be made of such polygons, involving
the length of the sides while the angles are
held constant, which may be most easily
visualized as the moving, parallel to the origi-
nal position, of one or more sides inward.
Several of these transformations are shown
in figure 32. It is at once evident that they
are quite different from those with the lengths
of the sides held constant, but some of them
appear from place to place in organic nature
generally associated with regular ones, but
near some boundary or limiting plane. These
two types of transformations taken together
can clearly give any polygon that it is possi-
ble to construct. It is sometimes useful, in
studies of this kind, to think of a fully irregu-
lar polygon in these terms, from whence it is
sometimes possible to interpret associations
which otherwise could well remain meaning-
less.

In a change of polygons, as shown in figure
32, certain geometric regularities appear,
which are useful in the present discussion. If,
for example, one angle is cut off a pentagon,
as in A, two polygons are formed of three and
six sides, respectively. If two are cut off, as
in B, polygons are formed of four and five
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FIG. 32. Diagrams of distortions of changeable

lengths in rigid-angled pentagons. See text for ex-
planation.

sides, which, if three are cut off, simply be-
come inverted as five and four, as shown in C.
Also (not shown) there is the complement of
A, with six and three sides. In general terms,
this means the following:

SIDES OF
ANGLES POLYGON
SPANNED CUT OFF

SIDES OF POLYGON
REMAINING ± THOSE OF

DERIVING POLYGON
1 3 1 more than number of sides
2 4 Same number as original

polygon
3 5 1 less than original polygon
4 6 2 less than original polygon

If the dividing line reaches from a side to an
apex or from an apex to another apex, the
above numbers are modified in an obvious
fashion.

It is clearly indicated in table 3 that by
far the most usual designs are all in the lower
orders of symmetry, those formed on a basis
of the prime numbers 1, 2, 3, and 5 being
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FIG. 33. Graph of the equation
360

y=-.
x

Circles indicate the integral values of x which are

the "nodes" where symmetry occurs. Large circles
mark the prime integral values.

in the vast majority, while those of a higher
order are almost always multiples of them. If
the relationship between the number of the
degree of symmetry and the angle between
identities be expressed as

3600
Y=

x

where x= the number of the degree of sym-

metry and y =the angle between identities,
some interesting features of these relation-
ships may be made a little clearer. This equa-

tion may be plotted as a graph, as is shown
in figure 33. Integral values of x may be con-

sidered as nodes where a symmetrical con-

struction is possible. At any values where x

is not a factor of y, true symmetry does not
occur, and it could be said that such a curve

should not be drawn but represented only by
the indicated nodes. However, the imper-
fection and distortions of symmetry seen in

various organisms may well be develop-
mental attempts to bridge or straddle be-
tween two adjacent degrees of symmetry as
is indicated above for the partitioning of
space in both a glycerine jell and a dragonfly's
wing. The relationship of the prime numbers
of divisions and their relationship to their
multiples is clearly indicated. It is notable,
too, that 5 is the largest prime number found
in any abundance in organic structure, and

6= (degree 3 X2)

is the largest degree of symmetry regularly
found in any large quantity. The equation
shows the curve to be an equilateral hyper-
bola, with x = 0 and y = 0 as asymptotes. If
the equation is expressed in radians instead of
degrees,

y= 27r/x.

The values of y, the central angle in radians,
all reduce to the reciprocal of Xx.
One of the notable attributes that are in-

dicative of the basic nature of pentagonal
symmetry is that it occurs regularly only as
the total form of independent units, or an
attachment, if there is one, is always by
means of a stalk or stem, which tends to be
slender. Illustrations of the first are such five-
part units as Eleutherozoa among the echino-
derms and the body section of vertebrates.
Illustrations of the second are such five-part
terminal appendages as dicotyledonous flow-
ers or the pentadactylate appendages of
tetrapods as well as such attached echino-
derms as are found in the Pelmatozoa.
The discussion of the relationships of the

