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ABSTRACT

In the early Miocene, endemic North American amphicyonids of the subfamily Daphoeninae
evolved a lineage of large beardogs adapted for prey pursuit over open terrain. Three species
comprise this lineage, here placed in the genus Daphoenodon, subgenus Borocyon Peterson, 1910,
the sister subgenus to the daphoenine beardog Daphoenodon (Daphoenodon). These species
(Borocyon robustum, B. niobrarensis, B. neomexicanus, n. sp.) are distinguished by limbs
modified for fore–aft motion and parasagittal alignment contributing to a lengthened stride.
These adaptive features are most evident in the terminal species, B. robustum, where the forelimb
is conspicuously elongated.

The species of Borocyon increase in body size from small B. neomexicanus, known only from
the latest Arikareean of northern New Mexico, through earliest Hemingfordian B. niobrarensis
from western Nebraska and southeast Wyoming, to B. robustum, likely the keystone predator of
its guild. Borocyon robustum (,100–150 kg) was the most widely distributed, occurring during
the early Hemingfordian from the Pacific Northwest through the Great Plains to the Florida
Gulf Coast. Regional aridity prevalent in the North American midcontinent during the
Arikareean may have contributed to the emergence of Borocyon by providing an appropriate
niche for a long-legged, open-country predator.

The skeleton of Borocyon robustum, based on composite elements acquired over many
decades, reveals a carnivoran unlike any living pursuit predator. The species displays a mosaic of
postcranial features that parallel limb elements of both highly evolved cursors (Canis lupus,
Acinonyx jubatus) and large, ambush felids (Panthera leo, P. tigris). Skeletal traits contributing
to its efficient locomotion include: proportionately lengthened forelimbs, the parasagittal
radioulnar articulation with the humerus, an elongate radius and ulna, a modified carpal
structure, and paraxonic elongate metapodials of the fore- and hindfoot, as well as details of the
anatomy of femur, tibia, and proximal tarsals. These postcranial features indicate a large
digitigrade predator with a number of anatomical parallels in the forelimb to running pursuit
predators such as the wolf, but there are also musculoskeletal adaptations of the shoulder and
hindlimb that compare with those of large, living felids.

Skull, dentition, and mandibular anatomy are similar to those of living wolves. However,
Borocyon robustum, on average a much larger carnivore, placed even greater emphasis on a
pattern of dental occlusion and toothwear suggesting both carnivory and durophagous habits.
Physiological attributes of Borocyon that may have contributed significantly to its adaptive
program as a pursuit predator remain unknown.

INTRODUCTION

Long-legged pursuit carnivorans are not
represented among Paleocene and Eocene
species of the Order Carnivora. In North
America it is not until the late Oligocene/
early Miocene that carnivorans evolve mul-
tiple lineages with elongated fore- and
hindlimbs. Presumably limb elongation in-
creased stride length, contributing to a more
energy-efficient gait. This initial experiment
attained a climax in the early Miocene when
Arikareean temnocyonines and early Hem-
ingfordian daphoenines developed striking
anatomical parallels in limbs and feet relative
to long-legged carnivorans common in late
Cenozoic and Recent faunas.

A seasonally arid climate in the North
American mid-continent in the early Miocene
apparently contributed to the emergence of

long-legged carnivorans. The development of
widespread grasslands east of the Rocky
Mountains favored larger carnivores adapted
for open-country predation. Following the
extinction of temnocyonines in latest Arika-
reean time, Eurasian digitigrade hemicyonine
ursids (Cephalogale and its contemporary
Phoberocyon) made a brief appearance in
the early Hemingfordian of North America.
However, the most spectacular response to
these environmental conditions arguably
took place among endemic daphoenine am-
phicyonids, a group characterized for most of
its history by ‘‘normal’’ limb proportions. By
the end of the early Miocene the daphoenines
produced an enormous long-legged predator,
Daphoenodon (Borocyon) robustum, the larg-
est New World pursuit carnivoran evolved up
to that time. This species and its lineage are
the subject of this report.

4



ABBREVIATIONS

ACM Amherst College Museum of
Natural History, Amherst, Mas-
sachusetts

AM Division of Mammalogy, Amer-
ican Museum of Natural Histo-
ry, New York

AMNH Division of Paleontology, Amer-
ican Museum of Natural Histo-
ry, New York

CM Division of Vertebrate Fossils,
Carnegie Museum of Natural
History, Pittsburgh

CNHM Department of Geology, Field
Museum of Natural History,
Chicago

F:AM Frick Collection, American Mu-
seum of Natural History, New
York

FMNH Field Museum of Natural Histo-
ry, Chicago

KU Vertebrate Paleontology, Uni-
versity of Kansas, Lawrence

UCMP University of California Muse-
um of Paleontology, Berkeley

UF Florida Museum of Natural
History, University of Florida,
Gainesville

UNSM Vertebrate Paleontology, Uni-
versity of Nebraska State Muse-
um, Lincoln

USNM United States National Museum,
Washington, D.C.

UW Vertebrate Paleontology, Uni-
versity of Wyoming, Laramie

YPM-PU Yale Peabody Museum (Prince-
ton University collection), New
Haven

ZM Division of Mammals, Universi-
ty of Nebraska State Museum,
Lincoln

LATE PALEOGENE AND EARLY
NEOGENE AMPHICYONIDS OF

NORTH AMERICA

The transition from Paleogene to Neogene
mammal faunas in North America was
marked by a turnover event within the large
carnivore guild (Hunt, 2002a, 2004), an event

in which amphicyonids play a prominent role
(fig. 1).

Oligocene amphicyonids of North Amer-
ica include only species belonging to the
endemic subfamily Daphoeninae and to the
dentally and postcranially specialized Tem-
nocyoninae. No Oligocene daphoenine at-
tains large size—all are ,20 kg in Orellan
and Whitneyan faunas and are assigned to
the genera Daphoenus and Paradaphoenus
(Hunt, 1996, 2001). Their lower limb seg-
ments and feet are normally proportioned
and lack elongation. A terminal and largest
species of Oligocene Daphoenus (,20–25 kg,
basilar skull length 24 cm, lacking a postcra-
nial skeleton) co-occurs with the first appear-
ance of temnocyonines in earliest Arikareean
interval Ar1. Temnocyonines of moderate
size (,20–30 kg, basilar lengths of 24–28 cm)
are known in the early Arikareean (Ar1–Ar2
intervals fide Tedford et al., 2004), but
pronounced specialization of the limbs and
feet is not seen until the temnocyonine
Mammacyon obtusidens appears in Ar2.

By the late Arikareean (Ar3–Ar4, early
Miocene), all temnocyonine genera included
at least one species with elongate limbs and,
in all species where limb elements are
adequately represented, the limbs and feet
reflect similar anatomical specializations for
a parasagittal gait incorporating an increase
in stride length. Elongation of the lower
limbs and feet is now documented in four
Arikareean temnocyonine skeletons: Temno-
cyon ferox from the John Day Formation
(Oregon); Mammacyon obtusidens from the
Monroe Creek beds (South Dakota); a
terminal species of Mammacyon, as yet
unnamed, from north of Keeline (Wyoming);
and a new genus and species from Stenomy-
lus Hill at Agate National Monument
(Nebraska).

With the extinction of temnocyonines at
the end of the Arikareean, the niche for long-
limbed predatory carnivorans in North
America again became available. Mid-sized
hemicyonine ursids entered the New World
at this time (in Ar3–Ar4) and by the early
Hemingfordian were represented by digiti-
grade yet short-lived species of Cephalogale
and Phoberocyon (both extinct without de-
scendants by the later Hemingfordian). How-
ever, the principal response to this ecological
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vacuum is found among species of the early
Miocene amphicyonid Daphoenodon, which
first appeared in the North American mid-
continent in interval Ar3.

At first, Daphoenodon includes species with
normally proportioned limbs. The late Arik-
areean Daphoenodon superbus from the car-
nivore dens at Agate National Monument
(Peterson, 1910; Hunt et al., 1983) demon-
strates this plesiomorphic state of the lower
limb segments and feet. Here I employ as a
subgenus of Daphoenodon, O.A. Peterson’s
(1910) nomen Borocyon, to designate a
derived lineage of remarkable long-legged
amphicyonids, the terminal species enor-
mous, with skull and skeleton exceeding in
size those of the largest living wolves (Canis
lupus). The hypodigm of this terminal species
includes O.A. Peterson’s fragmentary holo-
type of Borocyon, B. robustum Peterson, 1910.
The earliest record of Borocyon is restricted to
the latest Arikareean of New Mexico. By the
early Hemingfordian the lineage had spread
across the continent from the Pacific North-
west through the Great Plains to the Florida
Gulf Coast (fig. 2). Borocyon is known only
from the latest Arikareean and early Hem-
ingfordian in North America, becoming
extinct at ,17.5 Ma.

EARLY MIOCENE DAPHOENINES

The North American fossil record of early
Miocene amphicyonids is best represented in
Arikaree and Hemingford Group sediments
of western Nebraska and southeastern
Wyoming. Here fine-grained volcaniclastic
sandstones of the Harrison and Anderson
Ranch Formations (Ar3–Ar4: late to latest
Arikareean) and fluvial sands and gravel of
the Runningwater Formation (early Hem-
ingfordian) yield a succession of species

represented by well-preserved craniodental
and postcranial remains, in some cases
including sufficient numbers of individuals
to assess population variation in these
carnivores. These beardogs fall into the three
North American subfamilies: daphoenines,
amphicyonines, and temnocyonines. Da-
phoenines had been present in North Amer-
ica since the late Eocene and are considered
endemic; amphicyonines are early Miocene
immmigrants from Eurasia; temnocyonines
first appear in the Oligocene and become
extinct by the end of the Arikareean in the
early Miocene.

Although a number of amphicyonid spe-
cies have come from Arikareean localities in
western Nebraska and southeastern Wyom-
ing, only temnocyonines show marked spe-
cialization of the limbs at this time. The
daphoenines Daphoenodon (Daphoenodon)
superbus from the Anderson Ranch Forma-
tion of western Nebraska (Peterson, 1910)
and its probable ancestor D. (D.) notionastes
from Florida (Frailey, 1979), the oldest
currently recognized species of the genus,
are both short-limbed animals, known from
reliably associated cranial and postcranial
material. A larger, latest Arikareean form
from southeastern Wyoming, D. (D.) falk-
enbachi (Hunt, 2002b), seems to be directly
descended from D. (D.) superbus. Although
represented only by fragmentary postcranial
material, it possibly had achieved an incipient
limb elongation, but the defining skeletal
elements, particularly its forelimb, have not
been recovered. Other late and latest Arika-
reean amphicyonids (Ysengrinia americana,
Adilophontes brachykolos) are short-limbed
carnivores (Hunt, 2002a, 2002b), and their
skeletons indicate an attack strategy more
likely relying on a rush from cover followed
by a short pursuit.

r

Fig. 1. Temporal range diagram of late Eocene, Oligocene, and early Miocene North American
Carnivora, illustrating the large carnivoran turnover event (NALCTE) in proximity to the Oligocene–
Miocene boundary. Following NALCTE, interval B1 is characterized by persistence of temnocyonine and
daphoenine amphicyonids at the time of the first New World appearance of amphicyonines and
hemicyonine ursids. Interval B2 is typified by extinction of temnocyonines, presence of large daphoenines
(Borocyon robustum and B. niobrarensis), and appearance of the ursid Ursavus. Interval C features the
extinction of daphoenines, appearance of the first felids, and the presence of advanced amphicyonines,
hemicyonines, and Ursavus.

2009 HUNT: NEOGENE AMPHICYONID BOROCYON 7



In 1947 Ted Galusha of the Frick
Laboratory discovered a small population
sample of Daphoenodon at Standing Rock
Quarry in the early Miocene Zia Sand
Formation of New Mexico (Galusha, 1966).
Although clearly referable to Daphoenodon
on craniodental traits, this remarkable latest
Arikareean species had developed more elon-
gate limbs and somewhat larger size relative

to the northern late Arikareean genoholoty-
pic species, D. superbus, from western Ne-
braska. This undescribed New Mexican
daphoenine, here assigned to Daphoenodon
(Borocyon) neomexicanus, n. sp., is known
only from the sample from Standing Rock
Quarry despite the presence of coeval early
Miocene sediments common in the Great
Plains.

Fig. 2. Geographic distribution of the daphoenine amphicyonid Borocyon in North America. A,
Borocyon robustum, UCMP Locality PG-36, Rose Creek Mbr., upper John Day Fm., Oregon; B, Borocyon
neomexicanus, Standing Rock Quarry, Piedra Parada Mbr., Zia Sand, New Mexico; Borocyon robustum,
Blick Quarry, Chamisa Mesa Mbr., Zia Sand, New Mexico; C, Borocyon cf. B. robustum, sinkhole or
fissure in Suwanee River, Florida. Inset shows localities in western Nebraska and Wyoming: 1, B. robustum
holotype, Whistle Creek area, Sioux Co.; 2, Hemingford Quarries 7A, 7B, 12A, and 12D, Box Butte Co.; 3,
Marsland, Hovorka, and Shimek Quarries, Box Butte Co.; 4, Dunlap Camel Quarry, Dawes Co.; 5,
Bridgeport Quarries, Morrill Co.; 6, Aletomeryx Quarry, Cherry Co.; 7, UNSM Locality Sh-101B,
Sheridan Co.; 8, Northeast of Agate, Sioux Co.; 9, Horse Creek Quarry, Laramie Co.; 10, Merycochoerus
Butte, Goshen Co.; 11, Skavdahl Ranch, Sioux Co.; 12, Red Horse Quarry, Dawes Co. Nos. 1–5, B.
robustum; nos. 6–12, B. niobrarensis.
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The first appearance of a long-limbed
species of Daphoenodon in the Great Plains
occurs in the earliest Hemingfordian. The
lower Runningwater Formation of western
Nebraska and temporally equivalent sedi-
ments at Horse Creek Quarry in southeastern
Wyoming yielded a larger animal than the
New Mexican species, referred here to
Daphoenodon (Borocyon) niobrarensis Loo-
mis, 1936. This carnivore displays a moderate
degree of limb elongation that foreshadows
an even larger, long-limbed Daphoenodon
from the upper Runningwater Formation,
referred in this report to Daphoenodon
(Borocyon) robustum (Peterson), 1910.

Borocyon is employed here as a subgenus
of Daphoenodon to set apart these long-
limbed daphoenines of latest Arikareean
and early Hemingfordian age from the
plesiomorphic subgenus Daphoenodon with
‘‘normally’’ proportioned limbs. Daphoeno-
don (Daphoenodon) is reserved for the ances-
tral, short-limbed species (D. superbus, D.
notionastes) that precede the long-footed
daphoenines placed here in Borocyon. The
two subgenera are united by their shared,
derived basicranial anatomy, particularly by
the form and relationships of the auditory
bulla, which is unique to the genus Daphoe-
nodon.

Borocyon is best represented in western
Nebraska, where the largest animals are
referred to B. robustum and occur in Hem-
ingford Quarries 7A, 7B, and 12D and in the
Bridgeport Quarries. Borocyon niobrarensis is
known from only a few individuals from
western Nebraska and southeastern Wyom-
ing, and they average smaller in size than B.
robustum. The last records of Borocyon, in
fact of the Daphoeninae, are from the
Hemingford Quarries, estimated at ,17.5
Ma.

DISCOVERY OF NORTH
AMERICAN BOROCYON

During an expedition of the Carnegie
Museum of Natural History (Pittsburgh) to
western Nebraska in 1905, T.F. Olcott, a
collector in the employ of the museum,
discovered the fragmentary remains of a
large amphicyonid carnivore (CM 1918,
holotype of Borocyon robustum) several miles

southeast of the Agate Spring Quarries in
Sioux County, western Nebraska (fig. 3).
Olcott’s supervisor in the field, O.A. Peter-
son, had discovered the Agate bonebed just
one year previously, in August of 1904, but
had postponed major excavation until 1905.

Olcott and Peterson had arrived early, in
April 1905, to begin the excavation of the
waterhole bonebed on Carnegie Hill. Peter-
son was soon called back to Pittsburgh,
leaving Olcott in charge of the quarry work
from April into July. Late in July, Peterson
returned and resumed oversight of the Agate
excavations. Peterson (1910) also apparently
excavated the carnivore dens at Beardog Hill
(Carnegie Quarry 3) after his return in July,
extending this work into early October
(Carnegie field labels show that excavations
at Quarry 3 occurred at least from August 11
to October 4). Whether Peterson remained in
the field after October 4th is uncertain, but
Olcott continued for at least an additional
week.

Following the conclusion of the 1905
excavations in the Agate quarries, Olcott
explored the terrain southeast of the quarry
hills along the crest of the Agate anticline
(Schramm and Cook, 1921). The south limb
of the anticline is dissected by a number of
deep ephemeral draws that join to form the
headwater drainage of Whistle Creek. In his
publication first describing Borocyon (CM
1918), Peterson (1910) specifically cited
Whistle Creek as the locality for the holo-
type, and this designation agrees with infor-
mation on the original field label found with
the holotype of Borocyon at the Carnegie
Museum. Written in pencil is the date of
collection, October 13, 1905, followed by the
accession number (2905), the designation
Carnivora, and the following stratigraphic
and geographic information: ‘‘upper Loup
Fork (Neb. beds), 5 miles E. of Agate,
3 miles S. Niobrara River, Sioux Co., Nebr.’’
Later, a description was added in ink:
‘‘Fragts of hind limb & foot and front of
jaw’’. In a darker ink, at the time of
Peterson’s (1910) publication of the material,
the department number CM 1918 and the
name Borocyon robustum in script were
added to the label.

The terrain 5 miles east of the Agate post
office and 3 miles south of the Niobrara

2009 HUNT: NEOGENE AMPHICYONID BOROCYON 9



River in Sioux County is situated high on the
Agate anticline in proximity to the large
draws making up the headwaters of Whistle
Creek. These draws dissect the southeastern
corner of the Whistle Creek NW 7.5-minute
topographic quadrangle. Reddish-brown to
buff silts, sands, and interbedded granitic
gravel of the Runningwater Formation com-
prise much of the outcrop in this area and
yield early Hemingfordian mammals. Fine
reddish silty sand identical to sediment from
these exposures still adheres to the Borocyon
holotype. Peterson (1910) published the
stratigraphic horizon of the holotype as
‘‘Upper Harrison’’ because at that time he
thought that all reddish silty sands in the area
belonged to that unit. Later it was realized

that lower Runningwater fine-grained sands
and silts in the Whistle Creek and Agate
areas are reddish-brown, much like typical
Upper Harrison sandstones (now Anderson
Ranch Formation, Hunt, 2002b). These
reddish-brown Runningwater sediments had
been confused with Upper Harrison (Ander-
son Ranch) sediments by Peterson.

Peterson published the holotype material
of Borocyon robustum in 1910, together with
a description of the smaller plesiomorphic
Daphoenodon superbus from the carnivore
dens at Carnegie Quarry 3 at Agate. He
considered the Borocyon holotype fully adult,
based on its worn canine, remarking that it
was subdigitigrade, the size of a lion, and
related to Daphoenodon. Its foot bones were

Fig. 3. Peterson’s holotype of Borocyon robustum (CM 1918): an anterior mandible with right p2, p1
alveolus, and worn canine; two caudal vertebrae indicating a long tail; distal right tibia and fibula; partial
right tarsus-metatarsus including astragalus, navicular, ecto-, meso-, and entocuneiforms, and parts of
metatarsals 3, 4, and 5. Runningwater Fm., Whistle Creek area, Sioux Co., Nebraska.
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very similar to those of D. superbus, but
certain ones, such as the astragalus, suggested
a longer footed carnivore. In this regard
Peterson anticipated the elongated limbs of
this amphicyonid, which prove to be its most
arresting anatomical characteristic.

GEOGRAPHIC AND STRATIGRAPHIC
DISTRIBUTION OF NORTH

AMERICAN BOROCYON

EARLY HEMINGFORDIAN BOROCYON

Daphoenodon (Borocyon) robustum is the
terminal species of the genus in North
America and is well represented by cranio-
dental and postcranial remains. The best
preserved sample was collected in the Hem-
ingford Quarries, Box Butte County, Ne-
braska, worked by the University of Ne-
braska from 1934 to 1941 (fig. 2, localities 2,
3). The three known crania of the species, 10
nearly complete mandibles, and representa-
tive postcrania come from these sites. Several
of the quarries yielding Borocyon in the
Runningwater Formation include the youn-
gest mammal faunas identified in that rock
unit and show that this large daphoenine
survived to the conclusion of Runningwater
deposition in the region.

The Box Butte Formation of medial
Hemingfordian age is directly superposed
on the Runningwater beds over much of its
outcrop area in northwestern Nebraska
(Galusha, 1975). The Box Butte Formation
displays a much different lithologic aspect
and style of sedimentation relative to the
Runningwater, and its mammal fauna is
markedly distinct. No evidence of Borocyon
or any other daphoenine amphicyonid has
been found in Box Butte deposits. Amphi-
cyonids from the Box Butte and Sheep Creek
Formations (medial to late Hemingfordian)
in Nebraska belong to the subfamily Amphi-
cyoninae made up of Eurasian immigrant
lineages.

Whereas most Borocyon fossils from the
Runningwater beds are from quarries in Box
Butte and Dawes Counties in northwest
Nebraska, Peterson’s (1910) holotype of
Borocyon robustum is an isolated occurrence
to the west in Sioux County (fig. 2, locality
1). Quarry accumulations of fossils in Run-

ningwater exposures west of the principal
quarries in Dawes and Box Butte Counties
were unknown until recent discoveries by the
University of Nebraska in 1997 in Sioux
County. These quarries, to date only ex-
plored by preliminary excavations, have yet
to produce carnivore material.

The only other locality in Nebraska where
Borocyon robustum has been found is a
waterhole bonebed in Morrill County in the
southern Nebraska panhandle, approximate-
ly 70 km (,44 mi) southeast of the principal
Hemingford Quarries. Here sediments of
early Hemingfordian age were explored by
UNSM field crews working under the aus-
pices of the Works Progress Administration.
Excavations took place during 1932–1933
and 1940, with a few fossils found in 1934–
1935 and 1937. Large numbers of the early
Miocene rhinoceros Menoceras, along with
various cervoids, camels, equids, and carni-
vores, were collected at several closely
adjacent sites in the immediate area, collec-
tively termed the Bridgeport Quarries (fig. 2,
locality 5). Several species of amphicyonids
were found at these sites, including isolated
teeth, edentulous mandibles, and postcranial
bones of Borocyon robustum. The Bridgeport
Borocyon sample closely corresponds in
morphology of isolated teeth and postcra-
nials to the Runningwater hypodigm. How-
ever, the Bridgeport specimens appear to
have accumulated in the waterhole environ-
ment over a prolonged period. Most teeth of
Bridgeport Borocyon share similar dental
dimensions with Runningwater Borocyon,
but the quarries also include small individu-
als that could be geologically older. Many
specimens show the marks of scavenging and
exhibit the dull, worn edges indicating long-
term abrasion within the waterhole environ-
ment.

Borocyon robustum occurs at only two
localities outside of western Nebraska. Early
Miocene mammals apparently found in a
sinkhole in the bed of the Suwanee River in
northern Florida (fig. 2C) included this
beardog, referred here to Borocyon cf. B.
robustum. The species is represented by a
reconstructed palate with nearly perfect
dentition, a few isolated teeth, and numerous
postcranial bones. The palate found in the
1980s was retained by a private collector, but
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the University of Florida (UF 95092) and
University of Kansas (KU 114592) have casts
of the specimen. The palate and teeth belong
to an individual nearly equal in size to the
largest crania (UNSM 25547, 26416) from
the Hemingford Quarries in the upper
Runningwater Formation. However, the
sample of postcranial bones, although frag-
mentary, shows that the Florida population
averaged somewhat smaller in body size
relative to the upper Runningwater B.
robustum population. Yet the Florida
beardog possesses the typical anatomical
traits of the species in its teeth and post-
crania. The occurrence of Borocyon at the
Suwanee River locality is doubtless of early
Hemingfordian age, based on the associated
fauna.

Rare fragmentary remains of what appear
to be a single individual of B. robustum were
found in basal sands and gravel of the Rose
Creek Member of the John Day Formation,
Grant County, Oregon (fig. 2A). The Rose
Creek Member is the youngest lithostrati-
graphic unit recognized in the eastern facies
of the John Day Formation (Hunt and
Stepleton, 2004, 2006) and is well exposed
south of Kimberly, Oregon. These Rose
Creek exposures represent the final episode
of John Day sedimentation prior to outpour-
ing of the Columbia River flood basalts
within the geographic area in north-central
Oregon first described by Merriam (1901)
and later studied by Fisher and Rensberger
(1972). The Rose Creek Member is biochro-
nologically dated by an early Hemingfordian
mammal fauna from a single locality (Picture
Gorge 36) south of Kimberly (Hunt and
Stepleton, 2006). From this locality John
Rensberger and his associates collected teeth
(p2–m2), an astragalus, and additional frag-
ments of a beardog during his biostratigraph-
ic study of the formation in 1961–1962.
Later, in 1993, at the same site and very
likely on the same sandstone ledge, we
recovered additional teeth and fragments of
this individual. Evaluation of the diagnostic
Berkeley material (UCMP 76864, astragalus;
UCMP 76875, lower dentition) identified it
as Borocyon robustum, and extended the early
Hemingfordian range for this daphoenine to
include the Pacific Northwest, so that to-
gether with the Great Plains and Florida

occurrences, the species spans the North
American mid-latitudes.

EARLIEST HEMINGFORDIAN BOROCYON

Early Miocene mammal faunas of earliest
Hemingfordian age from the lower part of
the Runningwater Formation in northwest
Nebraska and from age-equivalent strata in
southeast Wyoming have produced a few
individuals of Borocyon that do not fit
comfortably into the hypodigm of B. robus-
tum but rather indicate a taxon slightly older
than and probably ancestral to Peterson’s
species. These carnivores are slightly smaller
than B. robustum in dental dimensions and
show less elongation of their lower limb
bones (particularly the radius, ulna, astraga-
lus, calcaneum, and metapodials).

The first of these is the holotype of
Daphoenodon niobrarensis Loomis, 1936
(ACM 3452) from Aletomeryx Quarry,
Cherry County, western Nebraska (fig. 2,
locality 6). This quarry in the lower Running-
water Formation was excavated at various
times by the University of Nebraska, the
Frick Laboratory of the American Museum,
Yale University, and Amherst College. Here
in 1934 F.B. Loomis (Amherst) discovered
the associated mandibles, upper molar, and
nearly complete forelimbs of a large repre-
sentative of Daphoenodon (Loomis, 1936).
The forelimbs establish the proportions of
the lower limb elements relative to the
humerus and scapula, and these elements
prove to be less elongate than the limb
elements of the B. robustum sample from
the Hemingford Quarries. This shorter
limbed amphicyonid is here designated Da-
phoenodon (Borocyon) niobrarensis. In addi-
tion to the holotype specimen, other isolated
elements have been found at Aletomeryx
Quarry. Of interest are two metacarpals that
are also elongate and anatomically compara-
ble to those of the holotype, but much more
slender and gracile. Thus dimorphism is
indicated for B. niobrarensis, and this condi-
tion can also be demonstrated for B. robus-
tum from the Hemingford Quarries.

A second occurrence was found at the
Horse Creek Quarry of the University of
Wyoming in early Miocene beds deposited on
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the eastern slope of the Laramie Mountains
(fig. 2, locality 9). The sediments and mam-
mal fauna of the Horse Creek Quarry were
described by Cassiliano (1980), who estab-
lished a lithostratigraphy for the area. At that
time the Horse Creek Quarry fauna was
thought to be late Arikareean in age.
Subsequent examination of these mammals
at the University of Wyoming, following our
reassessment of Hemingfordian rocks and
faunas in western Nebraska (MacFadden
and Hunt, 1998), suggests that it is an earliest
Hemingfordian assemblage, coincident in age
with mammals of the Carpenter Ranch
Formation of southeastern Wyoming (Hunt,
2005) and with the lower Runningwater
faunas of Nebraska. The Horse Creek
amphicyonid (UW 10004) is represented by
a single individual: a mandible associated
with a partial postcranial skeleton that allows
limb proportions to be accurately deter-
mined. This linking of dentition with both
fore- and hindlimbs is the only such associ-
ation at this temporal horizon. The metacar-
pals and other forelimb elements are propor-
tionally nearly identical to these elements of
the B. niobrarensis holotype.

A third individual (F:AM 107601) comes
from Sioux County, Nebraska, northeast of
Agate in the lower Runningwater Formation
(fig. 2, locality 8), and includes a mandible
with associated ulna, innominate, calcaneum,
and metacarpal. The ulna indicates that the
forelimb had lengthened to the extent seen in
the Horse Creek and Aletomeryx Quarry
amphicyonids, and the metacarpal also cor-
responds to the equivalent bones of Borocyon
niobrarensis from these quarries. This amphi-
cyonid and the individuals from the Horse
Creek and Aletomeryx Quarries are all
accompanied by earliest Hemingfordian
mammals, demonstrating that these beardogs
are penecontemporaneous and can be as-
signed to a single taxon preceding Borocyon
robustum in time. Daphoenodon (Borocyon)
niobrarensis is employed here for this hypo-
digm.

A fourth occurrence consists of a partial
mandible from the earliest Hemingfordian
Carpenter Ranch Formation (Hunt, 2005),
Goshen County, southeastern Wyoming, in
proximity to the Nebraska–Wyoming state
boundary (fig. 2, locality 10). It is only

tentatively referred to Daphoenodon (Boro-
cyon) due to absence of postcranials and to
heavily worn teeth.

LATEST ARIKAREEAN BOROCYON

The population sample of a small Daphoe-
nodon from latest Arikareean sediments at
Standing Rock Quarry in northern New
Mexico (fig. 2B) shares a number of derived
dental and skeletal traits with the much larger
species Borocyon robustum. Despite their
smaller size, these carnivores had already
developed elongated lower limbs. Although
limb elongation in itself is not a sufficient
criterion allying this species to B. robustum,
the derived morphology of the radius,
astragalus, and metapodials shows near
identity to the large Runningwater species.
Moreover, the broad skull and diagnostic
form of the M2 indicate a close affinity with
B. robustum and suggest a plausible ancestor–
descendant relationship.

