Ticholeptinae

A New Subfamily of Oreodonts

By C. Bertrand Schultz and Charles H. Falkenbach

BULLETIN
of
THE AMERICAN MUSEUM OF NATURAL HISTORY
Vol. LXXIX, Art. I, pp. 1-105
New York
Issued December 31, 1941

Article I．－TICHOLEPTIN届

A NEW SUBFAMILY OF OREODONTS ${ }^{1}$

By C．Bertrand Schultz ${ }^{2}$ and Charles H．Falkenbach ${ }^{3}$

Text Figures 1 to 17

CONTENTS

Page
INTRODUCTION 4
FAMILY．－MERYCOIDODONTID压（OREODONTID压）
Subfamily 2．－Ticholeptinæ 6
I．Ustatochoerus，new genus 10
（1）U．californicus（Merriam），Calif． 14
（1a）U．californicus raki，new variety，N．Mex． 15
（2）U．compressidens（Douglass），Mont 15
（3）U．major（Leidy），Nebr．（Upper Ash Hollow） 16
（3a）U．major texanus，new variety，Tex 22
（4）U．medius（Leidy），Nebr．（Valentine），S．Dak．，and geog．vars．
（4a）Colo．and（4b）Kans． 23
（4c）U．medius mohavensis，new variety，Calif． 32
（4d）U．medius novomexicanus（Frick），N．Mex． 33
（5）U．profectus（Matthew and Cook），genotype，Nebr．（Lower Ash Hollow），S． Dak．，and geog．var．（5a）Kans． 36
（5b）U．profectus espanolensis，new variety，N．Mex 43
（5c）U．profectus studeri，new variety，Tex． 45
（6）U．skinneri，new species，S．Dak．，Nebr．（Ash Hollow）and geog．var．（6a） Kans 47
（6b）U．skinneri santacruzensis，new variety，N．Mex． 48
（7）U．？schrammi，new species，Nebr．（Valentine）and Colo 49
＇Table I．Measurements of skulls and rami． 51－2
Table II．Measurements of skeletal elements 53
II．Ticholeptus Cope 72
（1）T．calimontanus（Dougherty），Calif． 75
（2）T．hypsodus Loomis，Nebr．（＂Lower Snake Creek＂） 76
（3）T．obliquidens（Cope），Oreg． 82
（4）T．rileyi，new species，Tex． 83
（5）T．tooheyi，new species，Nebr．（correlated with＂Sheep Creek＂） 84
（6）T．zygomaticus Cope，genotype，Mont． 85
（6a）T．zygomaticus smithi（Douglass），Mont． 86
（7）T．species undet．（Merriam），Nev 86
Table III．Measurements of skulls and rami 87
Table IV．Measurements of skeletal elements． 88

[^0]
Contents

Page
III. Mediochoerus, new genus 92
(1) M. blicki, new genus and species, Nebr. ("Lower Snake Creek") 93
(2) M. johnsoni, new species, Nebr. (upper part of the Marsland) 94
Table V. Measurements of skulls. 95
VARIATION 97
Comparative measurements:
Table VI. Of Brachycrus siouense 98
Table VII. Of Ticholeptus hypsodus 99
Table VIII. Of Merychyus (Metoreodon) relictus 100
Table IX. Minimum and maximum of species of Ustatochoerus, n.g., Ticholep- tus Cope, and Mediochoerus, n.g 101-2
Tooth characters of certain oreodonts 103
LIST OF ILLUSTRATIONS
Fig. Scale Page

1. Ustatochoerus, four species and two varieties, lateral views (in outline) of skulls. 8-9
Mediochoerus blicki, lateral view (in outline) of skull. $\frac{1}{3}$
Ticholeptus hypsodus, lateral view (in outline) of skull $\frac{1}{3}$
2. Ustatochoerus medius (Leidy), holotype, ramus, ref., skull and ramus, Nebr. 54
3. Ustatochoerus californicus raki, n.var., holotype, ramus, N. Mex. 55
Ustatochoerus medius novomexicanus (Frick), holotype, ramus, N. Mex. $\frac{1}{2}$
Ustatochoerus major texanus, n.var., holotype, M^{3} and ramus, Tex. $\frac{1}{2}$
$\frac{1}{2}$
Ustatochoerus? schrammi, n.sp., holotype, ramus, Nebr. $\frac{1}{2}$
4. Ustatochoerus medius novomexicanus (Frick), ref., skull and ramus, N. Mex. 56-7
5. Ustatochoerus profectus (Matthew and Cook), ref., skull, ramus, two superior dental series and inferior dental series, Nebr 58-9
6. Ustatochoerus profectus (Matthew and Cook), ref., skull and ramus, Nebr. 60-1
7. Ustatochoerus profectus studeri, n.var., holotype, skull and ramus, ref., superior dental series, Tex. 62-3
8. Ustatochoerus skinneri, n.sp., holotype, skull and ramus, S. Dak. 64-5
9. Ustatochoerus major (Leidy), holotype, partial maxilla, ref., skull and ramus, Nebr 66-7

Illustrations

10. Ustatochoerus profectus espanolensis, n.var., holotype, partial skull, N. Page
Mex.68
Ustatochoerus skinneri santacruzensis, n.var., holotype, partial skull, N. Mex. $\frac{1}{2}$
Ustatochoerus medius mohavensis, n.var., holotype, partial skull, Calif $\frac{1}{2}$
11. Ustatochoerus medius (Leidy), ref., skeletal elements, Nebr. $\frac{1}{2}$
Ustatochoerus medius novomexicanus (Frick), ref., skeletal elements, N. Mex. $\frac{1}{2}$
Ustatochoerus profectus studeri, n.var., ref., skeletal elements, Tex. $\frac{1}{2}$
Ustatochoerus major texanus, n.var., holotype, skeletal elements, Tex. $\frac{1}{2}$
Ustatochoerus profectus (Matthew and Cook), ref., skeletal elements, Nebr. $\frac{1}{2}$
12. Ustatochoerus medius (Leidy), ref., skeletal elements, Nebr. $\frac{1}{2}$
Ustatochoerus medius novomexicanus (Frick), ref., skeletal elements, N. Mex. $\frac{1}{2}$
Ustatochoerus profectus studeri, n.var., ref., skeletal elements, Tex. $\frac{1}{2}$
Ustatochoerus major texanus, n.var., holotype, skeletal elements, Tex. $\frac{1}{2}$
Ustatochoerus profectus (Matthew and Cook), ref., skeletal elements, Nebr $\frac{1}{2}$
Ustatochoerus skinneri, n.sp., holotype and ref., skeletal elements, S. Dak. and Nebr $\frac{1}{2}$
Ustatochoerus major (Leidy), ref., skeletal elements, Nebr. $\frac{1}{2}$
13. Ticholeptus hypsodus Loomis, holotype, ramus, ref., skull and ramus, Nebr $\frac{1}{2}$ 89
14. Ticholeptus tooheyi, n.sp., holotype, skull and ramus, Nebr15. Ticholeptus rileyi, n.sp., holotype, ramus, Tex.$\frac{1}{2}$
Ticholeptus zygomaticus Cope, genoholotype, superior and inferior tooth series, Mont $\frac{1}{2}$
Ticholeptus hypsodus Loomis, ref., skeletal elements, Nebr. $\frac{1}{2}$
Ticholeptus tooheyi, n.sp., holotype, skeletal elements, Nebr $\frac{1}{2}$
15. Mediochoerus blicki, n.g. and sp., genoholotype, skull, Nebr. $\frac{1}{2}$
Mediochoerus johnsoni, n.sp., holotype, skull, Nebr. $\frac{1}{2}$
16. Examples of inferior and superior premolars, and molar 3s:
Merycochoerus matthewi Loomis, ref., Nebr. 1
Brachycrus siouense (Sinclair), ref., Nebr. 1
Ustatochoerus profectus (Matthew and Cook), genoholotype and ref., Nebr 1
Ticholeptus hypsodus Loomis, ref., Nebr 1
Merychyus (Metoreodon) relictus Matthew and Cook, ref., Nebr 1
Merychyus siouxensis Loomis, ref., Wyo. 1
Mediochoerus blicki, n.g. and sp., genoholotype, Nebr 1

INTRODUCTION

The present paper, the second in a series concerning a revision of the oreodonts (Merycoidodontidæ), deals with three closely related forms, Ticholeptus Cope and two new genera, Ustatochoerus and Mediochoerus, which are here included under the new subfamily, Ticholeptinæ. The writers plan to treat in separate reports each of the subfamilies of oreodonts, emphasizing lists of material, taxonomy, phylogeny, and geologic and geographic distribution. These papers will be followed by a detailed summary of the phylogeny and stratigraphic distribution of the entire family. The oreodont collections of the Frick Laboratory, American Museum of Natural History, and the University of Nebraska State Museum are being used as a basis for this work, which was begun in 1934.

All of the collecting localities of the oreodonts considered in this paper, with the exception of the Ricardo and Caliente Mountain areas of California and the John Day region of Oregon, have been visited by either one or both of the writers. Additional stratigraphic evidence, as well as an abundance of new fossil material, has been gathered for the Frick Laboratory by the following party leaders and their associates: Messrs. Joseph Rak, John C. Blick, Morris Skinner, Nelson J. Vaughan, Jack Wilson, Ralph Mefferd, Ted Galusha, William Chamberlain, and Charles H. Falkenbach. The collections of the University of Nebraska State Museum have included those made by Messrs. E. L. Blue, Thompson M. Stout, Grayson E. Meade, F. W. Johnson, Paul O. McGrew, Guy Johnson, Loren Toohey, C. Bertrand Schultz, and associates.

Four hundred and eighty-seven numbered skulls, mandibular rami, and skeletal elements ${ }^{1}$ are here listed or described under the three named genera. Fifty of these specimens, representing seven species and seven varieties of Ustatochoerus (of which two species are new), six species and one variety of Ticholeptus (of which two species are new), and the two species of the new genus Mediochoerus, are illustrated in detail (including several refigured types) in the seventeen text-figures. The outline drawings are reproduced at onethird, and the shaded drawings at one-half actual size (excepting Figure 17, which is natural size).

The illustrations of U statochoerus, new genus, demonstrate the range in size, shape, and proportions of the skulls, mandibular rami, and skeletal elements. Noteworthy are the variations in skull size (see outline Figure 1), size of the dental series, and length and amount of retraction of the nasals. The drawings also show the complicated patterns of the premolars, which are characteristic of the genus. Skulls and mandibles of U. major, U. medius, and U. medius novomexicanus are figured for the first time.

The Ticholeptus illustrations show very slight differences in size and form of the skulls and mandibular rami. Characters of generic value are the slightly complicated inferior premolars and the long, light limbs. The skull and skeletal elements of T. hypsodus are shown for the first time.

[^1]The figures of Mediochoerus, new genus, show variations in size and form of the skulls.

The writers wish to acknowledge their appreciation to: Mr. Childs Frick and Dr. Erwin H. Barbour for the privilege of continuing with the studies of the oreodonts and for helpful suggestions in the preparation of the manuscript; Mr. Charles W. Gilmore and Dr. C. Lewis Gazin of the United States National Museum, Mr. J. LeRoy Kay of the Carnegie Museum, Dr. Thomas Barbour and Dr. Alfred S. Romer of the Museum of Comparative Zoology of Harvard University, and Dr. Walter Granger of the American Museum of Natural History for the loan of various specimens listed in this paper; Dr. William K. Gregory of the American Museum of Natural History for suggestions; Mr. Morris Skinner of the Frick Laboratory for cooperation in stratigraphic studies; Mr. Ralph Mefferd of the Frick Laboratory for the illustrations, which he has carefully drawn under the supervision of Miss Hazel de Berard; Miss Jannette May Lucas for aid with references; Mr. Sydney E. Helprin for assisting in the editing of the manuscript; and Mrs. C. Bertrand Schultz and Mr. John Mercer for help in preparing the manuscript.

Thanks are also due: members of the Frick Laboratory, especially Messrs. Floyd Blair, Joseph Rooney, Charles Hoffman, and Frank Miller for the preparation and care of the oreodont collection; and Messrs. Henry Reider, Frank Bell, and Guy Johnson for supervising the preparation of the University of Nebraska specimens.

Description of Ticholeptinæ, new subfamily (2) ${ }^{1}$

The new subfamily, Ticholeptinæ, includes the genus Ticholeptus, and two new genera, Ustatochoerus and Mediochoerus. Medium to large size forms; skulls brachycephalic; supraoccipital wings incorporated in fan-shaped occipital region; tendency for a slight retraction of nasals (not to the same degree as in the Merycochoerinæ); tympanic bullæ large and flattened; teeth large and moderately hypsodont; premolars complicated.

Remains of Ticholeptus have so far been reported only from geologic horizons which were more or less contemporary with W. D. Matthew's Sheep Creek and Lower Snake Creek. Mediochoerus is recorded from Marsland and "Lower Snake Creek." Ustatochoerus ranges through the Valentine and sh Hollow of the Great Plains area, and the late Tertiary of New Mexico and California. Specimens from the respective zones are distinguished by differences in size, proportions, and position of the nasals.

Distinctive Characters of:

Ustatochoerus (p.10) Ticholeptus (p. 72) Mediochoerus (p. 92)
Anterior tip of nasals retracted to region above P^{1} and P^{3}.
Infraorbital foramina above region of P^{4}.
Superior border of maxillæ below nasals with gradual rise to nasals.

Above C/.
Above region of posterior portion of P^{3}.

Below nasals with abrupt rise to nasals.

Above M^{1}.
Above region of anterior portion of M^{1}.

Below nasals with rather abrupt rise to nasals.

Inferior border of ramus straight to slightly concave. Slightly concave. (Mandible unknown.)
Dentition moderately Less hypsodont than in hypsodont.

Ustatochoerus or Mediochoerus.
Premolars with complex With simpler patterns patterns.
Limbs comparatively robust.
than in Ustatochoerus. Comparatively light.

With simpler patterns than in Ustatochoerus. (Limbs unknown.)

[^2]

Fig. 1. Outlines of skulls representing four species and two varieties of Ustatochoerus, and one species each of Mediochoerus and Ticholeptus. (See opposite page.) $\times \frac{1}{3}$.

Fig. 1 (cont.). See legend, opposite.

I. USTATOCHOERUS, ${ }^{1}$ NEW GENUS

Genotype.-Ustatochoerus profectus (Matthew and Cook)

Generic Characters

Skull.-Medium to large size, ranging in length from approximately 220 mm . to 325 mm .; brachycephalic; occipital region fan-shaped (somewhat similar to Brachycrus Matthew); sagittal crest prominent; brain case moderately inflated; zygomatic arch moderately light for size of skull; orbits large (compared to Brachycrus and Merycochoerus), looking forward and upward; prelacrimal pit moderately deep; prelacrimal vacuity usually present; infraorbital foramina above region of P^{4} and M^{1}; slight to moderate retraction of nasals (not as great as in Brachycrus and Merycochoerus); premaxillae fused for short distance; paroccipital process long and wide at base, forming the lower part of the fan-shaped occipital region; postglenoid process narrow anteroposteriorly but prominent; bullæ divided into two portions ${ }^{2}$ with inflated area between the paroccipital and postglenoid processes and deflated area anterior to the paroccipital process.

Mandible.-Shallow for size of the skull; inferior border of ramus almost parallel to the tooth series, with a slight downward curve below M_{3}.

Dentition.-Moderately hypsodont; I_{3}^{3} very prominent, at least twice the size of I_{2}^{2}; premolars complicated; superior premolars with a definite cusp on the anterior intermediate crest, and often with a small cusp on the center of the posterior crescent; internal and external cingula usually well developed on premolars; external styles of molars prominent; inferior premolars crowded, slightly grooved externally, with cusps situated internally at center of the anterior crests; M_{3} with large heel.

Limbs.-Moderately heavy (compared to those of most genera of oreodonts). Measurements.-Tables I, II, and IX.

Discussion

Matthew and Cook ${ }^{3}$ in 1909 described Metoreodon as a new subgenus of Merychyus and established two new species of this subgenus, namely, relictus and profectus, the former from the Miocene (Sheep Creek) and the latter from the Pliocene ("Upper Snake Creek") of Sioux County, Nebraska. The subgenotype was not designated, but Hay ${ }^{4}$ and Thorpe ${ }^{5}$ considered Merychyus (Metoreodon) relictus to be the subgenotype, since it preceded profectus in the original description. Matthew and Cook ${ }^{6}$ emphasized as a subgeneric character of

[^3]Merychyus.(Metoreodon) the fact that the inferior premolars were complicated and deeply grooved externally. The patterns of the premolars are complex in both Merychyus (Metoreodon) relictus and "Merychyus (Metoreodon) profectus" (see comparison of premolars, page 103, and Figure 17). Although the two species show certain similarities, they are definitely different in size and in other respects appear to be generically distinct. The present writers propose to consider the species, profectus, as the genotype of the new genus, Ustatochoerus. Merychyus (Metoreodon) relictus, the smaller species, will be discussed in a later report concerning Merychyus and closely related forms. In the Great Plains region, Ustatochoerus is limited to the Pliocene while Merychyus ${ }^{1}$ and Merychyus (Metoreodon) are restricted to the Miocene.

In Ustatochoerus there is considerable variation in the size of the skulls, the length of the dental series, the depth of the ramus, and in the size and proportions of the limbs. Several skulls are exceptionally light and narrow but their dental series are equal in size to the teeth of more robust individuals. The writers consider these light specimens to be those of females. One example is figured for comparison with the heavier skulls which are thought to be those of males (Figure 6). The limbs of the supposed females are also definitely lighter than the males.

Distribution

Ustatochoerus remains are widely distributed throughout the western United States. Seven species, seven specific varieties, and four geographic varieties are here recorded from the Pliocene deposits of California, Colorado, Kansas, Montana, Nebraska, New Mexico, South Dakota, and Texas. [See distribution chart, page 7; and Figures 1 (in part), 2-12, and 17 (in part).]

[^4]
Summary of Species and Types

Seven species and eleven ${ }^{1}$ varieties of Ustatochoerus, new genus, from ten Pliocene localities are here recorded:
(1) Ustatochoerus californicus (Merriam), 1919, from near Ricardo, Kern County, California.
Holotype.-Fragmentary skull, U.C. $21351 .{ }^{2}$
(1a) Ustatochoerus californicus raki, new variety, from the Santa Cruz area, Santa Fé County, New Mexico.
Holotype.-Partial mandible, F:A.M.42318. Figure 3.
(2) Ustatochoerus compressidens (Douglass), 1901, from the lower Madison Valley, Gallatin County, Montana.
Holotype.-Partial left ramus, C.M.801. Figure 3.
(3) Ustatochoerus major (Leidy), 1858, from the Niobrara River region, northern Nebraska, and referred remains from Banner, Brown, Cherry, Sheridan, and Sioux Counties, Nebraska. (Upper Ash Hollow or equal.)
Holotype.-Partial right maxilla, N.M.439. Figure 9.
(3a) Ustatochoerus major texanus, new variety, from near Amarillo, Potter County, Texas.
Holotype.-Fragmentary skull, partial mandible, and skeletal elements, F:A.M. 37563. Figures 3, 11, 12.
(4) Ustatochoerus medius (Leidy), 1858, from the Niobrara River region, northern Nebraska; referred remains from Brown, Cherry, Dawes, Keya Paha, and Sheridan Counties, Nebraska, and Mellette and Todd Counties, South Dakota; and geographic varieties (4a) from Weld and Logan Counties, Colorado, and (4b) from Norton County, Kansas. (Valentine or equal.)
Holotype.-Partial left ramus, N.M.118. Figure 2.
(4c) Ustatochoerus medius mohavensis, new variety, from the Barstow area, San Bernardino County, California.
Holotype.-Anterior portion of skull, F:A.M.34464. Figure 10.
(4d) Ustatochoerus medius novomexicanus (Frick), 1929, from the Santa Cruz area, Santa Fé County, New Mexico, and referred remains from Rio Arriba County, New Mexico.
Holotype.-Right ramus, F:A.M.32051. Figure 3.

[^5](5) Ustatochoerus profectus (Matthew and Cook), 1909, genotype, from "Upper Snake Creek," Sioux County, Nebraska; referred remains from Brown, Cherry, and Keya Paha Counties, Nebraska, and Bennett and Todd Counties, South Dakota; and geographic variety (5a) from Norton County, Kansas. (Lower Ash Hollow or equal.)
Genoholotype.-Partial left ramus, A.M.14055. Figure 17.
(5b) Ustatochoerus profectus espanolensis, new variety, from the Santa Cruz area, Santa Fé County, New Mexico, and referred remains from Rio Arriba County, New Mexico.
Holotype.-Partial skull, F:A.M.33683. Figure 10.
(5c) Ustatochoerus profectus studeri, new variety, from near Amarillo, Potter County, Texas, and referred remains from Donley County, Texas.
Holotype.-Skull and mandible, F:A.M.43031. Figures 1, 7.
(6) Ustatochoerus skinneri, new species, from Turtle Buttes, Tripp County, South Dakota; referred remains from Brown and Cherry Counties, Nebraska, and geographic variety (6a) from Norton County, Kansas. (Ash Hollow or equal.)
Holotype.-Skull, mandible, and skeletal elements, F:A.M.33630. Figures 1, 8, 12.
(6b) Ustatochoerus skinneri santacruzensis, new variety, from the Santa Cruz area, Santa Fé County, New Mexico, and referred remains from Rio Arriba County, New Mexico.
Holotype.-Anterior portion of skull, F:A.M.32050. Figure 10.
(7) Ustatochoerus? schrammi, new species, from Boyd County, Nebraska, and questionably referred remains from Brown County, Nebraska, and Logan County, Colorado. (Valentine or equal.)
Holotype.-Partial right ramus, N.S.M.21-8-23H. Figure 3.

Detailed Lists of Types, Referred Specimens, and Synonymy

Ustatochoerus, total available specimens, 338
(1) Ustatochoerus californicus (Merriam)

From the Pliocene Deposits near Ricardo, Kern County, California
Merycuchoerus (Pronomotherium) californicus Merriam, 1917, Bull. Dept. Geol. Uni. Calif., X, p. 431 (name only).

Merycochoerus? (Pronomotherium?) californicus Merriam, 1919, ibid., XI, p. 575, Figs. 211215.

Metoreodon californicus (Merriam), Matthew, 1924, Bull. Amer. Mus. Nat. Hist., L, Art. 2, p. 182. Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 203, Figs. 146-147.

Specific Characters

Skull.-Larger than that of U. major; malar very deep below the orbit. Mandible.-Known only from symphysis; larger than that of U. major. Dentition.-Dental series longer and more robust than in U. major. Limbs.-Unknown. Measurements.-Table I.

Discussion

The holotype and paratypes are fragmentary and badly distorted by crushing, but there is enough evidence to refer the material to the genus U statochoerus and to show that the size is definitely greater than that of U. major.

Five specimens are here recorded:
Holotype.-Fragmentary skull
with $\mathrm{P}^{3}-\mathrm{P}^{4}$ alv. and $\mathrm{M}^{1-} \mathrm{M}^{3}\left(\mathrm{M}^{2}\right.$ $\mathrm{M}^{3} \mathrm{br}$.). (w) ${ }^{1}$
U.C. 21351 From U.C. collecting locality 1955, Melrose District, near Ricardo, Kern County, California.
Figured by Merriam, 1919, Figs. 211 and 213; Thorpe, 1937, Figs. 146-147.
Referred from Type Localitr.-
Partial right maxilla with C/-P1
alv. and $\mathrm{P}^{3}-\mathrm{P}^{4} \quad(\mathrm{w}+)$
Right $\mathrm{M}^{1}-\mathrm{M}^{2} .(\mathrm{w}+)$
Symphysis with $\mathrm{P}_{1}-\mathrm{P}_{4}$ rt.
The three specimens were associated with the holotype and were considered as paratypes
by Merriam (1919).

Tentatively Referred from Type Area.-
Right and left M_{3}. (w) F:A.M. $34489 \quad$ Collected by Joseph Rak, 1923.
These molars are tentatively referred because of their small size, which is approximately equal to that of U. major.

[^6]
(1a) Ustatochoerus californicus raki, ${ }^{1}$ new variety

From the Pliocene of Santa Fé County, New Mexico

Varietal Characters

Skull.-Unknown.
Mandible.-Slightly more massive than that of U. californicus and decidedly more so than that of U. major.

Dentition.-Superior series not known; length of inferior series somewhat longer than in U. californicus (in comparison with the superior series of that species); decidedly longer and more massive than in U. major.

Limbs.—Unknown.
Measurements.-Table I.