echinoderms in the 1949 edition of Parker
and Haswell clearly indicates a recognition of
the relationship of a stalked condition and a
radiate organization. We cannot do better
than to quote part of that passage:
"The presence of radial symmetry was

once regarded as involving relationship [of
the echinoderms] with the Coelenterata,
which were grouped with the Echinodermata
under the comprehensive class-designation
Radiata. But on account of the presence of a
bilateral symmetry underlying and partly
concealed by the radial, we are led to the con-
clusion that whatever may have been the
group of animals from which the Echino-
dermata were developed, there is every prob-
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ability that it was a group with bilateral and
not radial symmetry. The radial symmetry is
evidently, as has already been pointed out, of
secondary character; it is only assumed at a
comparatively late period of development,
and even in the adult condition it does not
completely disguise an underlying bilateral
arrangement of the parts. Accordingly, within
the phylum itself, it is reasonable to regard
those classes as the more ancient which have
the radial symmetry less completely devel-
oped. Again, the free condition which charac-
terizes all existing Echinoderms with the ex-
ception of a few Chrinoids is probably less
primitive than the attached, since in other
phyla the radial symmetry is co-ordinated
with, and seems to be developed on account
of, a fixed, usually stalked condition. Prob-
ably, then stalked Echinoderms were the
progenitors of the existing free forms, and
these were preceded by primitive free forms
with pronounced bilateral symmetry. It ap-
pears to be most probable that this ancestral
form possessed the most essential features of
the dipleurula larva . . . ; i.e., that it was bi-
laterally symmetrical with a pre-oral lobe,
simple alimentary canal with mouth on ven-
tral surface and anus at posterior end; that it
had a coelome, originally developed from the
archenteron of the gastrula; and that it had
a band of strong cilia running around the con-
cave ventral surface. Such a dipleurula-like
form became converted, it is supposed, into a
fixed form, such as that represented by some
of the extinct class of the Cystoidea. The fixa-
tion must be supposed to have become
effected through the medium of the pre-oral
lobe, and further changes must have involved
the shifting of the mouth to about the middle
of the free surface. From this primitive Cys-
toid, thus regarded as the most primitive of
all known Echinoderms, the remaining classes,
both fixed and free, have been derived."
Gregory (1951) basically agrees with this
statement and gives further comment on the
interrelationships within the group as well as
its relationships with other groups.

Contrariwise, this type of symmetry is not
to be found in all-over patterns, which would
seem clearly to be associated with its pri-
mary inability to cover a surface uniformly.
On the other hand six-sided symmetry is to
be abundantly found on the surfaces of such

things as the test of cow-fish and the honey-
comb. Architects found similar difficulty
with the five-sided figure, as is indicated by
Weyl (1952) who wrote, "The Arabs fumbled
around much more with the number 5, but
they were of course never able honestly to
insert a central symmetry of 5 in their orna-
mental designs of double infinite rapport."
The Pentagon Building in Washington stands
as a separate complete unit for similar physi-
cal reasons.
A considerable effort was made to learn

why the building was designed and erected in
this unusual form. There was evidently no
single powerful reason, either practical or
sentimental, but rather the design appar-
ently developed as a series of compromises,
which is presented below as paraphrased
architectural comment.
As is so often true in cases in which large

undertakings of the magnitude of the Penta-
gon Building are concerned, it is difficult to
state categorically that there was one spe-
cific reason for the pentagonal outline in pref-
erence to all others. Not the least, of course,
was professional bent. There is considerable
support for the view that any design that
approaches a circle in outline has distinct ad-
vantages with respect to economy in dis-
tance and space. Obviously, the center of a
circle is the nearest common point from
which to reach any point on the circumfer-
ence, and equally attractive is the proposi-
tion that a small ring within a larger ring pro-
vides the means of establishing at any point
the shortest travel between the two rings.
Thus, from an architect's view, a design
approaching a circle is probably the most
feasible means of achieving the maximum
usable space, economy, and convenience,
once it is decided to depart from the generally
vertical layout so familiar in large cities.
The need for the Pentagon Building arose