The stratigraphic occurrence of this
species, here named Daphoenodon (Boro-
cyon) neomexicanus, n. sp., is discussed by
Galusha (1966), Tedford (1981, 1982), and
Gawne (1981). Galusha (1966) placed Stand-
ing Rock Quarry low in the Piedra Parada
Member of the Zia Sand, about 20 m above
the base of the formation. Gawne (1981)
indicated that the member began with wide-
spread sheetlike channel deposits, overlain by
eolian sediments that make up the bulk of the
member. She envisioned the depositional
setting as a semiarid to arid open plains
environment.

Two slender metacarpals of a female
individual of Borocyon robustum were found
in Blick Quarry in 1949 in the Chamisa Mesa
Member of the Zia Sand Formation, an early
Hemingfordian site a short distance north of
Standing Rock Quarry in New Mexico.
These metacarpals are the only record of B.
robustum from the American Southwest.
They suggest that Daphoenodon (Borocyon)
neomexicanus at Standing Rock Quarry, after
evolving to D. (B.) robustum, possibly spread
northward into the Great Plains, the Pacific
Northwest, and eastward to the coastal plain
of the Gulf of Mexico during the Arika-
reean–Hemingfordian transition.
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SYSTEMATIC PALEONTOLOGY

Daphoenodon (Daphoenodon) Peterson, 1909

Amphicyon superbus Peterson, 1907.

Daphoenodon superbus Peterson, 1909.

ETYMOLOGY: From the Greek dauoinóz,
‘‘blood-reeking’’, and o

,
doúz, ‘‘tooth’’, in

reference to its carnivorous habit.

This is the sister subgenus of Daphoenodon
(Borocyon). D. (D.) superbus remains the best
known species of the subgenus, represented
by the holotype, a nearly complete skeleton
of an adult female (CM 1589), and other
individuals from the carnivore dens (Carne-
gie Quarry 3), Agate National Monument,
Nebraska (Peterson, 1910; Hunt et al., 1983).

Daphoenodon (Borocyon) Peterson, 1910

Borocyon robustum Peterson, 1910.

DIAGNOSIS: The subgenus Borocyon dif-
fers from all other New World amphicyonids
by its longer distal forelimbs and by propor-
tions of the proximal tarsals (figs. 33, 34).
Borocyon differs from its sister subgenus
Daphoenodon by its longer distal forelimbs
and by a ‘‘folded’’ M2, as well as by
measurements of the dentition (figs. 17, 18;
tables 2, 3). It is distinguished from Amphi-
cyon galushai by its unreduced premolars,
more sectorial carnassials, reduction and loss
of M3, ‘‘folded’’ occlusal surface of M2,
differently proportioned proximal tarsals
(figs. 33, 34), and longer distal forelimbs with
much more elongate paraxonic metapodials
(see text for discussion of postcranial anatomy).

ETYMOLOGY: From the Greek boróz,
‘‘devouring’’, and kúvn,‘‘dog’’.

On the reduction of the genus Borocyon
Peterson, 1910, to the rank of subgenus:

International Code of Zoological Nomen-
clature (1985): Article 43— (a) A name
established for a taxon at either rank in the
genus group [i.e., genus or subgenus] is deemed
to be simultaneously established with the same
author and date for a taxon based upon the
same name-bearing type (type species) at the
other rank in the group, whether that type was
fixed originally or subsequently. (b) When a
nominal taxon is raised or lowered in rank in
the genus group its type species remains the

same [the neuter -um is retained here although
robustus is appropriate].

Daphoenodon (Borocyon) robustum
Peterson, 1910

Figures 3–8, 15, 21, 22, 24–28, 31, 32, 37–39

Borocyon robustum Peterson, 1910.

Large daphoenine, n. sp., Hunt and Stepleton,
2004: 87, 89.

HOLOTYPE: CM 1918 (field no. 2905),
right mandibular fragment with c, p2, an
isolated m2 (not reported by Peterson), three
complete and one partial caudal vertebrae, a
right astragalus, navicular, ecto-, ento-, and
mesocuneiforms, 11 phalanges, a trapezoid,
sesamoid, five fragmentary metapodials [left
proximal metatarsal 3, proximal and ?distal
metacarpal 5, two metapodial diaphyses
without proximal or distal ends, complete
right metacarpal 1], distal tibia, shaft and
distal end of fibula (fig. 3).

HOLOTYPE HORIZON AND LOCALITY:
From the Runningwater Fm., Sioux Co.,
Nebraska. The original field label states:
upper Loup Fork (Nebraska beds), 5 miles
east of Agate, 3 miles south of the Niobrara
River, Sioux Co., Nebraska. Collected by
T.F. Olcott, 13 October 1905. Peterson (1910:
263) reported the horizon as ‘‘Upper Harri-
son beds’’ and the locality as ‘‘Whistle Creek,
Sioux County, Nebraska’’.

DIAGNOSIS: Largest known daphoenine
amphicyonid, and the largest species of
Borocyon, with basilar skull length of 285–
294 mm, differing from B. niobrarensis by
larger average body size and dentition (c–m2
length, ,110–120 mm), consistent loss of
M3, more elongate forelimbs, and greater
modification of proximal tarsals (figs. 33, 34,
astragalus-calcaneum) for fore–aft motion
(see text for detailed discussion). Distin-
guished from B. neomexicanus by much
larger body size, dentition (figs. 17, 18;
tables 2, 3), and more elongate yet anatom-
ically similar distal forelimbs.

PARATYPES: UNSM 25686 (field no. 2-6-
8-35NWP), skull lacking basicranium, with
right P3, M1–2, left P2–M2; UNSM 25685
(field no. 3-6-8-35NWP), right mandible, p2,
p4–m3. The mandible was found in proxim-
ity to the skull; the skull and mandible
probably represent a single individual.
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PARATYPE HORIZON AND LOCALITY:
Runningwater Formation (upper part),
Marsland Quarry (UNSM Loc. Bx-22), Box
Butte Co., Nebraska.

REFERRED SPECIMENS: Runningwater
Formation, northwestern Nebraska—

SKULLS, MANDIBLES, AND ISOLATED TEETH

Box Butte Co., Nebraska: (1) UNSM
25547 (field no. 2499-39), skull with right
P2, P4–M2, left P4, Hemingford Quarry 7B;
(2) UNSM 26416 (field no. 4553-41), skull

Fig. 4. Cranium of Borocyon robustum (UNSM 26416), Hemingford Quarry 12D, Box Butte Co.,
Nebraska, upper Runningwater Fm., early Hemingfordian. A, Dorsal view showing broad forehead for
expanded frontal sinuses; B, ventral view showing broad palate, P4–M2, and characteristic absence of M3
in B. robustum.
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lacking posterior cranium, with right P4–M2,
left P2, P4–M2, Hemingford Quarry 12D; (3)
UNSM 25548 (field no. 2200-39), right man-
dible, c, p1–m3, Hemingford Quarry 7B; (4)
UNSM 25549 (field no. 1000-39), right man-

dible, i2–i3, p1–m3, Hemingford Quarry 7B;
(5) UNSM 25550 (field no. 2201-39), right
mandible, p2–m3, Hemingford Quarry 7B;
(6) UNSM 25551 (field no. 4946-40), right
mandible, p4–m2, Hemingford Quarry 12D;

Fig. 5. Stereoimage of the diagnostic upper molars (M1–M2) and carnassial (P4) of Borocyon robustum
(UNSM 25547), Hemingford Quarry 7B, upper Runningwater Fm., Box Butte Co., Nebraska. Note elongate
P4, the notch (at arrow) in the anterolingual cingulum of M1, the ‘‘folded’’ M2 (see text), and absence of M3.

Fig. 6. Mandible of Borocyon robustum (UNSM 25548), Hemingford Quarry 7B, Box Butte Co.,
Nebraska, upper Runningwater Fm., early Hemingfordian. A, Lateral view, right c, p1–p4, m1–m3; B,
medial view. Note m3 elevated on margin of ascending ramus.
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Fig. 7. Comparison of dentitions of Borocyon robustum (A, B) and B. neomexicanus (C–E), end
member species of the Borocyon lineage. A, UNSM 25547, P2, P4–M2, alveoli for C, P1, P3; B, UNSM
25684, c, p1–p4, m1–m3; C, F:AM 49241, juvenile, p2, p4–m3; D, F:AM 49239, P1–P4, M1–M3; E, F:AM
49239, c, p1–p4, m1, m3, alveoli of m2.
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(7) UNSM 25552 (field no. 73-9-8-37NP),
juvenile right mandible, dp4, m1–m3 erupt-
ing, Hemingford Quarry 12D; (8) UNSM
25684 (field no. 181-7-8-37SP), left mandible,
c, p1–m3, Hemingford Quarry 7A; (9)
UNSM 25577 (field no. 4941-40, right man-
dibular fragment, p2–p4, Hemingford Quar-
ry 12D; (10) UNSM 27002 (field no. 4675-
40), left mandible, c, p2–m2, Hemingford
Quarry 12D; (11) UNSM 26417 (field
no. 5549-68), right mandible, i2–i3, c, p2–
m3, Hemingford Quarry 21 (Hovorka’s
Quarry); (12) FA:M field no. H457-4060, left
mandible, p4–m2, Hemingford Quarry 1
(Barbour-Hemingford Quarry); (13) UNSM
25576 (field no. 1701-39), mandibular frag-
ment, p3 and partial p4, Hemingford Quarry
7B. Dawes Co., Nebraska: (14) F:AM 25408,
left mandible, m1–m2, damaged p3–p4,
Dunlap Camel Quarry. Dawes Co., Ne-
braska: (15) F:AM 25402, left P4; (16)
F:AM 25403, left P4; (17) F:AM 25404, left
M2; all from Dunlap Camel Quarry. Box
Butte Co., Nebraska: (18) UNSM 25571 (field
no. 2207-39), right m1, Hemingford Quarry
7B; (19) UNSM 26422 (field no. 19-29-7-
35NWP), right m1, heavily worn, Hem-
ingford Quarry 23 (Shimek’s Quarry); (20)
UNSM 26423 (field no. 1018-39), left p4,
Hemingford Quarry 7B; (21) UNSM 26452
(field no. 2004-39), right P4; (22) UNSM
26427 (field no. 5-12-8-37SP), right M2,
Hemingford Quarry 12A.

POSTCRANIALS—FORELIMB

Box Butte Co., Nebraska: (1) UNSM
26419 (34-26-6-35NWP), diaphysis of right
humerus, Hemingford Quarry 23 (Shimek’s

Quarry); (2) UNSM 26420 (field no. 4863-
41), distal left humerus, Hemingford Quarry
12D; (3) UNSM 26421 (field nos. 1 to 3-17-7-
37NP), distal left humerus, proximal radius,
proximal ulna, Hemingford Quarry 12D; (4)
UNSM 25554 (field no. 5500-38), distal left
humerus, left proximal ulna, left radius,
proximal left MC2 and left MC3, a distal
metapodial, and numerous fragments, ,0.25
mi west of Hemingford Quarry 1; (5) UNSM
26424 (field no. 39-7-8-37SP), proximal right
ulna, Hemingford Quarry 7B; (6) UNSM
25553 (field no. 179-7-8-37SP), left radius,
Hemingford Quarry 7B?; (7) UNSM 25595
(field no. 73-4-8-37NP), right radius, Hem-
ingford Quarry 12D; (8) UNSM 26425 (field
no. 4025-40), right radius, Hemingford Quar-
ry 7A; (9) UNSM 26426 (field no. 4612-41),
right radius, Hemingford Quarry 12D; (10)
UNSM 26428 (field no. 171-39), right sca-
pholunar, Hemingford Quarry 12D; (11)
UNSM 26429 (field no. 334-13-8-38NP),
right scapholunar, Hemingford Quarry 12D;
(12) UNSM 26430 (field no. 2636-40), right
scapholunar, Hemingford Quarry 7B; (13)
UNSM 26431 (field no. 12-24-6-35NWP),
right scapholunar, Marsland Quarry (Bx-22).

METACARPALS (MC1 is not represented):
(14) UNSM 25574 (field no. 24,281-39), left
metacarpal 2, Hemingford Quarry 7B; (15)
UNSM 26432 (field no. 4395-41), left MC2,
Hemingford Quarry 12D; (16) UNSM 25564
(field no. 35-7-8-37SP), right metacarpal 3,
Hemingford Quarry 7B; (17) UNSM 26433
(field no. 145-27-10-37), right metacarpal 3,
Hemingford Quarry 12D; (18) UNSM 26434
(field no. 3-4-6-35NWP), right metacarpal 3,
Marsland Quarry (Bx-22); (19) UNSM 25572
(field no. 347-39), left metacarpal 5, Hem-

Fig. 8. Occlusal views of p4–m3 of the end-member species of the Borocyon lineage. A, B. robustum,
UNSM 25552; B, B. neomexicanus, F:AM 49241. The squared posterior border of p4 is characteristic of
species of the subgenera Borocyon and Daphoenodon.
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ingford Quarry 12D. Dawes Co., Nebraska:
(20) F:AM 68263, right metacarpal 4, Dun-
lap Camel Quarry.

POSTCRANIALS—HINDLIMB

Box Butte Co., Nebraska: (1) UNSM
26435 (field no. 4-15-7-35NWP), left femur,
Hemingford Quarry 23 (Shimek’s Quarry);
(2) UNSM 25558 (field no. 1639-39), right
tibia, Hemingford Quarry 7B; (3) UNSM
44720 (field no. 53-13-8-38NP), left ectocu-
neiform, Hemingford Quarry 12D; (4)
UNSM 26436 (field no. 1565-39), left astrag-
alus, Hemingford Quarry 7B; (5) UNSM
25585 (field no. 73-39), left astragalus, Hem-
ingford Quarry 12D; (6) UNSM 25562 (field
no. 1898-39), right astragalus, right distal
calcaneum, right cuboid, Hemingford Quarry
7B (see associated metatarsals); (7) UNSM
26437 (field no. 9-12-8-37SP), left astragalus,
Hemingford Quarry 12A; (8) UNSM 25584
(field no. 73-39), left calcaneum, Hemingford
Quarry 12D; (9) UNSM 26438 (field no.
4929-41), left calcaneum, Hemingford Quar-
ry 12D; (10) UNSM 26439 (field no. 4929-
41), right calcaneum, Hemingford Quarry
12D; (11) UNSM 25586 (field no. 13-11-7-
35NWP), right calcaneum, Hemingford
Quarry 23 (Shimek’s Quarry); (12) UNSM
48478 (field no. 2588-40), left calcaneum,
Hemingford Quarry 7B; (13) UNSM 26440
(field no. 389-39), right calcaneum, Hem-
ingford Quarry 12D; (14) UNSM 26441 (field
no. 7-6-8-37SP), left calcaneum, Hemingford
Quarry 6; (15) UNSM 26442 (field no. 5-20-
6-35NWP), right cuboid, Marsland Quarry
(Bx-22); (16) UNSM 26497 (field no. 40-2-10-
37NP), right cuboid, Hemingford Quarry 12D.

METATARSALS (MT1 is not represented):
(17) UNSM 26443 (field no. 325-13-8-38NP),
left MT2, Hemingford Quarry 12D; (18)
UNSM 26444 (field no. 2-4-6-35NWP), right
metatarsal 2, Marsland Quarry (Bx-22); (19)
UNSM 26445 (field no. 5091-40), left meta-
tarsal 3, Hemingford Quarry 12D; (20)
UNSM 26446 (field no. 14-3-8-35NWP), right
metatarsal 3, Marsland Quarry (Bx-22); (21)
UNSM 25562 (field no. 1898-39), right meta-
tarsal 3 and proximal metatarsal 4, Hem-
ingford Quarry 7B; (22) UNSM 25563 (field
no. 14-13-8-38NP), left metatarsal 4, Hem-
ingford Quarry 12D; (23) UNSM 26447 (field

no. 4611-40), right metatarsal 4, Hemingford
Quarry 7B; (24) UNSM 26448 (211-13-8-
38NP), right metatarsal 4, Hemingford Quar-
ry 12D; (25) UNSM 26449 (field no. 4517-41),
right metatarsal 5, Hemingford Quarry 12D;
(26) UNSM 26450 (field no. 2-3-8-35NWP),
right metatarsal 5, Marsland Quarry (Bx-22).

Dawes Co., Nebraska: All from Dunlap
Camel Quarry: (27) F:AM 68265B (field
no. H198-2392), right astragalus; (28) F:AM
field no. H173-1509, left calcaneum; (29)
F:AM field no. H275-2716, right metatarsal
4; (30) F:AM 68265A, metatarsal 5.

REFERRED SPECIMENS: Bridgeport Quar-
ries, Unnamed formation, western Ne-
braska—if a particular quarry is not indicat-
ed, then the general designation for all
quarries applies:

MANDIBLES AND ISOLATED TEETH

Morrill Co., Nebraska: (1) UNSM 25878
(field no. 20-7-32SPD), partial mandible with
i2–i3, c, p1–p4; (2) UNSM 25852 (field
no. 11537-40), mandible with damaged p4–
m2, alveoli for p1–p3, m3; (3) UNSM 26070
(67-SPD-32), right P4; (4) UNSM 26071
(field no. SPD), left P4; (5) UNSM 25961
(field no. 13-20-10-32SPD), right P4; (6)
UNSM 26451 (field no. ?), right P4; (7)
UNSM 26017 (field no. 53-SPD-3), right
M1; (8) UNSM 26015 (field no. 43-SPD-
32), right M1; (9) UNSM 25928 (field no. 16-
28-10-33NSM), right M1; (10) UNSM 26016
(field no. 8NSM), left M1; (11) UNSM 26072
(field no. SPD), left M1; (12) UNSM 26018
(field no. 81-SPD-32), left M2; (13) UNSM
26019 (field no. NSM), left M2; (14) UNSM
26009 (field no. 22-SPD-32), left p3; (15)
UNSM 25924 (field no. 13-20-10-32SPD),
left p4; (16) UNSM 26011 (field no. SPD),
right p4; (17) UNSM 25923 (field no. 13-20-
10-32SPD), right p4; (18) UNSM 26012 (field
no. 15-SPD-32), left p4; (19) UNSM 25781
(field no. 6-SPD-32), right m1; (20) UNSM
25907 (field no. 16-28-10-33NSM), left m1;
(21) UNSM 26080 (field no. SPD), right m1;
(22) UNSM 26082 (field no. 2-SPD-32), right
m1; (23) UNSM 26083 (field no. 8-SPD-32),
right m1; (24) UNSM 26084 (field no. 26-
SPD-32), left m1; (25) UNSM 26281 (field
no. SPD-13-10-20-32), right m2; (26) UNSM
26282 (field no. SPD-13-10-20-32), left m2;
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(27) UNSM 26283 (field no. ?9-8-32SPD),
right m2; (28) UNSM 26284 (field no. ?9-9-
32SPD), right m2; (29) UNSM 26287 (field
no. ?9-8-32SPD), left m2 trigonid.

POSTCRANIALS—FORELIMB

Morrill Co., Nebraska: (1) UNSM 26260
(12-17-10-33NSM), right humerus, Mo-114;
(2) UNSM 26261 (14-28-10-33NSM), left
humerus lacking proximal end; (3) UNSM
26262 (field no. SPD-B-7-20-32), left distal
humerus; (4) UNSM 26263 (SPD-B-7-20-32),
left distal humerus; (5) UNSM 26264 (field
no. 14-28-10-33NSM), right distal humerus;
(6) UNSM 26265 (field no. 11-17-10-
33NSM), left distal humerus; (7) UNSM
26266 (field no. 11-17-10-33NSM), right dis-
tal humerus; (8) UNSM 26267 (field no. 11-
17-10-33NSM), left distal humerus; (9)
UNSM 26268 (field no. 14-28-10-33NSM),
left distal humerus; (10) UNSM 26269 (field
no. 10405-40), left distal humerus, Loc. A,
Qu. 1; (11) UNSM 26270 (field no. SPD-4-
10-20-32), right distal humerus; (12) UNSM
26218 (field no. 4-10-20-32-SPD), right distal
humerus; (13) UNSM 26210 (field no. 17-27-
9-33NSM), left distal humerus; (14) UNSM
26297 (field no. 14-17-10-33NSM), right ra-
dius, Mo-114; (15) UNSM 25877 (field
no. 10694-40), left radius, Loc. A, Qu. 1;
(16) UNSM 26453 (field no. 27-9-11-
32NSM), left scapholunar; (17) UNSM
26454 (field no. 2-7-37-SPA), right scapholu-
nar, Qu. 4; (18) UNSM 26455 (field no. 1-9-
32SP), right scapholunar, Qu. 2; (19) UNSM
26456 (field no. 14106-40), left scapholunar,
Qu. 1; (20) UNSM 26457 (field no. 1-9-
32SP), left unciform, Qu. 2; (21) UNSM
26458 (field no. 1-9-32SP), left unciform, Qu. 2;
(22) UNSM 26459 (field no. 11394-40), Qu. 1.

METACARPALS: (23) UNSM 26460 (field
no. 10-10-32-SPD), left metacarpal 1; (24)
UNSM 26461 (field no. SPD), right meta-
carpal 1; (25) UNSM 26462 (field no. NSM
26), left metacarpal 2; (26) UNSM 26463
(field no. 4-28-10-33NSM), left metacarpal 2;
(27) UNSM 26464 (field no. 10-10-20-32-
SPD), right metacarpal 2; (28) UNSM
26465 (field no. 29-17-10-33NSM), right
metacarpal 2; (29) UNSM 26466 (field
no. NSM 6), right metacarpal 2; (30) UNSM
26467 (field no. 10719-40), left metacarpal 3;

(31) UNSM 26468 (field no. 5-27-9-33NSM),
left metacarpal 3; (32) UNSM 26469 (field
no. SPD), right metacarpal 3; (33) UNSM
26470 (field no. 10495-40), right metacarpal
3, Loc. A, Qu. 1; (34) UNSM 26471 (field
no. 29-17-10-33NSM), right metacarpal 3;
(35) UNSM 26472 (field no. 10-10-20-32-
SPD), right metacarpal 3; (36) UNSM
26473 (field no. 10164-40), left metacarpal
4, Qu. 1; (37) UNSM 26474 (field no. 29-17-
10-33NSM), right metacarpal 4; (38) UNSM
26475 (field no. 10-10-20-32-SPD), right
metacarpal 4; (39) UNSM 26476 (field
no. 10164-40), right metacarpal 4 (patholog-
ic), Qu. 1; (40) UNSM 26477 (field no. 25-6-
34SP), left metacarpal 5; (41) UNSM 26478
(field no. NSM 6), left metacarpal 5; (42)
UNSM 26479 (field no. NSM 6), right
metacarpal 5; (43) UNSM 26480 (field
no. 10-10-20-32-SPD), right metacarpal 5.

POSTCRANIALS—HINDLIMB

Morrill Co., Nebraska: (1) UNSM 26343
(field no. 10-4-10-33NSM), left femur; (2)
UNSM 26360 (field no. 18-17-10-33NSM),
right tibia, Qu. 2, Mo-114; (3) UNSM 26361
(field no. 8-7-8-34SP), right proximal tibia,
Qu. 8; (4) UNSM 26481 (field no. 7514-83),
left calcaneum; (5) UNSM 26482 (field
no. 28-17-10-33NSM), right calcaneum; (6)
UNSM 26483 (field no. 1-9-32-SP), right
calcaneum, Qu. 2; (7) UNSM 26484 (field
no. 1-9-32-SP), left calcaneum, Qu. 2; (8)
UNSM 26485 (field no. 27-9-33NSM), right
calcaneum, Qu. 2; (9) UNSM 26486 (field
no. 27-9-33NSM), left calcaneum, Qu. 2; (10)
UNSM 26496 (field no. ?), left calcaneum;
(11) UNSM 26487 (field no. 1-9-32-SP), left
astragalus, Qu. 2; (12) UNSM 26488 (field
no. 10125-40), left astragalus, Qu. 1; (13)
UNSM 26489 (field no. 27-9-33NSM), left
astragalus, Qu. 2; (14) UNSM 26490 (field
no. 27-9-33-NSM), left astragalus, Qu. 2;
(15) UNSM 26491 (field no. 11-10-20-32-
SPD), right astragalus; (16) UNSM 26492
(field no. 8-28-10-33NSM), right astragalus;
(17) UNSM 26493 (field no. 1-17-7-35-SP),
right astragalus, Qu. 5; (18) UNSM 26494
(field no. 11-10-20-32-SPD), right astragalus;
(19) UNSM 26495 (field no. 6-27-9-33NSM),
right astragalus; (20) UNSM 26498 (field
no. 6-7-34SP), right cuboid, Qu. 1; (21)
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UNSM 26499 (field no. 11156-40), left cu-
boid, Qu. 10; (22) UNSM 26405 (field no. 27-
9-33NSM), left cuboid, Qu. 2; (23) UNSM
26406 (field no. 27-9-33NSM), right navicu-
lar, Qu. 2; (24) UNSM 26407 (field no. 11005-
40), left navicular, Qu. 10; (25) UNSM 44703
(field no. SPD-12-10-20-32), right calcaneum;
(26) UNSM 44704 (field no. SPD-12-10-20-
32), right calcaneum; (27) UNSM 44706 (field
no. SPD-12-10-20-32), right calcaneum; (28)
UNSM 44707 (field no. SPD-12-10-20-32),
right calcaneum; (29) UNSM 44708 (field
no. SPD-12-10-20-32), left calcaneum.

METATARSALS: (30) UNSM 26408 (field
no. SPD), right metatarsal 2; (31) UNSM
26409 (field no. NSM), left metatarsal 2; (32)
UNSM 26410 (field no. 10164-40), left meta-
tarsal 2, Qu. 1; (33) UNSM 26411 (field
no. 29-17-10-33NSM), right metatarsal 3;
(34) UNSM 26412 (field no. 10-10-20-32-
SPD, right metatarsal 3; (35) UNSM 26413
(field no. 4-4-10-33NSM), left metatarsal 3;
(36) UNSM 26414 (field no. 29-17-10-
33NSM), right metatarsal 4; (37) UNSM
44700 (field no. 10-10-20-32-SPD), left meta-
tarsal 5; (38) UNSM 44701 (field no. 10-10-
20-32-SPD), right metatarsal 5.

REFERRED SPECIMENS: From sediments
yielding an early Hemingfordian mammal
fauna from the Rose Creek Member, John
Day Formation, north-central Oregon—
Grant Co., Oregon: (1) UCMP 76875, left
p2–m2 (UCMP locality V76124); (2) UNSM
8061-93, right upper canine, right m2, left I3,
right and left I2 (UCMP locality V76124),
possibly from the same individual as UCMP
76875; (3) UNSM 7088-94, lingual fragment
of M1 (UNSM locality Rose Creek North),
tentatively referred; (4) UCMP 76864, right
astragalus (UCMP locality V76124).

REFERRED SPECIMENS: From sediments
yielding an early Hemingfordian mammal
fauna, Zia Sand Fm., Chamisa Mesa Mem-
ber— Sandoval Co., New Mexico: (1) F:AM
68254 (field no. Jemez 31-504), left metacar-
pals 4 and 5, Blick Quarry.

Daphoenodon (Borocyon) cf. B. robustum
Peterson, 1910

Figure 9

REFERRED SPECIMENS: From sediments
yielding an early Hemingfordian mammal

fauna that filled a sinkhole or fissure in the
channel of the Suwanee River, northern
Florida— Dixie–Levy Counties, Florida: (1)
UF 95092, KU 114592 (a cast: the specimen
is retained by a private collector), palate with
complete dentition, right and left I1–I3, C,
P1–M2; (2) KU 114585, partial right P4; (3)
KU 114584, partial left P4; (4) KU 114552,
left m1; (5) KU 114492, left m1; (6) KU
114487, mandibular fragment with right m2–
m3; (7) KU 114542, mandibular fragment
with right p4; (8) KU 114543, mandibular
fragment with right p3–p4, p2 broken; (9)
KU 114479, 114532, 114536, 3 edentulous
mandibles.

POSTCRANIALS: KU 113751, left humerus;
KU 113765, 113756, 113769, 113750, 113768,
113753, 113774, 7 distal humeri; KU 113706,
right radius; KU 113664, left proximal
radius; KU 113784, left ulna; KU 113792,
113793, 113800, 113834, 116663, 5 proximal
right ulnae; KU 113788, proximal left ulna;
KU 113645, right femur; KU 113650, partial
distal femur; KU 113736, right tibia; KU
113727, left distal tibia; KU 113722, left
distal tibia; KU 113718, left astragalus; KU
113619, 113620, 2 left calcanea; KU 113608,
113609, 113610, 113613, 4 right calcanea.

Daphoenodon (Borocyon) niobrarensis
Loomis, 1936

Figures 10, 11, 20, 23

HOLOTYPE: ACM 3452 (field no. 34-52),
left mandible with c, p2–m3, right mandible
with c, p1–m3, and isolated right M1,
associated with nearly complete forelimbs;
holotype of Daphoenodon niobrarensis Loo-
mis, 1936: 47, figs. 2, 4. There is no doubt as
to the identification of the holotype mandi-
bles and forelimbs, which Loomis published
as ACM 34-52, although the field number 34-
58 appears on many of the individual bones.

HOLOTYPE HORIZON AND LOCALITY:
From the lower Runningwater Fm., Cherry
Co., Nebraska. Loomis (1936) reported that
the holotype was ‘‘Found in 1934 in middle
Miocene beds equivalent to the upper Harri-
son formation, near mouth of Antelope
Creek, 12 miles southeast of Gordon, Ne-
braska. Associated with Aletomeryx [ACM
1915].’’ In fact the holotype was found with a
large sample of Aletomeryx and the camel
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Michenia [ACM 1844] in Aletomeryx Quarry,
an early Miocene locality in the lower
Runningwater Fm. worked by several muse-
ums during the 1930s.

DIAGNOSIS: Borocyon species of interme-
diate size, with basilar skull length of
,270 mm, and c–m2 length of ,103–
115 mm, its skeletal and dental measure-
ments (figs. 17, 18; tables 2, 3) generally
falling between those of the large species B.
robustum and small B. neomexicanus. Proxi-
mal tarsals (figs. 33, 34, astragalus, calcane-
um) shorter and differently proportioned
relative to those of B. robustum.