Discussion

The unusual size of the ramus and the massiveness of the dental series suggest that this specimen is either a distinct species or a large individual of U.californicus.
One recorded specimen:
Holotype.-Partial mandible with F:A.M. 42318 From 1st Wash, Santa Cruz $I_{1}-M_{3} . \quad(w \ddagger \ddagger)$ Area, Santa Fé County, New Mexico; collected by John C. Blick and William Klaus, 1938.
Figure 3.
The specimen is a very old individual but the cusps of P_{2} and P_{3}, which are characteristic of the genus, are still traceable. The spaces between the teeth (see Fig. 3) are due to the age of the individual and not to distortion.

(2) Ustatochoerus compressidens (Douglass)

From the Pliocene Deposits of the Lower Madison Valley, Gallatin County, Montana
Merycochoerus compressidens Douglass, 1901, Amer. Jour. Sci., (4), XI, p. 79, Fig. 4.
Metoreodon compressidens (Douglass), Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 204, Fig. 148.

Specific Characters

Skull.-Unknown.
Mandible.-Similar to that of U. profectus.
Dentition.-Superior series unknown; /C heavy; $\mathrm{P}_{1}-\mathrm{P}_{4}$ crowded and overlapping.

Limbs.-Unknown.
Measurements.-Table I.

[^7]
Discussion

Douglass ${ }^{1}$ stated that the remains of U. compressidens, Brachycrus laticeps, and B. madisonius were all from beds of the same age. It is now evident, however, that the holotype of U. compressidens came from the higher deposits (Pliocene) which are also exposed in lower Madison Valley. ${ }^{2}$

One recorded specimen:

Holotype.-Partial left ramus with	C.M. 801
	From lower Madison Valley, Gal-
	latin County, Montana; col-
	lected by Earl Douglass.
	Figured by Douglass, 1901, Fig. 4;
	Thorpe, 1937, Fig. 148.
	Figure 3.

(3) Ustatochoerus major (Leidy)

From the Upper Part of the Ash Hollow Formation, Nebraska
Merychyus major Leidy, 1858, Proc. Acad. Nat. Sci. Phila., X, p. 26; 1869, Jour. Acad. Nat. Sci. Phila., (2), VII, Pl. xı, Figs. 15-16.
Metoreodon major (Leidy), Matthew, 1924, Bull. Amer. Mus. Nat. Hist., L, Art. 2, p. 181. Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 205, Pl. xxxvir, Figs. 12-13.

Specific Characters

Skull.-Larger than that of U. profectus; elongated posterior to orbits; malar moderately deep; nasals short and retracted considerably more than those of U. profectus; anterior tip of nasals retracted to region above P^{3}; postglenoid process very large in comparison with that of U. profectus.

Mandible.-Typical of genus; larger and more robust than in U. profectus; smaller and lighter than in U. californicus espanolensis.

Dentition.-Well-developed cusps in superior and inferior premolars, more so than in U. medius; 'tendency for presence of cingula on superior molars; inferior premolars crowded and grooved on internal side.

Limbs.-Longer and heavier than in examples of U. profectus.
Measurements.-Tables I, II, and IX.

Discussion

The holotype (N.M.439) of Ustatochoerus major was found by F. V. Hayden while he was with G. K. Warren's Expedition of 1857. It was reported that this specimen came from the "sands of the Niobrara River," ${ }^{3}$ but an exact locality

[^8]was not designated. The greater portion of the referred material of U. major listed in this paper was found north of the Niobrara River a few miles east of the mouth of Minnechaduza Creek, in Cherry County, Nebraska. The Warren Expedition stopped at this locality on October 23 and 24, 1857, ${ }^{1}$ so it is entirely possible that the holotype came from this vicinity, especially since its fossilization is similar to that of the referred specimens from the same area. The Cherry County site, furthermore, is the only known locality along Warren's entire Niobrara River route where upper Ash Hollow fossils could possibly have been found in any abundance. In most areas in northern Nebraska the upper Ash Hollow deposits are absent or covered by talus.

The holotype consists only of a partial right maxilla and heretofore it has been difficult to assign any material to this species. Matthew ${ }^{2}$ considered U. profectus to be synonymous with U. major although he had previously established the former species. ${ }^{3 .}$ Thorpe, ${ }^{4}$ however, pointed out that distinct specific differences exist between U. major and U. profectus. The large amount of material now available for study confirms Thorpe's contention and suggests that the two forms are restricted to different stratigraphic horizons, U. major to the upper and U. profectus to the lower Ash Hollow. The present writers consider the associated skull and mandible, F:A.M. 34220 (Figure 9), from the Kat Quarry channels of northeastern Cherry County, Nebraska, as the best example of U. major and have based additional characters of the species on this well-preserved specimen.
U. major is the largest species of Ustatochoerus known from the Great Plains and represents the last reported survivor of the oreodonts in that region. It is surpassed in size, however, by U. californicus from California and U. californicus raki from New Mexico, intimating that the oreodonts may have survived longer in southwestern United States than in the Great Plains.

The F:A.M. specimens, except where otherwise stated, were collected by Morris Skinner, Ralph Mefferd, and Gordon Fletcher, 1930-1939.

Seventy specimens are here recorded:
Holotype.-Partial right maxilla ${ }^{5}$ N.M. 439 From the Ogallala deposits of the with $\mathrm{P}^{3}-\mathrm{M}^{2}$. (w)

Niobrara River region, $\mathrm{Ne}-$ braska; collected by F. V. Hayden, 1857.
Figured by Leidy, 1869, Pl. XI, Figs. 15-16; Thorpe, 1937, Pl. xxxvir, Figs. 12-13.
Figure 9.

[^9]| Referred.- | | | |
| :---: | :---: | :---: | :---: |
| (A) From the Kat ${ }^{1}$ Quarry Channels, S. of Sparks, on the N. Side of the Niobrara River, Cherry County, Nebraska: | | | |
| two skulls, etc. | | | |
| Complete skull and mandible with $\mathrm{I}_{1}^{1}-\mathrm{M}_{3}^{3}$. Figures 1, 9 . | L.K. | (w) | $\begin{gathered} \text { F:A.M. } \\ 34220 \end{gathered}$ |
| The teeth of the skull so nearly duplicate those of the holotype, N.M.439, that the writers have based additional specific characters on this well-preserved specimen. | | | |
| Skull with $\mathrm{I}^{1}-\mathrm{I}^{2}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}$, lacking nasals. | E.K. | (w) | 34219 |
| cranium | | | |
| Posterior portion of skull........................ | W.L.K. | | 34479 |
| SEven partial maxilla | | | |
| Two right maxillæ with | | | |
| P^{4} (erupt.) M^{2}. . | W.L.K. | (-м) | 43137 |
| $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{dP}^{3}$ (C/germ and P^{1} alv.). | Q.L.K. | (I) | 34382 |
| Five left maxillæ with | | | |
| $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{P}^{\mathbf{3}}$ (br.) (P^{1} alv.). | K. | ($\mathrm{w}+$) | 33622 |
| $\mathrm{P}^{1}-\mathrm{P}^{\mathbf{2}}$ alv. and $\mathrm{P}^{\mathbf{3}}-\mathrm{M}^{\mathbf{2}}$ (br.). | K. | (-м) | 33629 |
| P^{1} (alv.) P^{3}. | W.L.K. | (w) | 34229 |
| $\mathrm{M}^{1}-\mathrm{M}^{2}$ alv. and M^{3}. | K. | (w+) | 34230 |
| $\mathrm{P}^{1} \mathrm{P}^{3}($ alv.). | E.K. | (м) | 34478 |
| twelve mandibular rami | | | |
| Two partial right rami with | | | |
| P_{1} (rt.) M_{3} (P_{2} alv.). | E.K. | (w+) | 34237 |
| $\mathrm{M}_{1}\left(\right.$ alv.) $-\mathrm{M}_{3}$. | W.L.K. | (w) | 43138 |
| Four right rami, immature, with | | | |
| P_{1} (alv.) $-\mathrm{dP}_{4}-\mathrm{M}_{1}$ (br.) (P_{2} br.). | K. | (1) | 33628 |
| $\mathrm{P}_{1}-\mathrm{dP}_{4}-\mathrm{M}_{3}$ (erupt.) ($\mathrm{P}_{2}-\mathrm{P}_{3}$ germs). | W.L.K. | (I) | 34236 |
| $\mathrm{P}_{1}-\mathrm{M}_{2}$ ($\mathrm{P}_{2}-\mathrm{P}_{3}$ alv. and P_{4} erupt.). | Q.L.K. | (-m) | 34383 |
| $\mathrm{I}_{2}-\mathrm{P}_{1}$ alv. and $\mathrm{dP}_{2}-\mathrm{M}_{1}$ (erupt.)... | E.K. | (I) | 34477 |
| Three partial left rami with | | | |
| $\mathrm{M}_{1} \ldots$ | W.L.K. | (w+) | 34245 |
| $\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{3}\right.$ alv. and $\mathrm{M}_{2}-\mathrm{M}_{3}$ br.). | E.K. | (w+) | 34249 |
| M_{3}. | E.K. | ($\mathrm{w}+$) | 34475 |
| Three partial left rami, immature, with | | | |
| $\mathrm{P}_{2}-\mathrm{P}_{3}$ alv. and dP_{4}. | W.L.K. | (1) | 34246 |
| P_{1} (erupt.) $-\mathrm{dP}_{2}-\mathrm{dP}_{4}$. | C.K. | (I | 34351 |
| $\mathrm{dP}_{2}-\mathrm{dP}_{4}$. | E.K. | (I) | 34476 |

[^10]| | LIMBS | | F:A.M. |
| :---: | :---: | :---: | :---: |
| Tibia. (Figure 12). | | E.K. | 34379 |
| Distal portion of tibia. | | W.L.K. | 43201 |
| Radius. (Figure 12). | | T.S.K. | 37148 |
| Metacarpal III. (Figure 12). | | T.S.K. | 34354 |
| Metacarpal. . | | L.K. | 43202A |

(A') From the Leptarctus Quarry, S. of Sparks, on the N. Side of the Niobrara River, Cherry County, Nebraska (same stratigraphic level as the Kat Quarry channels):

FOUR SKULLS, ETC.
Skull with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ (P^{1} alv.) (lacking right zygomatic
arch) . (м) (м) 34221
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$. (w \quad (w) 34223
Anterior portion of skull with I^{1} (alv.) $-M^{3} \ldots \ldots . . \ldots$. (w) (w) 34225
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$. . (w+) 34232
CRANIUM, IMMATURE
Posterior portion of skull... 34224
This specimen is narrower than other examples, and may rep-

FOUR MAXILLA
Right maxilla with C/-M ${ }^{3}$ (M ${ }^{\mathbf{1}}$ alv.)............................... (w) (w) 34226
Three partial left maxillæ with
$\mathbf{P}^{2}-\mathbf{M}^{3}$ (P^{4} br.). (w ${ }^{+}$+ 34227
M$^{2}-\mathbf{M}^{3}$. \quad (w+) 34228

THIRTEEN MANDIBULAR SPECIMENS

Seven right rami with
/C-M M_{3} (br.) . (w+ (w) 34233
P_{1} (br.) $-\mathrm{M}_{3}$ (P_{2} br.) . (w \ddagger) 34234

P_{1} (br.) $-P_{4}$ (P_{2} alv.) . (w) 34241

Two partial left rami, immature, with
$\mathrm{P}_{1}-\mathrm{M}_{2}\left(\mathrm{P}_{2}\right.$ germ and $\mathrm{P}_{3}-\mathrm{P}_{4}$ alv.).
(I) 34247
$\mathrm{dP}_{2}-\mathrm{dP}_{3}$
(I) 34353

($\mathrm{A}^{\prime \prime}$) From the Hans Johnson Quarry, S. of Sparks, on the N.			
Side of the Niobrara River, Cherry County, Nebraska (same stratigraphic level as the Kat Quarry channels):			
Cranium			F:A.M.
Posterior portion of skull.		(м)	34367
Two mandibular specimens, immature			
Mandible with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{dP}_{4}-\mathrm{M}_{3}$ (erupt.) (P_{3} germ)			34349
Right ramus with dP_{3} (br.)- M_{1} (br.).	 ${ }^{\text {a }}$	33627
metatarsal			
Metatarsal III. Figure 12....................................... . .			37299
(A'") From the Xmas Quarry, S. of Sparks, on the N. Side of the Niobrara River, Cherry County, Nebraska (approximately same stratigraphic level as the Kat Quarry channels):			
FEMUR			
Femur. Figure 12.........................			33664
($\mathrm{A}^{\prime \prime \prime \prime}$) From Various Localities, Cherry County, Nebraska:			
F:A.M. collections:			
Partial right maxilla with P^{1} alv. and $\mathrm{P}^{2}-\mathrm{P}^{3}$ erupt.	F:A.M. 34366	From Spring Canyo Bear Creek.	mouth of
Left ramus with $\mathrm{P}_{3}-\mathbf{M}_{1}$. (w) $\mathrm{P}_{3}-\mathrm{P}_{4}$ large, M_{1} small.	34373	From $1 \frac{1}{2}$ mi. below Bridge.	ing Spring
N.S.M. collections:			
Partial right ramus, immature, with $\mathrm{dP}_{4}-\mathrm{M}_{2}$.	$\begin{gathered} \text { N.S.M.3-21-6-32 } \\ \text { N.P. } \end{gathered}$	From N. and E. Office, on the S. s brara River.	urge Post of the Nio-
(B) From Brown County, Nebraska:			
Partial right maxilla with P ${ }^{4} \quad$ maxilla, etc. \quad F:A.M. $34377 \quad$ From S. of Fairfield Creek.			
\mathbf{M}^{1} br. and $\mathbf{M}^{2}-\mathbf{M}^{3}$, and partial mandible with $\mathrm{M}_{1}-$ M_{3}. (w \ddagger) \mathbf{P}^{4} very small.			
THREE MANDIBULAR SPECIMENS			
Mandible, immature, with P_{1} - $\left.\mathrm{dP}_{2}-\mathrm{M}_{2 .} . \quad \text { (}\right)$	34376	From Plum Creek.	
Two left rami with			
$\begin{aligned} & \mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{3} \text { alv. }\right) . \quad(\mathrm{w}+) \\ & \mathrm{P}_{4} \text { very large. } \end{aligned}$	33624	From Plum Creek.	
$\begin{gathered} P_{2} \text { (alv.) }-\mathbf{M}_{3 .} \quad(\mathrm{w}+) \\ \text { Massive } \mathrm{P}_{3}-\mathrm{P}_{4} . \end{gathered}$	33626	From J. Wilson Creek.	ry, Plum

[^11]
(3a) Ustatochoerus major texanus, new variety

From the Pliocene Deposits, North of Amarillo, Potter County, Texas

Varietal Description

Skull.-Known only from fragment with M^{3} and left zygomatic arch; zygomatic arch very light; postglenoid process light in comparison with that of U. major.

Mandible.-Approximately same length as average examples of U. major, but shallower.

Dentition.-Superior series known from an M^{3} only; M^{3} indicates a length of series approximating that of U. major; inferior series equal to that of large U. major.

Limbs.-About the size and proportions of those of U. profectus; decidedly shorter than in U. major.

Measurements.-Table I and II.

Discussion

The holotype of this new variety, although incomplete, displays characters which are distinct from U. major. The size of the dentition of U. major texanus is nearly equal to that of U. major but the limbs approach in size those of U. profectus, a smaller species.

The specimens of U. major texanus here listed were collected by Nelson J. Vaughan, John Lynch, and Charles H. Falkenbach in 1938.

Two specimens are here recorded:
Holotype.-M ${ }^{3}$ (br.) and left zygo- F:A.M. 37563 From N. of Amarillo ${ }_{2}$ Potter matic arch, partial mandible with $\mathrm{I}_{3}-\mathrm{M}_{3}$ (br.) ($\mathrm{P}_{1}-\mathrm{P}_{3}$ rt.), 2 radii (1 County, Texas.
partial), 2 ulno (1 partial), femur, tibia, and manus and pes elements. ($\mathrm{w}+$)

Referred from Type Area:

Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{dP}^{4}-\mathbf{M}^{3}$ br., partial mandible with $\mathrm{I}_{1}-\mathrm{dP}_{4}-\mathrm{M}_{2}$, and skeletal fragments. (I) (I) 37502

(4) Ustatochoerus medius (Leidy)

From the Valentine Formation, Nebraska; Referred Specimens from South Dakota; and Geographic Varieties (4a) from Colorado and (4b) from Kansas

Merychyus medius Leidy, 1858, Proc. Acad. Nat. Sci. Phila., X, p. 26; 1869, Jour. Acad. Nat. Sci. Phila., (2), VII, Pl. xi, Figs. 12-14; 1870, Proc. Acad. Nat. Sci. Phila., XXII, p. 109. Metoreodon? medius (Leidy), Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 206, Pl. xxi, Fig. 3; Pl. xxxvir, Figs. 14-16.
Merycochoerus coenopus Scott, 1890, Morpholog. Jahrb., XVI, p. 346, Pl. xvi, Figs. 33-34.

Specific Characters

Skull.-Smaller than that of U. profectus but larger than that of $U . ?$ schrammi; nasals longest of genus (in proportion to size of skull); anterior tip of nasals retracted to region above $\mathrm{P}^{\mathbf{1}}-\mathrm{P}^{\mathbf{2}}$.

Mandible.-Typical of genus; similar to that of U. profectus except for smaller size.

Dentition.-Cusps on superior and inferior premolars not as well developed as in U. major or U. profectus.

Limbs.-Smaller than those of U. profectus.
Measurements.-Tables I, II, and IX.

Discussion

The holotype of Ustatochoerus medius was discovered by F. V. Hayden in 1857 in the "sands of the Niobrara River," ${ }^{1}$ but a definite collecting locality was not mentioned. It appears to have been found sometime during the period from September 23 to October 25, 1857, when the G. K. Warren Expedition, which Hayden accompanied, was in the vicinity of what is now Cherry County, Nebraska. There are many localities along this route where the Valentine formation, which contains the remains of U. medius, is well exposed.

The holotype consists only of a partial left ramus. Leidy ${ }^{2}$ suggested that "Merychyus medius" (= Ustatochoerus medius) and "Merycochoerus rusticus" (= Brachycrus rusticus) were very closely related forms. The present writers find that B. rusticus is from the Miocene ${ }^{3}$ and U. medius from the Pliocene. Both species are now represented by much additional material, including skulls, mandibles, and skeletal elements.

Four partial skeletons of U. medius were found in one field block (F:A.M. 43030A-D) in the lower Valentine formation near Long Pine, Brown County, Nebraska, and a second group of six associated individuals (F:A.M.3359133596) was collected from the lower Valentine deposits of Devil's Gulch, Brown County (see page 25 for detailed list of specimens). These examples, together

[^12]with the specimens from other localities, aid considerably in better understanding the characters of U. medius. The following comparative measurements of the adult individuals of the two above-mentioned groups illustrate to some extent the individual variation found within this species:

	Wear	Interorbital width (min.)	Height of skull above M^{2}	Posterior portion of nasals	$\underset{\mathrm{C} /-\mathrm{M}^{3}}{\text { Length }}$
Associated skulls					
F:A.M.43030A	($\mathrm{w}+$)	72.	72.	Medium	120.
43030B	(w+)	69.	74.	Light	122.
43030D	(w)	69.	72.	Light	122.
Associated skulls					
F:A.M. 33591	(w)	70.	77.	Light	122.
33595	(м)	82.	84.	Heavy	125.
33596	(w+)		...		126.

Some specimens of U. medius are larger and more robust than any of those cited above, but most of the larger forms occur at somewhat higher levels within the Valentine formation. Such variation in size in specimens from different levels within a single formation is, of course, to be expected. The holotype of U. medius is intermediate in size to the largest and smallest examples of the species.

The description of Merycochoerus coenopus Scott was based on the distal end of an ulna and a partial manus and pes (M.C.Z.9156) which were collected by Samuel Garman of Harvard University in 1882 near the head of Wolf Creek, Nebraska. The type material, as well as Samuel Garman's original data concerning these specimens, was loaned to the writers by Dr. Thomas Barbour and Dr. Alfred S. Romer. Field parties from the University of Nebraska State Museum under the direction of Thompson M. Stout and C. Bertrand Schultz made small collections of Pliocene mammal remains from the head of Wolf Creek along the Nebraska-South Dakota boundary line. So far as could be determined, the only fossils found along the banks of Wolf Creek near its head are of Pliocene (Valentine) age, and the fossilization of these remains is much the same as that of Garman's material. Furthermore, the holotype of M. coenopus compares well with skeletal elements of U. medius from the Valentine of northern Nebraska. The writers regard M. coenopus as a synonym of U. medius.

Eighty-eight specimens are here recorded:
Holotype.-Partial left ramus N.M. 118
From Niobrara River valley, Nebraska; collected by Lieutenant G. K. Warren, 1857.
Figured by Leidy, 1869, Pl. xi, Figs. 12-14; Thorpe, 1937, Pl. xxxvir, Figs. 14-16.
Figure 2.
Referred.-(A) From Brown County, Nebraska (collected by Morris Skin-ner, Ralph Mefferd, Gordon Fletcher, and associates, 1933-1940):
From N. and E. of Long Pine:

four associated skulls, etc.		F:A.M.
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$. Figures 1, 2.	(w+)	43030B
Skull (lacking right zygomatic arch) with $\mathrm{I}^{-}-\mathrm{M}^{3}$ (I^{2} alv.) and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$.	(w)	43030A
Skull with $I^{1}-M^{3}$ and partial mandible with $I_{1}-P_{1}$ alv. and $\mathrm{P}_{2}-\mathrm{M}_{3}$.	($\mathrm{w}+$)	43030D
Skull (lacking nasal region), immature, with I^{1} (alv.)- $\mathrm{dP}^{2}-\mathrm{M}^{2}$ and mandible with $\mathrm{I}_{1}-\mathrm{dP}_{3}-\mathrm{M}_{2}$.	(I)	43030C
3 partial humeri, 8 radii (3 partial), 7 ulnæ, 3 femora, 6 tibie (2 partial), various manus and pes elements, and vertebre. Figures 11, 12 (in part)		43030A-D
The above four skulls and miscellaneous material were found associated in one field block (see discussion, p. 23).		
From Devil's Gulch, N. and E. of Ainsworth:		
Anterior portion of skull with $\mathrm{I}^{-}-\mathrm{M}^{3}$ and partial mandible with		
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$. This specimen may represent a female.	(w)	33591
Anterior portion of skull with $\mathrm{I}^{-} \mathrm{M}^{3}$ and partial mandible with P_{1} (br.) $-\mathrm{M}_{8}$ (br.).	(w)	33595
Right anterior portion of skull with $\mathrm{I}^{1}($ alv. $)-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}$.	(w+)	33596
Anterior portion of skull, immature, with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-$ $\mathrm{dP}-\mathrm{M}^{2}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2} \ldots \ldots \ldots \ldots$.	(1)	33592
Anterior portion of skull, immature, with $\mathrm{I}^{-}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-$ $\mathrm{dP}^{2}-\mathrm{M}^{2}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{dP}_{2}-$ M_{2}.	(I)	33593
Anterior portion of skull, immature, with I^{-}C/alv. and dP^{L} M^{2}, and partial left ramus with $\mathrm{dP}_{4}-\mathrm{M}_{2}$.	(1)	33594
Distal end of humerus, partial radius, and manus..........		33591-6
The above six partial skulls and miscellaneous material were found associated in one field block. The mature specimens show marked individual variation (see discussion and measurements, pp. 23-24).		

MAXILLA, IMMATURELeft maxilla, immature, with $\mathbf{P}^{1}-\mathrm{dP}^{3}-\mathrm{M}^{2}\left(\mathbf{P}^{2}\right.$ germ).(I) 33615
THREE MANDIBULAR RAMI
Partial right ramus with $\mathrm{P}_{2}-\mathrm{M}_{2}$. (w) 34357
Partial right ramus, immature, with $\mathrm{I}_{1}-\mathrm{P}_{2}$ alv. and $\mathrm{dP}_{3}-\mathrm{dP}_{4}$.. (I) 34372
Partial left ramus with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (br.) ($\mathrm{I}_{3}-/ \mathrm{C}$ alv.). (м) 33608
From Fairfield Creek area:
TWO SKULLS
 sociated skulls, F:A.M.43030A-C, which are listed above.
TWO MAXILL届
Partial right maxilla with $\mathrm{P}^{4}-\mathrm{M}^{3}$. (w^{++}) 33610

TWO MANDIBULAR RAMIThe dentition of this specimen is robust.
Partial right ramus with $\mathrm{P}_{1}-\mathrm{M}_{3}$ (br.) (w) 33601
From Fairfield Falls Quarry:
MAXILLA
Left maxilla with $\mathbf{P}^{1}($ alv. $)-\mathbf{M}^{3}$ (w) 33611
TWO MANDIBULAR RAMI
Partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}$. 43131
Partial right ramus with P_{2} (alv.) $-\mathrm{M}_{1}$ 34369
From various localities in Brown County:SKULL, ETC.