in time of national stress-a time when it
would have been impractical to consider a
vertical design requiring elevators and steel
framing which a skyscraper design normally
necessitates. Therefore, the fundamental de-
cision was made that a low, sprawling type
of structure would be the only feasible one.
The site initially selected for the new build-
ing was bounded on two sides by streets that
intersected at an obtuse angle, which, after a
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consideration of several alternative designs,
seemed appropriate for a building that would
have two prominent facades and main en-
trances, one on each of the intersecting
streets. Problems of topography and layout,
coupled with professional viewpoints and
many other considerations that appear in
deliberations leading to the design of major
structures, finally resulted in a design for this
particular site which was in effect an irregular
pentagon. The site initially chosen adjoined
Arlington National Cemetery. When objec-
tion was raised to the erection near this
national shrine of a rather plain structure
somewhat austere in exterior design, the
appropriate authorities sought a new site.
When the present site was selected, the de-
sign of the structure had progressed to the
point where the authorities decided that the
pentagonal plan should be adhered to. How-
ever, because the new site offered much more
space than the site initially chosen, the ini-
tial design was modified from the irregular
pentagon to the regular pentagon, which is
the shape of the building as it now stands.
From the foregoing, it may be seen that it

would be difficult to say that the eventual
design of the Pentagon Building resulted from
a single reason or decision pointed towards a
specific end. Recollection maintains that the
genesis of the design was primarily the obtuse
angle caused by the intersection of two
streets at the abandoned first-chosen site,
and seems to be at least as much of a com-
promise as most organisms must make in
their development.

Again, the coelenterates, although em-
ploying both four- and six-part symmetry,
seemingly largely avoid that of five parts. It
is to be noted that their design was no doubt
fixed when they were sessile colonial organ-
isms, the free-swimming medusa type doubt-
less coming as a later development. Actually,
Parker and Haswell (1949) divide the Actino-
zoa into the Octocorallia in which the

... tentacles and mesenteries are always
eight in number" and the Hexacorallia in
which the " . . . tentacles and mesenteries are
usually very numerous and are frequently
arranged in multiples of five or six." Hyman
(1940) writes as follows about the Actinaria
(=Hexacorallia): "In typical hexamerous
anemones, the number of pairs of septa in the

various cycles is then: 6 (primaries), 12, 24,
48, etc. Other arrangements, however, often
occur, especially octomerous and decamerous
... types in which there are 8 (or 16) and 10
pairs of complete septa, respectively, and cor-
responding in the incomplete cycles. Thus the
family Ilyanthidae, represented by Haloclava
... is usually decamerous. Forms with five or
seven pairs of complete septa also occur."
While evidently pentamerous symmetry and
its double are present in this group, it is far
from dominant.

Naturally polyhedral forms are limited to
forms that are polarized poorly, if at all. Such
patterns are to be found most clearly dis-
played in certain Radiolaria. The oft-quoted
Haeckelian figure, Circorrhegma dodecahedra,
is a prime example shown by both Thompson
(1942) and Weyl (1952). Of this figure
Thompson writes, "If we may safely judge
from Haeckel's figures the pentagonal dodeca-
hedron of the radiolarian (Circorhegma) [sic]
is perfectly regular, and we may rest assured,
accordingly, that it is not brought about by
the principles of space-partitioning similar to
those which manifest themselves in the phe-
nomenon of crystallization." Thompson goes
on to treat at length the case of Dorataspis
which appears to have a test built of hexagons
and pentagons on impossible geometrical
construction, unless curved boundaries are
substituted for straight lines, a matter which
in no way inhibits organic growth.