REFERRED SPECIMENS: Runningwater
Formation, northwestern Nebraska— Cherry

Co., Nebraska: (1) ACM 11796 (field no. 34-
58), left metacarpals 3 and 4, Aletomeryx
Quarry; (2) F:AM 68269, right metatarsal 4,
cuboid, navicular, phalanx, Aletomeryx
Quarry. Dawes Co., Nebraska: (1) UNSM
25683 (field no. 1-11-9-36NP), left mandible,
p4–m2; (2) UNSM 25555 (field no. 1-13-8-
36NP), left humerus; (3) UNSM 44702 (field
no. 9-12-8-36NP), right metacarpals 2, 3, and
4, possibly the same individual as UNSM
25555 and 25683. All from Red Horse
Quarry (UNSM Dw-103). Sheridan Co.,
Nebraska: (1) UNSM 26418 (no field no.),
right m2, UNSM Loc. Sh-101B. Sioux Co.,
Nebraska: (1) F:AM 107601 (F:AM field
nos. NEA 1–2, 8–130; UNSM field no.

Fig. 9. Reconstructed palate of Borocyon cf. B. robustum (cast, KU 114592) from sinkhole or fissure,
Suwanee River, north Florida. Complete dentition includes I1–I3, C, P1–P4, M1–M2. Note absence of M3.
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RH104), right mandible with c, p1–m3,
partial right scapula, left ulna, left scapholu-
nar, left metacarpal 2, right innominate, right
calcaneum, astragalus, and cuboid, proximal
metatarsal 5, proximal phalanx, intermediate
phalanx, partial proximal phalanx. F:AM
107601 is an associated partial skeleton from
a massive pinkish silty sandstone in SW1/4,
SW1/4, sec. 1, T29N, R55W, northeast of the
post office of Agate, Nebraska. F:AM
specimens were collected by Ron Brown in
August 1970; UNSM material (metacarpal 2,
ulna, calcaneum, partial scapula) was collect-
ed in July 1971 by R.M. Hunt, T. Hussain,
and L. Hunt and donated to the American
Museum. Associated with Merycochoerus cf.
M. magnus. (2) UNSM 44827, nearly com-
plete skull and mandibles but lacking much
of the rostrum; teeth extremely worn; right
P3–M2, left M1–M3, partial P4; damaged
right p4–m3 and left m1–m3; from massive
pale reddish brown sandstone, Skavdahl
Ranch, NW1/4, NW1/4, sec. 29, T29N,
R53W.

REFERRED SPECIMENS: Late early Mio-
cene beds east of the Laramie Mountains,
southeastern Wyoming (Cassiliano, 1980: 30–
39)— Laramie Co., Wyoming: (1) UW 10004,
left mandible with p4–m2 (a right mandible
was retained by the field collector and is now
lost), left M3, left P3, left canine, left scapula,
humerus, ulna, and radius, right humerus

and ulna, two right radii, right magnum,
both pisiforms, left metacarpals 4 and 5, right
innominate, left femur, tibia, and fibula, right
astragalus and calcaneum, left navicular,
right metatarsal 2, left metatarsals 3 and 4,
four proximal phalanges, axis, two cervical
vertebrae, three thoracic vertebrae, two
lumbar vertebrae, one caudal vertebra, par-
tial ribs. From the ‘‘Middle Miocene Forma-
tion’’ of Cassiliano (1980) at Horse Creek
Quarry.

REFERRED SPECIMEN: Carpenter Ranch
Formation, southeastern Wyoming (Hunt,
2005)— Goshen Co., Wyoming: (1) UNSM
44815, partial left mandible with m1–m3,
partial p4, described in Hunt (2005: 32, fig.
22). From indurated sandstone caprock at
Merycochoerus Butte.

Daphoenodon (Borocyon) neomexicanus,
new species

Figures 7, 8, 12–16

HOLOTYPE: F:AM 49239, a skull with
associated mandibles (figs. 7D, E, 12, 13).

HOLOTYPE HORIZON AND LOCALITY: Pie-
dra Parada Member, Zia Sand Formation,
collected in 1947 by Ted Galusha and party
at Standing Rock Quarry, Canyada Piedra
Parada, 7 mi south and 1.5 mi west of San
Ysidro, Sandoval Co., New Mexico, NW1/4,
sec. 11, T14N, R1E.

Fig. 10. Holotype right mandible of Borocyon niobrarensis Loomis with c, p1–p4, and m1–m3 from
Aletomeryx Quarry, lower Runningwater Fm., Cherry Co., Nebraska (ACM 3452).
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DIAGNOSIS: Smallest species of Borocyon,
with basilar skull length of ,245 mm, and c–
m2 length of ,97–100 mm, averaging small-
er than both B. niobrarensis and B. robustum

in body size and dentition (figs. 17, 18;
tables 2, 3), and in males, by a more
developed bony exostosis on the distal radius.
Differs from Daphoenodon superbus (basilar

Fig. 11. Associated holotype right forelimb of Borocyon niobrarensis Loomis (ACM 3452), Aletomeryx
Quarry, Cherry Co., Nebraska.
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Fig. 12. Holotype cranium of Borocyon neomexicanus (F:AM 49239), Standing Rock Quarry, Zia Sand
Fm., Sandoval Co., New Mexico. A, Dorsal view; B, ventral view. This is the only known cranium and is
an old adult with worn teeth: P1–P4, M1–M3. Although reduced in size, an M3 persists in this species.
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skull length, 215–222 mm) by its greater size,
longer forelimbs, larger m1 (fig. 18A), a
‘‘folded’’ M2, and proportionately longer
m2 (fig. 18B).

REFERRED SPECIMENS: All referred mate-
rial was collected at Standing Rock Quarry
during the 1947 field excavation by the Frick

Laboratory (American Museum): (1) F:AM
49240, left mandible, complete, with i2–i3, c,
p1, p3–m1, alveoli for m2–m3; (2) F:AM
49240A, right mandible with c, p2–p4; (3)
F:AM 49241, juvenile left mandibular frag-
ment with p3–m3—this is probably the same
individual as a basicranium (F:AM 68240)

Fig. 13. Basicranium of Borocyon neomexicanus (F:AM 49239), Standing Rock Quarry, Zia Sand Fm.,
Sandoval Co., New Mexico. A, Right auditory region; B, left auditory region. Despite crushing, the
auditory bulla and surrounding basicranium are anatomically similar to the bulla and basicranium of
Daphoenodon superbus. The bulla of the Standing Rock amphicyonid is a thin-walled, flask-shaped, single
chamber, as is the rudimentary auditory bulla of D. superbus.
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and an MT3 with unfused epiphysis (F:AM
68240A); (4) F:AM 68241, several ribs,
podials, axis vertebra, both humeri and
ulnae, right scapula, various vertebrae, a
canine, metacarpals 1 and 2, and metatarsal
5; (5) F:AM 68242, left femur, articulated

vertebrae, phalanges, carpals, both radii
(without exostoses), partial articulated tarsus
in matrix, metacarpals 4 and 5, and metatar-
sals 2, 3, and 4; (6) F:AM 68243, right femur,
complete pelvis lacking anteriormost ilial
blades, atlas vertebra; (7) F:AM 68244,
partial fibula, phalanges, tarsals, articulated
vertebrae, metacarpals 3 and 4, metatarsal 1;
(8) various postcranial elements cataloged
under field numbers as follows: Jemez 7-105,
radius (with exostosis); Jemez 7-106, tibia;
Jemez 6-86, femur; Jemez 5-77, distal femur;
Jemez 5-72, distal humerus, proximal ulna;
Jemez 5-73, distal humerus; Jemez 5-74, ulna;
Jemez 5-77, atlas vertebra; Jemez 7-117, atlas
and two articulated vertebrae.

DISCUSSION: The Standing Rock Quarry
sample of Borocyon is made up of at least
three disarticulated individuals including a
juvenile (fig. 7C). In skull proportions, den-

Fig. 14. Elongate radii of (A) female and (B)
male Borocyon neomexicanus, Standing Rock
Quarry, Zia Sand Fm., Sandoval Co., New
Mexico. Note large distal radial exostosis (arrow)
of the male, a trait also present in Daphoenus vetus
and Daphoenodon superbus but not developed in B.
robustum despite a sample of eight radii from the
Hemingford and Bridgeport Quarries. The single
radius of Borocyon cf. B. robustum from Florida
retains a small exostosis.

Fig. 15. Elongate metacarpals 4 and 5 of (A)
Borocyon neomexicanus (F:AM 68242) from
Standing Rock Quarry and (B) B. robustum
(F:AM 68254) from Blick Quarry, Sandoval Co.,
New Mexico, demonstrating that the Borocyon
lineage persisted in the southwestern United States
from latest Arikareean into the early Hemingfor-
dian. The only Hemingfordian record of Borocyon
in the Southwest are these two metacarpals from
Blick Quarry.
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Fig. 16. Upper dentition and palate of Daphoenodon superbus (A) and Borocyon neomexicanus (B).
Although the teeth of B. neomexicanus are worn, both species show similar unreduced premolar form,
reduction of M3, and shearing P4. The New Mexican beardog has developed the ‘‘folded’’ M2, a
synapomorphy of Borocyon species, not yet evident in D. superbus.
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Fig. 17. Comparison of (A) M1 and (B) M2 dimensions of species of the daphoenine subgenera Borocyon
and Daphoenodon and the amphicyonine Amphicyon galushai from the early Miocene of North America.
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Fig. 18. Comparison of (A) m1 dimensions and (B) m1 length relative to m2 length for species of the
daphoenine subgenera Borocyon and Daphoenodon from the early Miocene of North America.
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tition, and the postcranial skeleton this
species is very similar to both Daphoenodon
(D.) superbus and the large species of
Daphoenodon (Borocyon) and serves as a
structural and temporal intermediate. The
mammalian fauna found with B. neomexica-
nus indicates a latest Arikareean (Ar4) age,
hence the New Mexican carnivore precedes
the larger earliest Hemingfordian Borocyon
niobrarensis from the Great Plains, and
apparently postdates the sample of D.
superbus from the carnivore dens at Agate
National Monument on faunal grounds.

The hypodigm from Standing Rock Quar-
ry includes partially articulated postcranial
material requiring additional preparation
and study. Only the diagnostic holotype skull
and mandibles, an unworn juvenile dentition,
and previously prepared limb and foot bones
necessary to establish the species as the oldest
member of the Borocyon lineage are included
in this study.

Two metapodials found in Blick Quarry
(fig. 15), situated a few miles north of
Standing Rock Quarry, can be referred to
Borocyon robustum, suggesting that the tran-
sition from the smaller Standing Rock
carnivore to large B. robustum is possibly
documented in northern New Mexico. The
failure to find B. neomexicanus in Arikareean
rocks of Nebraska and adjacent states in the
central Great Plains despite extensive field
collecting suggests its actual absence from the
fauna of that region, indicating that Boro-
cyon may have migrated north into the
midcontinent from the southwestern United
States in the earliest Hemingfordian.

CRANIODENTAL OSTEOLOGY

CRANIAL: Borocyon robustum is represent-
ed by three large, nearly intact crania
(UNSM 25547, 25686, 26416) and B. neo-
mexicanus by only one (F:AM 49239),
crushed nearly flat. A skull assigned to B.
niobrarensis (UNSM 44827, an aged individ-
ual), although without a rostrum and with
extremely worn teeth, is intermediate in size.
These species retain a similar skull form (see
frontispiece), which derives from the short,
broad skull of Daphoenodon superbus (CM
1589, 2774). The cranium, mandible and
teeth are best represented for B. robustum;

this species is therefore the principal subject
of this section, with B. niobrarensis and B.
neomexicanus supplementing the account
where appropriate.

Skull lengths of B. robustum were deter-
mined from the three crania and the sample
of mandibles of B. robustum from the
Runningwater Formation. An undistorted
mandible (UNSM 25684) was fitted to the
paratype cranium (UNSM 25686) so that
upper and lower teeth occluded properly, and
then, estimating from that relationship,
basilar skull lengths corresponding to the
remaining mandibles were calculated. A
strong correlation exists between mandibular
length and skull length for living Carnivora
(Christiansen and Adolfssen, 2005). Dimor-
phism, presumably sexual, is reflected in the
range of values for mandibles, and this is
supported by ‘‘male’’ and ‘‘female’’ examples
from a single quarry (UNSM 25549, 25550,
UNSM locality Bx-7). The calculated values
for skull lengths (using basilar length) for B.
robustum, derived from seven mandibles and
the three known skulls, yield a range of 258–
328 mm, a mean of 294.5 mm, with standard
deviation of 20.8 and coefficient of variation
of 7.0.

Basilar lengths of Borocyon robustum
skulls (table 1) indicate the large size attained
by these predators, and they show that the
,30–31 cm maximum value recorded for
Borocyon is similar to this measurement for
large New World early Miocene amphicyo-
nine amphicyonids (Amphicyon, Ysengrinia),
values similar to those for living large felids
such as Panthera leo (,24–34 cm), P. tigris
(,22–30 cm), and North American mainland
Ursus arctos.

The skull of Borocyon robustum displays a
rather short rostrum coupled to a long
postorbital cranium (fig. 4, UNSM 26416;
frontispiece, UNSM 25686), similar to the
proportions of its contemporary Amphicyon
galushai (Hunt, 2003). Among living carni-
vorans of similar size, the snout and orbital
region of B. robustum are most like those of
Ursus arctos, although the snout of the
beardog appears somewhat shorter. It is not
so swollen as in Panthera leo and P. tigris due
to the absence in Borocyon of the particularly
robust canines and incisors of these cats.
Borocyon is also similar to U. arctos in the
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diameter and lateral placement of the orbits,
whereas in the large felids the orbit is
relatively larger and more forwardly directed.
The enlarged infraorbital foramina of the
large cats for sensory fibers supplying the
facial vibrissae are lacking in Borocyon,
which has a small foramen comparable to
that of U. arctos.

Borocyon robustum retained the broad
forehead of Daphoenodon superbus for ex-
panded frontal (paranasal) sinuses, with the
cranium constricted behind the orbits to
enclose a relatively small braincase sur-
mounted by impressive sagittal and occipital
crests (see frontispiece). The volume of the
braincase is proportionately smaller in B.
robustum relative to living lions, tigers, and
U. arctos of similar size; hence, the sagittal
crest for attachment of temporal muscles in
Borocyon is more prominent. At the base of
the braincase adjacent to the narrow occiput,
the squamosal root of each zygoma departs
the skull at essentially a right angle, and the
zygomatic arches extend farthest from the
braincase at this point. The breadth of the
zygomata and height of the sagittal crest
demonstrate that a massive jaw musculature
filled the temporal fossae, this volume
augmented by the relatively small size of the
braincase. The width of the palate is consid-
erable, attaining ,9 cm in some individuals,
measured between the posterior limit of the
P4 carnassial blades.

The basicranium (fig. 13) is preserved only
in the holotype cranium of B. neomexicanus
(F:AM 49239) and, although badly damaged,
in the referred skull of B. niobrarensis
(UNSM 44827). The auditory bulla and
surrounding basicranial structure are essen-
tially the same as previously described for the
holotype cranium of Daphoenodon superbus
(CM 1589, Hunt, 2002a, fig. 23; 2002b,
fig. 18). This plesiomorphic bulla is distin-
guished by its simple, flask-shaped form, by
thin medial and posterior bulla walls, and by
lack of posterior expansion of the middle ear
cavity; this bulla morphology is characteristic
of both subgenera of Daphoenodon.

DENTAL: Dimensions of the upper and
lower teeth of the species of Borocyon are
here compared with those of other Late
Arikareean–early Hemingfordian amphicyo-
nids (tables 2, 3). From the small species
Borocyon neomexicanus to large B. robustum,
the teeth increase in size over time, in keeping
with the increase in body size. However, the
dentition is well represented only in B.
robustum.

Skulls of Borocyon robustum are most
easily distinguished from those of the large
contemporary amphicyonine Amphicyon by
the teeth. Nine mandibles and three skulls
from the Hemingford Quarries in the upper
Runningwater Formation of Nebraska com-
prise a population sample that best defines
Borocyon robustum. The teeth of these

TABLE 1
Basilar Skull Lengths of Early Miocene Daphoenine and Amphicyonine Amphicyonids Compared to

Living Panthera

Taxon Mus. no.a Basilar Length (mm)

Ysengrinia americana F:AM 54147 298

Adilophontes brachykolos F:AM 27568, 54148, 54140* 243, 305, ,300

Amphicyon galushai F:AM 25400 310

Daphoenodon superbus CM 1589, 2774 215, 222

Daphoenodon falkenbachi F:AM 54144 265

Borocyon neomexicanus F:AM 49239 245

Borocyon niobrarensis UNSM 44827* ,270

Borocyon robustum UNSM 25547, 25686,* 26416* 294, ,304, ,287

Cynelos lemanensis Université de Lyon* 220

Panthera leo 9 individuals 283 (240–344)b

Panthera tigris 18 individuals 260 (226–304)b

aAsterisk (*) indicates estimated.
bMean (range).
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individuals show a remarkably uniform
morphology, principally varying in size,
which in North American amphicyonids is
attributable to sexual dimorphism. The
population from the Hemingford Quarries
(primarily Quarries 7A–7B, 12D, 22, 23)
includes the largest carnivores assigned to
the genus. The population sample from the
Bridgeport Quarries is made up of numerous
isolated teeth that correspond in size to those
from the Hemingford sites. Because the
molars of Borocyon robustum are diagnostic,
the Bridgeport sample can be confidently
allocated to the species, based not only on
teeth but also isolated limb and foot elements.

Skulls and mandibles of Borocyon robus-
tum are identified by the following defining
dental traits (figs. 4–8, 17, 18): (1) the
premolars are not reduced as in Amphicyon
but are well-developed grasping teeth; (2) M3
is lost, a characteristic known elsewhere in
North American amphicyonids only in tem-
nocyonines (M3 is reduced in size in D.
superbus and B. neomexicanus; it is minute
but still present in the only known skull of B.
niobrarensis); (3) the shearing P4 is longer
and narrower than that of contemporary
Amphicyon and retains a more prominent
protocone; (4) M1 in occlusal view is a large
triangular tooth with tall paracone and
metacone and a conspicuous notch (fig. 5)
indenting the anterolingual cingulum; (5) M2
is particularly diagnostic in its ‘‘folded’’
shape in B. robustum, B. niobrarensis, and
B. neomexicanus; that is, in posterior view the
lingual half forms a prominent angle (105u–
130u) relative to the labial half of the tooth.
Dentally plesiomorphic daphoenines (D. su-
perbus, D. falkenbachi, D. skinneri) have an
M2 with a much flatter occlusal surface; (6)
the posterior cingulum of p4 is ‘‘squared’’
(fig. 8A), not rounded as in Amphicyon—a
few individuals show some rounding of this
posterior margin, but p4 always remains
more laterally compressed than in Amphi-
cyon; (7) m1 is a massive, robust carnassial
that retains a prominent metaconid and a
relatively narrow talonid, not a broadened
talonid as in Amphicyon (because the B.
robustum M1 paracone is a tall cusp, it
occludes far ventrad against the labial face
of the m1 talonid, cutting a broad facet,
which is particularly evident in the Hem-

ingford Quarries population); (8) m2 is
elongate with a broad occlusal surface for
crushing against the lingual half of the
‘‘folded’’ M2—it is not as broad as m2 of
Amphicyon; (9) m3 is present, placed high on
the ascending ramus, and tilted forward in an
attempt to occlude with M2, due to loss of
M3 (only the m3 trigonid occludes with M2,
creating a small wear facet on the posterior
cingulum) .

Identification of Borocyon from a sinkhole
or fissure in the Suwannee River, Florida,
rests on a reconstructed palate with complete
upper dentition (fig. 9), a few isolated teeth,
edentulous mandibles, and numerous isolat-
ed, diagnostic limb and foot elements.
Additional craniodental material of Borocyon
from the site is in private collections and not
available. Although the size of the teeth in
the palate suggests a large B. robustum male
(particularly the canines), the isolated m1s
and m2–m3 indicate small individuals, pre-
sumably females the size of B. niobrarensis.
The p4s fall in the size range of B. robustum
yet are not as large as p4s in the largest of the
Hemingford Quarry individuals. Three eden-
tulous mandibles do not equal the depth and
robust quality of the Hemingford Quarry
specimens and are similar in size to B.
niobrarensis mandibles. The Florida sample
is provisionally referred here to Borocyon cf.
B. robustum; postcranials indicate individuals
of the population are somewhat smaller on
average than the upper Runningwater hypo-
digm from the Hemingford Quarries—
whether this is a smaller southern population
coeval with B. robustum or possibly animals
from a geologically older interval is uncer-
tain. It is also possible that these individuals
constitute a diachronous sample that accu-
mulated over a significant interval in the
sinkhole(s) in the Suwannee River.

Figures 17 and 18 present dental dimen-
sions of B. robustum for m1–m2 and M1–M2
relative to other early Miocene daphoenines.
The Hemingford Quarries and Bridgeport
Quarries populations are plotted as B.
robustum, and the few individuals from
Oregon and Florida, although included in
the B. robustum hypodigm, are separately
indicated on the graphs. M1–M2 and m1–m2
are useful in distinguishing B. robustum from
B. niobrarensis—the latter species is consis-
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TABLE 2
Dental Measurements (in mm) of Lower Teeth of North American Early Miocene Amphicyonids

Mus. no. p2 p3 p4 m1 m2 c–m2 p1–p4

Daphoenodon superbus

CM 1589 10.3 3 5.2 12.8 3 5.8 16.2 3 7.9 24.2 3 11.6 13.9 3 9.8 92.0 47.7

CM 1589a (12.7) 3 — (12.7) 3 — 18.6 3 8.8 26.2 3 11.4 (15.7) 3 — (87.5)

CM 1589b (12.8) 3 —

CM 1589b 14.8 3 6.8

CM 1589b 17.4 3 11.5

CM 1589b 14.6 3 10.4

CM 1589d 25.9 3 11.6

CM 1896g 12.2 3 5.8

CM 2774 11.3 3 5.5 13.6 3 6.1 17.2 3 8.6 24.2 3 11.1 14.2 3 9.8 92.5 51.0

CM 2217 26.1 3 11.5

AMNH 81003 12.4 3 5.9 14.3 3 6.7 18.1 3 9.5 25.2 3 11.3 15.9 3 10.1 102.7 57.4

AMNH 81025 (12.9) 3 — (14.4) 3 — 18.7 3 9.8 27.4 3 11.7 15.7 3 —

AMNH 81055a 11.0 3 5.6 13.3 3 6.1 17.1 3 8.3

AMNH 81055b 11.7 3 5.6 14.2 3 6.5

AMNH 81052 24.9 3 11.2

C:P12033 11.1 3 5.5 12.4 3 5.9 16.5 3 7.8 26.1 3 11.8 (15.2) 3 — (93.4) 49.2

F:AM 54460 12.2 3 6.1 13.5 3 7.4 18.7 3 9.1 24.7 3 12.0 14.0 3 10.6 94.6 53.3

UNSM 44683 25.8 3 11.4

UNSM 44688 12.3 3 6.0 18.0 3 9.1 25.3 3 11.7 15.7 3 10.8 95.5 51.6

UNSM 700-82 12.6 3 5.6 13.6 3 6.4 19.3 3 8.9 26.4 3 11.6 15.2 3 10.1 104.9 (60)

Daphoenodon, n. sp.

YPM-PU 11554 11.1 3 5.3 12.5 3 5.5 16.7 3 7.3 22.1 3 9.8 12.7 3 8.6 87.2 47.5

Daphoenodon notionastes

UF 16965 21.6 3 10.6

FGS V1213 21.2 3 9.7

UF 449 19.3 3 9.4

UF 16905 12.3 3 8.7

UF 16968 15.6 3 6.8

UF 16970 14.9 3 6.0

LSUMG-V2256 20.8 3 10.3 10.3 3 7.7 76.8 43.0

UF 16997 (11.2 3 4.5) (12.6 3 5) (16.1 3 6.4) (19.6 3 8.9) (10.8 3 7.4) (80.4) (48.4)

UF 16910 (12.0 3 5.1) (13.3 3 5.5) (15.7 3 6.6) (21.4 3 9.8) (12.2 3 8.6) (81.3) (46.9)

Daphoenodon falkenbachi

F:AM 54144 13.1 3 7.3 14.8 3 7.4 19.3 3 9.7 30.2 3 13.5 16.4 3 11.5 104.5 56.7

F:AM 54145/54150 (11.9) 3 — (15.0) 3 — (19.3) 3 — 28.9 3 — (16.1) 3 — (98.0) 53.5

CM 3719 19.6 3 10.3 30.8 3 14.1 15.8 3 10.6 (99.0) (51.0)

F:AM 54146 17.8 3 9.1 — 3 12.0 16.3 3 11.1

Daphoenodon skinneri

F:AM 70801 11.3 3 6.2 13.2 3 7.0 16.8 3 9.1 26.0 3 12.2 14.0 3 10.4 93.5 53.2

Borocyon neomexicanus, n. sp.

F:AM 49239 11.7 3 — 13.2 3 — 18.1 3 — 25.8 3 12.4 (16.4) 3 — (96) 51.6

F:AM 49240 13.9 3 — 18.4 3 — 28.1 3 (12.0) (16.2) 3 — (99.8) 56.8

F:AM 49240a 11.4 3 — 14.4 3 — 18.3 3 — (27.1) 3 — (16.3) 3 — (97.0) (53.7)

F:AM 49241 20.5 3 — 29.1 3 12.5 18.0

Borocyon niobrarensis

UNSM 44827 (19.6 3 9.7) (28.0 3 14.6) (17.2 3 11.0)

UNSM 44815 (19.2 3 11.2) 27.2 3 13.8 17.5 3 11.8

ACM 3452 13.4 3 7.2 15.4 3 7.9 20.4 3 9.9 29.0 3 14.7 18.2 3 12.2 115.0 60.0
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Mus. no. p2 p3 p4 m1 m2 c–m2 p1–p4

F:AM 107601 11.9 3 7.1 14.1 3 7.4 18.0 3 10.4 28.6 3 14.4 16.8 3 12.1 103.0 57.4

UW 10004 (12.5) 3 6.2 13.8 3 7.2 17.9 3 9.5 28.4 3 13.5 18.0 3 10.9 104.0 56.6

UNSM 25683 (15.8) 3 — 19.4 3 9.1 29.9 3 14.0 17.7 3 13.0 (114) (57.0)

UNSM 26418 17.9 3 12.0

Borocyon robustum

SIOUX COUNTY, NEBRASKA

CM 1918 13.3 3 7.6 17.9 3 —

BRIDGEPORT QUARRIES, MORRILL COUNTY, NEBRASKA

UNSM 25878 13.6 3 7.7 18.2 3 8.5 22.7 3 11.7

UNSM 26009 15.9 3 8.0

UNSM 25924 21.0 3 10.9

UNSM 26011 19.4 3 9.8

UNSM 26012 19.5 3 10.5

UNSM 25923 19.0 3 10.5

UNSM 26080 28.0 3 13.5

UNSM 26081 28.8 3 13.8

UNSM 26082 29.9 3 14.6

UNSM 26083 30.6 3 15.1

UNSM 26084 31.4 3 15.6

UNSM 26040 28.6 3 13.9

UNSM 26042 28.7 3 13.9

UNSM 25907 32.6 3 15.1

UNSM 25781 (30.5 3 14.5)

UNSM 26280 19.9 3 14.0

UNSM 26281 19.2 3 13.0

UNSM 26282 19.1 3 13.2

UNSM 26283 17.0 3 10.6

UNSM 26284 17.1 3 10.7

UNSM 26287 — 3 13.7

UNSM 25852 (13.3) 3 — (17.0) 3 — (20.4) 3 — (28.1 3 13.6) (18.6) 3 — 110.0 59.3

HEMINGFORD QUARRIES, BOX BUTTE AND DAWES COUNTIES, NEBRASKA

QUARRY 12D

UNSM 25577 13.9 3 7.7 16.1 3 7.9 21.3 3 12.3 66.0

UNSM 25551 (17.0 3 9.0) 21.2 3 10.9 29.2 3 14.8 18.8 3 12.6

UNSM 27002 14.7 3 7.0 16.8 3 8.4 20.4 3 11.6 30.8 3 15.4 19.1 3 12.8 113.5 59.4

QUARRY 7A AND 7B

UNSM 25548 13.1 3 7.2 16.0 3 8.6 21.4 3 11.8 32.4 3 15.6 19.2 3 — 120.2 65.9

UNSM 25549 (13.4) 3 — 15.8 3 8.6 21.1 3 10.6 32.0 3 15.8 18.7 3 — 118.4 65.4

UNSM 25550 15.6 3 8.1 19.4 3 10.3 28.4 3 13.8 17.6 3 11.4 113.8 (59.0)

UNSM 25684 12.5 3 6.8 15.8 3 8.4 21.7 3 12.2 31.7 3 15.2 19.0 3 12.7 119.2 66.5

UNSM 25576 17.6 3 8.8 21.8 3 —

UNSM 26423 21.0 3 11.6

UNSM 25571 31.8 3 15.5

QUARRY 1

F:AM H457-4060 22.3 3 11.7 32.6 3 15.5 19.7 3 12.7

MARSLAND QUARRY

UNSM 25685 12.0 3 6.7 (16.0) 3 — 20.8 3 10.4 30.4 3 14.6 19.2 3 13.1 119.3 62.9

HOVORKA QUARRY

UNSM 26417 14.5 3 6.7 16.4 3 9.3 22.9 3 11.9 32.1 3 15.0 19.6 3 12.9 119.0 66.0

DUNLAP CAMEL QUARRY

F:AM 25408 (13.0) 3 — (15.5) 3 — 21.9 3 10.7 32.0 3 16.0 19.2 3 13.3 (117) 62.2

TABLE 2
(Continued )
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tently smaller, plotting in the lower part of
the range of the former. When teeth of
Borocyon neomexicanus are available, they
are smaller than those of both B. robustum
and B. niobrarensis.

Dimensions and the form of M1 and M2
distinguish Borocyon robustum from its con-
temporary Amphicyon galushai. These molars
are particularly reliable in identification of
the two species. M1–M2 of Borocyon are
mesiodistally shorter relative to the upper
molars of A. galushai, and Borocyon robus-
tum has lost M3 whereas Amphicyon retains
that tooth (B. niobrarensis and B. neomex-
icanus have reduced M3s). The carnassials of
B. robustum are more sectorial than those of
A. galushai and the premolars better devel-
oped for grasping, together indicating a more
carnivorous diet in Borocyon. Although B.
robustum can often be identified solely by
dental and cranial characters, the species is
more confidently recognized using a combi-
nation of dental and postcranial traits. When
craniodental traits of Borocyon robustum are
combined with its postcranial skeletal fea-
tures, the species is anatomically unique
among Miocene amphicyonids of both the
Old and New World.