> Anterior inferior portion of skull with C/-M ${ }^{3}$, partial humerus, ulna, radius, and manus and pes elements. (w_{\ddagger})

F:A.M. $33598 \quad$ From Jones Canyon, Dutch Creek.

FIVE MANDIBULAR RAMI
Mandible with $\mathrm{I}_{1}-\mathrm{M}_{3} . \quad\left(\mathrm{w}_{+}^{\dagger}\right) \quad 33613 \quad$ From Jones Canyon, Dutch Creek. The dentition of this specimen is robust.

Partial right ramus with $\mathbf{M}_{2^{-}}$
34359 M_{3} and distal end of humerus. (w)
Partial left ramus with $\mathrm{M}_{1^{-}} \quad 34370$ M_{2}. (w)
Partial left ramus with \mathbf{M}_{3} ($\mathrm{w} \ddagger$)
Partial left ramus, immature, with $\mathrm{I}_{2}-\mathrm{I}_{3}$ rt. and $/ \mathrm{C}-\mathrm{dP}_{2}-$ dP_{4} (P_{1} germ). (I)

34371
34352

FEMUR
Femur. $34380 \quad$ From Moore Creek.
(A') From Brown County, Nebraska (collected by University of Nebraska State Museum field parties, 1913-1920):
THREE MAXILLARY SPECIMENS N.S.M.

Right and left maxillæ with $\mathrm{I}^{2}-\mathrm{P}^{3}$. (w+)

Two partial right maxillæ with $\mathrm{I}^{2}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{P}^{3}-$ (br.). (w) $\mathrm{C} /-\mathrm{P}^{3}$. (м)

32A-15-6-20 From near Ainsworth. S. and W.

3-7-11-13W. From Bone Creek.
32B-15-6-20 From near Ainsworth. S. and W.
MANDIBULAR RAMUS
Partial right ramus with $\mathrm{I}_{2}-$ $/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$. ($\mathrm{w}+$)
42-16-6-20 From near Ainsworth. W. and S.
(B) From Cherry County, Nebraska (collected by Morris Skinner, Ralph Mefferd, Gordon Fletcher, and associates, 19331940):
From Nenzel Quarry:

	maxilla	F:A.M.
Partial right maxilla with $\mathrm{M}^{\mathbf{2}} \mathrm{M}^{3}$.	(w^{++})	34360

FOUR MANDIBULAR RAMI

Four partial left rami with		
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$.	(w^{\ddagger})	33602
$\mathrm{P}_{4}-\mathrm{M}_{1}$ (br.).	(w)	37232
M_{3}.	(w \ddagger)	37233
dP_{4} (br.) $-\mathrm{M}_{2}$.	(I)	34361

From Burge Quarry:
MAXILLA
Partial left maxilla with $\mathbf{M}^{1}-\mathbf{M}^{2}$ (br.) . (w) 43132
TWO MANDIBULAR RAMI
Right ramus with $\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{3}-\mathrm{M}_{3}$ (/C alv.). (м) (м) 33603

The above specimen possesses a very heavy tooth series.
METATARSAL
Metatarsal. 43202B
From Midway Quarry:
TWO MANDIBULAR RAMI
Partial right ramus, immature, with P_{1} (br.) $-M_{1}\left(P_{2}-P_{4}\right.$ germs) (I) 34378

HUMERUS

From various localities in Cherry County: three skulls, etc.		
Skull (lacking posterior right side) with $\mathrm{I}^{-} \mathrm{M}^{3}, 2$ radii, 2 ulnæ, 2 partial tibiæ, 2 calcanea, 2 astragali, manus and pes elements, and 3 cervical vertebræ. (м)	F:A.M. 37226	From N. side of Minnechaduza Creek, N.W. of Valentine.
Fragments of skull with P^{4} $\mathrm{M}^{\mathbf{2}}$ (M^{1} alv.), mandible with I_{1} (alv.) $-\mathrm{M}_{3}, 2$ partial scapulx, 2 partial humeri, 2 radii, 2 ulnæ, partial femur, partial tibia, and various manus and pes elements. (w)	43042	From W. side of Snake River, N. of Burge Quarry.
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{P}^{1}-\mathrm{P}^{2}$ absent, $\quad \mathrm{M}^{2}-\mathrm{M}^{3}$ br.), partial right ramus with $I_{1}(\mathrm{rt})-.\mathrm{M}_{1}$, and pes elements. ($\mathrm{w}+$)	43136	From N. side of Niobrara River, between Crane and Garner Bridges.
four mandibular rami		
Partial right ramus with $\mathbf{M}_{1}-$ M_{2}. ($\mathrm{w} \ddagger$)	34375	From $1 \frac{1}{2}$ mi. below Boiling Spring Bridge.
Partial right ramus, immature, with P_{3} (germ) $-\mathrm{dP}_{4}-$ M_{2} (br.). (I)	34362	From "Devil's Jump Off," below Boiling Spring Bridge.
Partial left rami with $\mathrm{I}_{2}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$ (P_{3} alv.). (м)	33612	From Railway Quarry A.
Partial left ramus, immature, with $\mathrm{dP}_{2}-\mathrm{M}_{2}$. (I)	37229	From W. of Nenzel Quarry, N. side of Niobrara River.

(B') From Cherry County, Nebraska (collected by University

 of Nebraska State Museum field parties, 1915-1935):From Railway Quarry A:

two maxille, immature		N.S.M.
Partial right and left maxillæ with $\mathrm{P}^{1}-\mathrm{dP}^{3}-\mathrm{M}^{1} \ldots \ldots \ldots \ldots .$.	(1)	54-12-7-30
		N.P.
Partial left maxilla with $\mathrm{P}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{1}$ ($\mathrm{P}^{\mathbf{3}}$ absent).	(1)	$\begin{gathered} \text { 22-17-6-32 } \\ \text { N.P. } \end{gathered}$
three mandibular rami		
Partial right ramus, immature, with $\mathrm{I}_{1}-\mathrm{P}_{2}$ alv. and $\mathrm{dP}_{3}-\mathrm{M}_{1}$ (br.)	(1)	11-8-6-33
		N.P.
Partial left ramus with P_{3} (alv.)- M_{3} (br.).	(w+)	59-11-8-15
		B., H., W
Partial left ramus, immature, with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and P_{1} (germ)-$\mathrm{dP}_{2}-\mathrm{dP}_{4}$.	(I)	3-23-8-30
		N.P.

From various localities in Cherry County:
Skull with
mandible $\mathrm{P}^{1}-\mathrm{M}^{3}$ (erupt.),
with $\mathrm{P}_{2}-\mathrm{M}_{3}$$\quad$ N.S.M. $1-24-6-35 \quad$ From E. side of Snake River.

THREE MANDIBULAR RAMI
Two partial right rami, immature, with
$\mathrm{dP}_{4}-\mathrm{M}_{2}$ (P_{4} germ). (I$) \quad$ 13-11-6-34 From E. of Railway Quarry A, 40
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and P_{1} (germ)-$\mathrm{dP}_{2}-\mathrm{P}_{4}$ (alv.). (I) N.P.

22-21-6-35 N.P.
$\begin{array}{ccc}\text { Partial left ramus, immature, } & \text { 14-1-9-31 } & \text { From U.S. Game Preserve, N.E. of } \\ \left.\text { with } P_{1} \text { (germ) }-\mathrm{dP}_{4}-\mathrm{M}_{1} \text {. (} \mathrm{I}\right) & \text { N.P. } & \text { Valentine. }\end{array}$
(C) From Hay Springs Area, Sheridan County, Nebraska:

SKULL, ETC.
Skull with $\mathrm{I}^{1} \mathbf{M}^{3}$, partial tibia, calcaneum, 2 astragali and partial manus.

F:A.M.37225 From S. side of the Niobrara ($\mathrm{w}+$)

This specimen is larger than typical examples of U. medius but smaller than the typical U. profectus material.

(C') From Sheridan County, Nebraska (collected by Samuel
Garman, Harvard University, 1882):
Distal end of ulna, partial M.C.Z. 9156 manus, and partial pes.

From near the head of Wolf Creek, N. of Hay Springs.

Figured by Scott, 1890, Pl. xvi, Figs. 33-34; Thorpe, 1937, Pl. xxxi, Fig. 3.
The above specimen is the holotype of "Merycochoerus coenopus" Scott (see discussion, p. 24).
($\mathrm{C}^{\prime \prime}$) From Sheridan County, Nebraska (collected by University of Nebraska State Museum field party, 1933):

Partial left maxilla with \mathbf{P}^{4}	N.S.M.	From Pine Creek, S. of Rushville.
M^{3} (br.), partial mandible	$4-19-7-33$	
with $\mathbf{P}_{1}-\mathbf{M}_{3}$ (br.). $\left(\mathrm{w} \ddagger^{+}\right)$	N.P.	

(D) From Pebble Creek Drainage, Dawes County, Ne- braska (collected by Ted Galusha, 1938): F:A.M.
Partial right ramus with $/ \mathrm{C}$ (alv.) $-\mathrm{M}_{3}$ (br.) (P_{1} br., $\mathrm{P}_{2}-\mathrm{P}_{3}$ alv.). . (w+) 43198(E) From Todd County, South Dakota (collected by Morris

Anterior portion of skull with F:A.M. 37300 From E. end of Hay Stack Butte $\mathrm{I}^{1} \mathrm{M}^{3}$ (C/-M ${ }^{1} \mathrm{rt}$.), manE. of Mission.
$\begin{array}{cc}\text { Anterior portion of skull win } & \mathrm{F}: \text { A.M.3 } \\ \mathrm{I}^{1}-\mathrm{M}^{3}\left(\mathrm{C} /-\mathrm{M}^{1} \mathrm{rt} .\right) \text {, man- } & \text { E. of Mission. }\end{array}$

```Skinner and Ralph Mefferd, 1937): dible with \(\mathrm{I}_{1}(\mathrm{rt})-.\mathrm{M}_{2}(\mathrm{br}\).), 2 partial humeri, 2 radii (1 partial), distal end of femur, partial tibia, and manus and pes elements. ( \(\ddagger^{+}+\))
    Skinner and Ralph Mefferd, 1937):
        dible with }\mp@subsup{\textrm{I}}{1}{}(\textrm{rt.}.)-\mp@subsup{M}{2}{}(\textrm{br}.)
        partal h(men, 2 (adi
```

(E) From Todd County, South Dakota (collected by Morris
(
(F) From Joe Thin Elf Gravel Pits, N.E. of Mission, Mel-
lette County, South Dakota (collected by Morris Skinner,
Ralph Mefferd, and Gordon Fletcher, 1940):

maxilla		F:A.M.
Partial left maxilla with $\mathrm{M}^{-} \mathrm{M}^{3}$ (br.).	(w+)	43134
mandible		
Partial mandible with I_{1} (rt.)- M_{2} (P_{4} alv.)	(${ }^{+}{ }^{+}$)	43133

(4a) Geographic Variety from Logan and Weld Counties, Colorado.-
(G) From Pawnee Creek Area, Weld County, Colorado (collected by John C. Blick and William Klaus, 1931-1933):
From "Horse Quarry":
SKULL AND MANDIBLE
Anterior portion of skull with C/-M33....................... (w+) 33501
Partial mandible with $\mathrm{I}_{3}-\mathrm{M}_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.......................... w) 33501A
The partial skull and mandible were found closely associated and probably belong to one individual.
MAXILLA
Partial right maxilla with C/-M ${ }^{3}$ (P^{1} br. and P^{4} alv.)........ (w+) 33694
two mandibular rami

Partial left ramus with $\mathrm{P}_{4}-\mathrm{M}_{2} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$. $\ldots \ldots{ }^{2} \ddagger^{+}$) 33507
From "Mastodont Quarry":
partial skull
Anterior portion of skull (with left zygomatic arch) with $\mathrm{I}^{1}-\mathrm{I}^{2}$

THREE MANDIBULAR RAMI

Three partial right rami with		F:A.M.
$\mathrm{P}_{1}-\mathrm{M}_{3}$ (br.).	(w)	33505
P_{1} and $\mathrm{M}_{1}-\mathrm{M}_{3}$ (br.).	(w)	33506
I_{2} (rt.) $-\mathrm{M}_{3}$ (br.) ($\mathrm{dI}_{2}-\mathrm{dI}_{3} \mathrm{rt}$. and /C erupt.)	(-M)	33503

From general area:

maxilla		Col.M.
Partial left maxilla ${ }^{1}$ with $\mathrm{I}^{3}-\mathrm{P}^{\mathbf{1}}$ (C / br.) and $\mathrm{P}^{4}-\mathrm{M}^{3}$.	(w+)	2-10

MAND		F:A.M.
Partial left ramus with P_{3} (alv.) $-\mathrm{M}_{1}$	(w \ddagger)	43313

(H) From Cedar Creek Area, Logan County, Colorado:

THREE SKULLS, ETC.

Posterior portion of skull with \mathbf{M}^{2} (br.) $-\mathbf{M}^{3}$, partial left ramus with \mathbf{M}_{1} (br.)\mathbf{M}_{3}, humerus, ulna, tibia, and astragalus. ($\mathrm{w} \ddagger$)
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and partial mandible (attached) with $\mathrm{I}_{2}-$ M_{3}. ($\mathrm{w} \ddagger$)
Composite skeleton (mounted in Amherst College Museum), skull with $\mathrm{I}^{1} \mathrm{M}^{3}$.
A.M. $9050 \quad$ Collected by H. T. Martin, 1908.

Figured by Matthew, ${ }^{2}$ 1901, Fig. 28 (in part).
A.M. 9469 Collected by Barnum Brown, 1901.
A.C.19-104 Collected by F. B. Loomis, 1919. Figured by Loomis, 1920, Figs. 1-3; Thorpe, 1937, Figs. 142143, Pl. xlvir, Fig. 1.

Loomis ${ }^{3}$ referred the above specimen to "Ticholeptus rusticus" (= Brachycrus rusticus), apparently comparing it with other material from Colorado which Matthew ${ }^{4}$ had provisionally referred to B. rusticus. The present writers ${ }^{5}$ have found that Matthew's Colorado specimens, as well as the Amherst skeleton, are generically distinct from Brachycrus and are definitely referable to the new genus, Ustatochoerus. In the skull, A.C.19-104, the nasals are not noticeably retracted and the infraorbital foramen is on the side of the face above the posterior premolar region as in Ustatochoerus, while in Brachycrus rusticus there is a pronounced retraction of the nasals and the infraorbital foramen is above the central molar region within the facial depression.

[^13]| Mandible with $\mathrm{I}_{1}-\mathrm{M}_{3} .\left(\mathrm{w}^{+}{ }^{+}\right)$ | A.M. 9056 | From Sand Canyon; collected by Barnum Brown, 1898.
 Figured by Matthew, ${ }^{1}$ 1901, Fig. 27. |
| :---: | :---: | :---: |
| Posterior portion of left ramus, radius, partial ulna calcaneum, astragalus, and partial manus. | A.M. 9049 | Collected by Barnum Brown, 1898. |

(4b) Geographic Variety from Norton County, Kansas.-
(I) From 2 Mi. S. of Densmore (collected by George Sternberg, 1933):
skoll, etc. F:A.M.
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{2}-\mathrm{M}_{3}$, and distal end of humerus.. (w \ddagger^{+}) 33696
(4c) Ustatochoerus medius mohavensis, ${ }^{2}$ new variety
From the Pliocene Deposits, North of Barstow, San Bernardino County, California

Varietal Description

Skull.-Known only from anterior portion; palate narrower than that of U. medius.

Mandible.-Unknown.
Dentition.-Superior series longer than average examples of U. medius and approximately same length as that of U. medius novomexicanus, but with premolars somewhat lighter.

Limbs.-Unknown.
Measurements.-Table I.

Discussion

The holotype of this variety comes from the "Hemicyon Stratum" of the First Division. ${ }^{3}$ No examples of Ustatochoerus have been reported from the Miocene deposits underlying the "Hemicyon Stratum" which contain the remains of Brachycrus and Merychyus.
One recorded specimen:
Holotype.-Anterior portion of F:A.M. 34464 From the "Hemicyon Stratum," skull with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ (br.) (P^{1} alv.). ($\mathrm{w}+$)

F:A.M. $34464 \quad$ From the "Hemicyon Stratum," | Barstow area, San Bernardino |
| :---: |
| County, California; collected by |
| Joseph Rak, 1923. |
| Figure 10. |

[^14]
(4d) Ustatochoerus medius novomexicanus (Frick)

From the Pliocene Deposits, North of Santa Fé, New Mexico
Merychyus medius race novomexicanus Frick, 1929, Nat. Hist., XXIX, No. 1, p. 107.
Metoreodon novomexicanus (Frick), Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 207, Figs. 150-151.
Metoreodon species Frick, 1937, Bull. Amer. Mus. Nat. Hist., LXIX, p. 23, Fig. 2A.

Varietal Characters

Skull.-Slightly larger and more robust than typical examples of U. medius. Mandible.-Larger and more robust than U. medius.
Dentition.-Superior and inferior series longer and more robust than average examples of U. medius.

Limbs.-Typical of U. medius.
Measurements.-Tables I, II, and IX.

Discussion

The name novomexicanus was proposed by Frick ${ }^{1}$ in his account of the discovery of a group of three immature oreodont skeletons (F:A.M.33662, 33662A, and 33662 B) from the Santa Fé area of New Mexico. The specimens were skillfully prepared and left in position in the original matrix as found, and are now on exhibition in the American Museum of Natural History.

Thorpe, ${ }^{2}$ in describing this form, designated a ramus, F:A.M.32051, and a partial skull, F:A.M.32050, as cotypes, but pointed out that the ramus was much smaller than the skull. The collection of Ustatochoerus material from the Santa Fé area has been greatly increased since 1937, the date of Thorpe's publication, and the evidence now available shows that four distinct forms of Ustatochoerus are present in this area. The ramus (F:A.M.32051), which Thorpe used as a cotype, belongs to a much smaller species than the skull (F:A.M. 32050), which was the other cotype. The three skeletons mentioned above in connection with the original naming of novomexicanus are of the same form as the ramus, but their immaturity prevents adequate evaluation. The present writers have chosen to consider the ramus (F:A.M.32051) as the holotype of U. medius novomexicanus Frick, and propose that the partial skull (F:A.M.32050), which is much larger than the ramus, be considered the holotype of a new variety of U. skinneri to be named later in this paper (see page 48).

Fifty specimens are here recorded:

Holotype.-Right ramus with I_{2} (alv.) $-\mathrm{M}_{3}$. ($\mathbf{w} \ddagger$)	F:A.M. 32051	From S.E. of Espanola, Santa Fé County, New Mexico; collected by Joseph Rak, 1930. Figured by Thorpe, 1937, Figs. 150-151. Figure 3.

[^15]
Referred.-

(A) From Santa Cruz Area, Santa Fe County, New Mexico (collected by Joseph Rak, Charles H. Falkenbach, and associates, 1924-1930, and by John C. Blick, William Klaus, and associates, 1933-1937):
THREE SKELETONS, IMMATURE
Three skeletons, immature (on exhibit in the Amer. Mus. of Nat. Hist.)
(I)
F:A.M.
33662
33662A
33662B

seven maxille		
Two partial right maxillæ with		
C/(br.)- P^{4}.	(w)	34393

Left maxilla with $P^{4}-M^{3}$ (br.) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$............................. (w) 34397
Partial left maxilla, immature, with $\mathrm{P}^{1}-\mathrm{dP}^{2}-\mathrm{dP}^{4} \ldots \ldots \ldots$. . (I) 43335

SEVEN MANDIBULAR SPECIMENS

Two partial right rami with		
$\mathrm{I}_{1}-\mathrm{M}_{3}$ (br.) ($\mathrm{I}_{1}-\mathrm{P}_{1}$ and $\mathrm{P}_{3} \mathrm{rt}$.).	(${ }_{\ddagger}^{\ddagger}$)	34387
$\mathrm{P}_{4}-\mathrm{M}_{3}$ (br.)	(w)	34394

(A') From Pojuaque Bluff Area, Santa Fe County, New

Mexico (collected by John C. Blick and William Klaus, 1936):

MAXILLARY SPECIMEN, IMMATURE Right and left maxillæ with $\mathrm{I}^{2}-\mathrm{dP}^{2}-\mathrm{M}^{\mathbf{1}}$	(I)	$\begin{gathered} \text { F:A.M. } \\ 34395 \end{gathered}$
MANDIBULAR RAMUS, immature		
Partial right ramus with / C (germ) $-\mathrm{dP}_{1}$ and $\mathrm{dP}_{3}-\mathrm{dP}_{4} \mathrm{rt}$.	(I)	43324

(B) From Rio Arriba County, New Mexico (collected by John C. Blick and William Klaus, 1938-1940):

From Chama-El Rito area:
ELEVEN SKULLS, ETC.
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, ulna, radius, and vertebræ Inferior portion of skull with $I^{1}-M^{3}$, partial mandible with $\mathrm{I}_{3^{-}}$ \mathbf{M}_{3}, partial radius, partial ulna, partial tibia, and pes elements.
($\mathrm{M}+$)
37531

Fragmentary skull with $\mathrm{P}^{1}-\mathrm{M}^{1}$ br. and $\mathrm{M}^{2}-\mathrm{M}^{3}$, and mandible (attached) with $\mathrm{P}_{1}-\mathrm{M}_{3}$
(м) 37532

Inferior portion of skull (lacking zygomatic arches) with $\mathrm{P}^{1}-\mathrm{M}^{3}$ and partial mandible (attached) with \mathbf{P}_{1} (br.) $-\mathbf{M}_{3}$
(w+)
37533

Partial right maxilla with $\mathrm{P}^{4}(\mathrm{br})-.\mathrm{M}^{3}$ and right ramus with I_{3} -

(w+) 37534

Posterior portion of skull (lacking zygomatic arches) with \mathbf{M}^{2} (br.) $-\mathrm{M}^{3}$
($\mathrm{w}_{\ddagger}^{+}$)
37535

Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$, and associated skeleton. Figures 1, 4, 11, 12.
($\mathrm{w}+\ddagger$) 37537

Partial skull with $\mathbf{M}^{2}-\mathbf{M}^{3}$, partial mandible with $\mathbf{M}_{2}-\mathbf{M}_{3}$ br., and associated skeleton. Figures 11, 12 (in part)
$(\mathrm{w}+) \quad 43258 \mathrm{~A}$

The above two individuals (F:A.M.43258A and 43258B) were found associated. The variation in the length of the limbs is illustrated in Figures 11 and 12. Although there is a noticeable difference in the lengths of the illustrated limb elements, the fore and hind feet of the two individuals are nearly equal. The nasals of the first specimen (43258A) extend more posteriorly than other examples and the supraorbital foramina are between the nasals and the orbits, instead of posterior to the nasals.

Partial skull with $\mathrm{I}^{3}-\mathrm{C} / \mathrm{rt}$. and $\mathrm{P}^{\mathbf{1}}-\mathrm{M}^{3}(\mathrm{br}$.) and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$	(w+)	43260
Partial skull with $I^{3}-\mathbf{M}^{3}$, partial mandible with $\mathbf{P}_{1}-\mathbf{M}_{3}$, radius, ulna, partial atlas, etc.	($\mathrm{w}+\ddagger$)	43262
Skull with I^{1} (alv.) $-\mathbf{M}^{3}$, fragmentary right ramus, partial radius, partial ulna, and partial manus.	($\mathrm{w} \ddagger$)	43345
three skulls, immature		
Anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{1}-\mathrm{M}^{1}$ (br.) and partial mandible with P_{1} (erupt.) $-\mathrm{dP}_{1}-\mathrm{M}_{1}$.	(I)	37536
Partial skull with $\mathrm{I}^{1}-\mathrm{dP}^{1}-\mathrm{M}^{2}$ (erupt.)	(I)	43259
Skull with $\mathrm{I}^{1}-\mathrm{dP}^{2}-\mathbf{M}^{2}$, mandible with $\mathrm{I}_{1}-\mathrm{P}_{1}$ (erupt.) $-\mathrm{dP}_{2}-\mathbf{M}_{2}$, and fragmentary skeletal parts.	(1)	43321

MANDIBLE	F:A.M.	
Partialmandible with I_{1} (alv.) $-\mathrm{M}_{3}$ (br.) $\left(\mathrm{I}_{2}-\mathrm{P}_{3}\right.$ rt., $\mathrm{P}_{4}, \mathrm{M}_{1}-\mathrm{M}_{2}$ br. $)$	$\left(\mathrm{w} \ddagger^{+}\right)$	43331

From Ojo Caliente area:
three associated skulls, etc.