In discussing the meaning and significance
of the use of mathematics in connection with
regularities of plant form, Wardlaw (1952)
wrote:
"The essential feature of a spiral phyllo-

tactic system is that new leaf primordia,
similarly placed in relation to the apical
growing point and to primordia already pres-
ent, are produced at similar successive inter-
vals of time. A phyllotactic system or pat-
tern of a more or less high degree of regu-
larity results and this can be given mathe-
matical expression.
"A point of general interest that emerges

from a consideration of spiral structure in
plants and animals is that these configura-
tions, as in the shells of mollusks, bear little
relation to the character of the organism by
which they are produced. The mathematical
analysis of the forms of shells, for example,
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gives no support to systematists who have
used the different shapes of cephalopod shells
for phylogenetic purposes. The same would
be true of the use of phyllotactic systems in
plants as a criterion of comparison in phylo-
genetic studies, unless there was also sup-
porting evidence of a fundamental kind from
other sources."
Thompson (1942), who is quoted by Ward-

law, has the following to say: "Again, we find
the same forms, or forms which (save for
external ornament) are mathematically iden-
tical, repeating themselves in all periods of
the world's geological history: and we see

them mixed up, one with another, irrespective
of climate or local conditions, in the depths
and on the shores of every sea. It is hard in-
deed (to my mind) to see in such a case as

this where Natural Selection necessarily en-

ters in, or to admit that it has any share what-
soever in the production of these varied con-

formations. Unless indeed we use the term
Natural Selection in a sense so wide as to
deprive it of any purely biological signifi-
cance."
Wardlaw (1952), himself an experimental

morphologist, very properly makes the fol-
lowing observation: "Investigators of phyllo-
taxis from a mathematical standpoint have
paid insufficient attention to the relevant
physical and physiological problems: those
whose interest has centered on leaf forma-
tion have tended to neglect the positional,
i.e. geometrical aspect. It seems desirable
that the two aspects be examined together."
A brief but good history of the subject of

phyllotaxis, together with a criticism of cer-

tain of Thompson's (1942) views, is given by
Richards (1948). He favors a "field theory"
rather than one based purely on the possi-
bilities of geometrical packing.
An interesting approach to the reasons for

the number of petals possessed by flowers can

be made through the studies of Hertz (1931,
1933), Wolf (1933), and Autrum (1952). Lep-
pik (1953), for instance, would refer the con-

stancy of the number of petals of radiate
flowers, which have few, to the ability of
pollinating insects to discriminate between
flowers on a basis of petal number. This
ability and its limitations he considers as

having been a factor in the evolution of
flower design by selection. His experiments,

in which insects were permitted the selection
of a variety of flowers in regard to the num-
ber of petals, led him to state categorically,
"The most favored number for bees is 5." He
also wrote: "According to these experiments,
bees are able to remember and distinguish the
numbers 1, 2, 3, 4, 5, 6, 8, 10, and 12. It is
remarkable that the numerical system of bees
does not contain the 'magic' numbers 7, 9 and
13 but have double meanings for 3 and 5."
This is most striking when considered in
reference to table 1 above and the comments
on it, which are based on purely structural
data. It will be recalled that it was pointed
out above that symmetry of an order higher
than six is rare except for cases that are mul-
tiples of lower orders, e.g., 8, 10, 12, etc., not
7, 9, 11, 13, etc., a fact that is in exact agree-
ment with what Leppik's bees were able to
distinguish. Whether flowers evolved in ac-
cordance with the abilities and limitations of
the insect nervous system, as Leppik sug-
gests, or not, the present data cannot estab-
lish. That the same presences and absences
of different degrees of symmetry appear in a
review of organic objects as displayed in
table 1 leads to the suspicion that something
much more fundamental may be involved
here than a floral evolutionary response to
peculiarities of insect psychic life.

