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INTRODUCTION
STUDENTS OF INVERTEBRATE FOSSILS hold
wridely divergent opinions concerning the ap-
plicability of biometrical methods. One ex-
treme of modern practice is illustrated in the
mnonograph by Deleers and Pastiels (1952) on
collections of Lingula from the Belgian lower
Carboniferous, a study combining exceeding-
ly complete quantitative data with elaborate
statistical analysis. A completely different
approach, exemplified by Wang (1949) in an
excellent modern treatment of an Ordovician
brachiopod fauna, employs a minimum of
quantitative data and no formal statistics.

Advocates of more widespread use of
quantitative methods in invertebrate paleon-
tology have indicated the advantages of these
techniques over procedures that do not make
explicit use of statistics. These arguments
can, in general, be reduced to three:

1. Descriptions of taxonomic characters
that can be simply and logically related to
measurements (or counts) are always more
accurate if observations are made and pre-
sented quantitatively. Thus, "mean length,
10.3 mm." is far more revealing than "length
average for the genus," or "medium size."

2. With the abandonment of the typo-
logical concept, it is no longer desirable to
limit the description of a species to observa-
tions on the holotype. In fact, a logical con-
sequence of the acceptance of the interbreed-
ing population as the basic taxonomic unit is
the expansion of species descriptions to in-
clude observations on representative groups
of individuals. (This procedure, of course, in
no way diminishes the importance of the
holotype as a nomenclatorial reference point.)
The most direct and perhaps the simplest
way of accomplishing this is to present de-
scriptive data in tabular form. Such tables
are often impractical to publish, however,
and usually obscure rather than emphasize
essential characteristics of the sample. Clear-
ly, descriptive devices are needed that will
summarize compactly the essential character-
istics of a series of observations. Just such
devices, called statistics, have been designed.
They have been repeatedly tested em-
pirically; their theoretical basis has been
thoroughly scrutinized; and they are very
widely understood. Statistics are therefore

recommended as the most efficient tools to
use in dealing with quantitative observations
on collections of invertebrate fossils.
Now it is often possible to record some of

the important characteristics of collections
without the formal computation of statistics.
A photograph or measurement of a "typical
specimen," for example, conveys in a general
way the same information as a series of arith-
metic means. Similarly, measurement of the
smallest and largest observed specimens (ob-
served range) in a sample of known size is a
reasonable way of recording information on
variability. Useful as these substitutes are
for the formal computation of statistics, they
have definite limitations in invertebrate
paleontology. The problem of measuring bio-
logical variability in typical collections of in-
vertebrate fossils is a case in point. Such
samples usually include a mixture of indis-
tinguishable age classes so that the observed
range of many characters is not related to in-
herent biological variability. Variability is in
this case best measured by a statistic (the co-
efficient of relative dispersion) for which there
is no effective qualitative substitute.

3. Although an essential part of taxonomy
involves the study of groups of actual speci-
mens, the science is fundamentally concerned
with the drawing of inferences about living
populations. Viewed in this way, every spe-
cies description is an act of faith based on the
assumption that from the characteristics of
the specimens actually at hand it is possible
to draw useful inferences concerning the origi-
nal population. Now the science of statistics
is largely concerned with the analysis of sam-
ple-population relationships. So many useful
guides to understanding have been worked
out and tested that it is surely improvident
for a taxonomist not to take advantage of
this generalized experience as he attacks his
special problems. This is not to say that any
amount of statistical work on a sample can
ever tell the taxonomist exactly what the
characteristics of the original population
were. But by application of statistical prin-
ciples he can do the next best thing: pre-
determine the chance he is willing to take of
making an error (say, 1 in 100), and then
describe an interval within which he is sure
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(99% sure) that the population value lies.
Closely related to this process of establishing
confidence limits for estimates of population
characteristics is the problem of statistical
discrimination: Given two collections that
differ in some character, what is the proba-
bility that this difference arose by chance in
the sampling of two identical populations?
A satisfactory answer to this question is a

logical prerequisite to sound taxonomic dis-
crimination. In many cases, of course, the
decision is quite clear without formal statis-
tical calculation. In others, the taxonomist is

grateful for an unbiased guide.
These arguments in favor of the biometric

approach to taxonomic problems are cer-

tainly cogent, and it is worth while to in-
quire why such techniques have not in fact
been more widely adopted in invertebrate
paleontology. Is it because the paleontologist
lacks sufficient special training to apply the
methods of statistics? This question can be
answered firmly in the negative, because a

number of students, in addition to arguing
for a more widespread use of quantitative
methods, have provided clear explanations of
procedures with examples drawn from in-
vertebrate paleontology. Papers by Burma
(1948, 1949), Miller (1949), Olson and Miller
(1951), and Kermack (1954) may be cited as

typical examples of this group. In addition to

these publications relating directly to inverte-
brate fossils there is a large and growing
literature on the application of biometrics to

taxonomic problems in general. Many of
these works, e.g., Simpson and Roe (1939),
Cazier and Bacon (1949), and Mayr et alii

(1953, chap. 7), are designed for the biologist
lacking special mathematical training. Slight-
ly more demanding in terms of mathematical
requirements, but by no means formidable,
are a number of clearly written basic statisti-
cal texts, e.g., Snedecor (1946), Dixon and
Massey (1951), and Wilks (1951). Hence the
sparsity of biometrical analyses on inverte-
brate fossils must be due to something other
than a lack of special training.
Two serious objections have been raised

against the use of biometrical techniques:
first, that these techniques cannot be validly
applied to most invertebrate fossils; and,
second, that the techniques are too time-
consuming to justify their general applica-
tion. These objections, and others, are con-
sidered at some length in the present paper.
The conclusion is reached that there are tech-
niques, at present not widely applied, which
violate neither statistical nor paleontological
principles, and which are valuable tools in at-
tacking several kinds of taxonomic problems.
Further, the statistics necessary to charac-
terize the average paleontologic sample can
be computed in no more time than it takes to
prepare a thin-section, provided that suitable
computational aids are employed. It seems
therefore that at the species level much can
be gained and nothing lost by the inclusion of
suitable statistical data. The full scientific
fruits of biometrical investigation will not be
realized until the description of a large num-
ber of samples includes statistical characteri-
zation. This basic task should not, indeed can-
not, be deferred until every genus is known
and every species qualitatively diagnosed.
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THE PLACE OF BIOMETRICS IN TAXONOMY
BIOMETRICS AT THE SPECIFIC
AND INFRASPECIFIC LEVELS