The above three individuals were found associated in the field. The two mature skulls show the same supposed sex variations as illustrated (Figures 5 and 6) in the examples of U. profectus, the lighter-constructed and narrower skull being considered that of a female.

THREE SKULLS, ETC.

SKULL, IMMature
Anterior portion of skull with $I^{3}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (erupt.) and partial
manus... (I) 43346

MAXILLA, ETC.
Left maxilla with $\mathbf{I}^{1}-\mathbf{P}^{1}$ rt. and \mathbf{P}^{2} (br.) $-\mathbf{M}^{3}$, and partial man-
dible with $\mathrm{P}_{2}-\mathbf{M}_{3}$ (br.) $\left(\mathbf{M}_{1}-\mathbf{M}_{2}\right.$ br.) $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (w+) 43333

TWO MANDIBULAR SPECIMENS
Partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (br.) ($\mathrm{P}_{4}-\mathrm{M}_{1}$ br.)................. (w $\ddagger \ddagger$) 43347
Mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$, humerus, femur, tibia, pes, etc........ (w) 43355
(5) Ustatochoerus profectus (Matthew and Cook), genotype

From the Lower Part of the Ash Hollow Formation, Nebraska; Referred Specimens from South Dakota; and a Geographic Variety (5a) from Kansas
Merychyus (Metoreodon) profectus Matthew and Cook, 1909, Bull. Amer. Mus. Nat. Hist., XXVI, Art. 27, p. 395, Fig. 15.
Metoreodon relictus profectus Matthew and Cook, Cook, 1912, Nebr. Geol. Surv., VII, Pt. 5, p. 45.

Metoreodon profectus Matthew and Cook, Barbour and Cook, 1917, Nebr. Geol. Surv., VII, Pt. 18, p. 165, Figs. 1-3. Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 209, Figs. 152-153; Pl. xxx ; Pl. xxxi, Fig. 1.

Specific Characters

Skull.-Smaller than that of U. major and larger than that of U. medius; fan-shaped occipital region not as wide as in U. major; brain case slightly more inflated than in U. major; nasals shorter than in U. medius and decidedly longer than in U. major, and with less retraction than in the latter species; anterior tip of nasals retracted to region above P^{2}; paroccipital process long and tapered; postglenoid process not as heavy as in U. major.

Mandible.-Typical of the genus, intermediate in size between those of U. medius and U. major.

Dentition.-Superior and inferior series intermediate in length between those of U. medius and U. major.

Limbs.-Shorter and lighter than in U. major; longer and heavier than in U. medius.

Measurements.-Table I, II, and IX.

Discussion

Matthew, ${ }^{1}$ in reviewing the oreodonts from the "Sheep Creek" and "Snake Creek" deposits of Nebraska, proposed that U. profectus be regarded as synonymous with U. major. Present available material from the Ash Hollow formation indicates, however, that U. profectus is specifically distinct from U. major.

Matthew and Cook ${ }^{2}$ referred a maxilla (A.M.14066) and a third upper molar (A.M.14068) to "Merychyus (Metoreodon) profectus" and Thorpe ${ }^{3}$ considered them as paratypes of the same species. The present writers, ${ }^{4}$ however, have referred these two specimens to Brachycrus, since the maxilla shows evidence of a facial depression above $\mathrm{P}^{4}-\mathrm{M}^{1}$ and M^{3} has a pronounced split heel. There is no information in the catalogue or field records of the American Museum of Natural History to indicate that these two specimens came from the "Upper Snake Creek" deposits, as did the genoholotype of U. profectus.

Cook 5 in 1912, regarded U. profectus as a variety of Metoreodon relictus [see page 10 for discussion of Merychyus (Metoreodon) relictus and "M. (Metoreodon) profectus"] but later, ${ }^{6}$ together with Barbour, described a skull, N.S.M.6-7-11-13, and mandible, N.S.M.5-7-11-13, from Nebraska, and referred them to "Metoreodon profectus." Thorpe ${ }^{7}$ called these two specimens plesiotypes of "Metoreodon profectus." The mandible compares favorably with the holotypic ramus of U. profectus but the skull is from a relatively smaller individual than either of the two rami. According to the data at hand the skull comes from deposits of somewhat earlier age than most of the material referred to U. profectus.

[^16]Nevertheless, the present writers have referred the skull to U. profectus because it falls within the range of individual variation in that species.
U. profectus is intermediate in size between U. medius and U. major and occurs in deposits that are intermediate in age to the deposits yielding the two latter species. The majority of the specimens here referred to U. profectus come from the lower Ash Hollow formation but it is possible that some of the smaller individuals may have been found in the uppermost Valentine deposits, which immediately underlie the Ash Hollow sediments.
U. compressidens, from Montana, is a form very closely related to U. profectus but more material of the former species is necessary before any definite relationship can be established.

Seventy-five specimens are here recorded:

Genoholotype.-Partial left ramus with $\mathrm{I}_{2}-\mathrm{M}_{3}$ (/C br. and P_{4} alv.). (w+)	A.M. 14055	From the "Upper Snake Creek" deposits, Sioux County, Nebraska; collected by Amer. Mus. field party, 1908. Figured by Matthew and Cook, 1909, Fig. 15; Barbour and Cook, 1917, Fig. 3; Thorpe, 1937, Fig. 152, Pl. xxxı, Fig. 1.

Figure 17.

[^17]F:A.M.
Left ramus with /C-M M_{3} ($\mathrm{P}_{2}-\mathrm{P}_{3}$ alv.). (w+) 43145
Three partial left rami, immature, with
(I)43146
P_{1} (rt.) $-\mathrm{dP}_{2}-\mathrm{M}_{1}$ (1) 43147
$\mathrm{P}_{1}-\mathrm{P}_{3}$ (germ) $-\mathrm{dP}_{4}-\mathrm{M}_{3}$ (erupt.) (P_{2} alv. and P_{4} germ) (I) 43148
LIMB ELEMENTS
Partial radius 43149
Metatarsal 43150
From East Clayton Quarry:
PARTIAL SKULL
Anterior-inferior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ $\left(w^{+}+\right)$ 43151
THREE MAXILLE
Partial right maxilla with P^{1} (alv.) $-\mathrm{P}^{4}$. (w+) 43152
Left maxilla with $\mathrm{I}^{2}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /\left(\mathrm{br}\right.$.) $-\mathrm{M}^{3}$. 43153
Partial left maxilla with $\mathbf{M}^{\mathbf{1}} \mathbf{M}^{\mathbf{2}}$. 43154
EIGHT MANDIBULAR RAMI
Three partial right rami with
P_{2} (rt.) $-\mathrm{M}_{3}$ ($\mathbf{w}^{+}{ }^{+}$) 43155
P_{4} (rt.) $-\mathrm{M}_{3}$. (w \ddagger) 43156
Immature, $/ \mathrm{C}-\mathrm{P}_{2}$ alv. and $\mathrm{dP}_{3}-\mathrm{dP}_{4}$. (I) 43157
Three partial left rami with
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{3}-\mathrm{P}_{4}\right.$ br.). 43158
$\mathrm{M}_{1}-\mathrm{M}_{3}$ (br.) (w) 43159
$\mathbf{M}_{1}-\mathbf{M}_{2}$ (w +) 43160
Two partial left rami, immature, with$P_{1}-P_{2}$ alv. and P_{3} (germ) $-\mathrm{dP}_{4}-\mathrm{M}_{2}\left(\mathrm{P}_{4}\right.$ germ $)$(I)43161
$\mathrm{I}_{2} / \mathrm{C}$ alv. and P_{1} (erupt.) $-\mathrm{dP}_{3}-\mathrm{M}_{1}$ (P_{2} alv.) 43162
From White Cliffs, Plum Creek:
SKULL, ETC.
Anterior portion of skull with $I^{1}-I^{3}$ alv. and $C /-M^{3}\left(P^{3}-P^{4}\right.$ and M^{3} erupt.), partial mandible with P_{1} (br.) $-\mathrm{M}_{3}$ (P_{4} and M_{3} erupt.), partial humerus, ulna, and radius. Figure 5 (in part)
The tooth characters of the above specimen are of special interest, particularly the superior premolars (Fig. 5), because in \mathbf{P}^{2} there is a double medium crest which may be said to form a posterior and an anterior medium crest which in turn join the corresponding crescents; in P^{3} the medium crest joins the cingulum instead of the anterior crescent, thus dividing the tooth into two parts; and in P^{3} and P^{4} the anterior cusps are as well developed as in U. major.

```
(B') From Brown County, Nebraska (collected by University
    of Nebraska State Museum field parties, 1913):
                                    SKULL
Skull with I'-M}\mp@subsup{}{}{1}\mathrm{ , lacking
        occipital region and right
        zygomatic arch. (w)
N.S.M. From Devil's Gulch.
6-7-11-13 Figured by Barbour and Cook,
                                1917, Figs. 1-2; Thorpe, 1937, Fig. 153, Pl. xxx.
Figures 5, 17 (in part).
The above specimen is smaller than typical examples of \(U\). profectus and field data indicate that it may have come from the upper part of the Valentine. This form is intermediate between \(U\). profectus and \(U\). medius, but closer to the former species.
TWO MAXILLEE, IMMATURE
Two partial maxillæ, immature Right, with \(\mathrm{C} /-\mathrm{dP}^{1}-\mathrm{dP}^{3}\). 1-7-11-13W. From Bone Creek. (I) Left, with \(\mathrm{C} /-\mathrm{dP}^{1}-\mathrm{P}^{2}\) (br.). 2-7-11-13W. From Bone Creek. (I)
```

Partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}($ germ $)-\mathrm{M}_{3}$. (-M)
5-7-11-13 From Plum Creek.
$-\mathrm{m}) \quad$
Figured by Barbour and Cook, 1917, Fig. 1.
Figures 5,17 (in part).

```
mandible
```


(C) From Cherry County, Nebraska (collected by Morris Skinner, Ralph Mefferd, Gordon Fletcher, and associates, 19331940):
 From Bear Creek Quarry:

FOUR MANDIBULAR RAMI

Three partial left rami with		F:A.M.
M_{1} (br.)- M_{3}	(${ }^{\ddagger}$)	34222
$\mathrm{M}_{1}-\mathrm{M}_{3}$.	(${ }^{+}{ }^{+}$)	34242
$\mathrm{I}_{1}-\mathrm{P}_{4}$	(w+)	43168
	(I)	34364

From $1 \frac{1}{2}$ mi. below Crookston Bridge:
THREE MANDIBULAR RAMI

Two partial right rami with		
$\mathrm{M}_{2}-\mathrm{M}_{3}$.	(w+)	43169
I_{3} (rt.) $-\mathrm{P}_{2}$ (germ).	(I)	43170
Partial left ramus, immature, with $\mathrm{dP}_{3}-\mathrm{dP}_{4}$ (br.).	(I)	43171

From various localities in Cherry County:

Posterior portion of skull with $\mathbf{M}^{2}-\mathbf{M}^{3}$ (br.), partial left ramus with \mathbf{M}_{3} br., and partial pes. ($\mathbf{w} \ddagger$)	F:A.M. 34381	From S.E. of Eli.
Partial skull, immature, with dP^{1} (br.) $-\mathrm{M}^{2}$ (germ), mandible with $\mathrm{I}_{1}-\mathrm{P}_{1}$ (germ) $\mathrm{dP}_{2}-\mathrm{M}_{1}$, and partial scapula. (I)	43036	From S. side of Niobrara River, S.E. of Crane Bridge.

TWO MAXILLE, ETC.
$\begin{array}{lcc}\text { Partial right and left maxil- } & 33618 & \text { From } 1 \text { mi. E. of Garner Bridge. } \\ \text { le with } \mathrm{C} /-\mathrm{M}^{3}, \text { partial } \\ \text { mandible with } \mathrm{I}_{1}-\mathrm{M}_{3} \text {, dis- }\end{array}$ $\mathrm{P}^{\mathbf{4}} \mathrm{M}^{\mathbf{1}}$. ($\mathrm{w} \ddagger$)

SIX MANDIBULAR RAMI

Two partial right rami with		
$\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ (br.).	F:A.M.43037	From E. of Crane Bridge.
$(\mathrm{w} \ddagger)$		
$\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and	P_{2} (br.)-	43039
P_{4} (br.). (w)	From S. of Crookston Bridge.	

Two partial right rami, immature, with
dP_{4} (br.) $-\mathrm{M}_{2}$. (I) $34368 \quad$ From E. of Boiling Spring Bridge. $\mathrm{I}_{3}-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (germ). (I) 43040 From Wade Quarry.

Partial left ramus with $\mathrm{P}_{3}-$ 43038 M_{2}. ($\mathrm{w} \ddagger$)
Partial left ramus, immature, with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$. (I)

43041
From S. of Cody.
From Bolling Quarry, N. of Garner Bridge.

[^18](D) From E. of Tunnel Rock, Keya Paha County, Nebraska (collected by Morris Skinner and Ralph Mefferd, 1931):
and 2 metapodials. Figures $1,5,12 \ldots \ldots \ldots \ldots \ldots \ldots . .\left({ }^{+} \ddagger^{+}\right)$33621
(E) From Hollow Horn Bear Quarry, N. of Little WhiteRiver, Rosebud Indian Reservation, Todd County, SouthDakota (collected by Morris Skinner and Gordon Fletcher,1940):
PARTIAL SKULL, IMMATURE

THREE MANDIBULAR RAMI
Mandible with $\mathrm{I}_{1}-\mathrm{P}_{2}$ alv. and $\mathrm{P}_{3}-\mathrm{M}_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$................... 43164

Two partial left rami, immature, with		
$\mathrm{P}_{3}-\mathrm{P}_{4}$ germs and $\mathrm{M}_{1}-\mathrm{M}_{2}$.	(-m)	43165
$\mathrm{dP}_{3}-\mathrm{M}_{1}$.	(1)	43166

METACARPAL
Metacarpal III.. 43167
(F) From Big Springs, S.W. of Martin, Bennett County, South Dakota (collected by Morris Skinner and Gordon Fletcher, 1940):
Partial left ramus with \mathbf{M}_{2} 43319
Radius. 43320(5a) Geographic Variety from Norton County, Kansas.-(G) From S.E. of Densmore (collected by George Sternberg,1933):

Partial skull with $\mathrm{P}^{\mathbf{3}}-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{\mathbf{3}}-\mathrm{M}_{3}$, and skeletal fragments.

(5b) Ustatochoerus profectus espanolensis, ${ }^{1}$ new variety

 From the Pliocene Deposits, North of Santa Fé, New Mexico
Varietal Description

Skull.-Approximately same length as that of U. profectus; nasals longer than in U. profectus, but with an equal amount of retraction.

[^19]Mandible.-Approximately same size as that of U. profectus.
Dentition.-Length of superior and inferior dental series slightly longer than average examples of U. profectus.

Limbs.-Unknown.
Measurements.-Tables I and IX.

Discussion

Each of the superior third premolars of the holotype of Ustatochoerus profectus espanolensis has a prominent projection or shelf at its anterior base, but this undoubtedly represents individual variation since it does not occur in the referred specimens.

The holotype and the referred specimens were collected by Joseph Rak, John C. Blick, William Klaus, Charles Christman, and Charles H. Falkenbach, 1925-1940.

Twelve specimens are here recorded:

> Holotype.—Skull with $I^{1}-I^{3}$ alv. F:A.M. $33683 \quad$ From Santa Cruz area, Santa Fé and C/-M . (w \ddagger)

Figure 10.

Referred.-

(A) From Type Locality, Santa Fe County:

TWO ASSOCIATED SKULLS, ETC.
Partial skull with $\mathbf{C} /($ rt. $)-\mathbf{M}^{3}$ (br.) ($\mathbf{P}^{1-} \mathbf{P}^{2}$ br.) and partial man- F:A.M. dible with P_{2} (alv.) $-\mathrm{M}_{3} . \ldots . .$. (w+) 43263A This specimen may be that of a female.

Anterior portion of skull, immature, with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{1}$ (erupt.)
and partial mandible with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{1} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$ (i) \quad 43262B

THREE MAXILLAE, ETC.
Premaxilla and right maxilla with $\mathrm{I}^{1}-\mathrm{M}^{3}\left(\mathrm{C} /, \mathrm{P}^{3}-\mathrm{M}^{1} \mathrm{br}\right.$.) . . . (w+) 34389
Right maxilla with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /\left(\mathrm{rt}\right.$.) $-\mathrm{M}^{3}$ (br.) ($\mathrm{P}^{1} \mathrm{rt}$. and $\mathbf{P}^{2}-\mathbf{P}^{3}$ br.)
(w \ddagger) 37544

TWO mandibles
Two partial mandibles with
P_{1} (rt.) $-M_{3}$ (br.) . (w $\left.\ddagger \ddagger\right) ~ 43326$
$\mathrm{I}_{1}-/ \mathrm{C}$ rt. and P_{1} (erupt.) $-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (br.) (I) 34392
(B) From Rio Arriba County, New Mexico:

From Santa Clara Canyon, W. of Santa Clara:
PARTIAL SKULL, IMMATURE
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{dP}^{\mathbf{2}}-\mathrm{M}^{1}$
(I)

34391

From E. of Black Mesa:
MANDIBULAR RAMUS
Partial right ramus with \mathbf{P}_{4} (br.) $-\mathbf{M}_{3}$ (br.) (w \ddagger) 34390

(5c) Ustatochoerus profectus studeri, ${ }^{1}$ new variety

From the Pliocene Deposits of Northern Texas

Varietal Description

Skull.-Smaller than that of typical U. profectus; longer and narrower than largest examples of U. medius; fan-shaped occipital region extended farther posteriorly than in other varieties of U. profectus; retraction of nasals greater than in U. medius and similar to that in U. profectus; postglenoid process very light.

Mandible.-Smaller than typical examples of U. profectus.
Dentition.-Superior and inferior series not as heavy as in U. profectus but nearly equal in length to the smallest referred specimen of this species; both series longer than in U. medius.

Limbs.-Known from referred material only; somewhat shorter than those of U. profectus.

Measurements.-Tables I, II, and IX.

Discussion

The specimen, F:A.M.43031, which is chosen by the writers as the holotype of U. profectus studeri, is the most complete skull and mandible of this form available at the present time. Although the skull is abnormal in that M^{1} is missing on the left side and an alveolus for a fourth molar is present on the right (Figure 7), the right dental series $\mathrm{P}^{1}-\mathrm{M}^{3}$ is normal and compares readily with the referred dentition, $\mathrm{F}:$ A.M.43033, which is illustrated in the same figure. The left M^{1} was probably lost early in the life of the individual, resulting in a crowding forward and an enlargement of the remaining molars and a crowding backward and a slight enlargement of the premolars, thus completely filling the space of M^{1}. It is also of interest to note that seven incisors are present in the mandible (Figure 7).

The holotype of this new variety is probably an example of a female since it corresponds in form to certain other specimens ${ }^{2}$ of Ustatochoerus which are con-

[^20]sidered to be of the same sex. The referred specimens of U. profectus studeri are thought to be males since they are definitely more robust than the holotype.

Seventeen specimens are here recorded:
Holotype.-Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}(\mathrm{br}$.) F:A.M. 43031
From 20 mi . N.E. of Amarillo, Potter County, Texas; collected by N. J. Vaughan, John Lynch, and Charles H. Falkenbach, 1940.

Figures 1, 7.

Referred.-

(A) From Type Locality, Potter County, Texas:

dible with $\mathrm{P}_{2}-\mathrm{M}_{3}$ (br.) (w $\ddagger+$) 43318

Tibia.. 43257
(B) From Donley County, Texas:

From "Spade Flats," N.E. of Clarendon; collected by Nelson J. Vaughan, Everett DeGroot, and William Chamberlain, 19381939:

TWO PARTIAL SKULLS
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{I}^{3} \mathrm{rt}$. and $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{P}^{1}-\mathrm{P}^{2} \mathrm{rt}$.) ($\left.\ddagger^{+}{ }^{+}\right) \quad 37242$
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots$.................. \ddagger) 43032

TWO MAXILLARY SPECIMENS
Partial right and left maxillæ, immature, with $\mathrm{dP}^{3}(b r)-.\mathrm{M}^{1} \ldots$ (\ldots) 43261
Partial left maxilla with $\mathrm{P}^{2}-\mathrm{P}^{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$......................... \ddagger) 43317

MANDIBLE
Partial mandible with I_{1} (alv.)- $\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ rt.) (w \ddagger) 43255

LIMBS
Radius and ulna. Figure 11... 43034
Tibia. Figure 12.. 43035
Calcaneum.. 43356
Several manus and pes elements from "Spade Flats" are also represented in the F:A.M. collection.

(6) Ustatochoerus skinneri, ${ }^{1}$ new species

From the Ash Hollow Formation of Tripp County, South Dakota;
Referred Remains from the Ash Hollow Formation of Nebraska, and Geographic Variety (6a) from Kansas

Description

Skull.-Differs from U. major, the nearest form, in somewhat smaller size; occipital flare not as wide; nasals much longer and less retracted (anterior tip of nasals above region of P^{2}); palate not extended as far posteriorly.

Mandible.-Not quite as long as that of U. major.
Dentition.-Superior and inferior series of approximately same length as examples of U. major; inferior canine smaller and P_{1} lighter than in U. major; P_{4} usually lacks deep internal groove found in U. major.

Limbs.-Heavier and shorter than those of U. major; nearly same length as those of U. profectus.

Measurements.-Tables I, II, and IX.

Discussion

The exact stratigraphic position of the remains referred to U. skinneri from the Ash Hollow of South Dakota and Nebraska has not been definitely determined but field evidence indicates that they are found above the level of the majority of U. profectus specimens from Nebraska and South Dakota and below those of U. major from Nebraska. U. skinneri also possesses characters which are intermediate between those of U. profectus and U. major.

The holotype and referred material from Nebraska were collected by Morris Skinner, Ralph Mefferd, and Gordon Fletcher, 1931-1940.

Six specimens are here recorded:

Holotype.-Skull (lacking left	F:A.M.33630	From Turtle Buttes, N.W. of
zygomatic arch) with $\mathrm{I}^{1}-\mathrm{M}^{3}$,		Wewela, Tripp County, South
mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$, partial		Dakota; 1931.
humerus, femur, and partial		Figures 1, 8, 12.
tibia. $(\mathrm{w}+)$		

${ }^{1}$ Named in honor of Mr. Morris Skinner, who has directed the Frick Laboratory expeditions in the Valentine area of Nebraska and South Dakota.

```
Referred from (A) Chekry and (B) Brown Counties, Nebraska;
    and (C) Norton County, Kansas.-
    (A) From Cherry County, Nebraska:
    From S. side of Niobrara River, below mouth of Leander Creek,
        1937:
                                    SKULL, ETC.
        Skull with \(I^{1}-\mathbf{M}^{\mathbf{3}}\), partial mandible with \(\mathrm{I}_{3}\) (br.) \(-\mathrm{M}_{3}, 2\) partial
                ulnx, partial radius, and atlas vertebra. . . . . . . . . . . . . . . . . (м)
The above specimen is considered by the writers to be an example of a female of the species. The skull is lighter and narrower than the holotype, but the dental series of the two specimens are approximately equal in size. The limbs of the referred example are somewhat lighter than those of the holotype.
From S. of Eli, 1937:
Partial femur, distal portion of tibia, astragalus, calcaneum, and pes. Figure 12 (in part). 43081
(B) From Horse Thief Canyon No. 2, Plum Creek, Brown County, Nebraska, 1940:
TWO MANDIBULAR RAMI
```



```
Left ramus with \(I_{1}-/ C\) alv. and \(P_{1}-M_{3}\) (br.) . . . . . . . . . . . . . . (W+) (w) 43130
```

(6a) Geographic Variety from Kansas.-
(C) From S.W. of Lenora, Norton County, Kansas (collected by George Sternberg, 1933):

- MANDIBLE, ETC.

Mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right.$ br.), partial humerus, 2 radii, 2 ulnx, and manus and pes elements $\left(w+^{+}\right)$ 42331
The teeth of the above specimen are somewhat more massive than those of the holotype.
(6b) Ustatochoerus skinneri santacruzensis, ${ }^{1}$ new variety
From the Pliocene Deposits, North of Santa Fé, New Mexico

Varietal Description

Skull.-Approximately same size as that of U. skinneri; nasals longer than in U. skinneri or U. major; retraction of maxillary notch of the sigmoid curve (below the nasals) less than in either U. skinneri or U. major.

Mandible.-Known from referred rami only; approximately equal to that of U. skinneri.

[^21]Dentition.-Superior and inferior series approximately same length as in U. skinneri.

Limbs.-Unknown.
Measurements.-Tables I and IX.

Discussion

The referred skull, F:A.M.34400, is badly crushed, but the length of the nasal, which is absent from the holotype, is observable.

It is of interest to note that remains of Ustatochoerus from the Santa Fé area range in size from that of U. medius from the Valentine to examples slightly larger than U. major from the upper Ash Hollow.