Finally it remains to consider the possible
significance of this widespread distribution of
five-partness, and to attempt to determine
whether these varied and often unrelated
organisms have "selected" five at random or
whether there is an underlying biological or
physical principle involved, which has guided
such diverse things as dicotyledonous flow-
ers, echinoderms, and tetrapod appendages
to settle on that definite number of parts.
Before this aspect of the problem is discussed,
certain points and suggestions in the fore-
going material should be consolidated. As is
indicated in table 1, pentagonal order very
definitely occurs in some groups and is as
definitely absent from others. There is very
little casual or incidental occurrence. That is,
it appears as the basic pattern of flowers of
dicotyledons, of echinoderms, of vertebrate
body section, of the distal ends of tetrapod
limbs, and of the oral armature of priapulids.
Its occurrence elesewhere is not common but
includes the following instances. The tarsi of
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half of the superfamilies of beetles have uni-
formly five segments, the other half showing
various reductions in the number of segments.
It is somewhat questionable whether such a
linear series of five has any relationship to the
present topic, which is primarily radial sym-
metry. The ancestrula of certain bryozoans
is pentagonal, although all subsequent indi-
viduals are hexagonal. Except for a few
coelenterates, discussed below, this list covers
naturally occurring pentagonal symmetry
and pentamerous clusters or series.

Coelenterates show great variation in the
number of their radial divisions but most
commonly have eight (Octocorallia) or six
(Hexacorallia). The latter group shows much
variation, including symmetry of 5, 7, and 8,
and their multiples, 10, 12, 16, 24, 48, etc. It
should not be surprising that a few reached
five and 10 divisions, but they are actually a
very small number in reference to the whole
group, which is marked by a considerable
symmetrical instability. Some forms change
from one order of symmetry to another dur-
ing ontogeny, as, for example, Craspedicuspa
as it develops from the "Microhydra" stage.
Finally, the flowers of monocotyledons are as
devoted to a three-part design as are those of
dicotyledons to five.
The point of the above oversimplified sum-

mary is simply that five-partness, where it
appears, is held to with great rigidity, even
when extensive evolutionary change has
taken place. This does not seem to be the
case to such a marked extent where other

symmetries are concerned, as the coelenter-
ates witness.
Although everyone recognizes, of course,

that organisms are strictly limited by severe
physical strictures at all times, little attempt
has been made to understand how these
strictures operate to produce the observed
results. Obviously, they operate at all levels
of organization, from the atomic to the gross.
In the present paper the simple matter of why
the pentagonal or five-part form has ap-
peared so frequently is considered from its
basic geometrical aspects. It seems that at
this level of consideration the characteristics
of the pentagon that make it unique among
polygons have considerable bearing on the
matter. At the molecular level of organiza-
tion the basic asymmetry of the protean
molecule may eventually be shown to influ-
ence greatly all manifestations of organic
symmetry. It would seem that the next logical
step would be to attempt to answer the
perennial question as to whether or not the
peculiarities of molecular organization are in
fact reflected in the geometry of vastly
larger aggregates of complex mixtures of
various kinds of molecules. Until this ques-
tion is satisfactorily resolved such studies as
those discussed herein would seem to be
blocked against substantial progress. It is
essential to such investigations to under-
stand whether geometrical patterns are de-
termined by activity at the molecular level,
in part at least, or are fully determined at
higher levels.
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APPENDIX

NUMERICAL RELATIONSHIPS IN PENTAGONS AND DODECAHEDRA

In any pentagon with the radius taken as 1 the
following numerical relationships hold:
Radius: r= 1.0000-=radius of circumscribed circle
Apothem: a=0.8090=radius of inscribed circle
Face: f= 1.1756
Diagonal: d= 1.9021
Central angle: C=72°
Angle between adjacent faces: F= 1080
Values of circumscribed pentagon (r=al):

ri= 1.2361
a, = 1.0000 = r
fi= 1.4530

Values of inscribed pentagon (r2= a):
r2= 0.8090
a2= 0.6545
f2=0.9511

To obtain corresponding values for any meas-
urement of circumscribed pentagon, multiply by
1.2361, and for values of inscribed pentagon,
divide by 1.2361.
Area of pentagons:

A = 5/4f2 cot 36°X1.721f2
A = 4.7283

Relationships between parts:
r= 1.2361a = 0.8506f
a= 0.8090r = 0.6881f
f= 1.1756r= 1.4530a