BIOMETRICS IS HERE CONSIDERED to be the
statistical treatment of quantitative morpho-
logical data. Thus defined, biometrics has a
limited application in the field of taxonomy
-a limitation due, first, to the fact that
many important taxonomic characters can-
not be efficiently represented numerically,
and, second, to the fact that many taxonomic
problems which do involve quantitative data
can be most effectively dealt with by non-
statistical means. At the generic level of
classification, for example, there is rarely a
need for statistical analysis. The genus is
usually diagnosed on a limited set of rela-
tively constant characters, so that in prac-
tice any complete adult specimen can be iden-
tified generically. In groups so defined there is
normally little need or place for statistical
aids in description and discrimination.
When populations, subspecies, and closely

related species are dealt with, however, taxo-
nomic problems of an essentially different
sort are encountered. At these levels dis-
crimination is usually based on group tend-
encies rather than on the possession of key
characters that distinguish all members of
one group from all members of another.' In
precisely these circumstances biometrical
procedures can be most effectively and use-
fully applied. Techniques discussed and illus-
trated in this paper are therefore designed
primarily for specific and infraspecific levels.

In one sense the existence of morpho-
logically overlapping populations is merely a
taxonomic problem subtle enough to require
the aid of statistical methods. Viewed broad-
ly, however, intergradation on specific and in-
fraspecific levels offers a challenging oppor-
tunity to the paleontologist equipped with
biometrical tools-an opportunity to record
with reasonable precision some of the results
of dynamic evolutionary processes.

SPECIES CONCEPT IN INVERTE-
BRATE PALEONTOLOGY

Because the present paper is concerned
primarily with the application of biometric

1 See Simpson (1945, pp. 20-22) for an enlightening
discussion of the dimensions of classification.

techniques to the lower levels of classifica-
tion, it is desirable to review certain aspects
of the concept of fossil species.
Mayr et alii (1953, p. 25) define species as

"groups of actually (or potentially) inter-
breeding natural populations which are repro-
ductively isolated from other such groups,"
and probably most paleontologists today ac-
cept this view of living species. In applying
this definition to fossils, the taxonomist en-
counters two principal difficulties. He is,
first, faced with the problem of subdividing
continuously evolving lineages and, second,
required to find evidence on the breeding
habits of organisms long dead.
The first difficulty mentioned above is

more theoretical than real, for in spite of the
extended attention this matter has received,
the fact remains that continuous fossil
records of evolving lineages are rare. Even
when they do occur, subdivision need not be
entirely arbitrary. The limits of stratigraphic
units, for example, may define useful and, in
a sense, natural taxonomic boundaries (Simp-
son, 1943, p. 176). From the point of view of
the biologist, a more satisfactory subdi;vision
can perhaps be achieved by the designation of
one particular population as the midpoint of
the morphologic range of the species. Contro-
versy then centers about the criteria used to
define the morphological range of the species.
Although some students advocate qualita-
tive, and others quantitative, evaluation, the
object should be to determine with reason-
able probability a morphological range that
would include just those populations poten-
tially capable of interbreeding with the popu-
lation chosen as midpoint.
We are thus led to consider the second and

basic difficulty involved in applying the neon-
tologic definition of species to the fossil
record, namely, that there is never any direct
evidence concerning the breeding habits of
fossilized organisms. Lacking such evidence,
the paleontologist must proceed very much
as a neontologist would in analyzing allo-
patric populations: he must make the best
possible inference from the morphologic, geo-
graphic, and stratigraphic data at hand.

In doing this, the paleontologist must make
certain simplifying assumptions. For ex-
ample, it must be assumed that in general
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there is a positive correlation between
reproductive isolation and morphological di-
vergence. Barring some unheralded advance
in analytical techniques, this will inevitably
mean that some valid species are lumped and
some ecophenotypic variants split.
The paleontologist, lacking contrary evi-

dence, must often make another assumption:
that specimens found together at the same
locality and horizon did in fact live together.
This assumption considerably simplifies taxo-
nomic judgment, for it is axiomatic that truly
sympatric populations showing no evidence
of hybridization are valid separate species.

Fossil species that are demonstrably con-
generic and sympatric are of considerable
importance in applied taxonomy, for they
provide the student with some insight into
the degree of morphological change asso-
ciated with specific divergence. The experi-
ence gained in this way provides a yardstick
for evaluating morphological differences be-
tween geographically or stratigraphically
separated collections.
Some students hold that it is possible and

desirable to distinguish subspecies that de-
velop simultaneously in different localities
from those that evolve during a portion of
geologic time. The former have been called
geographic, and the latter chronologic, sub-
species. In fact some paleontologists (e.g.,
Burma, 1948, p. 741) advocate that the term
subspecies be restricted to geographic sub-
species. It has been noted by several students,
however, that there is no basic difference be-
tween these supposedly contrasting cate-
gories, as both represent secular accumula-
tion of genetic differences. Moreover there is
a practical objection to distinguishing geo-
graphic from chronologic subspecies, for it is
rarely possible to demonstrate simultaneity
in the stratigraphic record.
Study of living populations has shown that

if sufficiently rigorous methods are em-
ployed, significant morphologic and genetic
differences between two populations can be
demonstrated (see Mayr et al., 1953, p. 31).
Hence species and subspecies must be con-
sidered as collective categories, in the sense
that they are composed of local populations
no two of which are identical. The only
logical alternative to this concept would be

to grant each local population a formal name.
The application of such a scheme to modern
organisms would yield a totally impractical
taxonomy. In invertebrate paleontology it
would lead to chaos. Yet several modern stu-
dents of fossils have proposed just this, under
the guise of employing the subspecies or
variety to designate the smallest statis-
tically demonstrable unit.

SOME TAXONOMIC PROCEDURES
SUBJECT TO BIOMETRIC

ANALYSIS
CHARACTERIZATION

A sample is said to be characterized when
morphological attributes judged to be taxo-
nomically important are recorded for study
or publication. Because systematic knowl-
edge of fossil organisms is based primarily on
characterizations of paleontological samples,
it is obviously important that published de-
scriptions of unit characters include com-
pact, informative, and objective data on the
entire suite of available specimens. Whenever
characters selected for study can be expressed
quantitatively, these objectives are most
easily achieved by statistical techniques. It is
demonstrated in a later section of this paper
that adequate statistical characterization of
any pair of variates requires the calculation
of only seven quantities: N, x, y, sx, sz,, r,
and OR.. Characterizations of this sort are,
of course, to be viewed as complementary
to qualitative descriptions. Statistical data
alone are incapable of recording the morpho-
logical subtleties of the simplest biological
form. Conversely, words and pictures alone
cannot record the essential group features of
a sample.