The holotype and the referred specimens were collected by Joseph Rak, John C. Blick, Charles Christman, and Charles H. Falkenbach, 1924-1931.

Six specimens are here recorded:
Holotype.-Anterior portion of F:A.M. 32050 From 1st Wash, Santa Cruz, skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$. (w+) Santa Fé County, New Mexico; 1924.

Figured by Thorpe, 1937, Fig. 149; Pl. xxxi, Fig. 2.
Figure 10.
This specimen was designated as a cotype of "Metoreodon novomexicanus" by Thorpe ${ }^{1}$ (see page 33 for discussion).

Referred.-

(A) From Type Area, Santa Fe County, New Mexico, 19271928:

(B) From Rio Arriba County, New Mexico, 1930-1931:
From N. of Santa Clara:
\quad Partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{8}($ br. $)\left(/ \mathrm{C}-\mathrm{P}_{1}\right.$ br. $) \ldots \ldots \ldots \ldots \ldots \ldots$
Partial left ramus with $\mathrm{P}_{2}-\mathrm{M}_{3} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$
From Ojo Caliente:
(7) Ustatochoerus? schrammi, ${ }^{2}$ new species

From the Valentine Formation, Boyd County, Nebraska; Referred Material from Brown County, Nebraska, and Logan County, Colorado

Description

Skull.-Unknown.

[^22]Mandible.-Smallest of the genus; lighter and shallower than examples of U. medius.

Dentition.-Inferior series smaller than those of U. medius but larger than in any known species of Ticholeptus; P_{2} and P_{3} with cusps typical of Ustatochoerus but P_{4} with these cusps only slightly developed.

Limbs.-Unknown.
Measurements.-Table I.

Discussion

This new species is here tentatively referred to the genus Ustatochoerus. The holotype approaches large examples of Ticholeptus in size but the tooth characters are more like those of Ustatochoerus. A skull or possibly a few limb elements of this form would undoubtedly show sufficient characters to permit definite generic classification.

Ustatochoerus? schrammi appears to be restricted to the basal part of the Ogallala deposits (lower Valentine) in Nebraska and Colorado, while U. medius, a closely related species, is found throughout the Valentine. This latter form is definitely larger and distinct from $U . ?$ schrammi.

Four specimens are here recorded:

	$\begin{gathered} \text { N.S.M. } \\ \text { 21-8-23H } \end{gathered}$	
with /C(alv.)- \mathbf{M}_{3} (br.). (w+)		From lower Ogallala deposits, near Lynch, Boyd County, Nebraska; collected by William T. Hall.

Figure 3.

Questionably Referred from (A) Brown County, Nebraska; and
(B) Logan County, Colorado.-
(A) From Devil's Gulch Horse Quarry, Brown County, Nebraska (collected by Morris Skinner and Ralph Mefferd, 1933):

MANDIBULAR RAMUS
Partial right ramus with F:A.M. 33614
$\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{2}\left(\mathrm{P}_{2}\right.$ alv.). ($\mathbf{w} \ddagger$)

The above specimen differs slightly from the holotype in that \mathbf{P}_{2} is more diagonally placed in the ramus and P_{4} is grooved internally.
(B) From Pawnee Creek Area, Logan County, Colorado (collected by John C. Blick, 1933):

TWO MANDIBULAR RAMI
Partial right ramus with
$\mathbf{P}_{1}-\mathrm{P}_{3} . \quad 3(\mathrm{w}+)$
Partial left ramus with
$\mathrm{P}_{4}-\mathrm{M}_{3}(\mathrm{br}$.$) . (w)$
The P_{4} of the above specimen differs from the holotype in that it is grooved inter-
nally.
Table I.-Ustatochoerus, new genus. Comparative Measurements ${ }^{1}$ of Skulls and Rami

	U. californicus (Merriam)	U. cali- fornicus raki n.var.	U. compressidens (Douglass)	$\underset{\text { (Leidy) }}{U_{\text {major }}}$		U. major texanus, n.var.	U. medius (Leidy)	
Skull	$\begin{gathered} \hline \text { HoLotype } \\ \text { U.C. } \\ 21351 \end{gathered}$	$\begin{gathered} \text { HoLoтчре } \\ \text { F:A.M. } \\ \text { } 42318 . \end{gathered}$	$\begin{aligned} & \text { Holotype } \\ & \text { C.M. } \\ & 801 \end{aligned}$	$\begin{aligned} & \text { Holotype } \\ & \text { N.M. } \\ & 439 \end{aligned}$	$\begin{gathered} \text { REFERRED } \\ \text { F:A.M. } \\ 34220 \end{gathered}$	$\begin{gathered} \text { HoLotype } \\ \text { F:A.M. } \\ 37563 \end{gathered}$	$\begin{gathered} \text { HoLotype } \\ \text { N.M. } \\ 118 \end{gathered}$	$\begin{gathered} \text { REFERRED } \\ \text { F:A.M. } \\ 43030 \mathrm{~B} \end{gathered}$
Stage of wear of teeth..........	(w+)	(\ddagger^{+})	($\mathrm{w} \ddagger$)	(w)	(w)	(w+)	($\mathrm{w} \ddagger$)	(w)
Basal length (from anterior notch of foramen magnum to posterior base of 1)			\ldots	\cdots				231.
Width (max.)		\ldots			198.5	\ldots		158.
Width, interorbital (min.).			\ldots	\cdots	100.	\ldots	.	${ }_{68 .}{ }^{\text {c }}$
Distance from anterior rim of orbit to anterior base of canine					118.	\ldots	...	98.
Distance from anterior rim of orbit to supraoccipital crest..			\ldots	...	197.5	\ldots	\ldots	150.
Width of muzzle at infraorbital foramina					59.	\cdots	\cdots	74.
Width across canines (max.).					52.			48.
Width of palate between fourth premolars		\cdots	\ldots	\ldots	44.5	\cdots	\cdots	48.
Width of palate between canines.		\cdots	\ldots	\ldots	23.	\cdots	\ldots	25.
Length, $\mathrm{P}^{1-} \mathrm{M}^{\mathbf{3}}$ incl.			\cdots	\cdots	141.			122.
Length, $\mathrm{P}^{1-} \mathrm{P}^{4}$ incl.		\ldots	\ldots	...	58.	\cdots		45.5
	(98.5	\ldots	\cdots	...	87.	\cdots	\ldots	67.
Depth of malar below orbit	46.5		...		34.5			
Ramus								
Stage of wear of teeth...........)								
Length, /C to condyle incl....					233.5			
Depth of jaw under coronoid..........				\ldots	115.		...	${ }_{93}{ }^{18 .}$
Depth of jaw below anterior edge of M_{3}	\cdots	183.5	46.5	\ldots	51.	41.	...	43.
Length, $\mathrm{P}_{1}-\mathrm{M}_{3}$ incl.		169.5	((135.))		149.	((170.))		124.5
Length, $\mathrm{P}_{1}-\mathrm{P}_{4}$ incl.		64.	(51.5		57.5			43.5
Length, $\mathrm{M}_{1}-\mathrm{M}_{3}$ incl.		105.	(85.$)$)		92.	(60.$)$)	72.	71.

[^23]Table I (continued)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline \& U. medius
mohavensis,
n.var. \& \multicolumn{2}{|l|}{$$
\begin{gathered}
\text { U. medius } \\
\text { novomexicanus } \\
\text { (Frick) }
\end{gathered}
$$} \& $$
\begin{gathered}
U_{\text {. profectus }}^{\text {(Mathew }} \\
\& \text { Cook) }
\end{gathered}
$$ \& $$
\begin{gathered}
\begin{array}{c}
\text { espanofectus } \\
\text { esponsis, } \\
\text { n.var. }
\end{array} \\
\hline
\end{gathered}
$$ \& U. profectus n.var. \& U. skinneri, \& $$
\begin{gathered}
\text { U. skinneri } \\
\text { santa- } \\
\text { cruzensis, } \\
\text { n.var. }
\end{gathered}
$$ \& $$
\underset{\substack{\text { schrammin } \\ \text { n.sp. }}}{U . q}
$$

\hline Skull \& $$
\begin{gathered}
\text { HoLotype } \\
\substack{\text { F:A.M.M. } \\
34464}
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Holotype } \\
\text { F:A.M. } \\
32051
\end{gathered}
$$ \& $$
\begin{gathered}
\text { Referred } \\
\text { F:A.M. } \\
43258 \mathrm{~A}
\end{gathered}
$$ \& $$
\begin{gathered}
\substack{\text { Referred } \\
\mathrm{F}: \mathrm{A} . \mathrm{M} . \mathrm{D} \\
3321}
\end{gathered}
$$ \& $$
\begin{aligned}
& \hline \text { HoLotype } \\
& \text { F:A.M. } \\
& 33683
\end{aligned}
$$ \& $$
\begin{aligned}
& \text { HoLotype } \\
& \text { F:A.M. } \\
& 43031
\end{aligned}
$$ \& $$
\underset{\substack{\text { Holotype } \\ \text { F:A.M. } \\ 33630}}{ }
$$ \& $$
\begin{gathered}
\text { HoLotype } \\
\text { F:A.M. } \\
32050
\end{gathered}
$$ \& $$
\begin{gathered}
\hline \text { HoLorype } \\
\text { N.S.M. } \\
21-8-23 \mathrm{H} .
\end{gathered}
$$

\hline \& (w+) \& (w+) \& ${ }_{(\text {(} 260 .}^{(\mathrm{w}+)}$) \& $\left(\mathrm{w} \ddagger^{+}\right)$
284. \& (w) \& \& ${ }_{((300 .)}^{(\mathrm{W}+)}$ \& $\stackrel{(\mathrm{w}+\text {) }}{ }$ \& (w+)

\hline Basa ponterior (irom anterior notch of foramen magnum \& \ldots \& \ldots \& ${ }_{1}^{232}$ \& 248. \& \& (${ }^{(230 .)}$) \& ${ }^{260}$. \& \cdots \& \ldots

\hline Width of brain case ((max.) \& \& \& ${ }^{167.5}$ \& 180. \& ((186.)) \& $\xrightarrow{161.5} 8$ \& ${ }_{92 .}{ }^{(182 .)}$ \& \&

\hline Width, interorbital (min) ${ }_{\text {del }}^{\text {distance from anterior rim of orbit to anterior base of }}$ \& \& \& 85. \& (92.) \& 77. \& 73. \& 89. \& \&

\hline \& \ldots \& \ldots \& 113. \& 113.5 \& 111. \& \& 126. \& 129. \& \ldots

\hline Length of nasai. \& \& \& 90.5 \& 182.5
79. \& 88.5 \& 160.5
69. \& 77. \& \&

\hline Width of muzzle at infraorbital fo \& 78.5 \& ... \& 85. \& ${ }^{76.5}$ \& 90. \& ${ }_{49} 8$. \& ${ }_{57}^{94}$ \& 84. \&

\hline Width arross canines (max.) ${ }^{\text {W }}$ (idth of palate between fourth \& ${ }_{33} 34$. \& \& ${ }_{44}^{50}$ \& ${ }_{42.5}^{48.5}$ \& ${ }_{50.5}^{(65 .)}$ \& \& ${ }_{48}^{57}$. \& 55.5
45.5 \&

\hline Width of palate between canine \& ${ }_{21} 2$. \& \& -23. \& ${ }^{25.5}$ \& 36.5

147 \& ${ }_{26.5}$ \& 31. \& ${ }_{27}^{27.5}$ \&

\hline ${ }_{\text {Length, }}{ }^{\text {P1-M }}{ }^{\text {a }}$ incl \& ${ }_{113}^{130 .}$ \& \& ${ }_{121}^{136 .}$ \& 128.5
128.5 \& ${ }_{130.5}^{147}$ \& 127.
113. \& ${ }^{150.5}$ \& 138.5

138. \&

\hline Length, Pl-P4incl. \& ${ }_{70.5}^{46.5}$ \& \cdots \& ${ }_{71.5}^{52.5}$ \& ${ }_{74}^{55.5}$ \& 57.5
74.5 \& ${ }_{70} 5$. \& ${ }_{83}^{59.5}$ \& 57.5 \&

\hline ${ }_{\text {Width of }}{ }^{3}($ max. $)$ \& 70.5
139. \& \& \& \& \& 25. \& \& $\begin{array}{r}89.5 \\ \hline 8\end{array}$ \&

\hline Depth of malar below orbit. \& \& \& 30.5 \& 33.5 \& 31. \& 29. \& 32. \& 32.5 \&

\hline Ramus \& \& \& \& $$
\begin{gathered}
\text { Holotype } \\
\text { A.M. } \\
14055
\end{gathered}
$$ \& \[

$$
\begin{gathered}
\text { Referred } \\
\text { FA.A.M. } \\
34390
\end{gathered}
$$
\] \& \& \& \&

\hline Stage of wear of teeth.. Le. ${ }^{\text {Length }}$ (max., includin \& \& \& \& (w+) \& \& \& \& $\left(\mathrm{w}+{ }^{(}\right)$ \&

\hline Lentth, /C to condyle incl.. ${ }^{\text {Depth }}$ \& \& 189.5) \& ${ }^{207.5}$ \& \& \& ${ }_{217}^{231}$. \& ${ }_{222}^{22 .}$ \& \&

\hline Depth of jaw under coronoid. ${ }^{\text {de }}$ anterior edge of \& \ldots \& $((105)$.
41. \& ${ }_{44 .}^{92}$ \& 43. \& . \& \& 118. \& \& 35.

\hline Lentth, / $\mathrm{C}-\mathrm{M}_{3}$ incl............ \& .. \& ${ }^{136 .}$ \& 137. \& ${ }^{147}$ [\& \ldots \& | 135.5 |
| :--- |
| 124.5 |
| 1 | \& ${ }_{160}^{165}$ \& 53. \&

\hline Length, ${ }_{\text {Pr }}^{1}$ M $-M_{3}$ incl. \& \& ${ }^{1127.5}$ \& ${ }^{126 .}$ \& $\xrightarrow{136 .}$ \& \& 124.5
50 \& 150. \& 146.
56. \& (108

\hline Length, $M_{1}-M_{3}$ inci.................... \& .. \& 80.5 \& 75. \& (84.) \& 80. \& ${ }_{74.5}$ \& ${ }_{92} 9$. \& 90. \& (660.)

\hline
\end{tabular}

Table II.-Ustatochoerus, new genus. Comparative Measurements of Skeletal Elements

	$\begin{aligned} & \text { U. major } \\ & \text { (Leidy) } \end{aligned}$	U. major texanus, n.var.	U. medius (Leidy)	U. medius novomexicanus (Frick)	U. profectus (Matthew \& Cook)	U. profectus studeri, n.var.	U. skinneri, n.sp.
Length of humerus (articular)	Referred F:A.M.	$\begin{aligned} & \text { Ноготчре } \\ & \text { F:A.M. } \\ & 37563 \end{aligned}$	$\begin{gathered} \text { Referred } \\ \text { F:A.M. } \\ \text { 43030A-D } \\ (153 .) \end{gathered}$	$\begin{gathered} \text { Referred } \\ \text { F:A.M. } \\ \text { 43258A } \\ 157 . \end{gathered}$	Referred $\begin{array}{rr} & \text { F:A.M. } \\ \text { 181. } & 33617 \end{array}$	Referred F:A.M.	Holotype \& Referred F:A.M.
Length of radius (articular).	170. 37148	152	126.	131.	159. 33617	148. 43034	\ldots
Length of ulna (max.).		(210.)	182.	189	(220.) 33617	((200.)) 43034	\ldots
Length of metacarpal III (max.)...	87. 34354	82	65.	66.	80. 33621		
Length of femur (articular).	242. 33664	(200.)	170.	188.			223. 33630
Length of tibia (articular).	185. 34379	(170.)	145.	134.	168. 33617	156. 43035	
Length of metatarsal III (max.).	94. 37299		71.	68.	86. 33621		92. 43081
Length of calcaneum (max.).....		\ldots	62.	64.	74. 37243	61. 43356	(78.) 43081

Fig. 2. Ustatochoerus medius (Leidy), Holotype, N.M.118, partial ramus, and|Referred, F:A.M. 43030 B , skull and ramus, Valentine deposits, Brown County, Nebraska. $\times \frac{1}{2}$.
APF = anterior palatine foramen; $B=$ auditory bulla; FO $=$ foramen ovale; $I F=$ infraorbital foramen; $M A=$ external auditory meatus; NF = nasal-frontal contact; $P P=$ paroccipital process; $P P F=$ anterior palatine foramen; $P S=$ posterior border of symphysis; SOF $=$ supraorbital foramen; $Z=$ depression for tympanohyal; $5=$ lacerated foramina; $6=$ glenoid foramina; $7=$ condylar foramen.

Fig. 3. Ustatochoerus californicus raki, n.var., Holotype, F:A.M.42318, ramus, Santa Fe Co., N. Mex.; U. medius novomexicanus (Frick), Holotype, F:A.M.32051, ramus, Santa Fé Co., N. Mex.; U. major texanus, n.var., Holotype, F:A.M.37563, M ${ }^{3}$ and ramus, Potter Co., Tex.; U. compressidens (Douglass), Holotype, C.M.801, ramus, Gallatin Co., Mont.; U.? schrammi, n.sp., Holotype, N.S.M.21-8-23, ramus, Valentine deposits, Boyd Co., Nebr. $\times \frac{1}{2}$.

Fig. 4. Ustatochoerus medius novomexicanus (Frick), Referred, F:A.M.43258A, skull ($\mathrm{P}^{1}-\mathrm{P}^{2}$ from opposite side) and ramus, from Rio
Arriba County, New Mexico. $\times \frac{1}{2}$.

Fig. 5. Ustatochoerus profectus (Matthew and Cook), Referred, F:A.M.33621, skull and ramus (male, dental series, composite from
opposite sides), from Ash Hollow deposits, Keya Paha County, Nebraska; F:A.M.33597 and N.S.M.6-7-11-13, superior dental series, and

Brown County, Nebraska. $\underset{\text { profectus (Matthew and Cook), Referred, F:A.M.33617, skull and ramus (female), from Ash Hollow deposits, }}{\times \frac{1}{2} \text {, }}$

incisors and absence of right $M^{1} ; \mathbf{X}=$ accessory alveolus of right superior dentition), from Potter County, Texas; Referred, F:A.M.43033,
maxilla, from Donley County, Texas. $\quad \times \frac{1}{2}$.

Fig. 10. Ustatochoerus profectus espanolensis, n.var., Holotype, F:A.M.33683, partial skull (dentition, composite of both sides), Santa Fé Co., N. Mex.; U. skinneri santacruzensis, n.var., Holotype, F:A.M.32050, partial skull, Santa Fé Co., N. Mex.; U. medius mohavensis, n.var., Holotype, F:A.M.34464, partial skull, "Hemicyon Stratum," Barstow area, Calif. $\times \frac{1}{2}$.

Fig. 11. Ustatochoerus, new genus, comparison of skeletal elements. $\mathrm{A}=U$. medius (Leidy); $\mathrm{B}=U$. medius novomexicanus (Frick); $\mathrm{C}=U$. profectus studeri, n.var.; $\mathrm{D}=U$. major texanus, n.var.; $\mathrm{E}=$ U. profectus (Matthew and Cook). $\times \frac{1}{2}$.

II. Ticholeptus Cope

Ticholeptus Cope, 1878, Amer. Nat., XII, p. 129 (preliminary notice); 1878, Bull. U. S.
Geol. Geog. Surv. Terr., IV, (2), p. 380 (amplified description).
Poatrephes Douglass, 1903, Ann. Carn. Mus., II, p. 176.
Genotype.-Ticholeptus zygomaticus Cope.

Generic Characters

Skull.-Medium-sized, ranging in length from approximately 210 mm . to 250 mm .; mesocephalic to brachycephalic; occipital region fan-shaped, similar to that of Ustatochoerus; brain case inflated; malar prominent anterior to orbit (starting above posterior premolar region), causing a broad facial depression in the lacrimal region embracing the facial vacuity; zygomatic arch of light construction; nasals moderately long with slight retraction; infraorbital foramen above $\mathrm{P}^{3}-\mathrm{P}^{4}$; muzzle square and broad; occipital condyles light; postglenoid processes large and more robust than in Ustatochoerus; bullæ semi-depressed, similar to those of Ustatochoerus.

Mandible.-Medium-sized; inferior border of ramus similar to that of Ustatochoerus; inferior region of angle with pronounced internal curve.

Dentition.-Slightly hypsodont; lighter than in Ustatochoerus and not as hypsodont; small cusp on interior-posterior portion of P^{3}; inferior premolars not as crowded as in Ustatochoerus; M_{1} small; pronounced heel on M_{3}.

Limbs.-Known only from referred examples of T. hypsodus and from partial limbs of the holotypes of T. rileyi and T. tooheyi; proportionately lighter than Brachycrus and Ustatochoerus; decidedly longer and more robust than in Merychyus.

Measurements.-Tables III, IV, and IX.

Discussion

Until 1937 the holotype (A.M.8112) of T. zygomaticus was only partially prepared and the skull and mandible were still attached in the original matrix with the tooth characters almost entirely obscured. Permission to separate the skull from the mandible was granted to the present writers by Dr. Walter Granger, Curator of Fossil Mammals at the American Museum of Natural History. When the teeth were completely exposed it was found that they were of light proportions and were distinctly different in form from the teeth of "T." bannackensis, "T." brachymelis, "T." breviceps, and "T." petersoni, four species which Thorpe ${ }^{1}$ had listed under Ticholeptus. These species will be included under a separate subfamily in a later report.

The skull of the holotype of T. zygomaticus appears to be narrow and high but when proper allowance is made for the extensive lateral crushing, it has considerable width and is rather low.

[^24]Complete skulls and skeletal elements representing the genus Ticholeptus are rare. The species T. hypsodus, from the "Lower Snake Creek" deposits of Nebraska, is the best represented in the collections at hand. This species is very similar to T. zygomaticus in both size and form, and when more material is available from Montana it may be necessary to consider T. hypsodus as a variety or, indeed, as a synonym of T. zygomaticus.

An uncrushed skull of T. hypsodus shows the presence of a facial vacuity and rather long nasals. The presence or absence of these characters is not observable in the holotype of T. zygomaticus because the anterior portion of the skull is badly crushed and partly missing.

In 1903 Douglass ${ }^{1}$ described a new genus and species of oreodont, "Poatrephes paludicola," and designated specimen C.M. 845 as the holotype. This skull is so badly crushed dorsoventrally that it is difficult to make a comparison with the holotype of T. zygomaticus, which is crushed laterally, but when allowances are made for these distortions the skulls of the two species are found to be approximately equal in size and shape. The present writers, therefore, consider "Poatrephes paludicola" to be a synonym of T. zygomaticus. In his description of "Merychyus smithi" Douglass ${ }^{2}$ further stated that this species and "Poatrephes paludicola" had many similar characters and that both came from the same geologic beds east of New Chicago, Montana. In 1936 Falkenbach collected two mandibular rami from this same area and these specimens are here listed as T. zygomaticus.

The amount of specific variation within the genus Ticholeptus seems to be small in comparison with that found in the apparently less conservative genera Brachycrus, Merycochoerus, and Ustatochoerus. Even the size differences among the various species of Ticholeptus are not marked.

Distribution

Six species and one variety are here recognized from the Miocene of California, Colorado, Nebraska, Montana, Oregon, Texas, and Nevada. The greater portion of the 148 specimens comes from Dawes and Sioux Counties, Nebraska. [See distribution chart, page 7; and Figures 1 (in part), 18-15, and 17 (in part).]

[^25]
Summary of Species and Types

Six species and one variety of Ticholeptus from nine Miocene localities are here recorded:
(1) Ticholeptus calimontanus (Dougherty), 1940, from Caliente Mountain region, San Luis Obispo County, California.
Holotype.-Partial skull, C.I.T.2543.
(2) Ticholeptus hypsodus Loomis, 1924, from the "Lower Snake Creek" deposits, Sioux Country, Nebraska, and referred remains from Dawes County, Nebraska.
Holotype.-Partial right ramus, A.M.14057. Figure 13.
(3) Ticholeptus obliquidens (Cope), 1886, from Cottonwood Creek, John Day River, Oregon.
Holotype.-Right ramus, A.M. 8192 .
(4) Ticholeptus rileyi, new species, from the Cold Springs area, San Jacinto County, Texas.
Носотүpe.-Mandible and partial femur, F:A.M.42329. Figure 15.
(5) Ticholeptus tooheyi, new species, from the Hemingford area, Box Butte County, Nebraska (correlated with "Sheep Creek").
Holotype.-Anterior portion of skull, partial mandible, and skeletal parts, N.S.M.1-15-9-36S.P. Figures 14, 15.
(6) Ticholeptus zygomaticus Cope, 1878, genotype, from the Smith River area, Montana, and referred remains from Granite County, Montana. Genoноцотype.-Skull and mandible, A.M.8112. Figure 15.
(6a) Ticholeptus zygomaticus smithi (Douglass), 1903, from east of New Chicago, Granite County, Montana.
Holotype.-Partial skull and mandible, C.M.766.
(7) Ticholeptus species undetermined (Merriam), 1911, from Virgin Valley, Nevada.
Example.-Detached molars, U.C. 12606 and 11825.