Stellate values follow:
Star extended from a pentagon of radius: r= 1.000
Side of star: s= 1.9021 = diagonal of inscribed

pentagon
Altitude of star: b = 1.8090
Face of star (f+2s): c=4.9798
Circumscribed circle (a+b): r3= 2.6181
Apothem of pentagon of r8: a3= 2.1180
Face of pentagon of radius r8: f3= 3.0778
Star inscribed in a pentagon of radius: r= 1.000
Side of star: s1 = 0. 7265
Altitude of star (r-a4): b= 0.6899
Radius of circle circumscribed about pentagon:

r4= 0.3833
Apothem of pentagon of r4: a4=0.3010
Face of pentagon of r4: f4= 0.4506
Side of star of r4: s2=0.2775
To obtain corresponding values for any meas-

urement of circumscribed stellate pentagon, mul-
tiply by 2.6181, and for values of inscribed stellate
pentagon, divide by 2.6181.
Area of stellate pentagon of radius: 1.0000
Point of star= 1.8094
Five points= 9.0469
Center pentagon = 4.7283
Total area = 13.7752
Relationships of triangle forming point of star,

which is isosceles with angles of 360, 720, and
72°.

Bisection of either of the basal angles produces a
similar triangle and its gnomon.

In such a series of triangles any side of the next
larger is 1.6180 times greater. Also, the sides in
all are 1.6180 times the base.

Relationship between parts where r = 1.0000
r = 1.2361a = 0.8500f = 1.4492b = 0.5253c
a=0.8090r = 0.6882f = 1.1728b = 0.4250c
f= 1.1756r = 1.5433a= 1.7040b=0.6176c
b = 0.6899r = 0.8528a = 0.5868f = 0.3624c
c = 1.9036r = 2.3530a = 1.6175f = 2.7592b

Polyhedral data:
Of the five platonic bodies, the first, third, and

fifth have faces which are equilateral triangles;
four, eight, and 20, respectively. The other two,
the hexahedron (cube) with six squares for faces
and the dodecahedron with 12 pentagons for faces,
are the only regular polyhedrons possible.
The centers of the faces of a dodecahedron are

the vertexes of an inscribed icosahedron, while
conversely the centers of the faces of an icosahe-
dron are the vertexes of an inscribed dodecahe-
dron.
The sum of the face angles of any corner is

3 X 108°= 3240, that is, 410 less than a flat surface.
The distance between any two opposite and

parallel faces = 2.3847 = diameter of an inscribed
sphere. A =1.1924.
The distance between any two opposite tri-

hedral angles = diameter of a circumscribed sphere
=3.2848. R= 1.6424.
A cross section passing through the center of

adjacent pentagons also passes through two
opposite edges and bisecting the four intervening
pentagons is an irregular hexagon. All interior
angles= 1200, the two sides represented by edges
= 1.1756 =f of pentagon, the four sides each rep-
resented by a+r= 1.8090= 1.5388f.
Area: A = 61f2 cot 360= 8.605f2= 56.7396
Volume: V= 5ff cot 2360 \/2/4 sin2360-1= 7.631f2
= 10.5463
Four colors are necessary to paint the faces of

a dodecahedron so that no two of the same color
will be adjacent. This can be done in two ways,
one the mirror image of the other.
Stellate dodecahedron:
Can be made up of 12 stellate polygons inter-

secting, or can be considered as 12 five-sided
pyramids, one on each face of a dodecahedron
with the face as its base.
The altitude of this pentagonal pyramid:

L=V\/S2-r2=3.1057
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Altitude: L=3.1057r
Area of sides of pyramid: 5 X 1.8094 = 9.0469
Area of stellate dodecahedron: 12 X9.0269
= 108.5628

Volume of one pyramid: V=4.8508
Volume of 12 pyramids: V=28.2092
Volume of body: V=10.5463

Volume of stellate dodecahedron: V= 58.7555
A cross section similar to that shown in figure

7 for the dodecahedron is similar to it but with
three triangles equilateral "attached" thereto, the
sections of four points of the star which are bi-
sected.
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