POSTCRANIAL OSTEOLOGY

Although no complete associated skeleton
of Borocyon is known, postcranial bones of

B. robustum from the Hemingford Quarries,
supplemented by isolated elements from the
Bridgeport Quarries, provide a relatively
comprehensive overview of the postcranial
skeleton, particularly the limbs and feet.
Additionally, the associated forelimb of the
holotype of Daphoenodon (Borocyon) niobrar-
ensis Loomis from the lower Runningwater
Formation serves as a useful reference in
reconstruction of the forequarters. This
forelimb (ACM 3452), complete from the
scapula to the ungual phalanges (fig. 11),
indicates a slightly less evolved antebrachium
and forepaw relative to B. robustum. With
regard to B. neomexicanus, only limb pro-
portions, the radius, and metapodials are
considered here. Additional preparation of
the material from Standing Rock Quarry is
necessary to obtain a complete description of
its postcranial skeleton.

An estimate of body size for Borocyon
robustum is speculative, given the lack of
associated material. However, mid-shaft di-
ameters of femora have often been used as
predictors of body mass (Gingerich, 1990;
Anyonge, 1993; see also Christiansen, 1999).
The length and midshaft diameters of a
complete femur (UNSM 26435: length,
378 mm; A-P and M-L diameters, 30.4 and
33.1 mm, respectively ) of the species, prob-
ably representing a large adult male, exceed
average values for the femora of Panthera leo
(,324, 26, 28 mm) and P. tigris (,352, 27,

Mus. no. p2 p3 p4 m1 m2 c–m2 p1–p4

GRANT COUNTY, OREGON

UCMP 76875 21.3 3 12.0 29.6 3 15.0 18.5 3 12.5

Borocyon cf. B. robustum

SUWANNEE RIVER, FLORIDA

KU 114543 14.6 3 7.5 19.2 3 10.5

KU 114542 20.4 3 11.5

KU 114492 27.5 3 14.3

KU 114552 28.4 3 15.0

KU 114487 16.0 3 11.0

Adilophontes brachykolos

F:AM 27568 14.6 3 7.0 16.1 3 7.8 (18.0 3 10.7) (29.0 3 13.9) 16.4 3 11.0 106.5 58.3

F:AM 54148 13.7 3 7.1 16.0 3 8.2 20.7 3 10.8 28.5 3 14.1 16.5 3 13.3 111.6 58.4

F:AM 54141 13.1 3 6.7 (29.0 3 13.6) 16.5 3 12.1 (100)

Measurements in parentheses are estimates.

TABLE 2
(Continued )
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28 mm) presented by Bertram and Biewener
(1990), suggesting at least a similar body
mass perhaps slightly exceeding the mean for
these large felids. On average, P. leo males
range from 150 to 250 kg, and males of the
Indian and smaller Sumatran P. tigris range
from 100 to 258 kg (Nowak, 1991). Based on
dimensions of the femur, B. robustum surely
reached 100 kg, and probably some males at
,150 kg.

FORELIMB

The proportions of the forelimbs of the
species of Borocyon were compared with
those of living ursids, felids, and canids
(fig. 19A; table 4; appendix 1). A propor-
tional increase in length of the radius relative
to the humerus is evident as one progresses
from ursids and felids to canine canids. Most
New World amphicyonids for which an
associated forelimb is known have a short
lower forelimb, unlike living canids. Boro-
cyon, on the other hand, has an elongated
forelimb similar to proportions found in the
wolf and cheetah (fig. 19A). An elongated
forelimb (figs. 14, 15) is already present in the
earliest known species of Borocyon, B.
neomexicanus, and the lengthened forelimb
is a principal synapomorphy of the species of
the subgenus.

SCAPULA-HUMERUS

Poor representation of the scapula in
Borocyon is likely due to targeted scavenging
of the muscle mass concentrated at the
shoulder—this bone survives for B. niobrar-
ensis (fig. 20) and B. neomexicanus but not
for B. robustum. Scapula and humerus are
preserved in the associated forelimb of the
holotype of Borocyon niobrarensis (ACM
3452), with the scapula nearly complete
except for a small portion of the vertebral
border (fig. 20A). The shape of this scapula is
a composite of features of living ursids and
large felids, and this shape was already
characteristic of Daphoenodon superbus and
Borocyon neomexicanus. No clavicle was
present (it was already lost in D. superbus);
the large acromnion process is configured as
in Ursus americanus (breakage precludes
determination of a metacromnion).

The cranial border of the scapula and the
relative volumes of the supraspinatus and
infraspinatus fossae are nearly identical to
those of Panthera leo and P. tigris; in fact the
overall form of the scapula is quite close to
those of the large living felids. The principal
osteological distinction of the Borocyon
scapula from the scapulae of these cats is a
broad teres process appended to the posterior
axillary border, a process also found in living
ursids (fig. 20). In the bears the teres process
takes the form of a projecting bony plate
whose lateral concave surface, termed the
postscapular fossa, houses the subscapularis
minor muscle. The postscapular fossa con-
tinues as a deep channel or groove (subscap-
ular fossa of Davis, 1964) along the ventral
axillary border, which houses the belly of the
subscapularis minor muscle.

According to Davis (1949), fibers of the
subscapularis minor of Ursus americanus
maintain a separate identity from those of
the subscapularis, both muscles inserting
close together on the medial side of the
humeral head, where they would effect
medial rotation of the humerus. Canis and
living felids lack the teres process and the
subscapularis minor is not distinct from the
subscapularis itself. In Ursus americanus the
teres major muscle has been displaced to the
medial side of the scapula by the subscapu-
laris minor, where it arises from the surface
of that muscle and from the thin adjacent
edge of the scapula (Davis, 1949). The form
of the teres process of Borocyon niobrarensis
and the postscapular fossa on its lateral face
are developed as in living ursids and in
amphicyonids where the scapula is known,
and certain procyonids have a scapular
anatomy presaging the ursid condition.

In order to confirm the anatomy of the
postscapular fossa and subscapularis minor,
R.M. Joeckel and I dissected the shoulder of
the Malayan Sun Bear (Helarctos malaya-
nus). The subscapularis minor, here a fusi-
form muscle belly that occupies the post-
scapular fossa and its continuation forward
into the subscapular fossa or groove, is a
ventral derivative of the subscapularis mus-
cle. Fibers of subscapularis minor run
subparallel to the bony margins of the
groove. The belly of this muscle lies loosely
in the postscapular fossa and along the axis
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TABLE 3
Dental Measurements (in mm) of Upper Teeth of North American Early Miocene Amphicyonids

P2 P3 P4 M1 M2 C–M2 P1–P4

Daphoenodon superbus

CM 1589 11.5 3 5.3 13.1 3 7.1 22.3 3 13.7 18.6 3 23.5 12.6 3 19.1 84.6 55.1

CM 1589a 12.3 3 5.7 14.1 3 7.2 25.1 3 15.0 18.7 3 24.3 13.6 3 19.4 83.1 56.8c

CM 1589b 16.3 3 8.7 23.8 3 14.6 12.8 3 19.6b

CM 1589b 13.6 3 21.0

CM 2774 11.1 3 5.2 (12.5)a 3 6.4 22.8 3 13.9 17.8 3 23.8 12.3 3 19.0 80.6 52.4

AMNH 81055 11.7 3 5.0 22.3 3 — 17.9 3 22.5 11.3 3 17.9

AMNH 81046 19.9 3 24.5

AMNH 81048 18.6 3 24.3

AMNH 81050 17.0 3 21.1

AMNH 83484 23.2 3 13.8

Daphoenodon notionastes

UF 449 16.5 3 19.1

UF 16906 20.3 3 11.7

Daphoenodon skinneri

F:AM 70801 12.0 3 6.1 13.8 3 7.5 24.0 3 14.0 17.9 3 22.9 11.4 3 18.5 83.9 62.4

Daphoenodon falkenbachi

F:AM 54144 13.7 3 7.5 15.8 3 8.9 27.1 3 18.8 22.1 3 26.9 15.0 3 21.7 96.1 67.6

UNSM 99420 13.0 3 6.5 16.1 3 8.0 26.4 3 16.2 22.0 3 27.7 14.3 3 21.6 101.2 70.5

Borocyon neomexicanus, n. sp.

F:AM 49239 12.6 3 5.9 14.9 3 7.5 23.3 3 13.5 18.8 3 23.2 12.2 3 20.8 88.2 60.4

Borocyon niobrarensis

UNSM 44827 15.2 3 7.5 24.9 3 15.6 20.6 3 25.9 13.4 3 21.9

ACM 3452 21.9 3 26.0

Borocyon robustum

BRIDGEPORT QUARRIES, MORRILL COUNTY, NEBRASKA

UNSM 2-25-6-35SP 15.6 3 8.3

UNSM 26070 23.4 3 15.0

UNSM 25961 24.7 3 15.3

UNSM 26071 25.6 3 16.6

UNSM — 25.3 3 15.1

UNSM 26017 22.3 3 29.4

UNSM 26015 22.4 3 28.8

UNSM 25928 21.8 3 28.1

UNSM 26016 22.6 3 30.9

UNSM 26018 14.9 3 24.2

UNSM 26019 15.5 3 26.9

HEMINGFORD QUARRIES, BOX BUTTE AND DAWES COUNTIES, NEBRASKA

UNSM 26416 13.2 3 7.7 28.7 3 17.9 23.3 3 30.7 16.0 3 26.2 106.2 74.6

F:AM 25402 27.8 3 17.7

F:AM 25403 27.1 3 17.1

F:AM 25404 14.3 3 23.8

UNSM 26427 18.0 3 28.2

UNSM 25547 12.9 3 7.7 29.2 3 17.2 23.4 3 31.4 16.8 3 27.2 ,108 ,75

UNSM 25686 12.9 3 7.1 17.7 3 9.7 27.5 3 17.5 23.3 3 30.2 14.6 3 24.9 108.5 74.9

Borocyon cf. B. robustum

SUWANNEE RIVER, DIXIE–LEVY COUNTIES, FLORIDA

KU 114592 13.7 3 7.6 17.2 3 8.1 28.0 3 16.8 22.9 3 30.1 14.5 3 24.3 103.7 72.5
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of the groove and is separated from the bone
by a thin fascial sheet; fibers do not attach
strongly to the bone of the fossa or groove.
As the subscapularis minor is followed
craniad to the forward edge of the groove,
its fibers merge with fibers at the ventral
margin of subscapularis. Of interest is that
subscapularis minor does not twist around
the ventral border of the scapula as described
for Ursus by Davis (1949), but rather joins
the large subscapularis and loses its identity
before reaching the medial face of the
scapular blade. The subscapularis, considered
a major internal rotator of the arm, had 6–7
major pinnate bellies that join to form a
thick, tendinous aponeurosis covering the
medial head of the humerus. The ventral edge
of this muscle extends 1–2 cm ventral to the
scapular border as a fleshy muscle mass,
which sends a slip caudad into the post-
scapular fossa. In Helarctos the subscapularis
minor cannot function differently than the
main body of the subscapularis. Consequent-
ly, the distinctive anatomy associated with
the teres process of ursids and amphicyonids
probably derives from an ancestral pattern
retained in these lineages but does not
necessarily confer the functional significance
attributed to this anatomy by Davis (1949) in
which these muscles formed part of a
muscular package of the shoulder that was
thought to favor climbing behavior. Consid-
ering the total limb anatomy of Borocyon, a
climbing facility is extremely unlikely, where-
as an ability to retract the limb in digging
might seem a better possibility.

Whether the anatomy of the shoulder in
Borocyon relative to that of large living felids
is of significance is questionable, given that

the role of the subscapularis minor and its
postscapular process in Helarctos and that of
the subscapularis in felids probably differs
little in terms of the efficient function of the
shoulder joint. This view also finds support
from electromyographic investigations of
muscle actions involving the shoulder joint.

The head of the humerus in B. niobrarensis
(ACM 3452) and in the Suwanee River
Borocyon (KU 113751) displays well-defined
scars for the insertion of rotator cuff muscles
(supraspinatus, infraspinatus, subscapularis)
that stabilize the shoulder and aid in exten-
sion of the forelimb; their placement is the
same as these scars in much smaller D.
superbus (CM 1589) and similar to the wolf,
particularly the flat insertion scar for infra-
spinatus situated far forward beneath the
greater tuberosity. In felids and ursids the
infraspinatus scar is more posteriorly situat-
ed. Not only do rotator cuff muscles stabilize
the shoulder joint, but their simultaneous
contractions participate in maintaining the
balanced anatomical alignment of the para-
sagittal digitigrade limb: electromyographic
studies of the rotator cuff muscles of
domestic dogs and cats (Tokuriki, 1973a, b;
English, 1978; Goslow et al., 1981) show that
they act in concert not only during the stance
phase when the forefoot contacts the ground
but also during extension of the shoulder
joint at limb protraction. These cuff muscles
appear to act together to control movements
of the shoulder joint brought about by
loading on substrate contact as well as
accurately positioning the forelimb during
protraction prior to placement of the forepaw
on the ground. A controlled rotation and
translation of the shoulder apparatus during

P2 P3 P4 M1 M2 C–M2 P1–P4

Adilophontes brachykolos

F:AM 27568 13.9 3 7.0 16.5 3 7.9 26.0 3 15.2 21.3 3 24.0 13.0 3 20.0 93.3 66.4

F:AM 54148 13.6 3 7.5 19.5 3 9.4 27.4 3 17.6 22.0 3 27.7 15.1 3 23.0 108.1 75.3

F:AM 54140 13.2 3 7.0 17.2 3 8.4 27.5 3 17.9 21.1 3 27.7 13.7 3 22.1 103.8 74.5

aEstimated measurement.
bThese three teeth may not belong to one individual but are sampled from a single population.
cJuvenile individual.

TABLE 3
(Continued )
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Fig. 19. Ratio (in %) of length of (A) radius/humerus and (B) tibia/femur for species of Borocyon
relative to living canids, felids, and ursids and some additional amphicyonids. Species farthest to right
show greatest elongation of the distal fore- or hindlimb segments. Numbers within or adjacent to black
bars indicate sample size.
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the gait of carnivores is known to contribute
to stride length. English (1978), based on
electomyographic studies, thought that ‘‘the
patterns of activity of the muscles of the
shoulder girdle during stepping in most
[living] carnivores … may be qualitatively
similar.’’

The scapular spine for deltoid musculature
and the prominent deltopectoral crest of the
humerus extending distad for two-thirds the
length of the diaphysis suggest developed
deltoid, cephalohumeralis, pectoral, and bra-
chialis muscles supporting the forequarters
and fixing the shoulder, with cephalohu-
meralis acting in forelimb protraction, much
as in large living ursids (Davis, 1964); the
deltopectoral crest does not extend as far
distad in large felids such as Panthera leo but

is a common trait of amphicyonids and
ursids regardless of locomotor style. It seems
probable that the deltopectoral crest of the
humerus and the scapula’s teres process with
its postscapular fossa represent skeletal traits
of Borocyon rooted more in phylogenetic
considerations than in adaptive differences
bearing on forelimb function.

Although we lack a complete humerus of
the large B. robustum from the Hemingford
Quarries, distal ends from these quarries and
complete humeri and distal ends of B.
robustum from the Bridgeport Quarries show
a narrow distal humerus (fig. 21), differing
from all New World amphicyonines. How-
ever, the distal humerus in Daphoenodon
superbus is broader, essentially the same form
as in amphicyonines, and in fact this type of

TABLE 4
Length Ratios Demonstrating Fore- and Hindlimb Proportions of Daphoenine and Amphicyonine Amphicyonids,

Living Ursids, Felids, and Canids

Radius/Humerus Tibia/Femur

AMPHICYONIDAE

Daphoenus vetus 73.0–83.8 (7)c 89.0–90.8 (3)

Daphoenodon superbus 86.7 (1) 89.1 (1)

Borocyon neomexicanus 97.0–99.6d ,90.8d

Borocyon niobrarensis 94.7–98.1 (2) 85.0 (1)

Borocyon robustum 95.8d 84.5–88.2d

Adilophontes brachykolos 89.6 (1) —

Ysengrinia americana ,89.3d 79.8 (1)

Cynelos lemanensisa 89.5 (1) 85.1 (1)

URSIDAE

Ursus americanus 82.0–92.4 (8) 75.9–82.4 (8)

Ursus arctosb 79.4–81.7 (3) 68.2–71.9 (3)

Ursus arctos (Kodiak)b 79.0–83.3 (5) 67.9–73.9 (5)

Thalarctos maritimus 84.4–86.3 (3) 72.5–74.4 (3)

Helarctos malayanus 84.4–85.0 (2) 73.7–74.2 (2)

FELIDAE

Panthera tigris 80.7–86.4 (9) 83.4–87.6 (8)

Panthera leo 90.0–94.0 (16) 83.7–89.3 (16)

Felis concolor 82.2–83.9 (3) 91.7–94.8 (3)

Neofelis nebulosa 79.7–82.7 (3) 93.7–96.3 (3)

Acinonyx jubatus 95.8–99.6 (3) 100.0–102.3 (4)

CANIDAE

Canis lupusb 97.2–101.9 (9) 96.5–109.8 (10)

Canis latrans 101.7–104.4 (8) 103.4–107.1 (8)

Chrysocyon brachyurusb 108.1 (2) 107.8 (2)

aData from Ginsburg (1977).
bSome data from Davis (1964).
cSample sizes are included in parentheses.
dEstimated from unassociated limb bones of several individuals (appendix 1).
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Fig. 20. Comparison of the scapulae of (A) Borocyon niobrarensis (ACM 3452); (B) Ursus americanus
(ZM 1870); (C) Panthera tigris (ZM 14602): ps, postscapular fossa; tp, teres process.
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humerus is the plesiomorphic amphicyonid
state. The mediolateral breadth of the distal
humerus of D. superbus is due to a developed
medial epicondyle for attachment of the
flexor muscle group; also, in posterior view,

the outline of the olecranon fossa is asym-
metric because of the ulnar articulation,
involving a slight outward angulation of the
elbow joint. This type of distal humerus is
also found in felids and ursine ursids. In

Fig. 21. Comparison of the distal humerus of Borocyon robustum (right, UNSM 26420) and Amphicyon
galushai (left, UNSM 26375). The narrow distal humerus and symmetric olecranon fossa of B. robustum
parallel the form of the distal humerus of the wolf and cheetah, indicating parasagittal orientation of the
forelimb with minimal elbow eversion.
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running carnivorans such as the wolf, the
distal humerus is much narrower, and the
medial epicondyle reduced, thereby altering
the shape of the olecranon fossa to create a
symmetrical (equilateral) triangular cavity. In
these straight-legged cursors, the olecranon
process of the ulna penetrates deeply into the
olecranon fossa of the humerus, in some
creating a perforate fossa accompanying the
fully extended ulna.

A transformation in the shape of the distal
humerus from the state seen in D. superbus to
a state closely approaching the wolf occurs in
the Borocyon lineage. The distal humerus of
the B. niobrarensis holotype (ACM 3452,
Loomis, 1936: fig. 4), a probable male, shows
a modest reduction of the medial epicondyle
and a somewhat asymmetric olecranon fossa.
Humeri of B. robustum from the Bridgeport
Quarries (UNSM 26210, 26260), from the
Hemingford Quarries (UNSM 26420, Bx-12),
and from the Suwanee River (KU 113751)
show an even more reduced medial epicon-
dyle and symmetrical olecranon fossa as in
wolves. Jenkins (1973) observed that flexor
muscles arising from an extended medial
epicondyle exert a torque at the elbow joint
not adequately compensated by the exten-
sors. One of the options employed by
cursorial carnivores to resist this torque
involves diminished flexor musculature and
reduction of the medial epicondyle. The
narrow distal humerus of B. robustum is
considerably modified from the plesio-
morphic state evident in D. superbus and
contemporary amphicyonines, such as Am-
phicyon galushai, and indicates a decreased
torque and less eversion at the elbow and a
more straight-legged stance with parasagittal
alignment of the forelimb.

RADIUS-ULNA

The association of radius-ulna with hu-
merus and scapula in the holotype of
Borocyon niobrarensis (ACM 3452) establish-
es the proportions of the forelimb in this
species relative to large living carnivorans
(fig. 19A). A similar amount of limb elonga-
tion is estimated for B. robustum and B.
neomexicanus, approaching that seen in the
wolf and cheetah. There is some anatomical
similarity to the forelimb of Panthera leo,

particularly in the shoulder, yet significant
differences exist in the antebrachium and
forepaw of Borocyon. ACM 3452 is the most
robust individual of B. niobrarensis, consid-
ered a male, yet the radius and ulna of the
holotype (Loomis, 1936: fig. 4) are more
slender and slightly more elongate than those
elements of the lion. An associated radius
and ulna in another B. niobrarensis individual
(UW 10004), here interpreted as a female, are
even more slender and gracile than in the
male holotype.

The eight radii of B. robustum from the
Hemingford Quarries are all longer than radii
of B. niobrarensis (appendix 1), demonstrat-
ing that the lengthened distal forelimb has
accompanied an increase in body size within
the lineage. Although more robust than the
radii of cheetah and wolf, the similarity in
form of the B. robustum radius to the radii of
these carnivores is striking (fig. 22). A
complete ulna of B. robustum has not been
recovered, but in B. niobrarensis the distal
ulna (fig. 23) with its prominent rounded
styloid process for articulation with the
carpal cuneiform contrasts with the reduced
and flattened process of the wolf and
cheetah, suggesting a more mobile ulnar-
cuneiform articulation at this joint. However,
the distal ulnar process articulating with the
radius is reduced, presaging the diminished
state seen in the cheetah and wolf.

The radius of the wolf and cheetah differ
from radii of large felids and ursine ursids in
that the shaft is straighter, anteroposteriorly
thin and bladelike, with reduction of both the
styloid process and the width of the distal end
of the bone. The distal ulna becomes more
closely applied to the radius as mobility of
the distal radioulnar joint is diminished.
Furthermore, when manually articulated,
the radius and scapholunar are more con-
gruent in the wolf and cheetah than in large
felids and ursids, creating a closely registered
joint. Borocyon robustum and B. niobrarensis
do not achieve this exacting fit of the wolf
and cheetah but make a close approach. The
radius of B. robustum in particular approx-
imates the form of the cheetah radius
(fig. 22). The shaft is elongate, anteroposte-
riorly thin and bladelike, with reduction in
the width of the distal end as in the cheetah,
although not to the extent seen in the wolf.
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The size of the radial head is reduced relative
to the breadth of the diaphysis, as in wolf and
cheetah, but it is clear that the ovate shape of
the radial head and the extent of its articular
surface with the ulna show that less than 90u
of supination was possible.

An associated radius and proximal ulna
(UNSM 25554) and two additional radii
(UNSM 25553, 44721) of B. robustum, in
which the articular circumference of the

radial head is well preserved, permit an
estimate of the probable amount of rotation
of the radial head in the trochlear notch of
the ulna. The proximal articular surface of
the radius is ovoid, similar in form to that of
the lion, but not as concave. In B. robustum
this is due to the flatter, less rounded
capitulum of the distal humerus, which is
also seen in the living bears where the
proximal articular surface of the radius is

Fig. 22. Elongate radii of Borocyon robustum and the cheetah Acinonyx jubatus compared to the short,
robust radius of Amphicyon galushai. A slender, elongate radius with flattened blade-like shaft and
transversely narrow proximal and distal ends characterizes both B. robustum and the cheetah. Left,
Acinonyx; center, B. robustum; right, A. galushai.
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nearly flat; in the cheetah there is a much
more concave, circular radial head. The
anteromedial lip of the radial head in
Borocyon, the wolf, and in large living felids
and ursids is slightly elevated as a small
process (the capitular eminence of Davis,
1964: 97) that allows better registration
between the radius and capitulum of the
distal humerus during flexion at the elbow.

Davis considered the capitular eminence a
bony stop that limited the rotary movements
of the radius; it is quite reduced in the
cheetah.

The radius is bound to the ulna at the
elbow by the annular ligament that anchors
the head in the radial notch. The radial notch
of both B. robustum and B. niobrarensis is
shallow, similar to that of the wolf, more so

Fig. 23. Comparison of the ulnae of Amphicyon galushai (left) and Borocyon niobrarensis (center and
right), showing the more elongate, slender, curved ulna of the latter species. No complete ulna of B.
robustum is known; however, eight radii of this species demonstrate the existence of an even more slender,
elongate ulna.
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than the slightly deeper notch in large living
felids. The amount of potential rotation of
the radial head in the notch during pronation
and supination is indicated by a semicircular
transverse facet situated on the articular
circumference of the radial head. In Canis
lupus this facet is both sharply demarcated
and quite limited in its transverse extent,
which greatly impedes pronation-supination
in the wolf. In B. robustum the border of the
facet is not as sharply indicated nor is the
facet as transversely limited as in the canid,
however manipulation of the associated
radius and ulna of the beardog shows that
the extent to which the radius can rotate in
the radial notch exceeds that seen in the wolf
but appears somewhat limited relative to
Panthera leo. When this is considered togeth-
er with the rather flat capitulum of the distal
humerus, the less concave radial head, and
the shallow radial notch, these features
suggest a slightly more restricted capability
for pronation-supination of the radius in the
beardog.

Canis lupus and Borocyon robustum display
similar placement of the scar for the interos-
seous ligament binding radius and ulna. The
scar for the ligament and interosseous
membrane extends from immediately below
the bicipital tuberosity of the radius for two-
thirds of the length of the radial diaphysis
along its ulnar margin. The ligament is
confined to the proximal diaphysis directly
beneath the bicipital tuberosity. Dimensions
and location of the narrow interosseous scar
of the beardog are most similar to those of
the wolf and cheetah: scar width relative to
length of the radius calculates to 2.8 to 3.5%
for wolf and cheetah and 3.0% for B.
robustum (N57); it is much broader in the
large living felids. The ligament in these
carnivores restrains the rotation of the radius
about the ulna during pronation–supination,
and the location of the narrow interosseous
scar on the ulnar margin of radii of B.
robustum and the bladelike form of the
elongate radius shows that the ligament must
have functioned much as in the wolf and
cheetah. In a recent analysis of the cheetah
antebrachium, Ohale and Groenewald (2003)
describe the interosseous ligament as effec-
tively limiting pronation and supination of
the radius in this running carnivore.

CARPALS

Close examination of the carnivoran car-
pus demonstrates that the principal move-
ment in the wrist occurs at the articulation of
the proximal carpals with radius-ulna (prox-
imal carpal joint) with only subordinate
adjustment at the mid-carpal joint. As
Yaldon (1970) has shown for the larger
running carnivorans, the carpus is chiefly a
flexion hinge, with very limited ulnar and
radial deviation restricted to the proximal
carpal joint. When the forefoot strikes the
ground, the carpus goes into full extension
and is locked by virtue of carpal stop facets
and binding ligaments and remains thus
through limb retraction. Then, as protraction
begins, carpal flexion is initiated and attains
its climax during the protraction phase of the
gait. The extent that the manus can be flexed
varies in the different carnivoran families and
is minimal at the mid-carpal joint. In felids
(Felis, Acinonyx), canids (Canis, Vulpes), and
a hyaenid (Crocuta) studied by Yalden
(1970), flexion at the mid-carpal joint was
always much less (,40u) than at the proximal
carpal joint (90u–120u).

In the living carnivorans studied by
Yalden (1970), extension of the wrist at the
proximal carpal joint is arrested by binding
ligaments that necessarily act to prevent
extreme hyperextension at the moment when
the forefoot contacts the ground, bears
weight, and propels the animal forward.
Hyperextension of the wrist in Carnivora
occurs only in the proximal carpal joint
(bones of the mid-carpal joint are locked)
and does not exceed ,40 degrees in canids
and felids, with ,55 degrees reported in
Ursus (Yalden, 1970). Yalden thought that
the ligaments binding the proximal carpal
joint were likely stretched in extension, which
seems a probable consequence of forefoot
impact with the substrate. Stretching of these
ligaments must play a major role in prevent-
ing hyperextension of the wrist at the
proximal carpal joint in Borocyon, acting as
a shock absorber just as in living large
Carnivora.

The carpals are preserved in the associated
B. niobrarensis forefoot (fig. 11) and in a
composite foot of B. robustum (figs. 24, 25).
The most evident innovation appearing in the
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carpus is an increase in the size and
proximodistal height of the scapholunar from
Daphoenodon superbus through B. niobraren-
sis to B. robustum. In B. robustum it is
particularly massive and robust, with its
increased height accompanying elongation
of the radius and reflecting the mass of the
forequarters of this large carnivore. In living
Carnivora the convex articular surface of the
scapholunar conforms to the concave distal
radius, permitting flexion and extension at
the proximal carpal joint of the wrist.

Extension/flexion of the Borocyon manus
at the proximal carpal joint is governed by
these transversely aligned articular surfaces
of scapholunar and radius that restrict the
joint to fore–aft motion around a transverse
axis of rotation. Based on the dimensions and
extent of the proximal articular surface of the
scapholunar, this surface in B. robustum
appears somewhat flatter and less convex

than those of large felids of similar body size
such as Panthera leo and P. tigris, and
displays a convexity more like that of the
wolf and cheetah. Moreover, when the width
of this articular surface in B. robustum is
compared to that of, for example, Panthera
leo, the scapholunar in the beardog is
mediolaterally shorter, more abbreviate, cor-
responding to the more narrow, distal radius
of the wolf, which lacks the distal breadth
evident in the lion.

Flexion involves a relatively unimpeded
transverse folding movement at the proximal
carpal joint of the wrist until, as Yalden
(1970) describes, the distal radius comes into
contact with a volar process on the scapho-
lunar that forces some amount of ulnar
deviation of the paw as flexion continues.
In all living carnivorans, on the radial side of
the scapholunar at the posteromedial corner,
there is a knoblike volar process (fig. 25, vp),

Fig. 24. Comparison of the carpus (anterior view) of Borocyon robustum and those of Panthera leo,
Canis lupus, and Ursus arctos. See text for discussion. 1, Elevated bony ridge on scapholunar forcing ulnar
deviation of the forepaw during flexion of the wrist; 2, scapholunar process inserted in concavity of
magnum preventing hyperextension within the carpus (this stop mechanism is maximally developed in the
cheetah). Abbreviations: a, scapholunar; b, carpal cuneiform; c, unciform; d, magnum; e, trapezoid;
f, trapezium.
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the scapholunar tubercle of Yalden (1970). In
living canids, hyaenids, and felids, a bony
ridge develops at the junction of this process
with the body of the scapholunar. This ridge,
acting as a bony stop (figs. 24, 25, #1),
redirects the forward movement of the
scapholunar on the radius during flexion.
As the manus flexes during protraction of the
forelimb, the ridge comes into contact with
the posteromedial border of the distal radius,
diverting the manus. The positive arcuate
form of the bony ridge fits a complementary
negative concavity on the radius, forcing the
scapholunar (hence the paw) to move in
ulnar deviation. This action has been noted
previously in living carnivorans by both
Taylor (1974) and Yalden (1970).