STATISTICAL DISCRIMINATION
Because no two collections of fossils are

ever exactly identical, most taxonomic prob-
lems at one stage involve a balancing of simi-
larities and differences. In order that sound
taxonomic judgments may be made, there-
fore, it is necessary to bear in mind that ob-
served differences between any two samples
can always be explained in one of two ways.
First, the samples may have been derived
from the same or identical populations, in
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which case the differences are the chance re-
sult of taking samples of limited size from
large populations. Second, the samples may
represent populations that were in fact not
identical. Differences of the first sort are
termed "statistically non-significant"; dif-
ferences of the second type are referred to as
"statistically significant"; and the process of
arriving at a judgment of statistical signifi-
cance or non-significance is here designated
statistical discrimination. Thus the aim of
statistical discrimination is to answer the
question: What are the chances that the ob-
served differences between two fossil collec-
tions are due solely to random sampling
error?
When closely related populations are dealt

with, it is usually impossible to arrive at an
exact answer to questions of statistical sig-
nificance. The best that can be done is to cal-
culate the probability that the observed dif-
ference is due to chance alone. In a judgment
of this probability, three factors are involved:
the size of the samples, the variability of the
samples, and the degree of difference between
the samples. Whenever samples are large,
relatively invariable, or separated by a con-
siderable morphological gap, statistical dis-
crimination can be satisfactorily accom-
plished by visual inspection alone. In such in-
stances it would, of course, be a needless
waste of time to apply elaborate mathemati-
cal procedures. When differences are more
subtle, and collections smaller or more vari-
able, the taxonomist welcomes the objective
guides provided by formal statistical analysis.
As some of the important techniques of

biometrical discrimination are outlined in later
portions of this paper, it would serve no pur-
pose to elaborate them here. In essence, these
methods employ quantitative measures of
sample size, variability, and degree of differ-
ence in order that a numerical statement of
the probability of significant difference can
be achieved. Provided that samples have
been statistically characterized, none of the
discrimination techniques described below
takes more than a few minutes to apply.
Thus if there is any doubt about the statisti-
cal validity of separating two samples, there
can be little practical objection to mathe-
matical analysis.

TAXONOMIc DISCRIMINATION
Having determined that two samples are

statistically distinct, the taxonomist must de-
cide whether or not recognition of separate
formal categories is justified. The process of
arriving at judgments of this sort is here re-
ferred to as taxonomic discrimination.
Some paleontologists hold that whenever

statistical differences between two samples
can be demonstrated, these samples should
be considered separate species or subspecies.
This procedure is said to offer the most ob-
jective means of defining the limits of a taxo-
nomic unit. However, if systematically em-
ployed, such a practice would result in a sepa-
rate named species for almost every collec-
tion. Furthermore, this procedure violates
the modern theoretical concept of species
and subspecies as collective' categories.
Taxonomic discrimination is properly

based on a combination of morphologic, geo-
graphic, and stratigraphic evidence. Eval-
uation of this sort is thus fundamentally non-
statistical and ideally should never rest on
biometrical data alone. However, to the ex-
tent to which taxonomic judgments are based
on morphological data, the systematist can
frequently benefit from statistical aids de-
signed to measure the degree of morpho-
logical overlap between related populations.
Three methods of overlap analysis can be

employed: univariate analysis, which con-
siders overlap in one character at a time; bi-
variate analysis, which considers the amount
of overlap in two related characters simul-
taneously; and multivariate analysis, which
considers overlap in a multidimensional con-
tinuum. Because differences and similarities
between real populations always involve a
large number of characters, multivariate
analysis is theoretically preferable. Unfortu-
nately, such methods are too laborious and
abstract for wide application. In practice,
therefore, biometrical aids in both taxonomic
and statistical discrimination are best con-
fined to univariate and bivariate analyses.
This limitation is not so serious as it may
seem, provided that statistical methods are
applied at a late stage in an investigation as
a means of testing critical hypotheses. For
example, if careful scrutiny has indicated
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that two collections are most readily dis-
tinguished on the basis of two or three unit
characters, a univariate or a bivariate bio-
metrical study of these characters may yield
valuable data.

Several convenient methods of describing
univariate morphological overlap are in use.
These include the population range diagram
(Simpson and Roe, 1939, p. 318; Hubbs and
Perlmutter, 1942; Cazier and Bacon, 1949,
p. 384; Hubbs and Hubbs, 1953) and a
method for estimating percentage overlap
between pairs of populations (Mayr et al.,
1953, pp. 145-147).

Because univariate techniques have a

somewhat limited application in invertebrate
paleontology, attempts have been made to
analyze morphological overlap in bivariate
distributions. Burma (1948, p. 748) uses re-

gression lines and the standard error of esti-
mate as a means of estimating population
ranges. Klauber (1943, p. 56) outlines the use
of a measure of overlap between two bivariate
samples at selected growth stages. Kotaka
(1953) and Pastiels (1953, pls. 10, 11) em-

ploy ellipses of equal probability as a means

of describing range of variation. None of
these methods, however, has been tested
widely enough to justify further attention
here.
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SURVEY OF SOME BASIC STATISTICAL CONCEPTS

TH3:E PRESENT paper is an attempt to provide
an elementary presentation of biometrical
procedures especially relevant to invertebrate
paleontology.' Both univariate and bivariate
analyses are considered. Univariate tech-
niques are treated very briefly, partly be-
cause many lucid explanations are available,
and partly because these techniques are less
widely applicable than bivariate methods.

POPULATION AND SAMPLE
IN PALEONTOLOGY

Statisticians and biologists commonly use
the word "population" in distinctly different
but obliquely related ways, a circumstance
that has been responsible for many erroneous
conclusions. In order to avoid confusion,
therefore, it is necessary here to define several
terms.
The group of specimens actually studied

during the course of an investigation is re-
ferred to here as the statistical sample, or
simply the sample.
The total interbreeding population is de-

fined as the entire group of organisms with
which the individuals in the sample were po-
tentially capable of interbreeding. Thus the
total interbreeding population consists of an
unknown but real group of organisms which
existed at different times and places. In es-
sence, this is the neontological concept of
species with its inherent and arbitrary
chronological limitation removed.
At any instant of geologic time, the total

interbreeding population is composed of
a number of local interbreeding popula-
tions separated geographically and exhibiting
slight but measurable morphologic and
genetic differences. The entire group of such
local populations living at any one time cor-
responds to the neontological concept of spe-
cies.
The total fossil population can be defined

as all the members of the total interbreeding
population that are preserved today as fos-
sils.