Detailed Lists of Types, Referred Specimens, and Synonymy

Ticholeptus, total available specimens, 148.
(1) Ticholeptus calimontanus (Dougherty)

From the Miocene Deposits of the Caliente Mountain Region, San Luis Obispo County, California
Merychyus calimontanus Dougherty, 1940, Carn. Inst. Wash. Publ. No. 514, p. 137, Pl. vi, Figs. 1-6a.

Specific Characters

Skull.-Known only from palate and fragmentary maxilla; smallest form of the genus.

Mandible.-Known only from fragmentary specimen.
Dentition.-Smallest dental series of the genus.
Limbs.-Known only from foot bones.
Measurements.-Table III.

Discussion

The writers have not had an opportunity to study the specimens upon which the species "Merychyus calimontanus" was based, but the excellent illustrations, descriptions, and measurements published by Dougherty indicate that this form belongs to the genus Ticholeptus rather than to Merychyus.

Four specimens are here recorded:

Holotype.-Partial skull with I^{1} \mathbf{M}^{3}, right calcaneum, left astragalus, metatarsal, and proximal phalanx. (w+)
C.I.T. 2543

From the Caliente Mountain region, San Luis Obispo County, California.
Figured by Dougherty, 1940, Pl. vi, Figs. 1-5.

(2) Ticholeptus hypsodus Loomis

From the Miocene Deposits ("Lower Snake Creek" Horizon') of Sioux County, Nebraska; Referred Remains from Dawes County, Nebraska
Ticholeptus hypsodus Loomis, 1924, Bull. Amer. Mus. Nat. Hist., LI, Art. 1, p. 35, Fig. 25.
Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 191, Fig. 140.

Specific Characters

Skull.-Slightly shorter, but approximately same width as that of T. zygomaticus; frontals robust above orbits.

Mandible.-Similar to T. zygomaticus; slightly smaller.
Dentition.-Superior and inferior series approximately same length as those of T. zygomaticus, but somewhat lighter.

Limbs.-Heavier than those of T. rileyi and T. tooheyi.
Measurements.-Tables III, IV, VII, and IX.

Discussion

Although Loomis ${ }^{2}$ reported that the dentition of the holotype of T. hypsodus was definitely hypsodont, an examination of this specimen has shown that the teeth are not in their proper position in the alveoli but have been drawn outward, thus giving the appearance of hypsodonty. Loomis also observed that in P_{4} of the holotype the basin did not become completely inclosed until the tooth was well worn. Additional material now available, however, shows a large amount of individual variation in the wear of the premolars and in the formation of the basin.

Some of the generic characters of Ticholeptus hypsodus listed in this paper are based on three referred skulls from Nebraska (F:A.M.43073, F:A.M.43043, and N.S.M.42-1-9-40) because these specimens show little distortion and are more complete than the genoholotype (A.M.8112), which was found in Montana.
T. hypsodus occurs at the same geologic level in the "Lower Snake Creek" deposits as does Brachycrus siouense, and has never been found associated with B. wilsoni. ${ }^{3}$

One hundred and thirty-three specimens are here recorded:

Holotype.—Partial right ramus	A.M. 14057	From "Lower Snake Creek" de-
with $/ \mathrm{C}-\mathrm{P}_{2}$ alv. and $\mathrm{P}_{3}-\mathrm{M}_{3}$. (w)		posits, Sioux County, Nebraska;
	collected by Albert Thomson,	
	Figured by Loomis, 1924, Fig. 25;	
	Thorpe, 1937, Fig. 140.	
	Figure 13.	

[^26]
Referred.-

(A) From Type Area (collected by Jack Wilson, Carl Long, and associates, 1935-1940):

From West Sinclair Draw:

maxilla		F:A.M.
Partial right maxilla with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{P}^{3}$ (br.)	($\mathrm{w}_{\ddagger}^{+}$)	33589
TWO MANDIBULAR RAMI		
Partial right ramus with $\mathbf{M}_{2}-\mathbf{M}_{3}$.	(w)	33521
Partial left ramus with $\mathbf{M}_{1}-\mathbf{M}_{3}$.	(w+)	33512

From West Surface Quarry, West Sinclair Draw:
two maxillet
Two partial left maxillæ with

C/-P ${ }^{3}$ (premolars large) . (w $\left.\ddagger+\ddagger\right) ~ 37187$

SIX MANDIBULAR RAMI
Four partial right rami with
\mathbf{M}_{1} (br.)- \mathbf{M}_{3} (br.) . (м+) 33510
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{2}$ (P_{2} alv.) (P_{4} large)................... ($\mathrm{w} \ddagger+$) 37165

Two partial left rami with		
$\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and /C-M M_{3} (premolars small).	$\left(\mathbf{w}_{+}^{+}\right)$	37175
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{P}_{4}$	(w \ddagger)	37180

From East Sinclair Draw:
THREE MANDIBULAR RAMI

Two partial left rami with		
$/ \mathrm{C}-\mathrm{M}_{1}$ alv. and M_{2} (br.) $-\mathrm{M}_{3}$ (br.).	(w+)	33522
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}(\mathrm{br}).\left(\mathrm{P}_{1} \mathrm{rt}\right.$)	(${ }^{++}$)	335

From Sinclair Draw:
Partial right ramus with $\mathrm{M}_{1}-\mathrm{M}_{2}$ (br.) . (w+) 43312

From Quarry 2, Sinclair Draw:
SKULL
Skull (lacking postoccipital region) with I^{1} (alv.)-M ${ }^{3}$. Figures
1, 13. (w) 43073
FOUR MAXILLAE

Two partial right maxillx with		
C/-M ${ }^{1}$.	(w_{\dagger}^{+})	43082
$\mathrm{P}^{1}-\mathrm{P}^{4}$.	(w_{+})	43083

Two partial left maxille with F:A.M.
 43074
$\mathrm{P}^{1}-\mathbf{P}^{\mathbf{3}}(\mathrm{br}$.) ($\mathrm{w} \ddagger$) 43217
THREE MANDIBULAR RAMI
Two partial right rami with $\mathrm{P}_{3}-\mathrm{M}_{3}\left(\mathrm{P}_{3}\right.$ large $)$ 43075
M_{2} (alv.)- M_{3} 43253
Partial left ramus with / C(alv.)- P_{4} 43084
From Quarry 4, Sinclair Draw:
MANDIBULAR RAMUS
Partial left ramus with $\mathrm{P}_{\mathbf{2}}-\mathrm{M}_{\mathbf{2}}$ (w) 33535
From Jenkins Quarry, Sinclair Draw:
TWO PARTIAL SKULLS
Partial skull with $\mathrm{I}^{1-\mathrm{I}^{3}}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{w} \ddagger)$ 43043
Anterior portion of skull with $\mathrm{I}^{2}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ (premolars large). Figure 17 (in part) 43044
TWO MAXILLAE
Two partial right maxille with $\mathrm{P}^{1}-\mathrm{M}^{3}$ (M^{1} alv.) (w) 43045
$\mathrm{M}^{2}-\mathrm{M}^{3}$ (w+) 43046
TWENTY-ONE MANDIBULAR RAMI
Nine partial right rami with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ 43052 (w+
$\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}($ br. $)-\mathrm{M}_{3}$ 43053
$\mathrm{I}_{2}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$. Figure 18 43054 (${ }^{\ddagger}+$)
$\mathrm{M}_{1}-\mathrm{M}_{3}$ 43055
/C(alv.)- M_{3}. Figure 17 43056
M_{1} (br.) $-\mathrm{M}_{3}$ 43057
$\mathrm{M}_{1}-\mathrm{M}_{3}$ 43058
/C(alv.) $-\mathrm{P}_{4}$ 43059
$\mathrm{P}_{4}-\mathrm{M}_{2}$ 43061
Three partial right rami, immature, with
$\mathrm{I}_{2}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}(\mathrm{germ})-\mathrm{dP}_{3}-\mathrm{M}_{2}$ (P_{2} and P_{4} alv.) 43062
$\mathrm{P}_{1}-\mathrm{P}_{3}$ alv. and P_{4} (germ) $-\mathrm{M}_{3}$ 43063
$\mathrm{dP}_{2}-\mathrm{M}_{3}$ (erupt.) 43064
Eight partial left rami with
P_{1} (br.) $-\mathrm{M}_{3}$ (P_{2} alv.) 43047
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}($ br. $)$ 43048
$\mathrm{P}_{3}-\mathrm{M}_{3}$ (br.) 43049
P_{1} (rt.)- M_{3} (br.) 43050
M_{1} (alv.)- M_{3} (w+) 43051

		F:A.M.
$\mathrm{P}_{1}-\mathrm{P}_{4}$ alv. and $\mathrm{M}_{1}-\mathrm{M}_{2}$.	(м)	43060
$\mathrm{P}_{4}-\mathrm{M}_{3}$.	($\mathrm{w} \ddagger$)	43065
This specimen is sma dus.		
P_{1} (br.)- M_{3} (P_{4} absent)	(w+)	43215

Two partial left rami, immature, with		
$\mathrm{I}_{2}-\mathrm{I}_{3} \mathrm{rt}$. and / $\mathrm{C}-\mathrm{dP}_{2}-\mathrm{M}_{3}$ (erupt.).	(I)	43066
$\mathrm{dP}_{3}-\mathrm{M}_{1}$ (erupt.).	(I)	43071

Eight skeletal elements

Two humeri. (Figure 15, 43068B)	43068A-B
Radius.	43216B
Femur. (Figure 15).	43067
Two tibiæ. (Figure 15, 43069A).	43069A-B
Tibia.	43216A
Metatarsal III. (Figure 15)	43070

From New Surface Quarry, Sinclair Draw:TWO MAXILLE

Two partial right maxillæ with		
$\mathbf{M}^{\mathbf{1}}$ (alv.)- $\mathbf{M}^{\mathbf{3}}$ ($\mathbf{M}^{\mathbf{2}} \mathrm{br}$.) .	(w+)	37550

$\mathrm{P}^{1}($ alv. $)-\mathrm{M}^{1}$ (w) 43072
TWO MANDIBULAR RAMI
Partial right ramus with P_{4} (alv.) $-\mathrm{M}_{3}$ (w) 37547
Partial left ramus with $\mathbf{M}_{1}-\mathbf{M}_{3}$ 37548The two above-listed specimens may represent one individual.
From Version Quarry, Sinclair Draw:
THREE MANDIBULAR RAMI
Three partial right rami with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{P}_{4}$ (alv.). (w) 34345
$\mathrm{P}_{2}-\mathrm{M}_{2}$ (br.) (premolars small) $\left(w+{ }^{+}\right)$ 43085
$\mathbf{M}_{1}-\mathbf{M}_{3}$ (br.) (w) 43086
TIBIA
Tibia 43267
From Echo Quarry, Antelope Draw:
TWO MAXILLE
Partial right maxilla with $P^{4}-M^{3} \ldots \ldots . \ldots \ldots$. (w) 33530
 43203

```
                                    EIGHTEEN MANDIBULAR RAMI
    Ten partial right rami with F:A.M.
    I-/C alv. and P}\mp@subsup{P}{1}{}-\mp@subsup{M}{1}{}\ldots\ldots......... . . . . . . . . . . . . . . . . . . . . . (w+) (w) 33511
```



```
    M M-M M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (м) (м) 33519
```



```
    I_/C alv. and P}\mp@subsup{P}{1}{}-\mp@subsup{M}{3}{}\ldots\ldots.\ldots..... . . . . . . . . . . . . . . . . . . . . . (w+) (w) 33538
    M}\mp@subsup{\mathbf{M}}{2}{}-\mp@subsup{M}{3}{}....... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (w+ (w+) 34288
    P
    P
    M2-M M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (w) (w) 43205
```



```
    Eight partial left rami with
    M M-M M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (w (w+
    P
    P4-M M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (w . }\ddagger) (w) 33534
    M}\mp@subsup{M}{1}{}-\mp@subsup{M}{3}{}(\mathrm{ br. ). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (w) (w) 37181
```



```
    I-/C alv. and P}\mp@subsup{P}{1}{}-\mp@subsup{M}{1}{\prime}\mathrm{ (br.) (P}\mp@subsup{P}{1}{}\mathrm{ exceptionally heavy)........ (w w+
    I
    I
    From Humbug Quarry, Ranchhouse Draw:
        SKULL
    Anterior portion of skull with C/-P4. . . . . . . . . . . . . . . . . (w (w+) }\mp@subsup{\ddagger}{}{+
    FOUR MANDIBULAR SPECIMENS
```



```
    Three partial right rami with
        M}\mp@subsup{M}{2}{}-\mp@subsup{M}{3}{}.......... . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (w+) (w) 43209
        P
```



```
        43212
            METATARSAL
```


(A') From Type Locality, "Lower Snake Creek" Deposits,
Sioux County, Nebraska (collected by W. D. Matthew, Albert
Thomson, and Harold Cook, 1908; Whitford and Stoll, 1916;
and Albert Thomson, 1921):
SKULL, ETC.
Anterior portion of skull with
A.M. 173111916
$\mathrm{C} /(\mathrm{br})-.\mathrm{M}^{2}$ (br.) (pre-
molars small) and partial
mandible with $\quad \mathbf{M}_{2}-\mathbf{M}_{3}$.
($\mathrm{w} \ddagger$)
Matthew ${ }^{1}$ referred the above specimen to "Metoreodon
relictus."

[^27]| three maxillat | | |
| :---: | :---: | :---: |
| Partial right maxilla with P^{4} (br.) $-M^{3}$ (M^{1} alv.). ($w_{\ddagger} \ddagger$) | A.M. 14067 | 1908 |
| Left maxilla with $\mathrm{C} /(\mathrm{rt})-.\mathrm{M}^{3}$ ($\mathrm{P}^{1}-\mathrm{P}^{2}$ and P^{4} br.). ($\mathrm{w}+$) | 14065 | 1908 |
| Partial left maxilla with P^{3} - $\mathbf{M}^{1}(\mathrm{br} .) . \quad(\mathrm{w}+)$ | 17313 | 1916 |
| THREE MANDIBULAR RAMI | | |
| Partial right ramus with $\mathrm{P}_{\mathbf{2}^{-}}$ P_{3} alv. and $\mathrm{P}_{4}-\mathrm{M}_{3}$. ($\mathrm{w}+$) | 14058 | 1908 |
| Two partial left rami with | | |
| $\mathbf{M}_{2}-\mathrm{M}_{3}$. (w) | 14060 | 1908 |
| $\mathrm{P}_{1}-\mathrm{M}_{3} . \quad(\mathrm{w} \ddagger)$ | 18343 | 1921 |

Matthew and Cook, ${ }^{1}$ under the discussion of Merychyus cf. relictus, noted a form larger than typical M. relictus and reported,
"A large variety or distinct species is indicated by several lower jaws or part jaws, Nos. 14060, 14058 and 14064. Two upper jaws, Nos. 14065, 14067 may be correlated with these."
In the table of measurements accompanying this quotation, ramus, A.M.14057, is also mentioned as of the larger form. Loomis ${ }^{2}$ later designated ramus, A.M.14057, as the holotype of T. hypsodus, but did not refer any of Matthew and Cook's larger specimens to the new species of Ticholeptus. The present writers refer specimens, A.M.14065, 14067, 14068, and 14060, to T. hypsodus Loomis. The partial ramus, A.M.14064, is referable to Merychyus, sp. indet.
(B) From Hay Springs Area, Dawes County, Nebraska (collected by Ted Galusha and associates, 1935-1938:

From Survey Quarry:

THREE MAXILLAE		F:B:A.M.
Partial right maxilla with $\mathrm{P}^{4}-\mathrm{M}^{3}$.	(w+)	33641
Left maxilla with C/-M ${ }^{3}$.	(w+)	33642
	(w_{+}^{+})	34291

From Observation Quarry:
SEVEN MAXILLA

Two partial left maxillæ with
C/(br.)-M ${ }^{2}$ (br.) . (w+) 34292

${ }^{1}$ Matthew, W. D., and Cook, Harold J., 1909, Bull. Amer. Mus. Nat. Hist., XXVI, Art. 27, p. 393.
${ }^{2}$ Loomis, F. B., 1924, op. cit., p. 35.
FIFTEEN MANDIBULAR RAMI

Six partial right rami with		F:B:A.M.
/C(alv.) $-\mathbf{M}_{3}$ (\mathbf{M}_{3} with additional heel).	(w+)	34297
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{2} alv.)	(w)	34298
$\mathrm{M}_{1}-\mathrm{M}_{3}$ (M_{3} with additional heel).	(w)	34299
$\mathrm{P}_{1}-\mathrm{M}_{1}$ (P_{4} small).	(w+)	34300
$\mathrm{P}_{4}-\mathrm{M}_{3}$ (P_{4} small)..	(w_{\ddagger})	34331
$\mathrm{dP}_{3}-\mathrm{M}_{1}$	(I)	34311

Nine partial left rami with

M_{3}	($\mathrm{w} \ddagger$)	34301
$\mathrm{P}_{1}-\mathrm{M}_{3}$	(w+)	34302

$I_{2}-/ C$ alv. and $P_{1}-M_{3}$ (br.) (M_{3} with additional heel)....... (w+) 34304
\mathbf{P}_{1} (rt.) $-\mathrm{M}_{3}$ (br.) (P_{2} br.) (P_{4} small) . (w +) 34305

FOUR METAPODIALS
Two metacarpals III. (Figure 15, 43076A)................... . $43076 \mathrm{~A}-\mathrm{B}$
Two metatarsals III... 43077A-B
From Pepper Creek area:

THREE MANDIBULAR RAMI

Partial mandible with $\mathrm{M}_{1}-\mathrm{M}_{3}$.	($\mathrm{M}+$)	34293
Partial right ramus with $\mathrm{P}_{3}-\mathrm{M}_{1}$	(w+)	34296
Partial left ramus with $\mathrm{P}_{3}-\mathrm{M}_{3}$ (M_{1} br.)	($\mathrm{w} \ddagger$)	34294

(B') From Sand Canyon Locality, Dawes County, Nebraska (collected by University of Nebraska State Museum field party, 1940):

(3) Ticholeptus obliquidens (Cope)

From the Miocene Deposits (Mascall), Grant County, Oregon ${ }^{1}$

Merycochcerus obliquidens Cope, 1886, Amer. Nat., XX, p. 368; 1886, Proc. Amer. Philos. Soc., XXIII, p. 359.
Promerycochoerus obliquidens (Cope), Hay, 1930, Carn. Inst. Wash., Publ. No. 390, II, p. 785. Ticholeptus obliquidens (Cope), Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 192, Pl. xxix, Figs. 5-6.

[^28]
Specific Characters

Skull.-Unknown.
Mandible.-Similar to those of T. zygomaticus and T. hypsodus; slightly smaller and shallower than in T. zygomaticus but nearly equal in size to small examples of T. hypsodus.

Dentition.-Superior series unknown; inferior series slightly heavier and of less length than that of T. zygomaticus, and approximately equal in size and form to that of T. hypsodus.

Limbs.-Unknown.
Measurements.-Table III.

Discussion

The writers agree with Thorpe ${ }^{1}$ in that T. obliquidens and T. hypsodus resemble each other very closely. The mandibular rami of the two species cannot be readily differentiated and additional material is necessary in order to establish or discredit possible synonymy. Thorpe suggested that the similarity might have been due to parallel development.

One recorded specimen:

Holotype.—Right ramus with $/ \mathrm{C}$	A.M. 8192
(rt.) $-\mathrm{M}_{3}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right.$ br. $)$.	From Cottonwood Creek, John
	Day River area, Grant County,
	Oregon.
	Figured by Thorpe, 1937, Pl.
	XxIx, Figs. 5-6.

(4) Ticholeptus rileyi, ${ }^{2}$ new species

From the Miocene Deposits of the Cold Springs Area, San Jacinto County, Texas

Description

Skull.-Unknown.
Mandible.-Approximate size of that of T. hypsodus; ramus shallow (even shallower than in T. obliquidens and T. tooheyi); ascending ramus shallow and narrow anteroposteriorly; condyle light.

Dentition.-Superior series unknown; inferior series approximate size of those of T. zygomaticus and T. hypsodus.

Limbs.-Known only from a partial femur; lighter than examples of T. hypsodus.

Measurements.-Table III.

[^29]
Discussion

In many respects this species is very close to T. hypsodus, but enough differences are present to warrant the naming of a new species.

One recorded specimen:
Holotype.-Mandible with I_{1} F:A.M. 42329 From Cold Springs area, San (alv.) $-\mathrm{M}_{3}$ and partial femur. (w+)

Jacinto County, Texas; collected by Claude Riley, 1938.
Figure 15.
(5) Ticholeptus tooheyi, ${ }^{1}$ new species

From the Hemingford Area, Box Butte County, Nebraska (Correlated with the Lower Part of the "Sheep Creek" Formation)

Description

Skull.-Smaller and lighter construction throughout than examples of T. hypsodus; nasals longer than in T. hypsodus but with approximately the same amount of retraction; premaxillæ joined somewhat lower than in T. hypsodus; muzzle narrow; palate narrow.

Mandible.-Smaller and lighter construction than examples of T. hypsodus.
Dentition.-Superior and inferior dental series shorter than in T. hypsodus and premolars more crowded.

Limbs.-Lighter than those of T. hypsodus.
Measurements.-Tables III and IV.

Discussion

Ticholeptus tooheyi is the smallest known species of the genus and probably represents an earlier stage of development than T. hypsodus. The remains of this species were found in a horizon (correlated with the "Sheep Creek") which is lower than that reported for the occurrence of T. hypsodus.

One recorded specimen:

Holotype.-Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, partial mandible with $I_{1}-M_{3}$, partial humerus, 2 partial radii, 2 partial tibiæ, 2 calcanea, astragalus, manus and pes elements, and skeletal fragments. ($\mathrm{w}+$)
N.S.M. From the Hemingford area (cor-1-15-9-36S.P. related with the "Sheep Creek" formation), 5 mi . E. and $5 \frac{1}{2}$ mi. N. of Hemingford, Box Butte County, Nebraska; collected by University of Ne braska State Museum field party, 1936.
Figures 14, 15.

[^30](6) Ticholeptus zygomaticus Cope, genotype

From the Miocene Deposits of Smith River Valley, Montana
Ticholeptus zygomaticus Cope, 1878, Amer. Nat., XII, p. 129 (preliminary notice); 1878, Bull, U. S. Geol. Geog. Surv. Terr., IV, Pt. 2, p. 380 (amplified description). Thorpe, 1937. Mem. Peabody Mus., III, Pt. 4, p. 198, Pl. xxix, Figs. 1-2.
Merychyus zygomaticus (Cope), Scott, 1893, Trans. Amer. Phil. Soc., XVIII, Pt. 10, p. 146, Pl. v, Fig. 45.
Poatrephes paludicola Douglass, 1903, Ann. Carn. Mus., II, p. 176, Fig. 18. Thorpe, 1937, op. cit., p. 200, Fig. 145, Pl. xxviI, Figs. 1-2.

Specific Characters

Skull.-Slightly longer but approximately same width as that of T. hypsodus; zygomatic arch similar to that of T. hypsodus and more robust than in T. tooheyi; postglenoid process slightly lighter than in T. hypsodus.

Mandible.-Equal to some examples of T. hypsodus.
Dentition.-Superior and inferior series approximately equal to large examples of those of T. hypsodus, but slightly heavier and longer than average of that species.

Limbs.-Unknown.
Measurements.-Table III.

Discussion

The skull of the holotype is badly distorted by lateral crushing, and the nasals, most of the frontals, part of the zygomatic arches, and a portion of the occipital region are missing. There are no indications as to the length of the nasals, the limits of the frontals, the depth of the malar below the orbits, or the presence or absence of a facial vacuity.

The synonymy of "Poatrephes paludicola" with Ticholeptus zygomaticus is suggested on page 73, under the discussion of the genus Ticholeptus.

Four specimens are here recorded:
Genoholotype.-Crushed skull A.M. 8112 From Smith River Valley, N.E. of (lacking nasals, frontals, and a portion of the occipital region) with $\mathrm{I}^{1}-\mathrm{M}^{3}\left(\mathrm{P}^{1} \mathrm{br}\right.$.) and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$. (w+)

A.M. 8112	From Smith River Valley, N.E. of
Helena, Lewis and Clark Co.,	
Montana.	
Figured by Scott, 1893, Pl. V,	
Fig. 45; Thorpe, 1937, Pl.	
xxix, Figs. 1-2.	
Figure 15 (in part).	