In the cursorial wolf, cheetah, and hyae-
nids (Crocuta crocuta, Hyaena brunnea), the

bony ridge is particularly well developed.
This ridge on the scapholunar is absent in
living ursids and most other living arctoid
carnivorans (a small ridge occurs in Procyon
lotor), where, if ulnar deviation occurs to any
extent, it is due to contact of the distal radius
with the base of the volar process itself.
Yalden (1970) viewed some form of ulnar
deviation as common to all Carnivora,
helping to prevent the protracting manus
from contacting the contralateral forelimb as
the limb swings forward.

In the species of Borocyon where the
carpus is known, the scapholunar with its
bony stop is developed similarly to the wolf
and cheetah (figs. 24, 25, #1). In Borocyon
niobrarensis the scapholunar ridge is not
quite as pronounced as in some individuals
of B. robustum where the ridge is indeed

Fig. 25. Comparison of the carpus (plantar view) of Borocyon robustum and those of Panthera leo,
Canis lupus, and Ursus arctos. See text for discussion. Gray tone indicates extent of articular surfaces for
scapholunar on magnum and unciform; in ursid and B. robustum the scapholunar moves largely
unimpeded over these surfaces during intracarpal flexion but in lion and wolf there is a bony stop (3)
between unciform and scapholunar that arrests this movement (this stop is even more developed in the
cheetah). Abbreviations as in figure 24: vp, volar process.

2009 HUNT: NEOGENE AMPHICYONID BOROCYON 49



prominent and the volar process itself is more
massive.

Grooves on the distal surface of the
scapholunar for the magnum and unciform
control movement at the mid-carpal joint and
are aligned essentially fore–aft in living
Carnivora. The magnum serves as the prin-
cipal guide for flexion of the distal on the
proximal carpal row (fig. 25, d). It can move
only a limited distance fore–aft in its
scapholunar groove, perhaps ,20u at most,
determined by the alignment of its proximal
ridge. The groove for the magnum in the
scapholunar is deep and similarly configured
in felids (including the cheetah) and ursids,
but is shallower and nearly in the same plane
as the adjacent groove for the unciform in
canids and Borocyon. The magnum of large
felids and ursids is posteriorly broad (fig. 25),
but in Borocyon robustum, despite the overall
geometric similarity of magnum, unciform,
and trapezoid to Ursus arctos (fig. 24, ante-
rior view), the magnum has become narrow
and mediolaterally compressed as in the wolf,
suggesting an incipient adaptation for more
restricted fore–aft motion.

Adjacent to the magnum, the unciform of
Borocyon also participates in flexion of the
wrist at the mid-carpal joint. This flexion is
significantly inhibited in the wolf by stop
facets developed between scapholunar, carpal
cuneiform, and unciform (fig. 25). First, the
posterolateral corner of the scapholunar
makes a particularly broad contact with the
carpal cuneiform. But of most significance in
the wolf, the unciform has added a posterior
process that locks against the posterior
margin of the scapholunar immediately
medial to the facet between scapholunar
and carpal cuneiform (C. lupus, fig. 25, #3).
A similar ridgelike unciform process that
inhibits flexion occurs in large felids, but in
them the process contacts more of the
posterolateral corner of the scapholunar (P.
leo, fig. 25, #3) than it does in the canid. The
ridgelike unciform process of felids attains its
maximum development as a bony stop in the
cheetah where the top of the ridge forms a
concave facet into which the posterolateral
corner of the scapholunar fits and locks.

In both ursine ursids and the species of
Borocyon the unciform lacks a posterior
process and so the amount of flexion

involving the unciform is not as restricted
as it is in the wolf, lion, and cheetah, where
stop facets greatly inhibit flexion of the mid-
carpal joint (Fig. 25). Despite the absence of
these stop facets in B. robustum, the limited
extent and more horizontal nature of the
proximal articular surfaces of the unciform
and especially the magnum suggest very
restricted flexion at the mid-carpal joint.

Medial to the groove on the scapholunar
for the magnum of Borocyon is a broad facet
for the trapezoid. In B. niobrarensis the
trapezoid is a blocky, wedge-shaped bone
(length, 20.3 mm; greatest transverse width,
19.7 mm). Its medial planar facet for the
trapezium is rectangular (length, 11.7 mm;
height, 6.6 mm). Posterior to the trapezoid
on the distal surface of the scapholunar is a
slightly concave, subcircular facet (B. robus-
tum: length, 6 mm; width, 7 mm; B. niobrar-
ensis: length, 5 mm; width, 5 mm) for the
reduced trapezium. The Borocyon trapezium
is proportionately much smaller than the
large element in ursids and even smaller than
the much differently configured trapezium of
large felids. The trapezium itself is known
only in B. niobrarensis (ACM 3452, greatest
length ,13 mm), where it is a triangular
element situated directly behind the trape-
zoid. Its placement and size are much like
that of the wolf. It articulates with the
slender, reduced first metacarpal (,5 cm in
length). The size of the trapezium, first
metacarpal, and its phalanges suggest that
the extensor, flexor, abductor, and adductor
muscles of digit I were as modified as those in
the canid, where the first digit was similarly
reduced.

Yalden (1970) observed that when the mid-
carpal joint in Carnivora is fully extended, all
stop facets are brought into contact and the
joint is locked in full extension. Furthermore,
flexion of metacarpus on carpus heavily
depends on the heads of paraxonic metacar-
pals 3–4 (with participation of metacarpal 5)
fitting into the corresponding concave facets
of magnum and unciform. These facets are
aligned to allow only very limited flexion and
extension. There appears to be almost no
movement between the trapezoid and second
metacarpal in many large felids (Panthera leo,
P. tigris, Acinonyx), due to the nearly flat
intervening joint surfaces and to a bony stop
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formed between the head of the second
metacarpal and a round pit on the postero-
medial side of the magnum. The second
metacarpal of these felids is held largely
immobile, locked between magnum and
trapezium. In Borocyon robustum and in the
wolf the second metacarpal is somewhat
more mobile since the trapezium is essentially
nonfunctional, and the facet on the magnum
for the metacarpal is present but is not
developed as a locking device.

Large felids also employ a bony stop
involving the magnum to arrest extension at
the mid-carpal joint. In the lion, tiger, puma,
and jaguar the descending process on the
anterior face of the scapholunar fits into a
facet on the upper surface of the magnum
(fig. 24, #2) that locks the two bones and
prevents hyperextension of the distal carpals
on the scapholunar. In the cheetah the
magnum facet has further evolved to form a
deep pit for the tip of the scapholunar so that
the locking mechanism is better developed
than in any other felid. Yalden (1970) noted
that when the forefoot strikes the ground in
the cheetah, hyperextension is limited to the
radioulnar-proximal carpal joint; any exten-
sion at the midcarpal joint is prevented by
this locking mechanism. In Borocyon the
contact between magnum and scapholunar is
like that of many arctoid Carnivora and
canids in which the apposed joint surfaces are
firmly held by ligaments but are not as tightly
locked as in felids.

Alignment of the distal carpal row with the
scapholunar and carpal cuneiform in Boro-
cyon is developed as in the caniform Carniv-
ora and lacks the ‘‘stepped’’ placement of the
unciform, magnum, and trapezoid of felids
(including Acinonyx) resulting from the offset
heads of their overlapped proximal metacar-
pals (fig. 24, P. leo). This stepped configura-
tion is characteristic of all large living felids
and reflects the intricate interlocked charac-
ter of the distal carpals and proximal
metacarpals, a unique attribute of the felid
manus not present in arctoid Carnivora.

METACARPALS

The metacarpals of Borocyon, while simi-
larly paraxonic and elongate, differ in lacking
the overlapping, ‘‘interlocked’’ proximal ends

of MC2 on MC3, and MC3 on MC4, evident
in the lion and cheetah, and also character-
istic of the tiger, jaguar, and puma. The
proximal metacarpals of Borocyon articulate
without overlap and in this respect are typical
of arctoid Carnivora. In large felids the
interlocked character of the metacarpals can
involve the distal carpals, best exemplified by
the insertion of the proximal second meta-
carpal between magnum and trapezium. Here
a palmar process of the metacarpal fits into a
pit in the medial face of the magnum, locking
the metacarpal between that bone and the
trapezium. This does not occur in arctoid
Carnivora or in hyaenids.

The cheetah and canine canids show close
appression of the proximal shafts of the
metacarpals, whereas Borocyon and the lion
do not. Borocyon displays a distal separation
or splay of the metacarpals much like
Panthera leo (fig. 11) but emphasizes the
weight-bearing paraxonic metacarpals 3–4
with somewhat greater reduction of metacar-
pals 2 and 5. Large living felids other than the
cheetah also show this distal separation of
the metacarpals. The forepaws (figs. 11, 26)
of Borocyon niobrarensis and B. robustum
must have resembled the broad paws of large
living felids, possibly used to deliver a blow
to prey, manipulate objects including food to
a limited extent, and even excavate a burrow,
with these behaviors having been witnessed
for P. leo by Schaller (1973).

PHALANGES

Phalanges are associated with individuals
of both B. niobrarensis and B. robustum.
Proximal, intermediate, and ungual phalan-
ges are present in the forefoot of the B.
niobrarensis holotype (fig. 11). A proximal
and an intermediate phalanx occur with the
partial skeleton of F:AM 107601 and four
proximal phalanges with UW 10004 (both B.
niobrarensis). The B. robustum holotype (CM
1918) described by Peterson (1910) included
five proximal and three intermediate phalan-
ges but no unguals. Overall, the proportions
of the phalanges are most comparable to
those of ursids such as Ursus arctos, but the
detailed anatomy of the metacarpal-phalan-
geal joints are more similar to those of large
felids.
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The holotype forefoot of B. niobrarensis
(fig. 11) includes five proximal phalanges
correctly assigned to the corresponding
metacarpals by Loomis (1936), based on
comparison with the articulated forefeet of
Daphoenodon superbus. Two proximal pha-
langes are symmetrical (about their long
axes) and elongate (lengths, ,31–32 mm)
and therefore belong to the paraxonic meta-
carpals 3–4. The proximal phalanx of the
third digit is slightly more robust than that of
the fourth. Another symmetrical proximal
phalanx (length, ,30.4 mm) fits metacarpal
2, and two smaller, asymmetric phalanges

belong to metacarpals 1 and 5. Metacarpal
1 (41.8 mm) and its proximal phalanx
(27.1 mm) are much reduced, although these
bones are slender and gracile. Prominent
bony keels on the distal metacarpals insert
between and guide a pair of sesamoids for
each digit. These keels compare with those of
living large felids and are much more
developed than the metapodial keels of ursine
ursids.

Anatomically significant features of the
proximal phalanges of digits 2–5 (fig. 26)
include (1) a notch or groove in the base of
the palmar surface for the metacarpal keel

Fig. 26. Restoration of the Borocyon robustum forefoot illustrating the interosseous muscle supporting
each paraxonic metacarpal-phalangeal joint, the short middle phalanges, elongate unguals, and presumed
dense fibrous metacarpal and digital pads.
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and the combined tendons of the superficial
and deep flexors of the digits, similar to those
of large felids; (2) a pair of prominent bony
tubercles on either side of this notch for
attachment of the sesamoid and interosseous
tendons—the interosseus muscles are flexors
of the metacarpal-phalangeal joints but also
contract to support these joints to prevent
hyperextension when the carnivore places
weight on the paw; (3) a concave base of
the proximal phalanx congruent with the
distal metacarpal so that the joint is firmly
registered and further secured by sesamoid
and collateral ligaments. Flexion is signifi-
cantly limited by the height of the metapodial
keels and adjoining sesamoid bones.

The intermediate (middle) phalanges are
much shorter than the proximal ones and all
have a strong proximal dorsal process for
extensors of the digits (fig. 26). When the
intermediate phalanx is plantar-flexed ,45u,
the dorsal process fits a corresponding
groove in the distal proximal phalanx. This
restricts the joint to only flexion and exten-
sion, assisted by the biconcave base of the
intermediate phalanx that, together with the
dorsal process, prevents axial rotation of the
digit. Some of these intermediate phalanges
display slightly asymmetric shafts but the
degree of asymmetry does not approach that
seen in living felids where the trait is related
to hyper-retractility of the claws (Gonyea
and Ashworth, 1977; Wang, 1993). The distal
articular surface of the intermediate phalan-
ges extends onto the dorsal surface of the
bone, demonstrating that the ungual phalan-
ges could be slightly retracted. However, the
ungual phalanges are not specialized for
hyper-retractility and instead are slender,
long, and nearly straight (not curved), as in
living ursids.

Unguals are generally rare but six well-
preserved unguals of the associated forefeet
of B. niobrarensis (ACM 3452) range in
length from 23.6 to 25.2 mm, averaging
24.2 mm (fig. 11); they appear quite elongate
relative to the short intermediate phalanges.
The foreclaws of large ursids are longer than
the hindclaws, and this was possibly true of
Borocyon (no unguals of the hindfoot can be
certainly identified). These unguals show
slight development of a bony hood and the
presence of a dorsal process for attachment

of the tendon of the common digital exten-
sor.

The angulation of the phalangeal joints
indicates the presence of thick fibroelastic
metacarpal and digital pads cushioning
impact with the ground during footfall
(fig. 26). Undoubtedly, thick connective tis-
sue pads supported and cushioned both the
fore- and hindfeet, extending from the distal
metapodials forward beneath the digits (Al-
exander et al., 1986).

Rather short intermediate phalanges emerge
as a distinctive trait of Borocyon robustum and
B. niobrarensis, confirmed in the former by
associated phalanges in the holotype hindfoot
(CM 1918) and in the latter species by
associated forefeet in its holotype (ACM
3452). These short phalanges were unexpected
since they are atypical of living large Carniv-
ora: in the wolf the intermediate phalanges of
the paraxonic digits 3–4 range from ,67% to
71% of the length of the proximal phalanges,
and the intermediate phalanges of the side
toes (digits 2 and 5) fall at ,58%–63%. In B.
niobrarensis (ACM 3452), where associated
digits are available, the intermediate phalan-
ges of digits 3–4 (N 5 4) all fall from ,59% to
67% and the side toes (digits 2 and 5, N 5 3)
at ,55%–58%. These values for B. robustum
are ,61% for a paraxonic digit and ,58% for
a side toe.

In contrast, ursids (Ursus arctos, U. amer-
icanus) fall at ,74%–77% for the principal
weight-bearing digits. The lion and puma
show similar values of ,71%–77% for
paraxonic digits 3–4, and the cheetah has
values somewhat lower at ,65%–66%. De-
spite these proportional differences, the shape
of the phalanges of Borocyon are most like
the phalanges of large bears such as Ursus
arctos, presumably because of the shared
arctoid ancestry of ursids and amphicyonids,
whereas the more derived anatomy of the
metacarpal-phalangeal joints parallels that
of large felids like the lion. This joint
anatomy is an adaptation to a more digiti-
grade stance.

HINDLIMB

Proportions of the Borocyon hindlimb do
not correspond to those of living canids or
the cheetah, falling closer to the lion
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(fig. 19B) and differing surprisingly little
from plesiomorphic amphicyonids such as
Daphoenodon superbus and Daphoenus. Cau-
tion is necessary here in that no associated
hindlimb of Borocyon robustum is known
(there is a possible association of femur and
tibia in a small B. niobrarensis female, UW
10004), and so the estimate of hindlimb
proportions is taken from unassociated
femora and tibiae. This estimate, however,
cannot be far from the mark.

INNOMINATE

The innominate is known only in B.
niobrarensis (F:AM 107601) where its form
differs to some extent from that of large
living felids and ursids. The acetabulum is
deep, as in the large cats, but the ilium and
ischium are proportionately slightly shorter.
A broader ilium than seen in these felids (but
much like wolves) suggests that gluteal
muscles for retracting the femur were well
developed for propulsive thrust. Extension
and medial rotation of the femur at the hip
joint performed by the gluteal group is
balanced by the caudal hip muscles (gemelli,
obturators, quadratus femoris) that laterally
rotate the femur, resulting in the parasagittal
path of the hindlimb. Extent and position of
the articular surface of the head of the femur
within the acetabulum are as in the large
living felids, wolves, and cheetah (roof of the
acetabulum a horizontal surface of similar
depth and area with the same anterior and
posterior ventral extension).

Pronounced eversion of the ischium and
ischial tuberosity in living carnivorans corre-
sponds to a parasagittal orientation of the
hindlimb whereby the action of the ham-
strings is brought into a fore–aft alignment.
The cheetah and wolf show an extreme
degree of ischial eversion among living
Carnivora. Borocyon displays a degree of
ischial eversion corresponding to the large
felids and does not approach canine canids or
the cheetah. When the innominates of B.
niobrarensis and a Sumatran tiger of the same
body size are compared, the ischium is of
similar form and length and the tuberosity of
the same size and degree of eversion, but the
ilium is somewhat shorter and broader in the
beardog.

FEMUR

Borocyon robustum is represented by two
complete femora (UNSM 26435, KU
113645). UNSM 26435 is from a very large
animal (length, ,38 cm), probably male, and
was found at Shimek’s Quarry, one of the
upper Runningwater localities. This large
femur is most similar to those of living lion
and tiger but with some important distinc-
tions. There is a close correspondence in
orientation of the proximal femoral head,
neck, and trochanters, the margins and shape
of the femoral hemisphere, the location of the
fovea capitis femoris (fig. 27) for the femoral
ligament, and the form of the diaphysis. The
form and amount of separation of the distal
condyles are as in these large living felids; the
condyles are not placed as close together as in
the wolf. Femora of Ursus arctos and
Thalarctos maritimus differ from those of B.
robustum in that the femur of these ursids is
more strongly abducted; the femoral neck and
head are proximally elevated and the diaph-
ysis rotated outward—this is the abducted
ursid femur of Jenkins and Camazine (1977).

The anatomy of the femur provides useful
information on hindlimb stance and excur-
sion, particularly the orientation of the
femoral head relative to the diaphysis; the
configuration of the margin of the articular
surface of the head relative to the diaphysis
and acetabular rim; and the location of the
fovea capitis femoris for the femoral ligament
(Jenkins and Camazine, 1977). Jenkins and
Camazine (1977) showed that the excursion
of the femur of a domestic cat during walking
describes a more adducted path than in a
small canid (Vulpes fulva) and raccoon
(Procyon lotor). When stationary, the femur
of the fox was abducted ,10u, and the cat
aligned in a parasagittal plane, whereas that
of the ambulatory raccoon was abducted
25u–35u. Jenkins and Camazine (1977) ob-
served a relationship between the alignment
of the anterior margin of the articular surface
of the femoral head and the amount of
femoral abduction in these carnivores. In the
domestic cat and foxes studied by them, the
more parasagittal stance correlated with the
alignment of the anterior margin of the
articular surface of the femoral head. In
these small carnivores, the anterior margin
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formed a more acute angle with the diaphysis
than in ambulatory carnivores with more
abducted femora where the angle is greater.
The anterior margin of the articular surface
in Borocyon robustum (UNSM 26435) forms
an angle with the diaphysis slightly greater
than in the domestic cat but more acute than
in the ambulatory raccoon and ursids. In
addition, the femoral head of B. robustum is
aligned nearly at a right angle with the
diaphysis, suggesting only a limited amount
of femoral abduction. The orientation of the
articular margin of the femoral head corre-
sponds most closely to carnivores with more
parasagitally aligned femora. Procyon lotor
and living ursine bears have strongly abduct-
ed femora where the amount of abduction is
greater than in any other family under
discussion here, including amphicyonids.

In large living canids such as Canis lupus
and Canis latrans, orientation of the femur is

determined by the upward-angled femoral
head (Jenkins and Camazine, 1977: fig. 8F),
which is absent in felids and amphicyonids, in
which the head is aligned nearly at a right
angle to the diaphysis. The femoral anatomy
of the wolf and coyote indicate not only
greater femoral abduction than in the domestic
cat and foxes but also in comparison to large
felids (P. leo, P. tigris). The anterior, dorsal,
and posterior margins of the femoral head are
quite similar in B. robustum (UNSM 26435)
and in the lion and tiger, yet in B. robustum
the anterior margin is aligned at a somewhat
more acute angle to the diaphysis than seen in
the large cats. Also, B. robustum is character-
ized by a transversely broad proximal femur,
in that the distance between greater trochan-
ter and head is more extended, thicker, and
straighter than in living felids. This condition
would seem to favor a more parasagittal
stance and is approached by some lions.

Fig. 27. Placement of the fovea capitis femoris for the femoral ligament in Borocyon robustum and
some living carnivorans. In cheetah, puma, and wolf the fovea is more centrally situated on the femoral
head, whereas in the lion, tiger, and B. robustum it is more posteriorly placed, indicating a somewhat more
abducted femur in these large felids and Borocyon. Diagram of articulated femur and pelvis shows femoral
head of B. robustum fully adducted; the femur is more abducted in normal stance. A, Acinonyx jubatus; B,
Canis lupus; C, Felis concolor; D, Panthera leo; E, Borocyon robustum; F, Panthera tigris.
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Whereas the amount of femoral abduc-
tion might be best measured in living or
recently deceased animals, here, using only
associated innominates and femora from
osteological collections, a proxy measure
was taken: the angle between a parasagittal
plane aligned parallel to the dorsal acetab-
ular rim and the long axis of the femoral
diaphysis, when the femur is oriented at 45u
below the horizontal. In this position the
margin of the femoral head is made congru-
ent with the dorsal acetabular rim. This is
not a position that would be normally
adopted in the living animal, but it allows
a comparable measurement in large living
felids, cheetah, wolf, and B. niobrarensis (no
pelvis of B. robustum has been found). The
abducted angle in the cheetah is ,29u, the
tiger 34u–40u, the wolf ,47u–52u, and in B.
niobrarensis somewhere in the range of ,28u–
37u (although the femur [KU 113645] and
innominate [F:AM 107601] of B. niobrarensis
are not from a single individual, the measure-
ment was considered acceptable because the
femoral head was congruent within the
acetabulum).

The placement of the fovea capitis femoris
on the femoral head lies in a position nearly
identical to that of the lion and tiger (fig. 27)
so that, together with alignment of the
proximal femur relative to the diaphysis as
well as the orientation of the articular margin
of the femoral head, a slightly abducted yet
essentially parasagittal orientation of the
hindlimb seems probable.

Certain additional observations derive
from this comparison: the congruence of the
margins of acetabulum and femoral head in
Borocyon niobrarensis is most similar to that
of cheetah and Sumatran tiger among
skeletons at my disposal. As the femur starts
to retract at the beginning of the propulsive
phase, the anterior margin of the head is
largely congruent with the dorsal rim of the
acetabulum, but as retraction proceeds, a
strip of the articular surface of the head
remains outside the dorsal rim as a more
parasagittal femoral alignment is adopted.
When the femur of Borocyon is fully retracted
(end of propulsive phase), the posterior
acetabulum overlaps an area on the femoral
head that lies beyond the articular surface,
which approximates the limit of femoral

retraction as described in the domestic cat
and fox by Jenkins and Camazine (1977).

In all of these carnivorans, only in extreme
abduction of the fully retracted femur could
the articular margin of the femoral head ever
be congruent with the posterior dorsal rim of
the acetabulum; this is a position unlikely to
occur in normal locomotion. Consequently, a
portion of the femoral head’s articular
surface is commonly exposed during the
terminal phase of femoral retraction in many
living Carnivora, especially in those animals
(e.g., procyonids, mustelids) where the dorsal
rim of the acetabulum has not been extended
laterad over the femoral head.

TIBIA

B. robustum is represented by three tibiae
(fig. 28), one (UNSM 25558) from UNSM
locality Bx-7; a second (UNSM 44719) from
Hovorka Quarry (Bx-21), both probably
males; and a third (UNSM 26260) from the
Bridgeport Quarries. The Runningwater tib-
iae are of similar size, whereas the Bridgeport
tibia is more gracile and may belong to a
female. A smaller tibia of B. niobrarensis is
known from Horse Creek Quarry (UW
10004). In all of these individuals, the
prominent tibial tuberosity and cnemial crest
indicate a pronounced ability to extend the
knee on the thigh; they form an anteriorly
extended ridge on whose lateral side is the deep
concavity for the anterior tibial muscle. In
daphoenines the tendon of this muscle would
extend across the dorsal surface of the tarsus to
attach to a ridge on the medial base of
metatarsal 2 and a rugose area on the base of
metatarsal 1 and adjoining entocuneiform. It
dorsiflexes the tarsus on the tibia. The tendency
of the anterior tibial muscle to not only flex the
tarsus, but to rotate the paw laterally, is
balanced by the peroneal muscles that also flex
the tarsus but rotate the paw medially. The
peroneal muscles, the cranial tibial, and long
digital extensor are all innervated by the
peroneal nerve and perform an integrated
action in dorsiflexion and rotational balancing
of the hindpaw. Inversion and eversion of the
hindfoot of B. robustum is only possible
because of the ball-and-socket articulations
of astragalus with navicular, and calcaneum
with cuboid, which allow axial rotation within
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the tarsus. The tibial-astragalar and tarsal-
metatarsal joints do not permit axial rotation.
Therefore, the ability of the Borocyon hind-
foot to adjust to an uneven substrate was
regulated by the coordinated action of the
anterior tibial and peroneal muscle complex
at the mid-tarsal joint.

Digitigrady in living carnivorans has been
discussed relative to the pattern of muscle
scars on the posterior surface of the tibia
(Ginsburg, 1961; Wang, 1993). Proximally,

four deep muscles are involved: flexor
hallucis longus (FHL) laterally, popliteus
muscle medially, and between them the
tibialis posterior (TP) and flexor digitorum
longus (FDL). In the wolf and domestic dog
(Evans, 1993: 375), the TP and FDL are
reduced and their registration on the tibia is
restricted to a very narrow elliptical area, a
thin lenticular scar trending downward along
the upper third of the diaphysis toward the
medial side of the bone (fig. 29). In contrast,

Fig. 28. Tibia of Borocyon robustum (UNSM 25558) compared with the tibia of the cheetah Acinonyx
jubatus (ZM 16913) showing a similarity in form. The sulcus muscularis (sm), a groove for the long digital
extensor muscle of cheetah and wolf is absent in B. robustum, but the extended cnemial crest and developed
tibial tuberosity are shared traits.
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living ursids such as Ursus arctos and
Ailuropoda melanoleuca display a well-devel-
oped area of attachment for these muscles
that forms a broad, prominent scar running
down nearly the entire length of the posterior
tibia (Davis, 1964: 116). Moreover, the
popliteus is restricted to the proximal tibial
diaphysis in canines but extends down nearly
two-thirds of the shaft in living ursids.

A prominent broad scar for TP-FDL is
also characteristic of most digitigrade felids.
This scar is centered on the posterior surface
of the upper diaphysis and, although reduced
in area relative to that of living ursids, it is
broader than in the wolf. However, the
cheetah is an exception among the large cats
and retains a very narrow scar pattern most
like the wolf.

Although these contrasting scar patterns
have been linked to either a digitigrade or
plantigrade stance, it is likely that the
reduced area for tibialis posterior and the
long digital flexor in the wolf and cheetah is
related to the reduction in size and functional
importance of the tibialis posterior. The short
flexor muscles of the crus end in long
tendons, and short-fibered muscles ending
in long tendons indicate considerable elastic
extension in the tendons (Alexander, 1988:
21), suggesting that reduction in the posterior
tibial muscle and the long tendons of the
other flexors are adaptations to efficient
flexion-extension of the tarsus and digits,
contributing to a fore–aft path of the
hindlimb. The posterior tibial muscle inverts
(outwardly rotates) the foot, an action less

Fig. 29. Muscle scar pattern (cross-hatched area) of the posterior tibial (TP) and long digital flexor
(FDL) muscles on the posterior surface of the right tibia in B. robustum and B. niobrarensis relative to the
scar patterns in large living Carnivora. a, Ursus americanus; b, Panthera tigris; c, Borocyon robustum; d,
Borocyon niobrarensis; e, Acinonyx jubatus; f, Canis lupus.
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necessary in digitigrade carnivores adopting a
more fore–aft motion of the hindfoot. Also,
the tendon of FDL joins that of FHL to form
a conjoined tendon, becoming the deep
digital flexor (flexor digitorum profundus)
of the digits, and because FHL becomes the
principal phalangeal flexor, FDL is less
necessary to that role. The lenticular scar
for tibialis posterior decreases in width and in
area from that in Daphoenodon superbus (CM
1589) through B. niobrarensis (UW 10004) to
B. robustum (UNSM 26361): in D. superbus
like that of living wolves, and in B. robustum

and B. niobrarensis nearly identical to the
pattern seen in Acinonyx jubatus (ZM 16913).
When tibial length is plotted against the
width of the TP-FDL scar for a variety of
living large carnivorans, Borocyon groups
with the wolf and cheetah (fig. 30).

The tibiae of cheetah and wolf share a trait
found in no other living carnivoran examined
in this study. The proximal tendon of the
long digital extensor, originating on the
lateral condyle of the femur, travels down-
ward to occupy a marked groove (sulcus
muscularis, fig. 28, ZM 16913, Acinonyx)

Fig. 30. Bivariate diagram of width of the posterior tibial–long digital flexor scar plotted against tibial
length in representative living ursids, felids, canids, and in early Miocene amphicyonids. The cheetah, wolf,
and Borocyon plot together beneath the enclosing curvilinear. Note the correspondence between the large
ambulatory amphicyonines (Amphicyon, Ysengrinia) and ursine ursids.
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immediately anterior to the lateral condyle of
the tibia. The tendon continues distad to a
muscular belly, then transforms to a distal
tendon to extend the digits and participate in
flexing the tarsus. The sulcus muscularis is
absent in living arctoid Carnivora, in amphi-
cyonids (with the exception of some temno-
cyonines), and in hyaenids, and it does not
occur in the other living felids, where a more
shallow embayment is present farther anteri-
or on the tibial crest. In the only tibia of B.
robustum (UNSM 26361) in which the
proximal region is intact, the sulcus is absent.