I In preparing this paper, the present writer has had
the advantage of discussing many of the statistical
problems involved with Prof. Howard Levene of Co-
lumbia University, but bears the sole responsibility for
any errors.

The local fossil population includes all fos-
sils present in the geographically and strati-
graphically restricted body of rock from
which the actual collection is taken. It is this
population that is sampled in paleonto-
logical studies. Therefore, statistical infer-
ences based on a sample apply directly only
to the local fossil population which the
sample represents.

Just as a collection of specimens is con-
sidered a sample of a local fossil population,
so the local fossil population may itself be
considered a sample of one or more local in-
terbreeding populations. Although the first is
made by human and the second by natural
agency, both samples are imperfect reflec-
tions of the populations from which they are
derived. In drawing inferences about living
populations, therefore, a paleontologist must
consider the quality of the available sample.
The ideal sample is said to be random, i.e.,

a sample taken in such a way that every indi-
vidual in the population stands an equal
chance of being chosen. If this condition is
not met, the sample is biased. Now the size
distribution of most paleontological samples
is strongly biased. This condition is due not
only to the geological factors that intervene
between lirving and fossil populations, but
also to the technical and psychological diffi-
culties of securing a truly random sample of
the local fossil population.
Owing to the prevalence of biased size dis-

tributions in paleontology, univariate analy-
sis must be applied with great caution. Bi-
variate analysis, on the other hand, is rela-
tively little affected by bias of this sort, and is
therefore recommended for most taxonomic
problems involving invertebrate fossils.

UNIVARIATE ANALYSIS
CALCULATION OF SOME
IMPORTANT STATISTICS

An indispensable step in most biometrical
investigations is the calculation of certain
quantities that summarize important fea-
tures of a sample. Such a quantity, calcu-
lated directly from observations on the

sample, is called a statistic.
The arithmetic mean, or simply mean, is a
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statistic very widely used to express the
"average" or "central" value of a series of
numbers. The mean is defined as the sum of
the individual observations divided by the
number of observations. Expressed as a
formula,

x_E (x)
ZVN

where
x-=the mean of x,
= the sum of all quantities indicated in paren-

theses,
x the value of any variate, and
N=the number of individuals in the sample.

It is often necessary to have a quantitative
measure of the variability of a sample. One
of the most useful of such measures is a sta-
tistic called the standard deviation, defined as
the positive square root of the sum of the
squares of the deviations from the mean, di-
vided by one less than the number of observa-
tions. Thus,

TABLE 1
CALCULATION OF THE MEAN AND STANDARD
DEVIATION FOR A HYPOTHETICAL SAMPLE

(DATA IN MILLIMETERS)

x d d2

9 +3 9
7 +1 1
6 0 0
5 -1 1
3 -3 9

~(x) =30
N=5

x=E (x)3=-=6 mm.

S=1//EjN1) =V3 =vS_2.24 mm.

s- 2) (2)
where
s=the standard deviation, and
d=x-i, the difference between any observationand the mean.

The use of these formulas will be madeclear by reference to table 1.
The standard deviation, as is the mean, isexpressed in whatever units of measurementwere used in the recording of the originaldata. In table 1, for example, the standarddeviation is 2.24 mm. In other words, thestandard deviation is a measure of absolutevariation. But the amount of variation dis-played in any organism is usually propor-tional to the absolute size of the organism.Hence, if the objective of an investigation isto compare the variability of two organismsof different size, a meaningful comparisoncannot be made on the basis of the standarddeviation alone. Such comparisons can, how-ever, be made by expressing the standarddeviation as a percentage of the mean. Themeasure of relative variation thus derived iscalled the coefficient of variation (V) and isdefined as

Because Vis a ratio, it is a pure number with-
out dimension, and can be used to comparethe variability of organisms (or organs) of dif-ferent size. For the data in table 1,

V100 (2.24 mm.) = 37
6 mm.

Another statistic useful in biometricalcharacterization is the observed range (OR).This is simply a record of the smallest andlargest values of the variate observed in the
sample. For the data in table 1, OR equals3 mm.-9 mm. Note that a larger samplewould be very likely to have a larger OR, but
essentially the same standard deviation.

ESTIMATION OF PARAMETERS
In most paleontological work it is im-possible to observe the entire local fossil

population. This population exists, however,and has real (but unknown) values of the
mean, standard deviation, and other "sta-tistics." Population values of this kind aredesignated Parameters. Thus for every samplestatistic there is a corresponding population
parameter. Usually a Greek letter is used forthe parameter, and a Roman letter for thestatistic (see table 2).
Now the value of a statistic computed for

any sample will almost never be exactlyequal to the corresponding population param-
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TABLE 2
SYMBOLS FOR SOME STATISTICS AND

PARAMETERS

Statistic Parameter

Univariate analysis
Mean x (mu)
Standard deviation s a- (sigma)

Bivariate analysis
Growth ratio a a (alpha)
Initial growth index b ,B (beta)
Correlation coefficient r p (rho)

eter.One of the central problems of bio-
metrical analysis, therefore, is to devise
methods for judging the reliability of any
statistic as an estimate of a parameter. This
can be accomplished by the computation of a
quantity known as the standard error.

To illustrate the use of standard errors as

measures of reliability, consider the data in
table 1. The sample mean (x= 6 mm.) is
viewed as an estimate of the population
mean (u). The standard error of the mean

(ar,) is then calculated according to the
formula

vts.Zv.(4)
Thus

2.24 mm. 2.24mm.
2.24 =1.OOmm.

This value is a measure of the reliability of
* as an estimate of the population mean. The
smaller the value of the standard error the
more reliable the estimate. Note that a

larger N or a smaller s would yield a smaller
standard error and correspondingly greater
reliability.
The general nature of the relationship

formalized in equation 4 is intuitively obvi-
ous. The real advantage of the standard error
lies in its precise definition of the relative im-

portance of the factors involved.
In order to make an exact interpretation

of any calculated standard error of the mean
(i.e., to derive a confidence interval) it is
necessary to assume that the values of the
variate x in the original population are distrib-
uted normally, i.e., that they form a fre-
quency distribution that can be closely ap-

proximated by the normal curve. Experience
has shown that this assumption is valid for
the vast majority of biological variates in
statistical populations that are homogeneous
with respect to sex, age, stratigraphic posi-
tion, and geographic location. Moreover, de-
viations from normality are not serious if the
available sample is large.
With regard to the data of table 1, a con-

fidence interval for the mean of the popula-
tion can be obtained as follows:

1. Choose the risk one is willing to take of
making an erroneous inference about the
population. This risk is expressed in terms of
probability and symbolized as P. Thus a P of
0.05 indicates that one wishes to determine
a range of values such that the chances are
no greater than five in 100 (5%) of excluding
the real population mean. In this example,
P is chosen as 0.05.