Referred.-

From E. of New Chicago, Granite County, Montana:

Partial left ramus with $\mathbf{P}_{1}-\mathbf{P}_{2} \quad$ F:A.M. $34289 \quad$ Collected in 1936.
rt. and $\mathrm{P}_{3}-\mathrm{M}_{2}$. $\quad\left(\mathrm{w}_{+}^{++}\right)$
The holotype of Ticholeptus zygomaticus smithi was also found E. of New Chicago (see discussion, below).

(6a) Ticholeptus zygomaticus smithi (Douglass)

From the Miocene Deposits, East of New Chicago, Granite County, Montana
Merychyus smithi Douglass, 1903, Ann. Carn. Mus., II, p. 179, Fig. 19.
Ticholeptus smithi (Douglass), Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 197, Fig. 144.

Varietal Characters

Skull.-Somewhat smaller than that of T. zygomaticus, but posterior portion of zygomatic arch heavier than in that species.

Mandible.-Similar to that of T. zygomaticus but slightly smaller and of less depth anterior to M_{3}.

Dentition.-Superior and inferior series slightly shorter and somewhat lighter than in T. zygomaticus, and M_{3} noticeably lighter.

Limbs.—Unknown.
Measurements.-Table III.

Discussion

The holotypic skull and mandible of T. zygomaticus smithi were not separated from the original matrix until this writing, and some of the characters which have heretofore been obscured show decided similarities to those of T. zygomaticus.

One specimen is here recorded:

Holoтype.-Partial skull with C/	C.M.766	From E. of New Chicago, Granite
(br.) $-M^{3}$ and partial mandible		County, Montana; collected by
with $P_{2}-M_{3}$.	$(w+)$	Earl Douglass.
		Figured by Douglass, 1903, Fig.
		19; Thorpe, 1937, Fig. 144.

(7) Ticholeptus species undetermined (Merriam)

From Virgin Valley, Nevada
Merychyus(\%) species Merriam, 1911, Bull. Dept. Geol. Uni. Calif., VI, p. 276, Figs. 48-49. Ticholeptus species (Merriam), Thorpe, 1937, Mem. Peabody Mus., III, Pt. 4, p. 199.

	two detached molars	U.C.
M^{2}.	. (w+)	12606
$\mathrm{M}_{\mathbf{3}}$ (br.).	.. (w+)	11825
The t fication. leptus and	adequate for definite generic identihtly larger than examples of Tichoof Ustatochoerus? schrammi in size.	

Table III.-Ticholeptus Cope. Comparative Measurements of Skulls and Rami

	$\begin{gathered} \text { T. } \\ \begin{array}{c} \text { calimontanus } \\ \text { (Dougherty) } \end{array} \end{gathered}$	T. hypsodus Loomis	$\begin{gathered} T \text {. } \\ \text { obliquidens } \\ \text { (Cope) } \end{gathered}$	$\begin{gathered} T . \\ \begin{array}{c} T i l e y i, \\ \text { n.sp. } \end{array} \end{gathered}$	$\begin{gathered} T . \\ \text { tooheyi, } \\ \text { n.sp. } \end{gathered}$	T. zygo	naticus	T. zygomaticus smithi (Douglass)
Skull	$\begin{gathered} \text { Hoцотчре } \\ \text { C.I.T. } \\ 2543 \end{gathered}$	Referred F:A.M. 43073	$\begin{gathered} \text { HoLotype } \\ \text { A.M. } \\ 8192 \end{gathered}$	$\begin{aligned} & \text { Носотрре } \\ & \text { F:A.M. } \\ & \mathbf{4 2 3 2 9} \end{aligned}$	$\begin{gathered} \text { HoLotype } \\ \text { N.S.M. } \\ 1-15-9-36 \mathrm{NP} \end{gathered}$	GENO- HOLOTYPE A.M. 8112	Referred C.M. 845	$\begin{gathered} \text { Ноцотчре } \\ \underset{766}{\text { C.M. }} \end{gathered}$
Stage of wear of teeth. Length (including supraoccipital crest and incisors)	(${ }_{\text {W }} \ddagger$)	(w) $((225)$.	($\mathrm{w}+$)	($\mathrm{w}+$)	${ }_{((210 .)}^{(0+)}$	${ }_{((245 .)}^{(w+)}$	$\left.{ }_{((250}^{(0+)}\right)$	(w+)
Basal length (from anterior notch of foramen magnum to posterior base of I^{1}).			\cdots	\cdots	((210.))	$((245)$. 207.	$((250)$. 210.	
	\ldots	((148.))	\ldots	\ldots	(123.)	((145.))	((153.))	((148.))
Width, interorbital (min.) ..	\ldots	68. 59.	\ldots	\ldots		...		
Distance from anterior rim of orbit to anterior base of canine.....		83.			88.	\ldots	(101.)	(79\%)
Distance from anterior rim of orbit to supraoccipital crest.........		((141.))	\ldots	\ldots		\ldots	((155.))	
Width of muzzle at infraorbital foramina.....................................	\ldots	${ }_{72}^{56.5}$	\ldots				60	\ldots
Width across canines (max.). ${ }^{\text {a }}$ (.	\cdots	50.	\cdots	\cdots	S3.	(48.)	60.	\cdots
Width of palate between fourth premolars		41.5	\cdots		34.		38.5	
Width of palate between canines		26.	\ldots	\ldots	23.		(19.)	
Length, $\mathrm{P}^{1}-\mathrm{M}^{8}$ incl...	${ }_{81.9}{ }^{92.2}$	${ }^{102.5}$	\ldots	\ldots	${ }_{86.5}^{96.5}$	${ }_{95.5}^{113 .}$	(111.)	${ }^{100 .} 8$
Length, ${ }^{1-}{ }^{1-}{ }^{4}$ incl.		40.5			${ }_{38.5}$	46.5	(44.5)	42.5
		49.	\ldots		48.5	52.	(47.5)	47.
Depth of malar below orbit.	16.6	${ }_{20}^{16 .}$...		${ }_{22}^{16.5}$	19.	${ }_{31}^{18 .}$	16.5
Ramus		$\begin{gathered} \text { HoLotype } \\ \text { A.M. } \\ 14057 \end{gathered}$						
Stage of wear of teeth.............		(w)						
Length (max., including incisors)	\ldots		((175.))	165.5	169.	183.	\cdots	\ldots
Depth of jaw under coronoid.				177.	156. 80.			
Depth of jaw below anterior edge of M_{3}		37.	33.	26.5	32.	38.		34.
${ }_{\text {Length, }}^{\text {Lengh, }} \mathrm{P}_{1}-\mathrm{C}_{3}$ incl. ${ }^{\text {incl. }}$	\ldots			103.5	99.5	111.		
Length, $\mathrm{P}_{1}-\mathrm{P}_{4}$ incl.		((42.))	(43.)	96.5 39.5	${ }_{39.5}^{92.5}$	102.5 48.5		
Length, $\mathrm{M}_{1}-\mathrm{M}_{3}$ incl.	.	56.)	56.	57.	52.5	55.5		5i. 5

[^31]Table IV.-Ticholeptus Cope. Comparative Measurements of Skeletal Elements

	T. hypsodus Loomis			T. tooheyi, n.sp.
	Refi	Rred	Referred N.S.M.	Holotype N.S.M.
		F:A.M.	42-1-9-40	1-15-9-36SP
Length of humerus (articular).	((157.))	43068A		...
Length of radius (articular).	...		131.	\ldots
Length of ulna (max.).	\ldots		(182.)	
Length of metacarpal III (max.).	63.	43076A	68.	62.
Length of femur (articular).	178.	43067		\ldots
Length of tibia (articular).	165.	43069A	171.	
Length of metatarsal III (max.).	73.	43070	74.	72.
Length of calcaneum (max.)....	...		63.	59.

Fig. 13. Ticholeptus hypsodus Loomis, Holotype, A.M.14057, partial ramus; ReFerred, F:A.M.43073, skull, and F:A.M.43054, partial ramus, from "Lower Snake Creek" horizon, Sioux County, Nebraska. $\times \frac{1}{2}$.

N.S.M.I-15-9-36

Fig. 14. Ticholeptus tooheyi, new species, Holotype, N.S.M.1-15-9-36, partial skull and ramus (P^{2} from opposite side), from Hemingford area (correlated with the "Sheep Creek" deposits), Box Butte County, Nebraska. $\times \frac{1}{2}$.

Fig. 15. Ticholeptus rileyi, n.sp., Holotype, F:A.M.42329, ramus, San Jacinto Co., Tex.; T. zygomaticus Cope, Genoholotype, A.M.8112, superior and inferior dental series, Lewis and Clark Co., Mont.; T. hypsodus Loomis, ref., skeletal elements, "Lower Snake Creek" deposits, Sioux Co., Nebr.; T. tooheyi, n.sp., Holotype, N.S.M.1-15-9-36, skeletal elements, Hemingford area (correlated with the "Sheep Creek" deposits), Box Butte Co., Nebr. $\times \frac{1}{2}$.

III. Mediochoerus, ${ }^{1}$ new genus

Genotype.-Mediochoerus blicki, new genus and species.

Description

Skull.-Medium size, ranging in length from approximately 220 mm . to 240 mm .; brachycephalic; occipital region fan-shaped (similar to Brachycrus, Ustatochoerus, and Ticholeptus); brain case inflated; zygomatic arch similar to Ticholeptus; prelacrimal pit shallow; nasals similar to those of Merycochoerus, shorter and more retracted than in Ticholeptus, but not as retracted as those in Brachycrus; anterior tip of nasals retracted to region above M^{1}; infraorbital foramina above region of M^{1}; postglenoid process moderately robust, compressed anteroposteriorly; posterior portion of palate greatly extended toward pterygoid region (somewhat the same as in Ustatochoerus and Ticholeptus).

Mandible.-Unknown.
Dentition.-Moderately hypsodont (much more hypsodont than Ticholeptus, similar to Ustatochoerus); heavier than examples of Ticholeptus; C/ large; small cusps on the interior-posterior of P^{2} and P^{3} but not pronounced as in Ustatochoerus; inferior series unknown.

Limbs.-Unknown.
Measurements.-Tables V and IX.

Discussion

The new genus, Mediochoerus, may be considered to be an intermediate form between Brachycrus and Ustatochoerus so far as certain important characters are concerned. This should not imply, however, that Mediochoerus is the connecting link between Brachycrus and Ustatochoerus, for these genera represent distinct phylogenetic lines in the oreodonts. The characters which Mediochoerus has in common with Ustatochoerus and Brachycrus probably represent parallel development, at least in the case of the latter genus. Mediochoerus, however, has much more in common with Ustatochoerus than with Brachycrus, and is, therefore, placed in the same subfamily with the former.

The position of the cuspss ${ }^{2}$ of P^{2} and P^{3}, the fan-shaped occipital region, and the absence of the typical facial cavity of Brachycrus are characteristic of both Ustatochoerus and Mediochoerus. At the same time the retracted nasals and the fan-shaped occipital flare of Mediochoerus would strongly suggest a close relationship to Brachycrus.

Distribution

The two species of Mediochoerus here recorded are restricted to the Miocene deposits (Hemingford group) of Nebraska. [See distribution chart, page 7; and Figures 1 (in part), 16, and 17 (in part).]

[^32]
Summary of Species and Types

Two species of Mediochoerus, new genus, from two Miocene localities are here recognized:
(1) Mediochoerus blicki, new genus and species, from the "Lower SnakeCreek" deposits, Sioux County, Nebraska.
Genoholotype.-Partial skull, F:A.M.43172. Figures 1, 16, 17.
(2) Mediochoerus johnsoni, new species, from the upper part of the Marsland formation, Hemingford area, Dawes County, Nebraska.
Holotype.-Skull, N.S.M.2-11-8-36N.P. Figure 16.

Detailed Lists of Types and Referred Specimens
 Mediochoerus, total available specimens, 4
 (1) Mediochoerus blicki, ${ }^{1}$ new genus and species

From the Miocene Deposits ("Lower Snake Creek" Horizon) of Sioux County, Nebraska

Description

Skull.-Approximately same size as that of Brachycrus siouense; malar very deep below orbit; nasal greatly retracted and almost as wide as long; anterior portion of nasal with upward curve.

Mandible.-Unknown.
Dentition.-Superior series longer than in M. johnsoni and approximately same length as in Ustatochoerus medius; inferior series unknown.

Limbs.-Unknown.
Measurements.-Tables V and IX.

Discussion

This species is the rarest of the "Lower Snake Creek" oreodonts. It is known only from three specimens. The genoholotype and referred examples were collected by Jack Wilson and associates, 1938.

Three specimens are here recorded:
Genoholotype.-Skull (lacking zygomatic arch and orbital region) with $\mathrm{I}^{1}-\mathrm{I}^{2}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}$.

$$
\begin{array}{cl}
\text { F:A.M.43172 } & \text { From New Surface Quarry, Sin- } \\
\text { clair Draw, Sioux County, Ne- } \\
& \text { braska. } \\
& \text { Figures 1, 16, 17. }
\end{array}
$$

(w)

[^33]
Referred from Type Locality.-

```
From Quarry 2, Sinclair Draw:
    Anterior portion of skull with \(\mathrm{I}^{1-I^{3}}\) alv. and \(\mathrm{C} /\left(\mathrm{br}\right.\).) \(\mathrm{M}^{3}\) ( \(\mathrm{P}^{1} \quad \mathrm{~F}\) :A.M.
        alv.)..................................................................... 43173
    Partial right maxilla with \(\mathrm{P}^{1}\) (alv.) \(-\mathrm{P}^{4} \ldots \ldots \ldots . . . . . . . . . .\). . ( \(\mathrm{w}^{+}+\)) 43252
```


(2) Mediochoerus johnsoni, ${ }^{1}$ new species

From the Upper Part of the Marsland Formation, Hemingford Area, Dawes County, Nebraska

Description

Skull.-Maximum length approximately equal to that of M. blicki, but basal length longer with distance posterior of M^{3} decidedly greater; malar not as deep below the orbit as in M. blicki; nasals not retracted as much nor muzzle joined as high as in M. blicki; anterior nasal opening large and oval in shape.

Mandible.-Unknown.
Dentition.-Superior series less hypsodont and of less length than in M. blicki; I^{3} small and $\mathrm{C} /$ robust in comparison with those of M. blicki; inferior series unknown.

Limbs.-Unknown.
Measurements.-Table V.

Discussion

The dental series of Mediochoerus johnsoni compares very favorably with examples of M. blicki, except for slightly shorter length. The frontals and the nasals are missing in the holotype of M. johnsoni, but the superior border of the maxilla is present and indicates less retraction of the nasals than in M. blicki.

The writers believe that the variation in basal length between M. johnsoni and M. blicki, which is mentioned under the description, is due to the foreshortening of the posterior portion of the skull and the greater retraction of the nasals of M. blicki.

One recorded specimen:

Holotype.—Skull (lacking occipi-	N.S.M.	From 100 yds. N. of Hemingford		
tal region, frontals, and nasals)	$2-11-8-36 N . P$.	Quarry 24, N. and E. of Heming- ford in Dawes County, Ne-		
with $\mathrm{I}^{1}-\mathrm{M}^{3} .\left(\mathrm{w}_{+} \ddagger\right)$			\quad	braska.
:---:				

${ }^{1}$ Named in honor of Mr. Guy Johnson, who has aided the University of Nebraska State Museum in collecting specimens and geological data in the Hemingford area of Nebraska.

Table V.-Mediochoerus, new genus. Comparative Measurements of Skulls

	$\begin{gathered} M . \text { blicki, } \\ \text { n.g. and sp. } \end{gathered}$	M. johnsoni, n.sp.
	Geno-	
	ноцотчpe	Holotype
Skull	43172	$2-11-8-36 \mathrm{NP}$
Stage of wear of teeth.	(w)	($\mathrm{w} \ddagger$)
Length (including supraoccipital crest and incisors).	222.	
Basal length (from anterior notch of foramen magnum to posterior base of I^{1}).	182.	195.
Width (max.).	((165.))	169.
Width of brain case (max.).	(74.)	82.
Distance from anterior rim of orbit to anterior base of canine	...	86.
Width of muzzle at infraorbital foramina.	79.5	(65.)
Width across canines (max.).	44.	46.
Width of palate between fourth premolars.	32.	35.
Width of palate between canines.	20.5	20.
Length, C/-M ${ }^{3}$ incl.	116.5	104.
Length, $\mathrm{P}^{1}-\mathrm{M}^{3}$ incl. .	103.5	89.5
Length, $\mathrm{P}^{1-} \mathrm{P}^{4}$ incl.	42.	39.
Length, $\mathrm{M}^{1}-\mathrm{M}^{3} \mathrm{incl}$.	63.	51.5
Width of M^{3} (max.).	22.	20.5
Depth of malar below orbit.	...	25.

Fig. 16. Mediochoerus blicki, n.g. and sp., Genoноцотчpe, F:A.M.43172, partial skull (composite of both sides), "Lower Snake Creek"' deposits, Sioux Co., Nebr.; M. johnsoni, n.sp., HоLOTYPe, N.S.M.2-11-8-36, partial skull, Marsland deposits, Dawes Co., Nebr. $\times \frac{1}{2}$.

INDIVIDUAL VARIATION

Brief discussions of individual variations and dental characters of certain genera and species of oreodonts, supplemented by figures and tables, are given here.

Apparent Variation within a Species

Variation within one species of oreodonts may be either contemporary or chronological. In the following tables (VI-VIII) the high degree of individual variation in three contemporaneous genera from one geological level is shown by the measurements of twenty-three mandibular rami of Brachycrus siouense (Sinclair), fifteen of Ticholeptus hypsodus Loomis, and eighteen of Merychyus (Metoreodon) relictus Matthew and Cook. Remains of all three genera and species have been found in Humbug Quarry.

Tables VI-VIII show that considerable variation exists within any given set of measurements. Any single measurement does not seem to be indicative of the proportions of any other part of the same specimen, i.e., an example with the longest molar series does not necessarily have the longest P_{4} or the widest M_{3}. The stage of wear of the teeth affects the anteroposterior length of the dental series as well as the depth of the ramus, but here again there is a certain amount of variation.

Variation in size due to chronological development within specific limits is best illustrated by the distribution of the remains of Ustatochoerus medius (Leidy) in the Valentine formation (see Table IX). Specimens from the lower part of this formation are on the average smaller than those from the upper levels. The larger forms of this species approach in size specimens from the lower part of the overlying Ash Hollow formation referred to U. profectus (Matthew and Cook) (see Table IX). Changes in size and form seem to have been slow in some genera, as, for example, in Ticholeptus Cope and Merychyus Leidy, and comparatively rapid in others, such as Brachycrus Matthew, Merycochoerus Leidy, and Ustatochoerus, new genus.

Table VI.-Comparative Measurements of Mandibular Rami of Brachycrus siouense (Sinclair), from Humbug Quarry ${ }^{1}$

F:A.M.	Wear	$\mathrm{P}_{1}-\mathrm{M}_{3}$	$\mathrm{P}_{1}-\mathrm{P}_{4}$	$\mathrm{M}_{1}-\mathrm{M}_{3}$	$\frac{/ \mathrm{Ps}}{/ \mathrm{Ms}}$	P_{4}		M_{3}		Depth below M_{3}
						Length	Width	Length	Width	
42432	$\mathbf{w}^{\dagger+}$		(47.5)		...	14.5	12.			60.
42441	w	129.5	53.	76.5	. 69	15.	12.	37.5	14.5	55.
42431	w	122.5	49.5	74.	. 66	15.5	12.	34.5	12.5	56.
42429	w $\ddagger \ddagger$	131.	53.5	77.5	. 69	16.	12.5	41.	18.5	
42435	w+	132.5	51.5	81.	. 63	16.	12.	40.	14.	55.
42411	\mathbf{w}^{++}	(126.)	(47.5)	78.5	(.60)	16.5	12.5	41.	17.5	
42453	w	128.5	53.5	75.5	. 70	16.5	12.	36.	14.5	53.5
42409	$\mathbf{w} \ddagger$...	16.5	12.			
37538	$\mathbf{w} \ddagger$	125.	48.5	76.5	. 63	16.5	13.	37.	12.5	61.
42436	w+	135.	52.	83.	. 62	16.5	12.5	39.	14.	62.
42433	w^{+}	141.5	59.	83.	. 71	16.5	12.	39.	14.5	54.5
37539	w		54.5			17.	13.			
42412	\mathbf{w}^{+}	134.5	56.5	78.5	. 72	17.	12.5	39.5	17.	
42413	w^{+}	(128.)	(50.5)	77.5	. 65	17.	11.5	39.5	16.	
42415	\mathbf{w}_{+}^{+}	131.	55.	76.	. 72	17.	13.	39.	19.	55.
42440	w+	17.	14.5			
37540	w+	130.	55.	75.	. 73	17.5	12.5	36.5	14.	62.
42443	\mathbf{w}^{+}	82.	. . .	17.5	13.	44.	...	
42414	\mathbf{w}_{+}^{++}	...	\ldots	76.5	\ldots	43.	17.5	58.5
42410	w \ddagger	. \cdot	...	77.	...	\ldots	...	40.	19.	56.5
42444	w	\ldots	\ldots	. . .	\ldots	\ldots	\ldots	42.5	13.5	
42452	\mathbf{w}_{+}^{+}	131.5	...	\ldots	\ldots	43.	18.5	58.5
42454	w+ \cdot	\ldots	\ldots	45.	18.5	
MIN.		122.5	47.5	74.	. 60	14.5	11.5	34.5	12.5	53.5
MAX.		141.5	59.	83.	. 73	17.5	14.5	45.	19.	62.
$\frac{\text { MIN. }}{\text { MAX }}$. 86	. 80	. 89	. 82	. 82	. 79	. 76	. 81	. 86

[^34]
Table VII.-Comparative Measurements of Mandibular Rami of Ticholeptus hypsodus Loomis, from Humbug Quarry

F:A.M.	Wear	$\mathrm{P}_{1}-\mathrm{M}_{3}$	$\mathrm{P}_{1}-\mathrm{P}_{4}$	$\mathrm{M}_{1}-\mathrm{M}_{3}$	$\frac{/ \mathrm{Ps}}{/ \mathrm{Ms}}$	P_{4}		M_{3}		Depth below M_{3}
						Length	Width	Length	Width	
43065	w \ddagger			54.		13.	8.5	27.5	12.5	
43061	w+					13.5	8.5			
43054	$\underline{w}{ }^{+}$	96.5	46.	50.5	. 91	14.	9.	24.5	12.	32.5
43047	w	96.	43.5	52.5	. 82	14.	9.	24.	11.5	35.
43049	w+			56.	\ldots	14.5	8.5	26.	11.	35.5
43050	w+		42.			14.5	8.5			34.5
43056	w	104.5	46.	58.5	. 78	14.5	9.	29.	12.5	34.
43048	$\mathrm{w}^{+}{ }^{+}$	(99.)	46.	(53.)	. 86	15.	9.5			34.
43052	w \ddagger	106.5	47.5	59.	. 80	15.	9.5	28.5	12.	38.
43053	w \ddagger	109.	48.5	60.5	. 80	15.	11.	30.	12.5	37.5
43059	w	...	(49.5)		...	15.5	9.5			
43051	w+	\ldots	\ldots	...	\ldots	27.	12.5	35.5
43055	w+	\ldots	\ldots	56.	\ldots	\ldots		25.	12.5	36.5
43057	w+	\ldots						27.5	12.	
43058	M+	\ldots		57.				25.5	11.	
MIN.		96.	42.	50.5	. 78	13.	8.5	24.	11.	32.5
MAX.		109.	(49.5)	60.5	. 91	15.5	11.	30.	12.5	38.
MIN.		. 88	. 84	. 83	. 85	. 83	. 77	. 80	. 88	. 85

Depth

43111	w	\ldots	\ldots	45.5	\ldots	10.	8.	20.5	8.5	25.5
43112	$\mathrm{w} \ddagger$	\ldots	33.	\ldots	\ldots	10.5	8.5	\ldots	\ldots	\ldots
43110	$\mathrm{w} \ddagger$	\ldots	\ldots	48.5	\ldots	10.5	8.5	23.	10.5	28.