TARSALS: ASTRAGALUS-CALCANEUM

Among the tarsals, the astragalus and
calcaneum of Borocyon robustum are partic-
ularly diagnostic (figs. 31, 32) and differ from
those of large contemporary amphicyonines.
The astragalus is proximodistally elongated,
the trochlea is narrower, and the distal condyle
(head) migrates beneath the trochlea rather
than remaining in its more plesiomorphic

medial location as seen in Amphicyon and
Daphoenodon superbus (fig. 33). Additionally,
the sustentacular facet for the calcaneum on
the posterior face of the astragalus is restrict-
ed to a more proximal location and does not
extend distad to the base of the condyle as in
Amphicyon and other large amphicyonines.

The ectal facet of the astragalus in B.
robustum is moderately concave, more so
than in Amphicyon and other large amphi-
cyonines, in order to receive the ectal
prominence of the calcaneum. This ensures
a close registration of astragalus and calca-
neum that somewhat restricts motion be-
tween the two bones, much as in living
Panthera tigris and P. leo where this same
type of registration occurs. In canine canids
such as Canis lupus and C. latrans the ectal
prominence is strongly protuberant, forming
a ridge deeply inserted into the posterior
surface of the astragalus, creating a tight,
immovable registration between the two
bones. The interlocked astragalus and calca-
neum in these canines represents an extreme

Fig. 31. Comparison of the astragalus of Borocyon robustum (A, B) and Amphicyon galushai (C, D).
Dimorphic astragali within each species are thought to represent large males (B, D) and smaller females (A, C).
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expression of this trait in Carnivora. In the
cheetah this locked relationship of astragalus
and calcaneum is less developed than in the
wolf and coyote but is more developed than
in any other living large felid.

When compared to the Amphicyon calca-
neum, the calcaneum of B. robustum is
distally narrower with a smaller sustentacu-
lum and less developed coracoid process. A
distal extension of the calcaneum accompa-
nies elongation of the astragalus. The length
of the Borocyon calcaneum relative to its
distal width differentiates it from distally
broad, more robust calcanea of contempo-
rary Amphicyon and other large amphicyo-
nines (fig. 34), and the posterior surface of
the sustentaculum is usually more deeply
grooved by the flexor tendon of the digits.

The astragalus of Borocyon robustum is
differently proportioned relative to Amphi-
cyon galushai and two large contemporary
amphicyonines from the Bridgeport Quarries
and from Florida (fig. 33). These large am-
phicyonines, found together with Borocyon,
all display a short astragalus with a wide tro-
chlea and broad head relative to the elongate
astragalus with narrow trochlea and head of
Borocyon robustum. The astragali from the
Rose Creek Member of the John Day Forma-
tion and from the Suwanee River locality are
indistinguishable from those of B. robustum
(fig. 33). The holotype of B. niobrarensis lacks
an astragalus; however, two referred B.
niobrarensis astragali and associated calcanea
(UW 10004, F:AM 107601) are similar to B.
robustum but are smaller and less elongate.

Fig. 32. Comparison of calcanea of Amphicyon galushai (A) and Borocyon robustum (B, male; C,
female). Digitigrade calcanea of B. robustum are more slender and distally narrower than Amphicyon
calcanea. Cuboids of A. galushai (D, F) and B. robustum (E, G), anterior and medial views: a, calcaneal
articular surface; b, ectocuneiform and c, navicular facets.
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The dimensions of the holotype astragalus
(fig. 3, CM 1918) of Borocyon robustum plot
with astragali of the upper Runningwater
and Bridgeport samples (fig. 33) and hence
support the inclusion of the B. robustum
holotype with that hypodigm. The holotype
astragalus is associated with a mandibular
fragment, an isolated m2 (not reported by
Peterson), and the navicular, ecto-, meso-,
and entocuneiform (fig. 3).

There is a clear parallel between the
astragalus-calcaneum of Borocyon robustum
and those of large living felids. Distally
extended, narrow calcanea of P. leo and P.
tigris show proximal placement of the sus-

tentaculum, a tall, narrow tuber calcis, and a
tendency for flexor tendons to groove the
posterior surface of the sustentaculum. These
derived features, present in Borocyon robus-
tum, are less developed in B. niobrarensis.
Together they confirm an incipient specializa-
tion of the tarsus for digitigrady and more
restricted fore–aft motion, a trend that inde-
pendently reaches its culmination in canine
canids. The tarsus, heavily bound by its inves-
titure of ligaments, can only flex and extend at
the tibia-astragalar and distal tarsal-metatarsal
joints but retains limited axial rotation at the
intratarsal joint between astragalus-navicular
and calcaneum-cuboid. The similar form of

Fig. 33. Bivariate diagram of trochlear width of the astragalus plotted against height for species of
Borocyon, large amphicyonines, and plesiomorphic species of Daphoenodon. A narrow trochlea sets B.
robustum apart from large contemporary amphicyonines. Note that the holotype astragalus of B. robustum
and the Oregon and Florida astragali fall within the B. robustum hypodigm.
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these tarsals in B. robustum to those of P. leo
and P. tigris suggests a hindfoot capable of the
same range of movements.

TARSALS: CUBOID AND CUNEIFORMS

The cuboid is readily distinguished from
the cuboids of living ursids and contempo-
rary large amphicyonines. In Borocyon ro-
bustum and B. niobrarensis the cuboid is
relatively tall. Its proximal surface that
articulates with the distal calcaneum is nearly
horizontal, and the anterior face of the bone
is vertical, forming a right angle with the
upper surface. Living ursids and contempo-
rary large amphicyonines have a low cuboid
in which the proximal surface is not horizon-
tal but is inclined laterad, and the anterior

face of the bone descends at a sloping
angle. Because the amphicyonine and ursine
cuboid is proximodistally short, the medial
cuboid facets for the navicular are continu-
ous (or nearly so) with the subjacent facet
for the ectocuneiform. In Borocyon, the
ectocuneiform facet is an isolated ellipse well
distad (7–9 mm) of the navicular facets that
are situated along the upper rim of the
cuboid.

The tall Borocyon robustum cuboid is most
closely paralleled by the elongate cuboids of
the cheetah (ZM 16913, height, 21.6 mm)
and wolf (ZM 15596, 19.1 mm), although the
beardog cuboids are more robust. A Suma-
tran tiger cuboid (ZM 14602) is not as tall as
in Borocyon nor is the anterior face quite as
vertical. The B. robustum cuboid (UNSM

Fig. 34. Bivariate diagram of calcaneal width at the sustentaculum plotted against height. The more
slender, distally narrow Borocyon calcanea are readily distinguished from the more robust calcanea of large
contemporary amphicyonines.
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25562, locality Bx-7) is much larger and taller
(32.8 mm) relative to that of B. niobrarensis
(F:AM 107601, 26.8 mm) and a Sumatran
tiger (ZM 14602, 23.6 mm). Cuboids of
Amphicyon galushai (UNSM 26390, 26394)
from UNSM locality Bx-12, an upper Run-
ningwater site, measure only 28.3 and
27.6 mm.

The ectocuneiform is preserved in the B.
robustum holotype in articulation with the
meso- and entocuneiform and navicular
(fig. 3), but its plantar half is missing.
Nonetheless, an isolated ectocuneiform
(UNSM 44720) of B. robustum from UNSM
locality Bx-12 is complete and represents a
larger animal than the holotype. Its upper
surface is horizontal, more so than in the
holotype. An elliptical cuboid facet (14.0 3

8.8 mm) situated nearly at the anterior
margin of the upper rim of the bone is the
only facet on the lateral face. There is a
robust plantar condyle as in large felids
(including the cheetah), which is absent in
ursine ursids and much smaller in the wolf.
On the medial face are an upper facet for the
mesocuneiform and a lower facet for the
elevated base of metatarsal 2. The mesocunei-
form is a short, blocky element tapering
backward to a point. It contacts medially the
tall, bladelike entocuneiform, which is situ-
ated posteromedial to the mesocuneiform on
the inner side of the tarsus. The concave
distal end of this large entocuneiform (height,
23.5 mm; anteroposterior width, 18.1 mm)
receives the base of a slender, short metatar-
sal 1. All cuneiforms and the cuboid have
slightly concave ventral articulations with the
corresponding metatarsals.

Alignments of facets joining the tarsal
cuneiforms and cuboid are largely in the
vertical plane, suggesting little movement
between them when bound by investing
ligaments. Intratarsal movement was chiefly
limited to the articulations between astraga-
lus and navicular on the one hand and cuboid
and calcaneum on the other hand, which
allowed the foot to adjust to an irregular
substrate. These articulations indicate very
little intratarsal flexion-extension.

The wolf tarsus (ZM 15596) shows some
parallels with that of Borocyon robustum: (1)
elongate calcaneum; (2) astragalar head
situated more under trochlea; (3) astragalar

trochlea narrow; (4) elongate cuboid with
vertical anterior face and flat upper articular
surface (cuboid facets, however, are typically
canine and differ from those of Borocyon—
there is an upper navicular facet, a middle
circular navicular facet, and a lower elongate
ectocuneiform facet); and (5) volar process of
the ectocuneiform not as developed as in
Borocyon but its relationship to a reduced
meso- and entocuneiform similar. In the
wolf, a thin, quadrate entocuneiform for
attachment of a vestigial first metatarsal is
much more reduced than in Borocyon (in the
wolf the tiny entocuneiform is applied to a
small convex facet on the posteromedial
corner of the navicular). Only a small nubbin
of bone represents the wolf’s vestigial first
metatarsal. The tarsus of Canis lupus shows a
greater reduction of tarsal elements associat-
ed with the internal digits of the foot than
does Borocyon.

The tarsus of living large felids shows
many similarities with the Borocyon tarsus.
This is evident in the form of calcaneum and
astragalus, cuboid, navicular, and the geom-
etry and placement of the tarsal cuneiforms.
On the other hand, ursid tarsals differ
markedly from the tarsals of Borocyon, more
so than those of any other large living
carnivorans. In Ursus arctos (ZM 17888)
the meso- and entocuneiforms are not
reduced and remain large blocky elements,
and the three tarsal cuneiforms are all of the
same height (thickness) and are aligned side-
by-side; bears lack the offset mesocuneiform
and reduced entocuneiform of living felids
and canids. This contrasts with Borocyon in
which the ectocuneiform is deep, mesocunei-
form dorsoventrally compressed and elevat-
ed, and entocuneiform elongate and blade-
like. The inner cuneiforms show less re-
duction in Borocyon relative to the cheetah
and other large felids because the first digit of
the hindfoot is not as reduced as in these cats
and in canine canids, retaining an elongate,
small metatarsal 1 with at least one phalanx
remaining and probably two. In living felids
the first metatarsal is a tiny vestigial spur of
bone without associated phalanges. In living
canids, the first metatarsal is a small, nearly
spherical nubbin of bone attached by liga-
ment to the distal terminus of the entocunei-
form and the posterior surface of the second
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metatarsal. Hence, the Borocyon tarsus dif-
fers from the tarsus of all living felids and
canids in the retention of a less reduced first
digit of the hindfoot, yet one entirely distinct
from this robust digit in living bears.

METATARSALS

The metatarsals of Borocyon demonstrate
a paraxonic, elongate hindfoot. Cheetah and
wolves show close appression of the proximal
shafts of the metatarsals, and the metatarsus
of Borocyon parallels this, but to a lesser
extent. The paraxonic metatarsals 3–4 are
robust and straight, as in living canids, not
curved as in many felids; they are flanked by
shorter metatarsals 2 and 5 whose shafts
display a flattened internal face, indicating
that they were closely applied to the central
paraxonic metatarsals. Some distal separa-
tion of the metatarsals occurs but this is
much less, relative to the metacarpals. The
distal metatarsal keels are pronounced as in
felids. Large living felids other than the
cheetah show a slight distal separation of
the metatarsals, yet this appears even less
evident in Borocyon.

Borocyon’s metatarsals lack overlapping
proximal ends as seen in the metacarpals of
large living felids (MC2 on MC3, MC3 on
MC4). Otherwise, the fit of the metatarsal
articulations are anatomically similar. The
proximal head of MT5 inserts into MT4, and
the head of MT4 into MT3; the head of MT2
is raised above that of MT3 so that MT2 can
articulate with the ectocuneiform. The rela-
tive lengths of MT3–MT4 to the shorter,
flanking MT2 and MT5 are similar in the
lion, tiger, and Borocyon. The fourth meta-
tarsals of amphicyonids display a large,
elongate ligament scar on the posterior
diaphysis a little above mid-shaft. This scar
appears to represent the insertion of a plantar
tarsal ligament that reinforces and stabilizes
the tarsal-metatarsal joint—this scar is par-
ticularly thick in Borocyon robustum, and
more distally situated than in ursids, suggest-
ing that the ligament may be important in
maintaining a digitigrade stance. The par-
axonic digitigrade hindfoot of Borocyon is
doubtless adapted to fore–aft motion, con-
tributing to the propulsive thrust provided by
the hindlimb.

The principal weight-bearing metapodials
of the paraxonic fore- and hindfeet of
Borocyon are metacarpals 3–4 and metatar-
sals 3–4. These metapodials show an increase
in absolute length from B. neomexicanus
through B. niobrarensis to B. robustum
(table 5), accompanying the overall size
increase seen in these species. Borocyon
metapodials also are dimorphic, which is
interpreted as sexual and is documented at
several localities (table 6).

Length measurements of the paraxonic
metacarpals 3–4 and metatarsals 3–4 from
living large felids, canids, and ursids, when
compared with those for Borocyon, show that
the metatarsals in many large cats (including
the cheetah Acinonyx) are ,20%–40% longer
than the metacarpals (fig. 35; appendices 2,
3). In Panthera leo and P. tigris this disparity
between fore- and hindfoot is less (,11%–
23%). But in wolves and coyotes, and in
Borocyon robustum and B. niobrarensis, the
paraxonic metapodials of the hindfoot are
only ,8%–17% longer than those of the
forefoot (fig. 35; appendix 4).

AXIAL SKELETON

There is no representation of the vertebral
column, sternum, or ribs of Borocyon robus-
tum except for three caudal vertebrae (fig. 3)
belonging to the holotype described by Peter-
son (1910). He realized that these caudals
indicated that a long tail was present as seen
in Daphoenodon superbus. A partial vertebral
column does accompany the Horse Creek
skeleton (UW 10004) referred here to Boro-
cyon niobrarensis. Its nine vertebrae (axis, two
cervicals, three thoracics, two lumbars, and a
caudal vertebra) are nearly identical in all
respects to the column of D. superbus des-
cribed by Peterson (1910). A capability to flex
and extend the back is evidenced by inclina-
tion of the neural spines of the thoracic and
lumbar vertebrae directed toward a centrally
situated anticlinal vertebra.

SUMMARY

The largest individuals of Borocyon robus-
tum, all with markedly elongate limbs, occur
in several of the Hemingford Quarries
considered the youngest in the Runningwater

2009 HUNT: NEOGENE AMPHICYONID BOROCYON 65



Formation on biochronologic criteria. Sites
in the lower Runningwater Formation yield
on average smaller individuals referred to B.
niobrarensis. When viewing limb elements of
the largest individuals of Borocyon robustum,
particularly the radius and paraxonic meta-
carpals, the size and elongation of the
forelimb are striking.

To estimate the relative degree of limb
elongation of the species of Borocyon, linear
measurements of limb elements were com-
pared with those of the plesiomorphic Da-

phoenodon superbus (fig. 36), based on Peter-
son’s (1910) genoholotype (CM 1589). The
slightly smaller size of B. niobrarensis relative
to B. robustum is reflected in these percentag-
es. Forelimb segment lengths for B. niobrar-
ensis show increases of ,27%–46% over D.
superbus. The increase in segment lengths for
B. robustum is clearly more substantial, from
as low as ,35% for the humerus to as much
as 76% for the radius. The increase in length
of the radius (hence the ulna), femur, and
tibia of B. robustum relative to D. superbus is

TABLE 5
Comparative Lengths (in mm) of the Paraxonic Metapodials of the Daphoenine Amphicyonids Borocyon and

Daphoenodon superbus

Taxon MC3a MC4 MT3b MT4

Daphoenodon superbusc 63.6 (3)g 60 (1) 72.4 (5) 75.6 (3)

Borocyon neomexicanusd 72.5 (1) 78.4 (2) 85.0 (1) 91.5 (1)

Borocyon niobrarensise 84.6 (3) 85.6 (4) 92.3 (1) 97.0 (1)

Borocyon robustumf

Runningwater Fm. 96.1 (3) — 105.3 (3) 109.8 (5)

Bridgeport Quarries 95.0 (6) 99.4 (4) 103.9 (3) 108.0 (1)

Measurements are calculated from data in appendix 3.
aMC indicates metacarpal.
bMT indicates metatarsal.
cMeasurements are from adults.
dMeasurements are from several adult individuals from the same quarry.
eMeasurements are from two adult individuals of the same approximate body size.
fMeasurements are averages from multiple individuals.
gSample sizes (N) are in parentheses. If more than one specimen, the value is the mean length.

TABLE 6
Sexual Dimorphism in the Daphoenine Amphicyonid Borocyon Indicated by Metapodials of the

Fore- and Hindfeet

Taxon MC3 MC4 MC5 Locality

Borocyon niobrarensis ACM 3452m ACM 3452m Aletomeryx Quarry

ACM 11796f ACM 11796f Aletomeryx Quarry

Borocyon cf. B. robustum KU 118496m Northern Florida

KU 118484f Northern Florida

Borocyon robustum UNSM 26473m Bridgeport Quarries

UNSM 26475f Bridgeport Quarries

Borocyon robustum UNSM 26477m Bridgeport Quarries

UNSM 26478f Bridgeport Quarries

Taxon MT4 MT5 Locality

Borocyon cf. B. robustum KU 118482m Northern Florida

KU 118484f Northern Florida

Borocyon robustum UNSM 26447m UNSM Loc. Bx-12

UNSM 25563f UNSM Loc. Bx-12

MC indicates metacarpal; MT, metatarsal; m, male; f, female.
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Fig. 35. Relative proportions (in %) of lengths of paraxonic (A) metatarsal 3 to metacarpal 3 and (B)
metatarsal 4 to metacarpal 4 for species of Borocyon and Daphoenodon superbus compared with living
canids, felids, ursids, and hyaenids. Species farthest to the right show the greatest disproportion between
lengths of metacarpals and metatarsals, and therefore a hindfoot longer than the forefoot. Numbers within
black bars indicate sample size.
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especially obvious. Fore- and hindlimb seg-
ment lengths of B. robustum exceed those of
B. niobrarensis for all elements.

Despite the scarcity of associated limb
material and small sample sizes, the available
data suggest that the fore- and hindlimbs of
Borocyon robustum are proportionately lon-
ger than those of B. niobrarensis. Although
limb lengths of large male B. niobrarensis
probably overlap those of small females of B.
robustum, the proportions of these limbs
differ, such that B. robustum limbs appear
consistently more elongate.

Figure 37 illustrates a hypothetical resto-
ration of a male B. robustum together with
the holotype skeleton of Daphoenodon su-
perbus. These two carnivores represent the
two end-member states of this New World

daphoenine amphicyonid lineage. Daphoeno-
don (D.) superbus demonstrates the plesio-
morphic condition, probably retained in
most or all species of D. (Daphoenodon),
and Borocyon robustum represents the culmi-
nation of limb development in the subgeneric
Borocyon lineage. Although the D. superbus
holotype is a female, the males of its probable
ancestor, Daphoenodon notionastes from the
Arikareean of Florida, would have been
similar in size and are known to exhibit the
same absence of limb elongation. Hence, the
two skeletons adequately illustrate the trans-
formation in skeletal dimensions and limb
proportion that occurred during evolution to
larger body size in these daphoenines. Such a
transition is unknown in Old World amphi-
cyonid carnivores.

Fig. 36. Percentage increase in lengths of the bones of the fore- and hindlimb of Borocyon niobrarensis
and B. robustum relative to the holotype skeleton of Daphoenodon superbus (CM 1589). Bars indicate the
mean and range where more than one individual was available.
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The anatomy of the limbs demonstrates
the following features of Borocyon bearing on
stance and gait:

(1) correspondence in form of the scapula to
that of the lion, but differing from all felids
and similar to living ursids in the presence of
a teres process and its associated muscula-
ture, and in possessing a broad distally
extended deltopectoral crest of the humer-
us—the anatomy of scapula/humerus dem-
onstrates effective stabilization of the shoul-
der joint and powerful extension/flexion of
the upper arm contributing to stride length
—there is no evidence of a clavicle;

(2) a more parasagittally aligned elbow than
those seen in living ursids and in amphicyo-

nine amphicyonids, indicated by transverse

narrowing of the distal humerus involving
suppression of the medial epicondylar area

for the origin of flexor muscles and deepen-
ing and realignment of the olecranon fossa

for extension of the ulna—the elbow in

Borocyon robustum is only slightly everted
and is parasagittally oriented as in living

wolves;

(3) form and elongation of radius and ulna as in

wolf and cheetah, thereby differing from all
New World amphicyonines in which the

antebrachium is not elongate; bladelike

radius with transversely narrow proximal
and distal ends and bound to ulna by a

narrow interosseous ligament and mem-
brane at mid-shaft that, together with the

Fig. 37. Hypothetical restoration of the skeleton of Borocyon robustum (A) compared to the holotype
skeleton of Daphoenodon superbus (B, from Peterson, 1910), representing the two end-member species of
the Borocyon lineage during the early Miocene in North America. Fossils show that Borocyon robustum,
the terminal species of the subgenus, was widely distributed from the Pacific Northwest to the Gulf Coast
of Florida by the end of the early Hemingfordian.
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form of the radial head and distal ulnar
structure, indicates a more restricted capa-
bility for pronation-supination than found
in the large living felids, but not as markedly
developed as in the wolf; thus, a cuffing or
swatting stroke of the paw could have been
employed in bringing down prey;

(4) carpal bones sharing a similar form and
placement with those of living ursids, but
having adapted this arctoid carpal pattern
for (a) a more fore-aft digitigrade motion of
the forefoot; (b) reduction of lateral digits;
(c) specialization of certain carpal elements
(scapholunar, magnum)—however, Boro-

cyon carpals lack specialized stop facets seen
in the wolf and cheetah that arrest intracar-
pal hyperextension and flexion; principal
flexion occurring at radioulnar-proximal
carpal joint with minimal movement at
intracarpal joints; hyperextension of the
forefoot only possible between radius and
scapholunar and this probably prevented by
binding ligaments; prominent ridge on sca-
pholunar forces ulnar deviation of the
forepaw during protraction of the forelimb;
trapezium much reduced, more so than in
felids and much more than in living ursids,
accompanying reduction of the first digit;
species of Borocyon show an increase in
scapholunar thickness through time, culmi-
nating in a robust scapholunar supporting
the weight of the forequarters through the
radius, much as in Panthera leo and P. tigris;

(5) paraxonic fore- and hindfeet with elongate,
straight-shafted metapodials (MC3–MC4,
MT3–MT4) accompany a digitigrade stance,
with shorter second and fifth metapodials
and reduction of the first digits of the fore-
and hindfeet; in addition:

(a) proximal ends of metapodials not
overlapped (interlocked) as in living
felids;

(b) no close appression of proximal meta-
carpal shafts yet some appression of
metatarsals as in cheetah and canine
canids;

(c) metacarpals splay much like those in
the lion;

(d) metapodials with sharp developed dis-
tal keels that align paired sesamoids
and tendons to favor fore–aft motion
of the digits;

(e) paraxonic metacarpals (MC3–MC4) of
Borocyon robustum approaching lengths
of paraxonic metatarsals (MT3–MT4), a
situation most like wolves but unlike the
cheetah;

(6) proximal phalanges somewhat elongate and
largest on the paraxonic metapodials 3–4;
intermediate phalanges short (with devel-
oped dorsal extensor processes) and lacking
the marked degree of asymmetry indicative
of claw retractility in felids; ungual phalan-
ges of the forefoot long, laterally com-
pressed, and tapering, hence similar to those
of living ursids, suggesting that digging was
possible (lions dig warthogs from burrows
despite their specialized phalangeal anatomy);
articular alignment of phalanges indicates
presence of cushioning fore- and hindfoot pads;

(7) hindlimb providing a strong forward pro-
pulsive thrust as in large living felids, in
which the form of Borocyon innominate and
femur best approximate the form of those
bones in Panthera leo and P. tigris among
large living carnivores; posterior placement
of the fovea capitis femoris for the femoral
ligament like that of large living felids, and
lacking the more central location seen in
living wolf and coyote or in small domestic
cats with parasagittal hindlimbs—hence,
slight abduction of the Borocyon femur and
hindlimb as in lion and tiger; ischial
tuberosity of the pelvis only moderately
everted as seen in large living felids, without
the extreme degree of ischial eversion of
wolves and cheetahs; muscle scar pattern of
the posterior tibia for flexor muscles of the
hindfoot as in the wolf and cheetah,
suggesting a proximal concentration of
muscle with long distal tendons; tibia much
more massive in the larger Borocyon species
due to greater body size, and a tibial-
astragalar joint indicating a hindfoot em-
phasizing flexion-extension;

(8) hindlimb proportions similar to those of
Panthera leo, P. tigris, and New World
amphicyonines and lacking the distal elon-
gation of tibia-fibula seen in canine canids
and the cheetah—Borocyon and these large
cats also correspond in tarsal anatomy,
especially in the form of astragalus and
calcaneum, reflecting tarsal elongation and
specialization for parasagittal motion of the
ankle and hindfoot; tarsal elongation in the
terminal species, B. robustum, is especially
evident from the shape and marked elonga-
tion of the cuboid and adjacent tarsal
elements; a limited ability for inversion-
eversion of the hindfoot is retained at the
astragalonavicular and calcaneocuboid joints;

(9) absence of a complete vertebral column
prevents detailed analysis of the participa-
tion of the back as it contributes to stride
length; however, correspondence of the few
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known vertebrae of Borocyon to those of

Daphoenodon superbus leaves little doubt as
to the presence of a similar column in which
an anticlinal vertebra serves as a fulcrum for

extension and flexion of the spine during the
running/bounding gaits, contributing to an
increase in stride length—this inference

receives support from the partial vertebral
column of B. niobrarensis (UW 10004) from

Horse Creek Quarry in Wyoming, which
matches the column of D. superbus;

(10) absolute limb lengths increasing steadily
from Oligocene Daphoenus vetus to early
Miocene Daphoenodon superbus, continuing

through Borocyon neomexicanus, B. niobrar-

ensis, and ending with B. robustum, paral-
leling the increase in body size in the

daphoenine lineage; however, a proportional
increase in length of the distal forelimb also

occurs in daphoenines, beginning with Da-

phoenus vetus (humeroradial ratio ,84%),
Daphoenodon superbus (86.7%), and con-

cluding with the species of Borocyon

(,95%–97%); Borocyon robustum displays
the most evolved lower forelimb, relative to

the propulsive felidlike hindlimb, of any
New World daphoenine or amphicyonine
beardog;

(11) dimorphism evident where sample size is

adequate: examples include the mandible
(with dentition), radius, astragalus, calcane-
um, and metapodials; large males and

smaller females of both Borocyon robustum

and B. niobrarensis are inferred from the
presence of dimorphic (robust and gracile)

metapodials of both fore- and hindfeet
coming from four different localities (table 6).

GAIT AND STANCE

The musculoskeletal structure of a qua-
drupedal carnivoran predator reflects the
locomotor strategy used to obtain its prey.
Anatomical innovations recorded in the
skeleton as preserved in the fossil record
can be described and measured by the
investigator, whereas physiological and be-
havioral attributes that accompany skeletal
adaptations usually cannot be identified in
fossils. As a result, we lack important
information such as estimates of metabolic
efficiency and endurance bearing on the
economy of pursuit. These require knowledge
of oxygen uptake, muscle cross-sectional area
and fiber orientation, energy economy of

various gaits, as well as evidence of social
behaviors such as group hunting. Despite
such limitations the musculoskeletal configu-
ration and proportions of the limbs and feet
of fossil carnivorans provide insight into the
locomotor adaptations aiding in prey cap-
ture. To overtake prey, a predator benefits
from enhanced speed, acceleration, maneu-
verability, and endurance, and these attri-
butes combine in differing proportions in the
various species of living Carnivora, where
they are reflected to a greater or lesser degree
in the skeleton. Thus, in fossils the appen-
dicular skeleton remains a useful albeit
incomplete guide. Lengthening of the limbs
and adoption of a more upright stance,
accompanied by skeletal modifications pro-
moting a more restricted fore–aft motion of
the limb and foot, are obvious adaptations
influencing the gait, stride, and energy budget
of Cenozoic carnivorans.

The term ‘‘cursorial’’ has been commonly
used to describe carnivorans seemingly
adapted for sustained, often rapid, efficient
locomotion. These ‘‘running’’ mammals dis-
play anatomical specializations of the skele-
ton that are thought to contribute signifi-
cantly to this cursorial ability. Some recent
investigators have regarded the use of the
term as ill-defined and nonspecific as to the
morphological and physiological attributes
that are essential to the definition of a
cursorial mammal (Stein and Casinos, 1997;
Carrano, 1999).

It has been generally agreed that some
discussions of cursoriality in mammals con-
fuse speed and endurance, whereas these two
aspects merit separate consideration. There is
no a priori reason why a very fast mammal
should also exhibit great physiological en-
durance and, similarly, the converse is true.
Some ambush predators may be very fast yet
cannot sustain this speed for any distance,
whereas other mammals may travel great
distances but at rather average rates of speed.
Taylor (1989) identified three types of ‘‘cur-
sors’’: (1) running carnivorans that possess
both speed and endurance (e.g., gray wolf);
(2) sprinting carnivorans that employ an
initial rapid acceleration, capturing prey by
their speed over a shorter distance; and (3)
‘‘trotting’’ carnivorans that engage in pro-
longed pursuit but at only moderate speeds.
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Some suggested definitions of the term
that have arisen as a result of recent
biomechanical studies cannot be employed
for fossil mammals because they emphasize
physiological characteristics that are indeter-
minate for extinct species. As a result,
paleontologists have tended to emphasize
morphological features that distinguish rapid
and metabolically efficient living mammals,
most of large body size, usually .10 kg. Here
I use the term cursorial to refer to carnivor-
ans with morphological specialization of their
postcranial skeleton favoring parasagittal
alignment of the limbs and demonstrated
ability for fore–aft movement of the limb
segments and feet, indicating increased stride
length and locomotor efficiency. There is the
tacit assumption that physiological endurance
and an economy of gait in some form are the
likely accompaniments to this morphology.