2. Determine the number of degrees of
freedom (d.f.).' In the calculation of the confi-
dence interval for the mean,

d.f.=N-.1.

In this example
d.f.=5-1=4.

3. Find the value t corresponding to the
number of degrees of freedom (d. f.) and the
probability level P. Values of t are tabled in
all statistical texts (e.g., Snedecor, 1946, p.
65). In this example t is 2.776. The confidence
interval is then given by

=cX tog.

Thus
,u= 6 mm. ± 2.78 (1.00mm.) = 3.22 mm. -8.78 mm.

One is sure that 95 per cent of the time this
calculated interval will include the value of
the population mean. This is called the 95
per cent confidence interval. Expressed
another way, one may conclude that about
95 per cent of all other samples of the same
size will possess means that fall in the desig-
nated interval.

Other values of P may of course be se-
lected. For P=0.01, t=4.604, and the cor-
responding 99 per cent confidence interval is

'The concept of degrees of freedom is difficult to
define. As an approximation, the number of degrees of
freedom can be described as the number of independ-
ently determinable quantities.
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1.40-10.60. In both of these calculated inter-
vals the range is quite large, as would be ex-
pected with such a small and highly variable
sample.

Other formulas may be used to compute
standard errors for all commonly used sta-
tistics. The calculation of confidence intervals
for parameters other than the mean, however,
involves concepts not discussed above.

STATISTICAL DISCRIMINATION
The first step in approaching many taxo-

nomic problems involves an evaluation of
the observed difference between two samples.
Given two samples that have different values
of some statistic, the investigator may ex-
plain this difference by one of two hy-
potheses:

1. The populations represented by the
samples are identical (with respect to this
character), and the observed difference is due
to chance sampling error.

2. The populations represented by the
samples actually differ, and the observed
sample difference is a reflection of this origi-
nal difference.

In many problems the proper choice be-
tween these alternatives is intuitively evi-
dent after careful consideration of the magni-
tude of the difference, the number of speci-
mens, and the variability of the samples. Al-
though frequently not explicit in published
taxonomic work, this judgment is without
exception implicit in any evaluation of the
difference between two samples. The process
of statistical discrimination is therefore not
confined to studies containing formal bio-
metrical data.
There are many problems, however, in

which subtle morphological differences are
encountered in small or highly variable
samples. Under these circumstances formal
statistical tests should be applied, not be-
cause they achieve positive judgments, but
because they permit the investigator to
select the chance he is willing to take of
making an erroneous decision.
Table 3 illustrates a standard statistical

approach to problems of discrimination.
Consider first the difference between samples
1 and 2. Statistical treatment begins with
the formulation' of the following hypothesis:
that the populations from which the samples

TABLE 3
TESTS FOR THE SIGNIFICANCE OF THE
DIFFERENCE BETWEEN TEE MEANS
OF THREE HYPOTHETICAL SAMPLES

Sample x s N

1 20.6 2.5 10
2 24.3 2.8 12
3 18.1 2.6 8

v/(N1-l)s2+(N2-1)S22
N1+N2-2

Sample 1 vs. sample 2:

-3.7N/120/22 3.24
5)+11(7.84)

t.ol(20 d.f.) = 2.845
P <0.01

Sample 1 vs. sample 3:

2.5 V/80/18 =2.07
V 9(6.25) +7(6.76)

16

t.o5(16 d.f.) =2.120
P>0.05

have been drawn have equal means. From
the very nature of the problem one can never
state with certainty that this hypothesis (the
null hypothesis) is either true or false. But
one can do the next best thing by determin-
ing the chance of rejecting the null hy-
pothesis when it is actually true, i.e., the
chance of saying that the populations are dif-
ferent when they are really the same.
The probability of making this error is

called the level of significance. In taxonomic
work a probability of 1 per cent or less
(P<0.01) is commonly taken as a reliable
indication that the populations actually dif-
fer. If the probability is more than 5 per cent
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(P>0.05), a real difference is usually not
considered to have been established. If the
probability lies between 1 per cent and 5 per
cent (0.01<P.0.05), the difference is nor-
mally judged to be probably significant.
The hypothesis of equal means for samples

1 and 2 may be tested by calculating the
statistic t according to the formula

(5)
(NX1-X2)NIN2-(Nl+N2)
/(.Yf-I)S12+ (N2-1)s22

Nl+N2-2

This formula, given by Simpson and Roe
(1939, p. 211), relates the differences be-
tween the means (xi-x2), the sample sizes
(N1 and N2), and the standard deviations
(s1 and s2) in such a way that the probability
of a significant difference can be quanti-
tatively evaluated.1
Note that the value of t will be large if the

absolute difference between the means is
large, if the samples are large, or if the
standard deviations are small-as would be
expected from an intuitive analysis. In this
example, the absolute value of t is 3.24. To
evaluate this figure it is necessary to compute
the number of degrees of freedom (d. f.) ac-

cording to the expression
d.f. =N1+N2-2.

Entering a table of t (e.g., Snedecor, 1946,
p. 65) one finds that for 20 degrees of free-
dom the probability of obtaining an absolute
value of t larger than 2.845 is 0.01. Because
the observed value of t (3.24) is greater than
2.845, the difference is judged to be signifi-
cant at the 1 per cent level. In other words,
one is sure 99 per cent of the time that the
observed difference in length reflects a real
difference in the populations. In a compari-
son of sample 1 with sample 3, t is calculated
as 2.07. Because this value is less than 2.120,
the 5 per cent level of t for 16 d. f., the ob-
served difference in sample means is judged
not to be significant. In other words, as there
are more than five chances in 100 that the
observed difference is due to chance, one is

1 This formula has the advantage that several re-

lated operations are summarized in one expression.
Most statistical texts treat the constituent operations
as units, e.g., Snedecor (1946, p. 80) and Dixon and
Massey (1951, p. 103).

not justified in concluding that the popu-
lations are distinct. Note that this does not
prove that the populations are identical; it
indicates only that on the basis of the avail-
able evidence a difference cannot be con-
clusively demonstrated. Given larger samples
of the same populations it might in fact be
possible to document a significant difference.