$43104 \quad \mathrm{w} \ddagger \quad \ldots \quad 31.5 \quad \ldots \quad .$.
10.58.
.. ... 43091 w (78.) (31.) 47. . 65
$\begin{array}{lllll}11 . & 7.5 & 21.5 & 8.5 & 29 .\end{array}$
$43099 \quad \mathrm{w} \ddagger \ddagger \quad \ldots \quad 32.5 \quad \ldots \quad \ldots . \quad 11 . \quad 8.5 \quad \ldots . \quad 11 . \quad 26.5$
$43101 \quad \mathrm{w}^{\ddagger}{ }^{+} \quad \ldots . \quad \ldots \quad 48.5 \quad \ldots \quad 11.88 .25 .5 \quad 10.5 \quad 27$.
$43103 \quad \mathrm{w} \ddagger \mathrm{F} \quad \ldots \mathrm{F} \quad \ldots \quad \ldots \quad 11 . \quad 8 . \quad \ldots . \quad 9.5 \quad 26.5$
$43107 \quad \mathrm{w} \ddagger \quad 80.5 \quad 33.5 \quad 47 . \quad .71 \quad 11 . \quad 8.5 \quad 22 . \quad 10 . \quad 29$.

43113	$\mathrm{w}+$	\ldots	30.	\ldots	\ldots	11.	7.5	\ldots	\ldots	\ldots
43197	$\mathrm{w} \ddagger$	80.	31.	49.	.63	11.	8.	23.	10.5	\ldots

$43098 \quad \mathrm{w} \ddagger \quad$ 77. $30 . \quad 47 . \quad .63 \quad 11.5 \quad 8 . \quad 23 . \quad 9.5 \quad 28$.

43102	$\mathrm{w} \ddagger$	\ldots	\ldots	47.	\ldots	11.5	9.	23.5	\ldots	28.5
43106	$\mathrm{w} \ddagger$	\cdots				11.5	9			

43115	$\mathrm{w}+$	\ldots	\ldots	\ldots	\ldots	12.5	8.	\ldots	\ldots	\ldots
43196	$\mathrm{w}+$	82.	34.	48.	.70	\ldots	\ldots	22.5	9.	26.5

| 43105 | $\mathrm{w} \ddagger$ | \ldots | \ldots | 47. | \ldots | \ldots | \ldots | 23.5 | 11.5 | 27. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| MIN. | | 77. | 30. | 47. | .63 | 10. | 7.5 | 20.5 | 8.5 | 25.5 |

MAX.	82.	34.	49.	.71	12.5	9.	25.5	11.5	29.
MIN.	.93	.88	.95	.88	.80	.83	.80	.73	.84

[^35]Table IX.-Comparative Minimum and Maximum Measurements of Species of Ustatochoerus, n.g., Ticholeptus Cope, and Mediochoerus, n.g.

	Skulls															
			Depth of malar below orbit			$\mathrm{P}^{1}-\mathrm{M}^{3}$			$\mathrm{P}^{1}-\mathrm{P}^{4}$			$\mathrm{M}^{1-} \mathrm{M}^{3}$			$\frac{\mathrm{Ps} /}{\mathrm{Ms} /}$	
	$\begin{gathered} \hline \text { No. } \\ \text { of } \\ \text { spec. } \end{gathered}$	Stage of wear	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.
U. major............	13	M-w \ddagger	30	38.	. 79	151	162.	. 93	55	62.	88	80.	89.	. 89	68	70
U. medius............	22	$\mathrm{m}-\mathrm{w}_{+}^{+}$	24.5	34	. 72	106	116.	. 91	44.	48.5	90	60.	72.	. 83	73	. 67
U. medius novomexicanus.	17	$\mathrm{M}-\mathrm{w}_{+}^{+}$	(24.)	36	. 66	113.5	122.5	. 92	47.	68.5	68	61.	75.	81	77	. 91
U. profectus............	13	${ }^{-M-w+\ddagger}$	26.5	33	. 80	113.	130.	. 86	49	58.	. 84	63.	77	81	75	75
U. profectus espanolensis..	5	w+-w \ddagger	32.	32	...	125.5	130.	. 96	52.	57.5	. 90	72.	79	91	72	73
U. profectus studeri.....	4	$\underline{w-w_{+}^{+}}$	27	29	. 93	113.	118.5	. 95	49.5	51.	. 97	69.	72.	. 95	72	. 71
U. skinneri...........	2	M-w+	28.5	31	. 92	133.	140	. 95	55.	59.5	92	80.	82.5	. 96	68	. 72
U. skinneri santacruzensis	2	$\mathrm{w}^{\mathbf{w}+-\mathrm{w}_{+}^{++}}$		(42.)	. 73	138.	150.	. 92	57.	59.5	95	85.	91.	. 93	67	. 65
T. hypsodus............	21	$\underline{M+-w+}$	\ldots	\ldots		87.5	99.5	. 87	38.	50.	76	47.	55.5	. 84	. 80	. 90
M. blicki.............	2	w-w+	29.5	29.5	\ldots	102.	103.5	. 99	42.	42	\ldots	61.	63.	96	69	67

Table IX (continued)

	Mandibular Rami															
			$\begin{gathered} \text { Depth below } \\ M_{3} \\ \hline \end{gathered}$			$\mathrm{P}_{1}-\mathrm{M}_{3}$			$\mathrm{P}_{1}-\mathrm{P}_{4}$			$\mathrm{M}_{1}-\mathrm{M}_{3}$			$\frac{/ \mathrm{Ps}}{/ \mathrm{Ms}}$	
	$\begin{array}{\|c\|} \hline \text { No. } \\ \text { of } \\ \text { spec. } \end{array}$	Stage of wear	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.	$\frac{\text { Min. }}{\text { Max. }}$	Min.	Max.
U. major............	18	$\mathrm{M}^{+-\mathrm{W}}{ }^{+}$	42.5	54.5	77	139.	155.	89	55.	63.	87	83.	96.	. 86	. 66	65
U. medius............	27	$\mathrm{M}-\mathrm{w}{ }^{+}$	38.	47.	. 80	110	125.5	. 87	42.	54.5	. 77	66.	78.	. 84	. 63	. 69
U. medius novomexicanus	15	$\mathrm{M}-\mathrm{w} \pm^{+}$	40.	52.5	. 76	114.	132.	. 86	44.	54.	. 81	67.	80.5	. 83	. 65	. 67
U. profectus...........	22	$\mathrm{m}-\mathrm{w}+\ddagger$	32.5	50.	. 65	115.5	138.	. 83	42.	54.5	. 77	66.5	90.	. 73	. 63	65
U. profectus espanolensis	2	${ }^{\text {w }} \ddagger$	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	...	\ldots	80.5	(86.5)	. 93	\ldots	
U. profectus studeri.....	4	w+-w+扌	37.	48.	. 77	122.	126.	. 96	46.5	50.	. 93	73.5	79.5	. 92	. 63	62
U. skinneri..........	4	$\mathrm{m}^{-\mathrm{w}^{+}+}$	44.	52.	. 84	145.5	151.	. 96	54.	59.	. 91	86.5	95	. 91	. 62	. 62
U.skinneri santacruzensis	3	w \ddagger-w $\ddagger \ddagger$	\ldots	\ldots		146.	146.	\ldots	56.	56.	\ldots	87.5	90	. 97	. 64	. 62
T. hypsodus.........	52	m-w $\ddagger \ddagger$	28.5	39.	. 73	93.5	109.	. 85	42.	48.5	. 86	50.	60.5	. 82	69	. 80

Tooth Characters of Certain Oreodonts

Examples of the premolars and the third molars of seven species of oreodonts, representing six genera and one subgenus, are illustrated in Figure 17. The teeth of the specimens used for the figures are all approximately at the same stage of wear. The third molars vary from brachyodont in Merycochoerus to moderately hypsodont in Ustatochoerus and Mediochoerus.

The parts of the premolars which are most important in the comparisons of the above-mentioned genera and species of oreodonts are: the pseudoparaconid (or anterior-interior accessory column), the posterior accessory column (or blade), and the pseudoentoconid in the lower series; and an anterior-interior accessory column, a pseudohypocone, and an anterior-intermediate crest (or blade) in the upper series.

Some of the cusps, columns, blades, or folds, although characteristic of certain genera and species, are not always developed to the same degree and sometimes are even absent. The amount of wear also determines the prominence of some of these characters and in well-worn examples they may be altogether lost. In Ustatochoerus, new genus, the pseudoparaconid of the lower premolars and the anterior-interior accessory column of the upper premolars are always developed, even in very old individuals. These columns are also present in Merychyus (Metoreodon) but are less discernible. A pseudoentoconid is sometimes present in examples of Merycochoerus and Merychyus (Metoreodon) but this is not characteristic of these forms.

In the lower premolars there are anterior and posterior crescents ${ }^{1}$ or folds which tend to divide the individual teeth into two sections. This may represent a propensity toward the molarization of these teeth. The same may be said of the first three superior premolars.

[^36]

F:A.M. 43056 rev.

Fig. 17. Examples of inferior and superior premolars, and molar 3s (wear w); (see page 103): $\mathrm{A}=$ Merycochoerus matthewi Loomis; $B=$ Brachycrus siouense (Sinclair); $\mathrm{C}=$ Ustatochoerus profectus (Matthew and Cook); $\mathrm{D}=$ Ticholeptus hypsodus Loomis; $\mathrm{E}=$ Mery chyus (Metoreodon) relictus Matthew and Cook; $\mathbf{F}=$ Merychyus siouxensis Loomis; $\mathrm{G}=$ Mediochoerus blicki, n.g. and sp. (See opposite page.) $\times 1$.

Fig. 17 (cont.). See legend, opposite.
$1=$ antero-interior accessory column; $2=$ pseudohypocone; $3=$ primary cusp (paracone); $4=$ antero-intermediate crest (or blade); $5=$ antero-interior accessory column (pseudoparaconid); $6=$ posterior accessory column (or blade); $7=$ pseudoentoconid.

[^0]: ${ }_{1}$ Contribution to the Revision of the Merycoidodontidæ，No． 2.
 ${ }^{2}$ Director of the University of Nebraska State Museum．
 ：Field Associate of the Frick Laboratory，American Museum of Natural History．

[^1]: ${ }^{1}$ Unassociated phalanges, carpal and tarsal elements are excluded from count.

[^2]: ${ }^{1}$ Schultz, C. Bertrand, and Falkenbach, Charles H., 1940, Bull. Amer. Mus. Nat. Hist., LXXVII, Art. 5, p. 215 (Subfamily 1.-Merycochoerinæ).

[^3]: ${ }^{1}$ Etymology.—Ustatochoerus $=$ final (or last) hog.
 ${ }_{2}$ See illustrations, Figures 2, 4, 5 , and 9 ; also Frick, Childs, 1937, Bull. Amer. Mus. Nat. Hist., LXIX,
 Fig. ${ }_{8}^{2 A}$ Matthew, W. D., and Cook, H. J., 1909, Bull. Amer. Mus. Nat. Hist., XXVI, Art. 27, p. 391.
 ${ }^{4}$ Matthew, W. Oliver P., 1930, Corn. Inst. Wash.' Publ. No. 390 , II, p. 788.
 ${ }_{5}^{5}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., III, Pt. 4, p. 202.
 ${ }^{6}$ Matthew, W. D., and Cook, H. J., 1909, op. cit., p. 391.

[^4]: ${ }^{1}$ Loomis (1924, Bull. Amer. Mus. Nat. Hist., LI, Art. 1, p. 31) considered Merychyus elegans as coming from the Valentine (Pliocene) deposits but this was apparently due to a misinterpretation of the original geographic and geologic data concerning the holotype. This matter will be discussed in detail under Merychyus.

[^5]: ${ }^{1}$ Four geographic varieties are included in this count.
 2 List of abbreviations of institutions cited: A.M. = American Museum of Natural History; F:A.M. $=$ Frick Collection; F:B:A.M. = Frick: Barbour Collection; A.C. = Amherst College; C.I.T. = California Institute of Technology; C.M. = Carnegie Museum of Pittsburgh; Col. M. \Rightarrow Colorado Museum of Natural History; M.C.Z. = Museum of Comparative Zoology, Harvard University; N.M. = U.S. National Museum; N.S.M. = University of Nebraska State Museum; U.C. $=$ University of California Museum of Paleontology.

[^6]: ${ }^{1}$ Abbreviations used in descriptions: alv. = alveolus or alveoli; br. = broken; erupt. = erupting; rt. = root or roots.

 Stage of wear of teeth: $(\mathbf{r})=$ immature; $(\mathrm{m})=$ mature; $(w)=$ worn.

[^7]: ${ }^{1}$ Named in honor of the late Joseph Rak, who collected fossils in the Santa Fé deposits for the Frick Laboratory, 1924-1930.

[^8]: ${ }^{1}$ Douglass, Earl, 1901, op. cit., p. 79.
 2 At the meeting of the Paleontological Society of America in December, 1938, Horace E. Wood 2d reported the presence of both Miocene and Pliocene deposits in lower Madison Valley. Falkenbach also contributed additional evidence concerning the diversity of age of these sediments, basing his conclusions on recent field work of the Frick Laboratory in Montana.
 ${ }^{3}$ Leidy, Joseph, 1869, op. cit., pp. 115, 380.

[^9]: Hayden, F. V., 1869, Jour. Acad. Nat. Sci. Phila., (2), VII, map.
 ${ }^{2}$ Matthew, W. D., 1924, op. cit., p. 181
 ${ }^{3}$ Matthew, W. D., and Cook, Harold J., 1909, Bull. Amer. Mus. Nat. Hist., XXVI, Art. 27, p. 394.
 ${ }^{4}$ Thorpe, Malcolm R., 1937, op. cit., p. 206.
 ${ }^{5}$ The cast (A.M. 9954) of the holotype in the American Museum of Natural History is approximately 9 mm . shorter than the original specimen.

[^10]: ${ }^{1}$ The following abbreviations are used: K. = Kat Quarry Channel; E.K., C.K., W.K., L.K., Q.L.K. W.L.K., E.L.K., T.S.K. = East, Connection, West, Line, Quarter Line, West Line, East Line, Trail Side Kat Quarry channels.

[^11]: (C) From Turtle Canyon, S. and E. of Hay Springs, Sheridan County, Nebraska (collected by John Lynch and Charles H. Falkenbach, 1930):

 SKULL
 Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}\left(\mathrm{br}\right.$.) (\mathbf{P}^{4} small)

 MANDIBULAR RAMUS
 Partial right ramus with $\mathrm{I}_{1}-\mathrm{C}$ (alv.) and $\mathrm{P}_{1}-\mathrm{M}_{3}$ (br.).
 (C') From Turtle Canyon (collected by University of Nebraska State Museum field party, 1937):

 | Mandibular ramus | | N.S.M. |
 | :---: | :---: | :---: |
 | Partial left ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{M}_{2}\right.$ br.) $\ldots \ldots \ldots$ | ($\left.{ }^{\ddagger++}\right)$ | $2-31-7-37$ |
 | This specimen is smaller than typical examples of U. major | | S.P. |
 | and approaches the size of large U. profectus. | | |

 (D) From Harrisburg Locality A, Quarry 2, E. of Harrisburg, S.W. of Big Horn Mountain, Banner County, Nebraska (collected by University of Nebraska State Museum, 1937):
 maxilla
 Partial left maxilla with $\mathbf{P}^{1}-\mathbf{P}^{\mathbf{2}}$ (br.)

 TWO MANDIBULAR RAMI
 Two partial right rami with

 S.P.
 (E) From the "Upper Snake Creek" Deposits, Sioux County, Nebraska:
 From Quarry 1, Aphelops Draw; collected by Albert Thomson and associates, 1918:
 partial skull
 A.M.

 Anterior portion of skull with $\mathrm{I}^{1}(\mathrm{rt})-.\mathrm{P}^{\mathbf{3}}\left(\mathrm{C} /-\mathrm{P}^{1} \mathrm{br}.\right) \ldots \ldots \ldots \ldots$. (w) 17589
 From general area; collected by Harold J. Cook, 1908:
 mandibular ramus
 Partial right ramus with $\mathbf{P}_{1}-\mathbf{P}_{\mathbf{4}}$.
 4.

 The two above-listed specimens, although from the same area as the holotype of U. profectus, more nearly approach U. major in size and form. This would suggest that both lower and upper Ash Hollow deposits are represented in the "Upper Snake Creek." This is the'first recorded evidence of U. major in the Sioux County area.
 $\left(w^{+}+\right) \quad 33679$
 (w) $\quad 11-26-6-37$
 S.P.

 F:A.M.
 (w) 33681
 $\left(\mathrm{w}^{+}+\right.$) 2-31-7-37
 S.P.
 ($\mathrm{w} \ddagger$) 14059

[^12]: ${ }^{1}$ Leidy, Joseph, 1869, op. cit., pp. 115, 380.
 ${ }^{2}$ Leidy, Joseph, 1870, op. cit., p. 109.
 ${ }^{3}$ Schultz, C. Bertrand, and Falkenbach, Charles H., 1940, Bull. Amer. Mus. Nat. Hist., LXXVII, Art. 5, p. 218 .

[^13]: ${ }_{2}$ Collected by Colorado Museum of Natural History field party, 1922.
 ${ }^{3}$ Loomis, F, B. D., 1901, Mem. Amer. Mus. Nat. Hist., I, Pt. 7, Fig. 28.
 ${ }^{3}$ Loomis, F. B., 1920, Amer. Jour. Sci., (4), L, p. 281.
 ${ }^{4}$ Matthew, W. D., 1901, op. cit., p. 412, specimens No. A.M.9049, 9050, 9056, and 9115A (the last was sent to the University of California on exchange).
 ${ }^{5}$ Schultz, C. Bertrand, and Falkenbach, Charles H., 1940, op. cit., pp. 219-220.

[^14]: ${ }^{1}$ Matthew, W. D., 1901, op, cit., Fig. 27.
 ${ }_{3}^{2}$ Named after the Mohave Desert of California, the type locality of this variety.
 ${ }^{3}$ Frick, Childs, 1926, Bull. Amer. Mus. Nat. Hist., LVI, Art. 1, p. 34; Schultz, C. Bertrand, and Falkenach, Charles H., 1940, Bull. Amer. Mus. Nat. Hist., LXXVIII, Art. 5 , p. 224.

[^15]: ${ }^{1}$ Frick, Childs, 1929, op. cit., p. 107.
 ${ }_{2}$ Thorpe, Malcolm R., 1937, op. cit., p. 207.

[^16]: ${ }^{1}$ Matthew, W. D., 1924, Bull. Amer. Mus. Nat. Hist., L, Art. 2, p. 181.
 ${ }^{2}$ Matthew, W. D., and Cook, Harold J., 1909, op. cit., p. 395.
 ${ }^{2}$ Thorpe, Malcolm R., 1937, op. cit., p. 209.
 ${ }_{4}$ Schultz, C. Bertrand, and Falkenbach, Charles H., 1940, Bull. Amer. Mus. Nat. Hist., LXXVII, Art. 5, p. 246.
 ${ }_{5}$ Cook, Harold J., 1912, op. cit., p. 45.
 ${ }_{7}^{6}$ Barbour, Erwin'H., and Cook,' Harold J., 1917, op. cit., p. 165.
 ${ }^{7}$ Thorpe, Malcolm R., 1937, op. cit., p. 209.

[^17]: ${ }^{1}$ Collected by Colorado Museum of Natural History field party, 1930.

[^18]: (C') From Cherry County, Nebraska (collected by University of Nebraska State Museum field parties, 1932-1935):
 From Oreodont Quarry, S.W. of Valentine: N.S.M.
 Partial right maxilla with $\mathrm{I}^{3}-\mathrm{M}^{3}$ (P^{1} and M^{3} br.) $\ldots \ldots . . .$. . ($\mathrm{w} \ddagger$) \quad 5-21-6-32N.P.
 Partial left ramus with $\mathrm{I}_{2}-\mathrm{P}_{4} \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots . .$.
 Mandibular symphysis with $\mathrm{I}_{1}-\mathrm{P}_{4}$ br 7-21-6-32N.P.

 From W. side of Snake River:
 Anterior portion of skull with $\mathrm{I}^{\llcorner } \mathrm{M}^{3} \ldots \ldots \ldots \ldots \ldots \ldots . .$. (w) $1-6-7-35 \mathrm{~N} . \mathrm{P}$.

[^19]: ${ }^{1}$ Named after the town of Espanola, the headquarters for the Frick Laboratory field parties in the Santa Fé area, New Mexico.

[^20]: ${ }^{1}$ Named in honor of Mr. Floyd Studer of Amarillo, Texas, who has given much aid to paleontological explorations in northern Texas.
 ${ }_{2}$ See specimens designated as females in the lists under Ustatochoerus medius, U. profectus, and U. skinneri; also Figure 6.

[^21]: ${ }^{1}$ Named after the Santa Cruz district, Santa Fé County, New Mexico.

[^22]: ${ }^{1}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., III, Pt. 4, p. 207, Fig. 149; Pl. xxxi, Fig. 2.
 ${ }^{2}$ Named in honor of Professor E. F. Schramm of the University of Nebraska: Professor Schramm was one of the first collectors to secure material from the Valentine area for the University of Nebraska State Museum.

[^23]: () approximate; (()) estimated. All measurements in millimeters.
 2 M Measurements taken from cast in the American Museum.
 $3 \mathrm{P}^{3}-\mathrm{M}^{2}=94$.
 ${ }_{4}^{3} \mathrm{P}^{3}$ Length of $\mathrm{M}^{2}=94$; referred specimen ($\mathrm{F}: \mathrm{A} . \mathrm{M} .34220$), $\mathrm{P}^{3}-\mathrm{M}^{2}=94 \pm$

[^24]: ${ }^{1}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., III, Pt. 4, pp. 187-193.

[^25]: ${ }^{1}$ Douglass, Earl, 1903, op. cit., p. 176.
 ${ }^{2}$ Idem, p. 179.

[^26]: ${ }^{1}$ The "Lower Snake Creek" is considered by the writers to be a part of the Sheep Creek formation [Lugn, 1938, Amer. Jour. Sci., (5), XXXVI, p. 226] but the term "Lower Snake Creek"' of Matthew (1924, Bull. Amer 1938, Amer. Jour. Sci., (5), XXXVI, p. 226] but the term "Lower Snake Creek" of Matthew (1924, Bull. Amer.
 Mus. Nat. Hist., L, Art. 2, p. 61 ; Schultz and Falkenbach, 1940, ibid., LXXVII, Art. 5, p. 220) will be retained for convenience in the present paper.
 ${ }_{3}^{2}$ Loomis, F. B., 1924, op. cit., p. 35.
 ${ }^{3}$ Schultz, C. Bertrand, and Falkenbach, Charles H., 1940, Bull. Amer. Mus. Nat. Hist., LXXVII, Art. 5, pp. 217 and 220 (chart showing distribution of B. siouense and B. wilsoni).

[^27]: ${ }^{1}$ Matthew, W. D., 1924, Bull. Amer. Mus. Nat. Hist., L, Art. 2, p. 182.

[^28]: ${ }^{1}$ Gazin (1932, Carn. Inst. Wash., Publ. No. 418, p. 81, Fig. 15a) reported the occurrence of a mandibular fragment of an oreodont from the Miocene of Malheur County, Oregon, and referred it to "Ticholeptus? sp." Thorpe (1937, op. cit., p, 170), however, listed this specimen under "Pronomotherium species." The present writers agree with Gazin's generic identification but are not listing the specimen in question because it is too incomplete for definite specific identification.

[^29]: ${ }^{1}$ Thorpe, Malcolm R., 1937, op. cit. p. 192.
 ${ }^{2}$ Named in honor of Mr. Claude Riley, the collector of the holotype.

[^30]: ${ }^{1}$ Named in honor of Mr. Loren Toohey, who has aided the University of Nebraska State Museum in collecting specimens and geological data in the Hemingford area.**

[^31]: ${ }^{1}$ After Dougherty: $\mathrm{P}^{3}-\mathrm{M}^{3}=65$

[^32]: ${ }^{1}$ Etymology.-Mediochoerus $=$ middle (or intermediate) pig.
 ${ }^{2}$ See p. 103 for discussion of premolars and Figure 17 for comparisons.

[^33]: ${ }^{1}$ Named in honor of Mr. John C. Blick, Field Associate, Frick Laboratory, American Museum of Natural History. Mr. Blick and Charles H. Falkenbach made a reconnaissance of the Sheep Creek-Snake Creek area, Sioux County, Nebraska, previous to the intensive exploration carried on since 1932 by Jack Wilson and associates.

[^34]: ${ }^{1}$ Schultz, C. Bertrand, and Falkenbach, Charles H., Bull. Amer. Mus. Nat. Hist., LXXVII, Art. 5, p. 238.

[^35]: ${ }^{1}$ The specimens cited in this table will be listed and described in detail by the writers in a fortheoming bulletin.

[^36]: ${ }^{1}$ Loomis (1924, Bull. Amer. Mus. Nat. Hist., LI, Art. 1, p. 2, Fig. 1) discussed and proposed names for various cusps, blades, and folds of the premolars of oreodonts.