The skeletal morphology of species of
Borocyon is reasonably compared with the
anatomical adaptations of living large carni-
vorans of similar body size, while conceding
that physiological attributes, whether mun-
dane or remarkable, must remain unknown.
However, from this comparison comes the
realization that Borocyon had evolved a
skeletal morphology unique to large carni-
vorans of its time, prefiguring many parallel
adaptations in large predatory Carnivora of
the late Cenozoic and Recent. Moreover, in
the terminal species, B. robustum, we find a
mosaic of skeletal features not seen in
combination in any large living carnivoran.
The existence in the fossil record of carni-
vores with a blend of adaptive traits of the
locomotor system not found in any living
carnivoran was recognized by Van Valken-
burgh (1987).

Lengthening the limbs, particularly the
lower limb and foot, are essential to the
endurance strategy by increasing stride
length. Recent studies of mechanical design
in mammals suggest advantages (mass-spe-
cific muscle forces are reduced by increasing
their mechanical advantage) that often ac-
company lengthening of the limbs and
attaining a more upright stance (Biewener,
1989a, 1989b, 1990). Energy is further
conserved by concentrating muscle mass in
the proximal limb segments, thereby reducing
the limb’s moment of inertia and the

energetic cost of locomotion (Myers and
Steudel, 1985). Thin distal tendons transmit
the force of a much thicker, proximally
placed muscle while effectively reducing the
mass of the lower limb.

Table 4 (fig. 19A, B) presents fore- and
hindlimb proportions for amphicyonids rela-
tive to those of living ursids, felids, and
canids based on the length ratios of radius/
humerus and tibia/femur. Ursids, regardless
of size, consistently have a tibia ,83% (many
,75%) the length of the femur. Felids
possess a tibial length .83% the length of
the femur, hence always longer than ursids,
and certain felids (the puma, clouded leop-
ard, and cheetah) exceed 90%, with the
cheetah .100%. Canids (Caninae) also have
markedly elongated the tibia, having ratios
.96% and often reaching 107% in several
species. Against this background, the ‘‘short-
limbed’’ amphicyonids have ratios generally
falling between ,80% and 90%, with Boro-
cyon estimated to fall within this range at
,85%–90%. Thus, hindlimb proportions of
Borocyon are much like those of Panthera leo
and P. tigris and do not show the extreme
‘‘cursorial’’ adaptations exhibited by the wolf
and cheetah. The B. robustum hindlimb is
capable of powerful forward thrust while
nonetheless incorporating a number of skel-
etal features favoring fore–aft motion in all
hindlimb segments.

In the forelimb, proportional relationships
among these carnivoran families differ from
those evident in the hindlimb (table 4,
fig. 19A). Ursid ratios range from 79% to
86% in most bears, but the black bear data
suggest a tendency to lengthen the lower
forelimb (,82%–92%) in this species. Most
amphicyonid ratios fall below 90%. Howev-
er, among amphicyonids, the species of
Borocyon are remarkable in the lengthening
of the distal forelimb. Values of ,95%–100%
exceed the ratios of almost all cats except for
the cheetah, which has a ratio similar to
Borocyon. Other than the cheetah, the only
other large felid exhibiting distal forelimb
elongation is the lion with ratios consistently
.90%. Living canids exhibit pronounced
elongation of the radius/ulna with ratios
from 97% to 108%.

From these observations it is evident that
the forelimb can lengthen independently
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from the hindlimb, and within a family (such
as felids), limb proportions of species may
vary while reflecting a common anatomical
pattern: (1) ursids usually do not elongate the
lower limb bones in either fore- or hindlimb
but maintain short lower limb segments; (2)
living canids are in direct opposition to ursids
in that they elongate both the lower fore- and
hindlimb segments; (3) felids exhibit a variety
of possible options in limb elongation—the
lion and tiger show similar hindlimb ratios,
whereas the cheetah clearly parallels canids in
elongation of both fore- and hindlimb, and
the lion (relative to the tiger) evolved a
lengthened forelimb apparently as an adap-
tation for pursuit of prey on the open African
plains.

Certain species of living carnivoran ‘‘cur-
sors’’ that employ trotting gaits sustained for
long intervals lengthen both hindlimb and
forelimb, as exemplified by canine Canidae.
Others such as the lion and cheetah that
engage in rapid, often short, but what in
some situations can evolve into a prolonged
pursuit, elongate the lower forelimbs, but not
to the degree seen in Caninae. And the lion,
while exhibiting some lengthening of its
forelimb (fig. 19A), still maintains a rather
short hindlimb for powerful thrust as it
explodes from ambush.

Borocyon is exceptional among amphicyo-
nids and even large living felids in elongation
of the lower forelimb (fig. 19A; table 4).
Whereas the Borocyon hindlimb is similar in
its proportions to that of Panthera leo, P.
tigris, as well as some amphicyonids, forelimb
proportions are comparable to the cheetah
and wolf.

In addition to increasing stride length,
economy of motion is also achieved by
confining the limb to a fore–aft path. This
is evident in modification of skeletal struc-
ture, particularly the shape of limb and foot
bones and congruent joint surfaces. Living
canine canids (Canis lupus, C. latrans) exem-
plify many skeletal traits seen in limbs
modified for fore–aft movement: these in-
clude closely registered joint surfaces in the
lower limb segments; by bringing the elbow
inward to lie under the shoulder; by increas-
ing extension of the lower forelimb on the
humerus to produce a more erect stance; by
reduction of the carpal extensors and flexors

arising from the distal humerus; by close
apposition of the radius and ulna so that
pronation/supination is more limited; by
tight appression of the metapodials; by
development of pronounced keels on the
distal metapodials to lock the proximal
phalanges; by interlocking of astragalus and
calcaneum; and by the deeply grooved
astragalar trochlea inserted in the distal
tibia-fibula, practically limiting tarsal motion
to a single degree of rotational freedom
about the tibia. These morphological special-
izations contribute to the seemingly effortless
habitual trotting gait of a canine pack on the
hunt.

The species of Borocyon lack many of
these canine skeletal adaptations for fore–aft
motion of the limbs but they have evolved
enough in parallel to suggest a facultative
ability for some form of limited pursuit. Of
these, the most significant are: (1) inward
reorientation of the elbow demonstrating a
more parasagittal alignment of the forelimb,
and an elbow joint restricted to parasagittal
flexion/extension; (2) modified form of the
distal humerus indicating an erect forelimb
stance with proximal ulna deeply inserted in
olecranon fossa of the humerus, and a
diminished medial epicondyle of the humerus
indicating reduced torque at the elbow joint;
(3) lengthening of the radius-ulna, closely
united by a narrow interosseous ligament and
membrane, suggesting less capability for
pronation/supination of the manus, and a
slender bladelike radius with reduced proxi-
mal and distal ends, as seen in radii of the
wolf and cheetah; (4) paraxonic digitigrade
fore- and hindfeet with straight-shafted
elongate metapodials; (5) pronounced distal
keels on the metapodials; (6) various inte-
grated adaptations of femur, tibia, and
hindfoot that promote propusive thrust but
that also reflect an incipient parasagittal
alignment and limited fore–aft motion of
the hindlimb; these adaptations include
evidence of femoral adduiction, proximal
shift and reduction of posterior tibial mus-
culature, an altered form of proximal tarsals
and metatarsals in keeping with an erect
digitigrade stance, and lesser emphasis on
eversion-inversion of the hindfoot.

These skeletal features indicate that Boro-
cyon robustum was probably capable of an
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economy of gait involving a lengthened
digitigrade stride and parasagittal fore–aft
limb and foot motion differing from that of
all contemporary amphicyonine beardogs. A
powerful propulsive thrust provided by the
hindlimbs, together with the robust muscled
shoulders and lengthened forelimbs, conveys
an image of a large, formidable carnivoran
capable of strong acceleration and an interval
of prolonged pursuit, but without the ex-
treme skeletal and perhaps physiological
adaptations of large canine canids.

Whether Borocyon species were able to
employ an extended trotting gait for long
intervals over open terrain requires a cur-
rently unavailable knowledge of physiology
and behavior. However, the fact that these
species occupied semiarid, open plains in the
North American midcontinent during the
early Miocene seems to implicate that envi-
ronment in selecting for such traits, at least
locally. It is suggestive in this regard that
Borocyon from the Suwanee River of the
Florida Gulf Coast does exhibit somewhat
shorter limbs than its Great Plains counter-
part.

Once these large carnivores overtake their
prey, adaptations for the kill come into play,
involving anatomical specialization of the
teeth, skull, jaws, and forelimbs. The killing
strategy may require that the forelimbs adopt
a compromised structure so that they func-
tion both in locomotion and in prey capture.
This is evident in a large felid such as the lion
in which the forelimbs are essential both in
pursuit and in holding and dispatching the
prey. However, in canine cursors the poten-
tial use of the forelimb in prey capture is
sacrificed to the fore–aft gait, a compromise
favoring endurance, and is accompanied in
wolves and African hunting dogs by reliance
on pack hunting. Sustained gaits of the
canine type must be powered by aerobic
locomotion, and since the metabolic rate of
active striated muscle achieves maximum
efficiency at a speed of contraction somewhat
less than the speed of maximum power
output (Alexander, 2003), a gait such as the
sustained trot seems well adapted to endur-
ance pursuit in these canine cursors. The limb
morphology of Borocyon robustum occupies
an ‘‘intermediate’’ position between limbs of
a large predatory felid such as Panthera leo

and those of fully specialized cursors, the
wolf and cheetah. Such a large intermediate
morph does not exist among the extant
carnivoran fauna.

From this perspective, Borocyon robustum
emerges as an exceptional predator, not only
among amphicyonids but when compared to
large carnivorans throughout the Cenozoic.
When considering the totality of its skeletal
adaptations, this beardog was likely capable
of some facultative form of sustained pursuit.
Because the species of Borocyon lack the
retractile claws of large living felids (Panthera
leo, P. tigris), grasping and holding the prey
during the kill would not have been an
option. The massive skull with canidlike
dentition suggests that the jaws and teeth
were employed much as in large wolves. Its
skeleton, with parasagittally aligned limbs
anatomically specialized for more restricted
fore–aft locomotion, suggests that a wide-
ranging trotting gait emphasizing endurance
may have been part of the adaptive strategy
of this carnivore.

Physiological unknowns limit the degree of
confidence that can be placed on conclusions
derived solely from skeletal morphology
(McNab, 1990). For example, an estimate
of a carnivore’s metabolic rate can be based
upon the difference in consumption of
oxygen between its resting rate and the
maximum rate that can be achieved; this is
termed the metabolic scope (Schmidt-Niel-
sen, 1984). This ratio has been found to
approximate a value of 10 for most mammals
(Hemmingsen, 1960; Taylor et al., 1981;
Schmidt-Nielson, 1984) and is independent
of body size. From these investigations, it
emerged that both domestic dogs and wild
canids such as the wolf possessed a metabolic
scope three times greater than the general
mammalian value (Langman et al., 1981), a
30-fold increase in oxygen consumption
above the resting rate. This result has a
significant bearing on the endurance of these
carnivorans and influences their style of
locomotion and preferred gaits. Such infor-
mation remains largely beyond reach for
extinct amphicyonids, yet if attainable would
influence our evaluation of their locomotor
pattern.

The species of Borocyon were not the first
lineage of Carnivora to evolve limbs special-
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ized for fore–aft motion and a lengthened
stride. Temnocyonine amphicyonids devel-
oped elongate limbs and feet suggestive of a
pursuit mode similar to that of living canids,
yet the evidence of their postcranial anatomy
is relatively sparse. Only five individuals are
represented by skeletons that nonetheless
convey a relatively complete picture of the
anatomy of both fore- and hindlimbs. A few
additional isolated bones from other locali-
ties can be directly compared with the more
complete skeletons to provide a somewhat
larger sample size. At least one partial
postcranial skeleton assigned to each of the
three currently recognized genera (Temno-
cyon, Mammacyon, and an undecribed genus)
establishes that elongation of the limbs and
feet was typical of end-member species of all
of these lineages in the late Oligocene–early
Miocene. Taken together, the species of
Borocyon and the few temnocyonines repre-
sent the first Neogene experiments evolving a
long-limbed, mid-sized to large carnivoran
predator within North America.

DENTITION AND FEEDING

The dental formula of 3-1-4-3 in upper and
lower jaws is consistent for nearly all species of
North American amphicyonids except the
temnocyonines, Borocyon robustum, and Clar-
endonian Ischyrocyon, which have lost M3.
The migrant amphicyonines (Amphicyon,
Ysengrinia, and Cynelos) that entered North
America from Eurasia in the early Miocene all
retain the full complement of molars (M1–
M3/m1–m3) but reduce the size of their
anterior premolars (P1–P3, p1–p3). North
American daphoenine and temnocyonine
amphicyonids retain well-developed premolar
batteries in contrast to amphicyonines that
live alongside them. Except for the presence of
M3, the teeth of amphicyonids are similar in
number and form to those of canids, so much
so that they were for many years classified as
Canidae (e.g., Simpson, 1945; Romer, 1966).
Despite the similarity of the dentition, the
morphology of the mandibular symphysis of
daphoenine amphicyonids differs in some
respects from Scapino’s (1965) description of
living Canis. However, as in canids, the
symphysis of amphicyonids remains unfused,
with the exception of some very old adults.

JAW REGISTRATION

In Daphoenodon superbus the proportions
of the holotype skull and mandibles (CM
1589) are only slightly distorted so that
dental relationships during occlusion can be
observed. Here, as in the wolf, the upper and
lower toothrows are in contact in central
occlusion yet the carnassials are not tightly
registered. As the jaws are brought together
in the wolf (Canis lupus), neuromuscular
mechanisms first approximate the carnassial
blades, followed by interlocking of the
canines and I3 (Scapino, 1965; Mellet,
1981). Because canine contact is retarded
relative to that of the carnassial pair, the wolf
does not utilize the autocclusal bite mecha-
nism described by Mellett (1984) in which the
canines establish contact prior to the carnas-
sials. In Canis lupus the canines do not come
into firm contact until after the carnassials
have begun to shear. However, in young
D. superbus, the upper and lower canines
make contact earlier in the bite, although not
yet in a tightly locked relationship. As the
carnassials wear over time, manual occlusion
of the teeth in these beardogs suggests that
interlocking of the canines eventually coin-
cides with initial carnassial contact, suggest-
ing that autocclusion employing the canines
becomes more prevalent with age. This
situation also apparently obtains in Borocyon
robustum and B. neomexicanus where dental
and mandibular dimensions correspond to
those of the smaller D. superbus. Unfortu-
nately, all skulls of B. robustum are distorted
by crushing and lack canines so that the
mandibles cannot be reliably occluded with
the upper teeth. Nonetheless, certain aspects of
its jaw mechanics can be described with some
confidence.

In carnivorans with sectorial carnassials
and a flexible mandibular symphysis, regis-
tration of the working-side mandible with the
corresponding upper toothrow involves a
lateral shift of the mandible as closure takes
place. As the jaws close, the edges of the
carnassials are brought into shearing regis-
tration by a slight lateral adjustment of the
working mandible. Scapino (1965) described
a coupling action in a canid between the
zygomandibularis and medial pterygoid mus-
cles of the working mandible that maintains
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the carnassials in close registration. The
precise registration of the carnassial blades,
however, is facilitated by the shape of the
craniomandibular joint and a flexible man-
dibular symphysis, which allows a final
outward movement of the rear of the
mandible to bring the m1–P4 into tight
occlusion. At the end of the closing stroke,
interlocking of the canines and I3 brings the
mandibles into centric occlusion. As an
individual ages, the molars and carnassials
develop subhorizontal to flat wear surfaces in
both canids (e.g., Canis lupus) and in
amphicyonids. In old age, then, a precise
occlusion was no longer possible or necessary
because the shearing blades were worn away,
leaving only broad crushing surfaces. At this
point, some aged beardogs fused the man-
dibular symphysis and employed a jaw
mechanism devoted entirely to crushing
occlusion.

MANDIBULAR SYMPHYSIS

Precise registration of the teeth is aided by
a mobile mandibular symphysis in many
species of Carnivora. The anatomy of the
mandibular symphysis was analyzed in depth
by Scapino (1965, 1981). Carnivoran sym-
physes were classified according to the way
soft tissues in the symphyseal space related to
the form of the mandibular symphyseal
plates in histologic sections. Although in
living Carnivora the form of the symphysis
can differ with increasing body size and even
within a species, the smallest species of
Daphoenodon from the Great Plains and the
largest Borocyon have similarly configured
mandibular symphyses. These symphyses do
not precisely correspond to any of Scapino’s
(1981) symphyseal types (Classes I–IV).
However, the conjoined hemimandibles ap-
proximate his Class II symphysis where each
symphyseal plate exhibits a smooth rectan-
gular area anterosuperiorly and the remain-
der of the plate is characterized by numerous
prominent, randomly oriented bony rugosi-
ties. The flat, non-rugose symphyseal plates
of the wolf, considered a highly flexible Type
I symphysis by Scapino, differ from these
rugose, interdigitating plates evident in the
symphyses of Daphoenodon and Borocyon
species (fig. 38A, C).

The mandibular symphyseal plate of a
female B. robustum (fig. 38A, UNSM 27002),
in which the symphysis is well preserved,
shows the anterosuperiorly placed, rectangu-
lar zone, with a smooth surface presumably
for the attachment of a single, elongate
fibrocartilage (length, 17.8 mm; width, 8.0
mm). In living carnivorans this fibrocartilage
facilitates compression and expansion of the
symphyseal joint. Below and posterior to the
fibrocartilage zone, the remaining surface of
the plate displays prominent interdigitating
bony rugosities that show random alignment.
These rugosities interlock with those of the
opposing plate to prevent translation of the
hemimandibles. The lower border of the
mandible displays foramina leading into
valleys between the rugosities, suggesting
the possible presence of a venous network
within the symphysis as described by Scapino
(1981).

Additional intact mandibles of B. robus-
tum (UNSM 25548, 25684, 26417) were
carefully prepared and these exhibit a mor-
phology of the symphyseal plates as in
UNSM 27002. The mandibles of Borocyon
neomexicanus (F:AM 49239) and B. niobrar-
ensis (ACM 3452) that preserve an intact
symphysis exhibit a similar morphology.
Because the symphyseal plates in individuals
of Daphoenodon superbus display the same
pattern, this type of mandibular symphysis
probably characterized the Borocyon lineage
from its inception.

Of the carnivoran symphyses discussed
and illustrated by Scapino (1981: fig. 3), the
gross form of the symphysis of B. robustum
seems at first to most closely approach Ursus
americanus (fig. 38B). However, in B. robus-
tum the fibrocartilage zone is larger and
better developed than in the bear, and the
robust, interdigitating rugosities lack the
pronounced anteroposterior alignment evi-
dent in Scapino’s (1981: fig. 3F) example of
Ursus (some mandibles of Borocyon robustum
do show an anteroposterior alignment of a
few rugosities in the posterior symphyseal
plate). The ursid symphyseal plate is elliptical
in form, similar to that of Borocyon robus-
tum, except that in ursids there is no evidence
of a single, large anterosuperiorly placed
fibrocartilage pad. In ursids the pad is narrow
and irregular in form (Scapino, 1981) and lacks
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the smooth subrectangular surface situated
along the upper part of the symphyseal plate
that indicates its presence in the species of
Borocyon and in Daphoenodon superbus.

Compression and expansion of the fibro-
cartilage pad contributed to flexibility of the
symphyseal plates in Borocyon. In carnivor-
ans with flexible symphyses, opening and
closing of the posterior symphysis occurs
about a vertical axis through the compress-
ible fibrocartilage (Scapino, 1981). Slight
rotation of the mandibles about their long
axes, guided by the canines as the jaws close,
also places the pad under compression as the
carnassials are brought into contact during
the bite. The fibrocartilage in B. robustum,
just as in Canis (Scapino, 1965), probably
accommodated movements of the mandible
about its long axis during carnassial shear
and crushing by the molars (m2–m3, M1–
M2). The only articulating pair of hemi-
mandibles of B. robustum belonging to a
single individual (UNSM 25548, 25684)
shows that rotation about a vertical axis
through the symphysis results in opening of
the posterior symphysis, and also permits
slight rotation of these mandibles about their
long axes. Furthermore, the presence of a
single, large fibrocartilage pad clearly indi-
cated in several individuals (UNSM 27002,
26417, 25548) indicates an ability for com-
pression about a vertical axis through the pad
and hence some symphyseal mobility.

The considerable height of the guiding
canines and carnassials in B. robustum places
a constraint on side-to-side shift of the jaws
during the closing phase of the power stroke.
Scapino (1981) described this action involv-
ing flexible symphyses of Types I and II,
which is applicable in modified form to B.
robustum. As the working mandible moves
laterad, the posterior symphyseal space
widens, with this action occurring around a
vertical axis passing through the fibrocarti-
lage pad. As the mandible comes to a stop,

Fig. 38. Mandibular symphyses of (A) Boro-
cyon robustum, (B) Ursus americanus, and (C)
Canis lupus, in medial view, showing the symphy-
seal plate. Dashed line encloses the smooth bone
for attachment of the subrectangular fibrocartilage
pad (fc) in the wolf, which is inferred for Borocyon
robustum. The symphyses of Borocyon and the
wolf are considered to be flexible. The rugose,
bony interdigitations of B. robustum symphyseal

r

plates prevent translation of the hemimandibles
more effectively than the smoother symphyseal
plates of the wolf. The ursid lacks an extensive
fibrocartilage and has a more rigid mandibular
symphysis.
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constrained by the tissues of the cranioman-
dibular joint, the carnassials are aligned but
not yet in contact and the canines have met to
guide the closure of the jaws. As the working
mandible closes, it rotates inward slightly as
m1 slides upward against P4. This compress-
es the fibrocartilage pad, which will return to
its initial shape as the jaws open.

Scapino (1981) observed that a strongly
interdigitated symphysis with limited or
absent fibrocartilage pad was a stiff symphy-
sis. He recognized this type of symphysis in
large living felids and ursids. In ursids the
interdigitating rugosities and various binding
ligaments make dorsoventral or anteroposte-
rior translational shear of the symphyseal
plates impossible. However, manipulation of
the hemimandibles of Ursus americanus
shows that a very limited amount of rotation
about the long axis of the mandible can
occur. On the other hand, manipulation of
the hemimandibles of B. robustum (UNSM
25548, 25684) demonstrates much more
symphyseal mobility, involving rotation
around the long axis of the mandible and
also about a vertical axis through the
fibrocartilage. Under Scapino’s classification,
a mandibular symphysis as seen in B.
robustum would differ from those of ursids
and should be similar to Class II with limited
flexibility. The condition of the mandibular
symphysis and dentition in B. robustum
accords with Scapino’s (1981: 370) summary
analysis whereby a mobile symphysis and
large carnassials might be expected in carni-
vorans processing hard materials such as
bone. In durophagous carnivorans of large
size, the complex interdigitating, rugose
symphyseal plates prevent mandibular dislo-
cation while interposed soft tissues still
permit some flexibility.

In summary, the sample of mandibles of
Borocyon robustum demonstrates the proba-
ble presence of a single, large fibrocartilage
pad; of limited movement about the long axis
of the mandible and around a vertical axis
through the symphysis when hemimandibles
are conjoined; and of foramina entering the
rugose bone at the ventral border of the
symphysis. These traits taken together sug-
gest (1) a compressible symphyseal pad; (2)
posterior opening and closing of the sym-
physis around a vertical axis through the pad;

(3) the ability to adjust carnassial registration
by limited mandibular axial rotation; and (4)
perhaps incorporation of venous blood with-
in the symphysis involved in volume adjust-
ments (expansion–contraction) of symphyse-
al connective tissues. Some such movement at
the symphysis is essential to precise registra-
tion of the large Borocyon carnassials, as
evidenced by wear patterns on these teeth.

Scapino (1981) considered a flexible sym-
physis with a fibrocartilage pad, interman-
dibular cruciate ligaments, and a venous
plexus as primitive for carnivorans. The
mandibular symphysis in Borocyon robustum
possibly still reflects this primitive condition,
but with adjustment for increased body size,
here considered to be the pronounced rugose
interdigitation preventing translation of the
symphyseal plates while still permitting some
flexibility in the joint.

DENTAL OCCLUSION AND TOOTHWEAR

It is possible to accurately describe dental
occlusion and toothwear in several North
American amphicyonids where adequate
samples exist. A sample of Daphoenodon
superbus from the den site at Agate Fossil
Beds National Monument (Hunt et al.,
1983), and from coeval waterhole deposits
(Hunt, 1990), provides a series of ontogenetic
stages from juveniles to aged adults, totaling
at least 14 individuals. Mandibles of this
species range in ontogenetic age from a
young individual with only milk teeth in
place to aged males with the molars nearly
worn flat. Wear on the teeth, both premolars
and molars, is consistent with patterns
observed in other species of the genus—these
species probably employed the teeth during
feeding in the same manner.

As an individual of D. superbus ages, its
teeth show the greatest degree of wear in two
areas of the dentition: the canines and the
carnassial/molar group. Incisors are gradual-
ly blunted by wear over time, yielding flat-
surfaced pegs. Premolars (p1–p4, P1–P3) are
not heavily worn, even in the oldest individ-
uals in which wear is limited to blunting the
principal cusp on each tooth (on p4, both the
principal and posterior accessory cusps are
eventually worn flat). The degree of wear
increases as one proceeds backward in the
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toothrow, culminating in heavily worn car-
nassials and molars. Thus, it is evident that
food taken into the mouth was transferred to
the rear where the focus of mastication
occurred.

The dentition of both juveniles and adults
of the species of Borocyon shows near
identity of dental pattern and wear relative
to the teeth of the D. superbus sample; a
similar dental/mandibular function and on-
togeny of tooth usage and wear is inferred for
these species, presumably retained through
descent from populations of late Arikareean
Daphoenodon. Toothwear facets on the car-
nassials and molars in D. superbus provide
evidence of shear as well as the blunting of
cusps. The shearing blade of m1, formed by
the labial surfaces of paraconid and proto-
conid, is nearly vertical in young adults in
which wear has just been initiated (this wear
surface forms a ‘‘V’’ on the labial face of the
trigonid, the apex downward, ending at the
cingulum). A reciprocal vertical wear surface
on P4 appears on the inner surface of the
metastylar blade and paracone. As m1 slides
past P4 during shear, m1 is shifted slightly
linguad as it moves along the inner face of P4
and the lingual surfaces of the M1 paracone
and metacone.

Without food between the teeth, full
closure of the jaws results in wear facets
produced by direct contact of upper and
lower canines, incisors, and p4–m3 with P4–
M3. There are several contact points along
the toothrow: (1) the interdigitating align-
ment of the canines and third incisors
produces deeply grooved vertical facets on
these teeth, but only flat wear surfaces appear
on the blunted tips of the inner incisors; (2)
insertion of m1 into the embrasure between
P4 and M1 takes place without contact of the
m1 protoconid with the maxilla—the upward
trajectory of m1 is arrested by contact of its
talonid basin with the M1 protocone, and by
contact of m2–m3 with the posterior half of
M2 and M3; and (3) the principal and
accessory cusps of the large p4 produce a
vertical facet on the anterior face of P4, and
the principal p4 cusp also creates a facet on
the inner heel of P3. The more anterior
premolars usually do not directly occlude;
food is trapped between their principal cusps
and worked back to the carnassials and

molars by the tongue—the horizontal, blunt
wear surfaces limited to the principal cusps of
the anterior premolars show that pressure
contact with their tips is the principal cause
of tooth wear.

Examination of an ontogenetic series of
wolf (Canis lupus) dentitions shows that there
is an established sequence of wear facets that
develop on the carnassials, molars, and
premolars as the animal ages. This sequential
wear pattern is closely approximated by
mandibles of Daphoenodon. Initially, in the
wolf, only the tips of cusps are slightly
blunted by wear, chiefly on the carnassials.
Next, significant wear appears on the car-
nassial pair as a narrow strip of dentine
where the enamel has been breached along
the cutting edges of P4 and the m1 trigonid;
this strip extends from paraconid to proto-
conid on m1, and from paracone to meta-
stylar blade on P4. Wear on P4 is often
pronounced in the carnassial notch itself.
This wear pattern is consistent with the Every
effect, the interlocking of upper and lower
carnassials by resistant food material (Mel-
lett, 1981). Other than the wear on P4 in the
upper teeth, only the para- and metacone of
M1 show flat wear facets from slight blunting
of these cusps. This stage is followed by a
confluence of horizontal facets from in-
creased blunting of the cusps on m1 proto-
and paraconids and the metaconid. P4 shows
further wear on paracone and metastylar
blade creating a planar surface that is slightly
medially inclined. The paracone and meta-
cone of M1 are next worn to more extensive
flat surfaces but remain tall, and the principal
cusps of the anterior premolars (p2–p4, P1–
P3) now show initial wear. Finally, in late
wear, the m1 protoconid and paraconid are
heavily worn to a nearly continuous planar
surface—hypoconid and entoconid are worn
to a flat platform as is the m2 protoconid,
producing a uniform crushing surface ex-
tending from the m1 talonid to include the
entire m2. The P4 paracone is also heavily
worn to form a lingually inclined surface that
extends onto the metastylar blade. Wear on
the para- and metacone of M1 has produced
a continuous horizontal surface. Wear on the
tips of the anterior premolars yields blunt
cusps, with wear most extreme on the more
posterior teeth (P3, p4).
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If the mandibles of wolves are manually
occluded at each of these various wear stages,
it becomes evident that tooth-to-tooth con-
tact involving carnassial shear during food
processing is not the principal agency pro-
ducing wear facets on the teeth. The only
possible cause of this wear pattern during
ontogeny is the processing of hard food
objects that serve to blunt the teeth. It is
well known that wolves will process and
often consume bone of their prey along with
meat (Mech, 1970; Mech et al., 1971; Haynes,
1982, 1983; Gazzola et al., 2005), and it is
bone and other resistant connective tissues
that are responsible for the blunting of the
cusps over time. Young and Goldman (1944:
245) reported the contents of the stomach of
a male Alaskan wolf that bears on this point:
‘‘The stomach was about half full of the hair,
skin and leg bones of a Dall sheep. These
bones had been bitten into small sections
about one inch in length by the strong
carnassial, or chopping teeth, of the wolf.’’
Van Valkenburgh (1988) found that when
processing hard materials, tooth breakage is
a frequent occurrence among large living
carnivores, with bone-processors most prone
to tooth fracture. Of the eight B. robustum
mandibles, two show damaged teeth subse-
quently abraded through later wear.