BIVARIATE ANALYSIS
RELATIVE GROWTH

Because the paleontologist deals with the
remains of organisms that have long since
ceased to grow, he may easily fall into the
habit of thinking of fossils in static terms.
Such an attitude is inevitably fostered, rather
than diminished, by the use of univariate
statistical devices in the description of
samples.

Bivariate analysis, on the other hand, in-
volves the dynamic concept of relative
growth. The focal point of interest here
is the pattern of growth, i.e., the route
by which the adult stage is attained. This
method has two advantages. First, it provides
a means of characterizing a sample in a way
that has general taxonomic value regardless
of the ability of the investigator to identify
the growth stages represented in the sample.
Second, by shedding light on morphogeny,
bivariate analysis provides a better under-
standing of the underlying genetic mech-
anism. WVhat is inherited, after all, is a
growth pattern rather than a static adult
character.
Although the study of relative growth is

as old as the field of taxonomy itself, the
publication of Huxley's classic "Problems of
relative growth" (1932) placed the subject on
a firm quantitative basis and pointed the way
to a deeper understanding of many phe-
nomena connected with organic growth. The
present summary is taken largely from this
work and from published studies based there-
on.2

Consider first a scatter diagram con-

structed by the recording of pairs of measure-

ments on a single ideal organism at various
2 For general reviews of this subject, the reader is

referred to Huxley (1932), Simpson and Roe (1939),
Reeve (1940), Kermack and Haldane (1950), Zucker-
man (1950), Olson and Miller (1951), and Kermack
(1954).
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stages in its growth (fig. 1A). The characters
measured (x and y) might represent length
and width of a brachiopod valve, height and
diameter of an echinoid calyx, postorbital
and preorbital length of a skull, or any other
pair of variates of which the relationship
during growth represents a significant mor-
phological characteristic of the organism.
The points recorded in this ideal case fall on
a smoothly curving line, which thus repre-
sents a pattern or path of relative growth.
Such a line is here called a line of relative
growth, or simply a growth line.
The striking feature of the majority of

these growth lines is this: they are very
closely approximated by graphs of the equa-
tion

y= bx' (6)
where y and x stand for the variates, and a
and b are mathematical parameters that
take on particular values for different curves.
A growth pattern of this type is termed
simple allometric.' Studies on a wide variety
of animals and plants have repeatedly con-
firmed this relationship, not only for the
growth of a single organism through time,but also for the static distribution of values
characterizing a population at one point in
time.

Before complications that arise in study-
ing real populations are discussed, it is ad-
vantageous to note certain mathematical
features of the ideal (though commonly ap-
proximated) situations illustrated in figures
IA and 1B. The fact that the growth line infigure IA is curved indicates that the two
measured dimensions are increasing at dif-ferent rates and that the ratio y/x changes as

the organism grows. But because the rela-
tionship between the variates is described bythe allometric equation y= bxa, an exponen-
tial equation, the logarithms of the original
data plot as a straight line (fig. IB). In other
words, the specific growth rates of x and y,2though unequal, maintain a ratio that is con-
stant and equal to a. In special cases, where
the specific growth rates are equal (a= 1),

IFor a general discussion of terminology, see Reeveand Huxley (1945, p. 123).
2 The specific growth rate is the rate at which thelogarithm of a dimension is changing. This measuregives equal weight to equal percentage increases.

the growth is called isometric, and a plot of
the original data yields a straight line.
The mathematical parameters a and b are

thus of critical importance in studies of rela-
tive growth. The exponent a, called the
growth ratio, is a pure number, as it expresses
the ratio between two specific growth rates.
Graphically, it is the slope of the growth line
on double logarithmic paper. The coefficient
b, called the initial growth index, is the abso-lute value of y when x equals 1. For mathe-
matical treatments of allometric data, it is
necessary to transform the exponential equa-tion into its linear logarithmic equivalent,
thus:

Y=aX+B (7)
where

X=log x, Y=log y, and B=log b.
In certain instances the simple allometric

growth relationships described above do not
obtain. Deviations from the usual pattern
can be easily detected by plotting observa-tions on double logarithmic paper and ob-
serving deviations from linearity.
The calculation of growth constants for

real samples is always complicated by the
fact that the plotted points do not lie exactlyalong a smooth mathematical curve. In al-
most every case, however, the points tend to
lie close to a simple allometric growth line.When such a tendency is evident there is no
serious objection to the assumption that the
population as a whole tended to follow a
simple allometric pattern and that the ob-
served dispersion or variation from the idealcondition is due to inherent biological vari-
ability, distortion, or errors of measurement.
Thus the growth line of a bivariate populationis analogous to the mean of a normal uni-
variate population in that both represent a
morphological norm around which observed
values tend to cluster. One represents the
average value actually attained by a givengrowth stage; the other, the average path bywhich the adult form was attained. FigureIC represents a typical cluster of pointsaround an allometric growth line. The
amount of scatter increases with growth,owing to the tendency for the absolute
amount of variation to be proportional toabsolute size. In such a sample, where a wide
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FIG. 1. Hypothetical scatter diagrams showing relative growth in two linear measurements,
x and y. A. Ideal case of simple allometric growth in which the four plotted points represent
growth stages in a single individual. B. Ideal case of simple allometric growth in which data
of case A are plotted as log x and log y. C. Simple allometric growth as shown by a sample in-
cluding individuals at various stages of growth. D. Data of case C plotted as log x and log y.
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range in size is represented, there is little
difficulty in recognizing the allometric na-
ture of the growth pattern. If the logarithms
of the data are plotted, as in figure ID, the
trend is straight and the amount of scatter
essentially constant.

Finally, consider the effect of collecting a
sample that embraces only a relatively small
part of the total size range, a situation by
no means uncommon in invertebrate paleon-
tology. If the curvature of the true growth
line is strong, or if the amount of scatter is
small, it might still be possible to demonstrate
an allometnc (i.e., curved) pattern of growth.
Usually, however, the curvature is so slight
or the amount of scatter so large (or both)
that the underlying allometric relationship
cannot be convincingly demonstrated. Under
these circumstances, the observed facts can
be expressed by means of a linear equation of
the form

y=ax+b. (8)
In mathematical terms, a is the slope of the
line and b the y-intercept. As b will usually
not equal zero, the ratio x/y will normally
vary with growth.

ESTIMATION OF PARAMETERS OF
RELATIVE GROWTH

REGRESSION AND REDUCED
MAJOR AXIS

In every series of observations made for
the purpose of recording patterns of relative
growth there is some inherent scatter or vari-
ability. In order that allometric studies may
proceed, therefore, it is necessary that one
choose some standard method for construct-
ing the growth line that best approximates, or
"fits," the observed trend. Two statistics are
required to define this line: the growth ratio
and the initial growth index. These quantities
(a and b) can then be regarded as estimates of
the corresponding growth parameters (a and
,) of the population from which the sample
was drawn.
The question naturally arises as to the

proper criterion for judging goodness of fit.
The simplest procedure is to plot the observa-
tions and locate by visual estimation a line
that passes through the "middle" of the dis-
tribution. If there is little variation in a

sample, and if the purposes of the investi-
gation do not justify the application of more
objective but slightly more time-consuming
methods, this procedure may give satisfac-
tory results. Usually, however, an objective
algebraic solution to the problem is desired.
At least four basically different methods for
obtaining a line of best fit can be employed,
as follows:

1. MAJOR AXIS: A line that minimizes the
sum of the squares of the perpendicular dis-
tances from each point to the desired line is
called the major axis. In figure 2 this per-
pendicular distance is indicated by the dis-
tance BF. On an intuitive basis, this proce-
dure seems to be entirely reasonable. Critical
analysis of the properties of this line, how-
ever, has shown that its slope changes with
the unit of measurement. It is thus unsuitable
for taxonomic problems (Kermack and Hal-
dane, 1950, p. 30).

2. REGRESSION OF y ON x: The regression
of y on x is defined as the line that minimizes
the sum of the squares of deviations from that
line, the deviations being measured perpen-
dicular to the x-axis. (In mathematical
terms, this means that x is taken as the inde-
pendent, and y as the dependent, variable.)
In figure 2 this vertical distance corresponds
to the distance AE. Regression analysis,
though widely employed in the calculation of
allometry, has one serious weakness: the as-
sumption that all the dispersion involved is
due to deviations in one variate. From the
biological point of view this assumption is
never warranted, for biological variability
and observational errors are always involved
in both variates (Kermack and Haldane,
1950, p. 30; Kermack, 1954, p. 488).

3. REGRESSION OF X ON y: The regression
of x on y is defined as the line that minimizes
the sum of the squares of the deviations from
that line, the deviations being measured per-
pendicular to the y-axis. This horizontal dis-
tance is indicated in figure 2 as the distance
DK. As in the case previously described, use
of this line entails unwarranted assumptions
of independence.

4. REDUCED MAJOR AXIS: This line mini-
mizes the sum of the areas of the triangles
formed by lines drawn from each point to the
desired line and parallel with the x and y
axes. In figure 2 this area is equivalent to the
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FIG. 2. Diagram to show various methods of fitting a line to a scatter of points. A regression line y
on x minimizes the sum of the squares of the deviations measured as AB. A regression line x on y mini-
mizes the corresponding sum of deviations measured as DK. A major axis minimizes the sum of the
squares of the deviations measured as BF. A reduced major axis minimizes the sum of the areas of tri-
angles GCI.

triangle GCI. Geometrically this is the same
as minimizing the sum of the products of the
legs of these triangles (e.g., CGXCI). From
the strictly biological point of view it is dif-
ficult to find an a priori justification for the
use of this line in computing allometry. How-
ever, from both theoretical and empirical
biometrical studies, the reduced major axis
emerges as the best available statistical tool.
(See especially Teissier, 1948; Kermack and
Haldane, 1950; Kruskal, 1953; and Kermack,
1954.) To summarize some of the arguments
for this line: (1) it makes no assumptions of
independence; (2) it is invariant under
change of scale; (3) it is simple to compute;
and (4) results obtained from its use are in-
tuitively more reasonable than corresponding
results obtained from regression analysis, as
is shown below.
On figure 3 growth lines characterizing

two samples of the brachiopod Pholidostrophia
gracilis have been constructed by the use of
reduced major axes and regression lines. The

growth patterns recorded by the reduced ma-
jor axes deviate only slightly from colin-
earity, and this deviation is statistically not
significant at the 1 per cent level. Growth
lines based on regression analysis, however,
are strikingly different for the same pair of
samples. From an inspection of the points
represented by these lines (fig. 10), it is clear
that there is no demonstrable difference be-
tween the growth patterns-a judgment that
is supported by laboratory examination of
the collections. Generalizing from this ex-
ample, one is justified in concluding that the
reduced major axis is to be preferred over re-
gression lines in dealing biometrically with
problems of relative growth.-

Having concluded that the reduced major
1 As the amount of scatter or dispersion (measured

by r) decreases, all the lines discussed above tend to
coincide. If the scatter is small enough (say r=0.95),
the results obtained from regression analysis wiU be
essentially the same as those from the reduced major
aXiS.
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FIG. 4. Scatter diagrams illustrating the correlation coefficient r. A. Perfect linear correlation. B.
Significant but imperfect linear correlation. Plotted points correspond to data in table 4.

axis represents the best approach to the prob-
lem of calculating growth coefficients, one

now must consider the formulas for the ap-

propriate statistics and standard errors.

First, however, some understanding of an-

other statistic, the correlation coefficient, is
necessary. For readers unfamiliar with this
statistic a brief description is included below.

COEFFICIENT OF CORRELATION

Consider the following pairs of observa-
tions on two variates, x and y:

x

2
4
8
10
12

y
4
8

16
20
24

Because a given change in one variate is ac-

companied by an exactly proportional change
in the other, the two variates are perfectly
correlated. This relationship is shown graph-
ically in figure 4A by the fact that the plotted
points fall exactly on a straight line which
trends at an angle to both axes. Figure 4B il-
lustrates another set of observations in

which the points tend to cluster along a

straight line at an angle to both axes. Here
the correlation (statistical, but not neces-

sarily functional) is less marked than in the
former case. The coefficient of correlation,
symbolized by the letter r, is a measureof
the strength of linear correlation. The coeffi-
cient varies between one and zero, with a

value of one indicating perfect linear corre-

lation, zero an absence of any correlation,
and intermediate values corresponding to in-
termediate levels.' The coefficient takes on

positive values if an increase in one variate is
associated with an increase in the other, and
negative values if an increase in one is as-

sociated with a decrease in the other.
The formula for the calculation of r from

raw data may be given as

r= _, *X2(-~ (9)

lA word of caution is in order with regard to the in-

terpretation of r. While it is true that a correlation giv-
ing a value of r=0.8 is better than one giving a value of

r =0.4, it is not true that the former is twice as good as

the latter. Any statistical text will provide a more de-

tailed explanation of the meaning and use of this coeffi-

cient.