The same pattern of blunting of the cusps
on carnassials, molars, and premolars of the
wolf is evident in Borocyon robustum, the only
species of Borocyon where the sample of
mandibles is adequate to judge ontogenetic
wear. However, in these Borocyon mandibles
the m2 is lengthened relative to m2 of Canis
lupus, creating a longer, more developed
crushing platform that extends from the m1
talonid to m3. This platform in B. robustum is
35%–36% (N 5 6) of the functional toothrow
length (p2–m3). It is ,26% in the wolf (N 5

7). It is this platform that serves as the locus
for bone processing in the African hunting
canid Lycaon pictus (Van Valkenburgh,
1996). Thus, the wear pattern of the dentition,
the presence of a crushing platform at the rear
of the toothrow, the structure of the mandib-
ular symphysis and craniomandibular joint,
as well as the robust skull with massive
temporomandibular musculature suggest that
durophagy was probably important in food
processing by these large, mobile carnivorans.

Scapino (1981) considered a flexible sym-
physis to be a practical adaptation in large
durophagous carnivorans crunching hard
bone, allowing the teeth to avoid sudden
damaging impacts when breaking hard ma-
terial, a behavior made possible by a
compensating rotation of the mandible about
its long axis. Borocyon robustum represents
an end-member of a lineage that came to rely
on carnassial/molar crushing for the process-
ing of hard materials.

The method of Therrien (2005) was used to
create a mandibular force profile for Boro-
cyon robustum (table 7). The hemimandible
(UNSM 25684) that best occluded with the
paratype cranium (see frontispiece) was
measured because of the lack of distortion
of its mandibular corpus and dentition. This
is a large individual (UNSM 25684), proba-
bly male, but not the largest of the available
hemimandibles of the species. Bite force
calculated at successive points along the
length of the mandible reflects adaptation
to load-bearing (Biknevicius and Ruff, 1992a,
1992b). Bending strength is represented by
the section modulus (Z) calculated from
measurements of mandibular depth and
width at these points.

Therrien (2005) argued that the mandibu-
lar force profile derived from these values for
jaw depth and width contributed insight into
feeding behavior. He applied beam theory to
the hemimandible, which was modeled in
cross-section as a solid ellipse of bone.
Biknevicius and Ruff (1992a) developed a
similar model that accounted for the absence
of bone within the mandibular cylinder
(medullary space), a method requiring planar
radiographs of the mandible to measure
cortical bone thickness.

The mandibular force profile for B.
robustum (fig. 39) was compared to those
for canid, felid, and hyaenid carnivores
presented by Therrien (2005: figs. 3–7). Man-
dibular depth and width were measured at
the same interdental loci utilized by Therrien
(2005: fig. 2). Bending strength in the
dorsoventral (Zx) and labiolingual (Zy) planes
was calculated from these measurements as
well as relative mandibular force (Zx/Zy). The
values for Zx and Zy, relative to the distance
(L) from the articular condyle to each
interdigital locus, allow a comparison among
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carnivore species of the magnitude of bending
strength along the length of the mandible.

Zx/Zy values are proportional to the ratio
of the depth and width diameters. Ratios
.1.00 demonstrate resistance to dorsoventral
loading (a deep, narrow mandible); a ratio
,1.00 indicates a resistance to labiolingual
torsion or bending. Therrien (2005) suggested
that the ability to tolerate high dorsoventral
loading enabled the animal to exert consid-
erable bite force on its prey. Resistance to
labiolingual forces permitted the carnivore to
withstand strong torsional and transverse
forces that result from the processing of hard
materials or from the violent actions of
struggling prey.

The mandibular force profile of B. robus-
tum closely corresponds to those of living
canids such as the grey (Canis lupus) and dire
wolves (Canis dirus), but it parallels living
hyenas in the strength of the symphyseal
region (fig. 39). Therrien (2005) considered
that the high Zx/Zy values of hyaenids
(,1.20) at the canine reflect a well-buttressed
symphysis, on occasion involved in bone
processing in Crocuta. The Zx/Zy value for B.
robustum at the canine is also 1.20 but it is
unlikely that the symphyseal region was
routinely involved in bone processing. Al-
though the highly interdigitated, rugose bone
of the Borocyon symphysis attests to its
strength relative to that of the wolf, the force
profile suggests that durophagous processing
was accomplished by the post-carnassial
battery that forms the crushing platform at
the back of the mandible. As in canids studied

by Therrien, the slope for the dorsoventral
force values (Zx/L) was steeper than that for
the relatively uniform labiolingual values (Zy/
L, table 7), indicating that dorsoventral bend-
ing strength is pronounced beneath the poste-
rior cheek teeth. The Zx/Zy values similarly
indicate increased dorsoventral buttressing of
the mandible beneath the crushing molars.

A deep mandibular corpus beneath the
molars was interpreted by Therrien (2005) as
an adaptation for bone processing, and it
supports the inference that B. robustum was a
durophagous feeder (note the marked in-
crease in Zx/Zy behind the carnassial from
2.56 to 3.33, which is similar to Canis lupus at
2.66 to 3.24). When considering labiolingual
forces (Zy/L) applied to the mandible during
torsion and the application of transverse
stresses, the mandible of B. robustum is
apparently equally strong at the canine and
in the post-carnassial region, reflecting that
the emphasis in mandibular reinforcement is
principally focused on a highly developed
resistance to dorsoventral bending in the
postcarnassial mandibular corpus.

Application of Therrien’s method to B.
robustum does not provide absolute values
for bite force but yields a useful relative
comparison with living carnivores that sug-
gests a feeding style involving quick, shallow
but powerful bites, a strongly buttressed
mandibular symphysis, and the processing
of hard materials by the posterior cheek
teeth, hence a composite of canid and
hyaenid attributes, and in overview the
possibility of a pack hunting lifestyle. No

TABLE 7
Mandibular Force Profile for Borocyon robustum (UNSM 25684) Calculated According to Therrien’s (2005)

Method of Beam Analysis

Section Modulus
Distance (cm) from

Articular Condyle

Measure of Bending Strength

Zx Zy Log Zx/La Log Zy/Lb Zx/Zyc

Canine 6.08 5.06 21.80 20.55 20.63 1.20

P3–P4 3.61 1.62 16.90 20.67 21.02 2.23

P4–M1 4.23 1.75 14.80 20.54 20.93 2.41

M1–M2 5.71 2.23 11.54 20.31 20.71 2.56

M2–M3 5.87 2.04 9.57 20.21 20.67 2.88

Post M3 7.22 2.17 8.50 20.07 20.59 3.33

aDorsoventral force.
bLabiolingual force.
cRelative force.
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large living carnivore is an exact comparator
to Borocyon robustum in its mandibular
morphology and force profiles—its feeding
style appears to have combined adaptations
distributed today among large canids and
hyaenids. Perhaps most striking, however, is
that the forces generated by its mandibular
biomechanics were indeed formidable.

In the totality of its mandibular and dental
characteristics, Borocyon robustum remains
somewhat outside the morphologic spectrum
represented by living large carnivorans, a
predator whose anatomical mosaic of cra-
niodental and postcranial traits existed only
briefly in the North American early Miocene
interval.

CONCLUSIONS

The daphoenine amphicyonid Borocyon
robustum was the dominant long-limbed
predatory carnivoran of the North American
early Miocene. The species occurs from the
Pacific Northwest through the Great Plains
to the Florida Gulf Coast, a geographic
range made known only recently. Although
previously unrecognized as a keystone species
of its predator guild, due to scarcity of fossil
remains, currently available craniodental and
postcranial material provide a nearly com-
plete account of the skeleton. The principal
skeletal modifications evolved within the
Borocyon lineage were identified by compar-

Fig. 39. Mandibular force profiles of large living carnivorans and the amphicyonid Borocyon robustum
(in part from Therrien, 2005). Values represent relative mandibular force (Zx/Zy).
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ison with the plesiomorphic species Daphoe-
nodon superbus and D. notionastes, which are
both ‘‘short-legged’’ daphoenine amphicyo-
nids.

Borocyon robustum represents the conclu-
sion of a remarkable experiment within the
daphoenine Amphicyonidae, evolving a long-
limbed pursuit predator, capable of securing
its prey through enhanced muscular strength
and an economic gait that probably empha-
sized endurance over speed. The lengthened
forelimb, equaling proportions of efficient
living runners such as wolves, attests to this.
The forelimb is remarkable for an early
Miocene amphicyonid, and its musculoskel-
etal characteristics are distinct from all New
World amphicyonines. Elongation of the
distal forelimb is most similar to that of
living wolves and cheetahs and is more
pronounced than seen in living lions and
tigers. The hindlimbs, adapted for forward
thrust with a parasagittal alignment, powered
the engine of locomotion. A proportional
increase in stride length, together with limb
elements emphasizing efficient fore–aft mo-
tion, suggests a capability for stamina and
even speed in pursuit of prey.

Craniodental morphology of B. robustum
includes a canid-like dentition with well-
developed canines, premolars, carnassials,
and crushing post-carnassial molars. The
wear pattern of these teeth gives evidence
of processing hard food materials while
retaining a capability for carnassial shearing
during the early and prime periods of the
carnivore’s lifespan. In old age the crushing
function predominated, based on the ten-
dency for molars and carnassials to be
worn to blunted, flat subhorizontal surfaces.
The form of the mandibular symphysis
suggests a degree of mobility during masti-
cation, with this flexibility adjusting the jaws
for processing durophagous materials such
as bone.

Borocyon robustum, as the terminal species
of the lineage, emerges as a mosaic of
craniodental and postcranial traits not evi-
dent in any other extinct or living large
carnivoran. This predator evolved skeletal
features that precede similar parallel adapta-
tions seen today in several of the large canid
and felid lines. Yet the total array of skeletal
features occurring in B. robustum represents

its own unique adaptive solution to the
environments of the North American early
Miocene. Among the large predatory Car-
nivora of the Oligocene and early Miocene,
Borocyon robustum and the temnocyonine
amphicyonids are the closest anatomical
parallels to the longer-limbed pursuit preda-
tors of the Pleistocene and Recent.

The species of Borocyon frequented semi-
arid terrain of New Mexico and the Great
Plains in the early Miocene and it seems
probable that the lengthened limbs and
anatomical adaptations for an economy of
gait evolved in response to the drying climate
and more open terrain of the North Amer-
ican midcontinent in the late Arikareean–
early Hemingfordian interval. Its size and
efficiency as a dominant member of its
predator guild surely contributed to its
subsequent appearance in the Pacific North-
west and the Gulf Coast.
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APPENDIX 1
Limb Bone Lengths (in mm) and Proportions of Daphoenine and Amphicyonine Amphicyonids, Living Ursids,

Felids, and Canids

Humerus Radius R/Ha Femur Tibia T/Fb

AMPHICYONIDAE

Daphoenus vetus

F:AM 50329 168 129 76.8 193 172 89.1

F:AM 25451 142 119 83.8

AMNH 11857 165 138 83.6 178

CM 492 185 135 73.0 201 179 89.0

YPM PU 13792 165 129 78.2 184 167 90.8

USNM 17847 160 125 78.1

F:AM 76206 159 125 78.6

Daphoenodon superbus

CM 1589 210 182 86.7 230 205 89.1

Borocyon neomexicanus

F:AM 68241 241

F:AM 68242 234 97.0e 282 90.8f

F:AM Jemez 7-105 240 99.6e

F:AM 68243 302

F:AM Jemez 6-86 306

F:AM Jemez 7-106 256

Borocyon niobrarensis

ACM 3452 270 265 98.1

UNSM 25555 263

UW 10004 264 250 94.7 319 271 85.0

Borocyon cf. B. robustum

KU 113751 280

KU 113706 255

KU 113645 322

Borocyon robustum

UNSM 26260 286

UNSM 26210 339g 95.8g

UNSM 25877 275

UNSM 25595 290

UNSM 26426 291

UNSM 25554 299

UNSM 26297 302

UNSM 25553 316

UNSM 26425 319

UNSM 44721 317

UNSM 26435 380

UNSM 26343 356h

UNSM 25558 321 84.5i

UNSM 26360 314 88.2i

Ysengrinia americana

CM 2400 300

UNSM 44606 287

F:AM 54147 270 241h 89.3

USNM 186993 351 280 79.8

UNSM 44600 260

UNSM 44601 250

UNSM 44691 252

UNSM 44624 364

UNSM 44690 353

UNSM 44620 287

UNSM 44621 297
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Humerus Radius R/Ha Femur Tibia T/Fb

UNSM 44622 287

UNSM 44623 288

Cynelos lemanensisc 220 197 89.5 282 240 85.1

Adilophontes brachykolos 222 199 89.6

URSIDAE

Ursus arctos

CNHM 43744d 304 247 81.2 355 248 69.9

CNHM 47419d 312 255 81.7 377 253 68.2

CNHM 84467d 204 162 79.4 249 179 71.9

Ursus arctos (Kodiak)

ZM 17888 405 334 82.5 448 331 73.9

ZM 19565 395 329 83.3 451 325 72.1

CNHM 63802d 415 345 83.1 519 355 68.4

CNHM 27268d 386 305 79.0 464 315 67.9

CNHM 63803d 327 268 82.0 390 275 70.5

Ursus americanus

UNSM 16986 268 240 89.6 299 239 79.9

UNSM 283 288 259 89.9 330 261 79.1

UNSM 15112 247 221 89.5 278 229 82.4

UNSM 3253 250 231 92.4 282 229 81.2

AM 24157 334 282 84.4 370 281 75.9

KU 12725m 328 269 82.0 358 282 78.8

KU 2232 297 266 89.5 343 262 76.4

KU 158714 243 224 92.1 285 220 77.2

Thalarctos maritimus

AM 75244 394 340 86.3 465 346 74.4

AM 75245 385 325 84.4 453 335 73.9

ZM 16938 396 339 85.6 477 346 72.5

Helarctos malayanus

ZM 27897 228 193 84.6 247 182 73.7

ZM 13875 180 153 85.0 194 144 74.2

FELIDAE

Felis concolor

UNSM 19688 231 192 83.1 270 256 94.8

KU 73932 218 183 83.9 260 244 93.8

KU 155308m 225 185 82.2 264 242 91.7

Panthera tigris

ZM 14343 296 242 81.8 334 285 85.3

ZM 14602 270 225 83.3 314 262 83.4

ZM 14603 274 221 80.7 — — —

AM 217100 301 260 86.4 345 296 85.8

AM 14030 267 226 84.6 301 261 86.7

AM 14032 298 250 83.9 340 291 85.6

AM 85404 344 289 84.0 398 347 87.2

AM 85396 345 287 83.2 398 349 87.6

AM 135846 313 265 84.7 348 300 86.2

Panthera leo

AM 85140 324 298 94.0 361 307 85.0

AM 85142 303 285 94.0 350 298 85.1

AM 85143 323 300 92.9 369 309 83.7

AM 85144 328 295 90.0 369 317 85.9

AM 85145 296 278 93.9 344 297 86.3

AM 85147 289 265 91.7 323 275 85.1

APPENDIX 1
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Humerus Radius R/Ha Femur Tibia T/Fb

AM 85149 330 302 91.5 368 322 87.5

AM 52078 369 333 90.2 404 339 83.9

AM 80609 332 311 93.7 372 320 86.0

AM 54995 322 293 91.0 360 320 88.9

KU 164623 302 278 92.1 339 302 89.1

KU 9432 339 311 91.7 377 324 85.9

KU 8413 280 260 92.9 319 279 87.5

KU 2768 300 280 93.3 331 291 87.9

KU 157340 349 314 90.0 382 328 85.9

AM 54996 301 273 90.7 338 302 89.3

Neofelis nebulosa

UNSM 16951 141 116 82.2 157 150 95.5

KU 143489m 174 144 82.7 189 182 96.3

KU 158656f 143 114 79.7 158 148 93.7

Acinonyx jubatus

UNSM 16913 263 252 95.8 285 287 100.7

UNSM 15518 236 235 99.6 254 260 102.3

UNSM 15552 253 250 98.8 279 280 100.3

UNSM 16019 — — — 244 244 100.0

CANIDAE

Canis lupus

CNHM 21207d 209 213 101.9 234 233 99.6

CNHM 51772d 228 227 99.6 255 246 96.5

CNHM 51773d 216 210 97.2 241 233 96.7

CNHM 54015d 209 207 99.0 230 232 100.9

UNSM 15596 230 230 100.0 244 261 106.9

UNSM 17458 — — — 244 253 103.7

UNSM 17459 233 232 99.6 253 260 102.8

UNSM 12641 222 226 101.8 238 253 106.3

KU 157331m 239 239 100.0 245 269 109.8

KU 2137 237 234 98.7 251 266 106.0

Canis latrans

UNSM 14166 170 173 101.7 184 194 105.4

UNSM 14180 166 173 104.2 181 194 107.1

UNSM 14246 155 160 103.2 172 178 103.4

UNSM 14459 165 172 104.2 176 183 104.0

UNSM 713 161 164 101.9 175 184 105.1

UNSM 2382 160 164 102.5 175 183 104.6

UNSM 3392 159 166 104.4 177 186 105.1

KU 16087m 167 170 101.8 179 189 105.6

Chrysocyon brachyurus

Davis, 1964: 35d — — 108.1 (2) j — — 107.8 (2) j

m indicates male; f, female.
aHumeroradial index (Davis, 1964).
bFemorotibial index (Davis, 1964).
cFrom Ginsburg (1977).
dFrom Davis (1964).
e234/241 mm and 240/241 mm, the range of estimated R/H ratios.
f256/282 mm, the most probable T/F ratio.
gEstimated length, calculated using proportions of an incomplete humerus. An R/H of 96.5 was determined for

Borocyon robustum using an average humerus length of 312 mm and an average radius length of 301 mm.
hEstimated.
i321/380 mm (Hemingford Quarries) and 314/356 mm (Bridgeport Quarries), the estimated T/F ratios.
jSample size.
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APPENDIX 2
Metapodial Lengths (in mm) of North American Daphoenine Amphicyonids

MC2 MC3 MC4 MC5 MT2 MT3 MT4 MT5 MC1 or MT1

Daphoenodon superbus

CM 1589 51 62 60 47 59 70 73 62 32 (MC1)

42 (MT1)

CM 1589C 63.1 73.3 77.3 68.3 42.3 (MT1)

CM 2774 60.5

AMNH 81055 68.5

CM 1599 57.7 69.4

CM 1589A 72.4

CM 1589Ba 58.4 68.3 73.6

FMNH UC1362 72.5 76.6

Daphoenodon skinneri

None

Daphoenodon falkenbachi

None

Borocyon neomexicanus

F:AM 68241 63.6 71b 38.5 (MC1)

F:AM 68240A 72.5

F:AM 68242 78.5 67.2 76.9 85.0 91.5

F:AM 68244 78.3 48.2 (MT1)

Borocyon robustum

Runningwater Fm.

UNSM 25574 82.1

UNSM 26432 79.8

UNSM 25564 96.7

UNSM 26434 96.7

UNSM 26433 95.0

F:AM 68263 82.3

F:AM 68264 76.0

F:AM 68264A 84.2

UNSM 25572 79.1

UNSM 26444 87.0

UNSM 26443 90.1

UNSM 25562 106.9

UNSM 26446 100.6

UNSM 26445 108.3

UNSM 26447 115.4

UNSM 26448 109.6

UNSM 25563 108.2

F:AM H275-2716 110.2

F:AM 68265 105.7

F:AM 68265A 86.5

UNSM 26450 92.7

UNSM 26449 80.0

CM 1918 49.7 (MC1)

Borocyon robustum

Bridgeport Quarries

UNSM 26460 53.4 (MC1)

UNSM 26461 50.6 (MC1)

UNSM 26462 84.1

UNSM 26463 84.3

UNSM 26464 82.4

UNSM 26465 79.1

UNSM 26466 77.4
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MC2 MC3 MC4 MC5 MT2 MT3 MT4 MT5 MC1 or MT1

UNSM 26467 93.3

UNSM 26468 98.9

UNSM 28469 88.7

UNSM 26470 92.6

UNSM 26471 98.8

UNSM 26472 97.5

UNSM 26473 102.0

UNSM 26474 100.0

UNSM 26475 95.1

UNSM 26476 100.6

UNSM 26477 78.1

UNSM 26478 76.2

UNSM 26479 77.0

UNSM 26480 78.0

UNSM 26408 92.0

UNSM 26409 89.8

UNSM 26410 89.7

UNSM 26411 105.8

UNSM 26412 102.6

UNSM 26413 103.3

UNSM 26414 108.0

UNSM 44700 97.6

UNSM 44701 100.2

Zia Sand Fm. (Chamisa Mesa Mbr.)

F:AM 68254 94.4 76.4

Borocyon niobrarensis

Runningwater Fm. (lower part)

ACM 3452 72.4 85.3 85.3 70.8 44.8 (MC1)

ACM 34-58 82.2 84.0

UNSM 44702 71.2 86.4 87.6

F:AM 107601 69.6

F:AM 68269 104.9

Unnamed rock unit

UW 10004 85.5 68.5 79.2 92.3 97.0

Borocyon cf. B. robustum

Suwannee River, Florida

KU 118496 86.3

KU 118495 78.2

KU 118488 91.9

KU 118486 100.5b

KU 118484 82.5

KU 118502 42.2 (MC1)

Adilophontes brachykolos

Anderson Ranch Fm.

F:AM 54140 74.0 78.9

MC indicates metacarpal; MT, metatarsal.
aMetapodials may not belong to one individual.
bEstimated measurement.
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APPENDIX 3
Metapodial Lengths (in mm) of Living Canids, Felids, Ursids, and Hyaenids

MC2 MC3 MC4 MC5 MT2 MT3 MT4 MT5 MC1 MT1

CANIDAE

Canis lupus

UNSM 15596 90.0 100.9 101.8 88.3 97.3 109.9 114.2 103.1 33.2

UNSM 17459 84.2 96.7 96.1 83.7 94.1 106.1 109.0 99.8 33.4

UNSM 17431 — — — — 96.9 111.7 115.1 100.4 —

KU 83463f 81.9 91.5 91.5 79.9 90.7 102.7 103.3 92.4 30.5

KU 157331m 89.5 100.5 100.3 86.0 99.2 111.0 112.8 100.9 32.9

Canis latrans

UNSM 14459 59.7 68.0 66.8 56.4 67.3 74.3 75.4 67.9 22.6

UNSM 14246 59.8 67.7 67.4 57.6 67.9 75.4 76.7 67.0 —

UNSM 14166 65.5 73.4 74.5 62.2 74.2 82.6 83.7 74.6 —

UNSM 14180 59.5 66.5 66.6 56.6 69.0 75.0 77.0 69.1 —

UNSM 3392 62.1 70.5 68.6 57.6 70.9 77.9 79.0 68.1 —

KU 16087m 61.8 70.1 69.1 59.0 71.2 79.8 80.9 72.8 — 9.5

FELIDAE

Felis concolor

UNSM 19688 75.1 84.2 79.7 62.4 93.9 103.1 100.4 89.1 28.6

UNSM 25870 79.2 86.5 82.8 64.6 94.2 105.6 104.2 92.4 —

KU 12722f 72.0 79.5 72.6 58.2 85.5 96.0 94.4 82.1 25.8 11.4

KU 155308m 68.5 77.5 72.7 58.1 90.8 103.5 99.7 85.6 25.9

Neofelis nebulosa

UNSM 16951 37.5 44.6 43.0 34.6 51.7 56.9 58.6 54.5 17.5

KU 143489m 46.8 54.2 52.0 41.8 60.0 67.3 68.7 62.0 22.3

Acinonyx jubatus

UNSM 16913 75.7 90.8 87.8 69.3 102.2 117.6 116.7 97.1 24.6

UNSM 16019 — — — — 89.3 101.7 100.1 85.4 13.6

UNSM 15518 71.3 87.1 84.0 67.2 98.1 109.7 109.7 94.5 14.1

UNSM 15552 74.2 89.0 86.6 67.6 100.1 116.6 116.1 97.1 24.8

UNSM 15479 57.9 69.5 68.7 53.1 82.7 98.1 97.4 82.0 19.8

UNSM 15603 65.7 77.8 75.6 60.1 — — — — 21.8

Panthera onca

UNSM 16919 55.5 62.0 59.6 47.4 64.9 73.8 73.6 66.2 24.5

Panthera pardus

UNSM 21000 60.2 69.7 67.0 53.8 74.6 83.3 83.2 76.3 21.1

KU 127982f 54.9 63.5 60.7 47.6 69.3 78.7 77.9 70.3 21.2 11.5

KU 41253f 56.1 67.3 65.6 50.9 72.5 84.6 86.0 75.0 23.1 11.9

Panthera leo

UNSM 15480 98.6 109.3 102.1 83.9 — — — — —

KU 164623 95.2 109.0 105.5 85.9 109.6 123.3 123.6 108.8 42.1 18.2

KU 9432m 111.1 122.4 118.4 99.5 124.8 138.6 137.3 123.5 — 21.9

KU 2753m 99.0 115.5 113.2 88.9 117.2 133.7 136.4 121.2 —

KU 163781f 95.5 111.7 106.8 86.2 113.1 123.8 124.7 113.0 38.1 20.8

KU 8413f 92.7 105.3 102.1 82.4 108.8 119.7 118.2 106.9 40.6 23.6

KU 12102f 94.8 108.7 104.0 85.4 110.8 123.4 123.5 108.4 38.7 22.0

KU 2768 91.2 104.7 101.4 84.7 110.3 123.8 124.2 112.0 39.4

Panthera tigris (Siberia)

UNSM 16656 103.5 118.0 113.8 88.9 — — — — 42.7

FMNH 159999f 95.4 110.8 105.6 82.3 109.2 125.3 121.2 105.7 40.9 19.6

Panthera tigris (So. Asia)

FMNH 60760f 93.0 108.0 101.0 82.0 107.8 123.0 119.2 104.0 36.2
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MC2 MC3 MC4 MC5 MT2 MT3 MT4 MT5 MC1 MT1

FMNH 57172 95.8 111.6 105.4 83.8 110.9 125.4 122.7 111.1 39.7

FMNH 134496m 94.7 108.1 104.8 83.4 109.8 123.1 121.5 108.1 42.5

FMNH 165401 83.0 97.2 93.1 74.3 95.0 110.0 109.2 96.6 35.4

Panthera tigris (Sumatra)

UNSM 14602 83.1 94.4 90.1 70.1 96.5 109.2 106.8 95.3 33.2

UNSM 14343 89.1 101.1 97.9 75.1 — — — — 37.1

URSIDAE

Ursus americanus

UNSM 1870 60.8 65.3 65.7 64.0 60.9 65.3 65.7 64.6 50.4 46.7

UNSM 15112 59.1 62.3 62.9 63.0 56.4 60.5 67.0 66.4 —

KU 158714f 55.4 58.5 60.6 60.0 51.8 57.5 64.3 64.0 45.0 42.3

KU 2232 67.8 70.5 73.0 73.8 65.6 71.2 78.4 77.3 56.9 53.3

Ursus arctos (Kodiak)

ZM 17888 98.6 101.0 103.9 105.9 95.0 102.2 110.2 114.1 93.0 84.1

HYAENIDAE

Crocuta crocuta

UNSM 16471 86.1 97.9 96.0 81.4 80.8 89.6 89.0 76.3

UNSM 16470 90.3 103.8 98.1 76.1 84.1 94.6 89.8 71.0

Hyaena brunnea

UNSM 15506 86.0 97.9 95.0 82.2 80.4 87.7 85.3 75.9

MC indicates metacarpal; MT, metatarsal; m, male; f, female.

APPENDIX 3
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APPENDIX 4
Comparative Length (in %) of Paraxonic

Metatarsals 3–4 Relative to Metacarpals 3–4 of
Living Canids, Felids, Ursids, Hyaenids, and the

Amphicyonid Borocyon

%MT3

. MC3

%MT4

. MC4

AMPHICYONIDAE

Daphoenodon superbus

CM 1589 12.9 21.7

Borocyon neomexicanusa — 16.6

Borocyon niobrarensisb 9.1 13.3

Borocyon robustumc 9.4 10.2

CANIDAE

Canis lupus

UNSM 15596 8.9 12.2

UNSM 17459 9.7 13.4

KU 83463f 12.2 12.9

KU 157331m 10.4 12.5

Canis latrans

UNSM 14459 9.3 12.9

UNSM 14246 11.4 13.8

UNSM 14166 12.5 12.3

UNSM 14180 12.8 15.6

UNSM 3392 10.5 15.2

KU 16087m 13.8 17.0

FELIDAE

Felis concolor

UNSM 19688 22.4 26.0

UNSM 25870 22.1 25.8

KU 12722f 20.8 30.0

KU 155308m 33.5 37.1

Neofelis nebulosa

UNSM 16951 27.6 36.3

KU 143489m 24.1 32.1

Acinonyx jubatus

UNSM 16913 29.5 32.9

UNSM 15518 25.9 30.6

UNSM 15552 31.0 34.0

UNSM 15479 41.1 41.8

Panthera onca

UNSM 16919 19.0 23.5

%MT3

. MC3

%MT4

. MC4

Panthera pardus

UNSM 21000 19.5 24.1

KU 127982f 23.9 28.3

KU 41253f 25.7 31.1

Panthera leo

KU 164623 13.1 17.2

KU 9432m 13.2 16.0

KU 2753m? 15.8 20.5

KU 163781f 10.8 16.8

KU 8413f 13.7 15.8

KU 12102f 13.5 18.8

KU 2768 18.2 22.5

Panthera tigris

UNSM 14602 15.7 18.5

FMNH 57172 12.4 16.4

FMNH 60760 13.9 18.0

FMNH 159999 13.1 14.8

FMNH 134496 13.9 15.9

FMNH 165401 13.2 17.3

URSIDAE

Ursus americanus

UNSM 1870 0.0 0.0

UNSM 15112 23.0 6.5

KU 158714f 21.7 6.1

KU 2232 1.0 7.4

Ursus arctos (Kodiak)

ZM 17888 1.2 6.1

HYAENIDAE

Crocuta crocuta

UNSM 16471 29.3 27.9

UNSM 16470 29.7 29.2

Hyaena brunnea

UNSM 15506 211.6 211.4

MT indicates metatarsal; MC, metacarpal; m, male; f,

female.
aNot certainly from one individual but from the same

quarry.
bBased on two individuals of similar body size, one

with MC3–MC4, the other with MT3–MT4.
cBased on averages from multiple individuals.
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