25-

20-

15-

y
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I I~~~~~~~~~~~~~~~~~~~~~~~ .1
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TABLE 4
CALCULATION OF THE CORRELATION COEFFICIENT BY THE

LONG METHOD FOR A HYPOTHETICAL SET OF DATA

X y X-X Y-Y (X-g)(Y-Y) (X-g2) (y-y)2

1 4 -6 -11 +66 36 121
3 12 -4 -3 +12 16 9
5 18 -2 + 3 -6 4 9
6 8 -1 -7 + 7 1 498 14 +1 -1 - 1 1 110 15 +3 0 0 9 0

10 25 +3 +10 +30 9 100
13 24 +6 + 9 +54 36 81

~(x)- 56 (xx)(y-y)=162
E (y) = 120 (x-x) 2= 112

x= 7 (y_Y)2=370
= 15 N= 8

E (x-x)(y-y) _ _ 162 +0 796
AE(X-:-)2+(y0y)2.79(112)(370)

The calculation of r for the data illustrated
in figure 4B is shown in table 4. Shorter
methods for obtaining r are described below.

CALCULATION OF STATISTICS
The basic formulas for the computation of

the growth ratio and the initial growth index
are given by Kermack and Haldane (1950).
For a straight line of the form y =ax+b,

a= Sv (10)
Lx

aa=a N(11)
b = y-ga (12)

where
a=growth ratio
b=initial growth index
=standard error of a

x=mean of x
9=mean of y
s=standard deviation of x
Sy =standard deviation of y
r= correlation coefficient.

Kermack and Haldane also give the formula
for the standard error of b, but this quantity
is rendered unnecessary by certain techniques
described below. These formulas should be
used only if a plot of the original data on
arithmetic graph paper indicates that a

straight line will fairly represent the trend.
This will be true (1) in the relatively rare in-
stances in which growth proceeds isometri-
cally, or (2) in the common situations in
which the variability is too great and the
range of observations too small for an allo-
metric relationship to be demonstrated.

If the original data cannot be represented
with sufficient accuracy by a straight line,
the trend can almost always be approxi-
mated by a line of the form y= bxa. The ap-
propriate computations may be carried out in
two ways:

1. By transformation of the original data
into logarithmic form. This operation can be
symbolized by the notation

X=log x
Y=log y.

If relative growth does in fact follow the pat-
tern y = bx', a plot of X and Y will produce a
straight trend. This trend can in turn be
described by the linear equation Y=aX+Bwhere B is defined as log b. Then

Sra=-
sx

a /1 -r2
N

(13)

(14)

(15)
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where
sy standard deviation of Y
sx standard deviation of X
X=mean of X
Y=mean of Y
r= correlation coefficient of X and Y.1

If it is desired to write the equation in terms
of the original data (in the form y = bx4), it is
only necessary to compute b = antilog B.

2. By approximation formulas. Kermack
and Haldane (1950) give formulas for com-
puting constants of the logarithmic equation
Y=aX+B and the logarithmic correlation
coefficient r' directly from the (arithmetic)
statistics x, y, sz, s,, and r. These formulas
usually give only approximate results, be-
cause they are derived on the assumption
that the logarithms are normally distributed.
Kermack and Haldane indicate that moder-
ate deviations from log-normality do not
seriously affect the accuracy of results. In
the experience of the present writer, however,
results obtained by the approximation formu-
las are unsatisfactory for the small, skewed
samples often encountered in paleontology.

STATISTICAL DISCRIMINATION
In a previous section of this paper the prob-

lem of statistical discrimination in univariate
samples is discussed. When bivariate data are
dealt with, there are analogous problems of
statistical discrimination. Here, a pattern of
relative growth is computed for each of two
samples, and the question is: Do the sample
growth patterns differ significantly? As be-
fore, there are many cases in which a graphic
plot of the data indicates at a glance that the
lines of relative growth are so far from coinci-
dence that a significant difference may be re-
garded as certain without formal statistical
evaluation. In other circumstances, however,
particularly when samples are small and dis-
play considerable variability, an objective
evaluation of probabilities is desirable.

If two samples characterized by growth
lines of the form y=ax+b are given, the
problem of statistical discrimination may
present itself in different ways. Four repre-
sentative situations are illustrated in figure 5.

' This definition is employed here to avoid confusion
with the usual meaning of r. Kermack and Haldane,
however, reverse this symbolism and use r for the corre-
lation coefficient of the logarithms.

Figure 5A illustrates the general case in
which growth patterns differ in both slope
and position, as indicated by differences in a
and b, respectively. Figure 5B illustrates a
case in which two growth lines have the same
slope (a=a2), but differ in position (bl#b2).
In figure 5C the slopes differ but the differ-
ence in position, as measured by the initial
growth index, is zero. Figure 5D represents a
situation in which two samples follow an
identical growth pattern and thus differ fun-
damentally only in size. Note, however, that
because the initial growth indices do not
equal zero (b1 = b2#0), the two samples will
exhibit different y/x ratios.

Statistical discrimination in bivariate an-
alysis begins with the formulation of the null
hypothesis (represented in fig. SD) that two
samples were drawn from populations having
identical growth patterns. The procedure rec-
ommended here for testing the null hypothe-
sis is a shortened and simplified version of a
method developed by Kermack (1954). Four
steps are involved.

STEP 1: Characterize each sample by com-
puting the basic bivariate statistics (see
formulas 1, 2, and 9).

SAMPLE 1
N1

'1

SIlrSl

SAMPLE 2
N2

Y2

Sv2
r2

STEP 2: Compute for each sample the sta-
tistics necessary to define a line of relative
growth of the form y=ax+b (see formulas
10, 11, and 12).2

SAMPLE 1 SAMPLE 2
a2
0ra2
b2

STEP 3: Test the hypothesis that the
growth lines characterizing the populations
from which the two samples were drawn

2 If a line of the form y =bx' is required, the log-
arithms of the original data should be used and a line
of the form Y=aX+B computed. A procedure exactly
analogous to the one described in subsequent para-
graphs can then be followed.
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A ~~~B

y y~~~~~~~~~y

a1$o2~~ ~ ~ ~ ~~~~~I02
| bi= b2 b,l b2

C D

I,,
o//

X X
FIG. 5. Diagrams illustrating various ways in which two samples can differ in patterns of

relative growth. Lines represent isometric growth of form y=ax+b. Length of solid lines
corresponds to observed sample ranges. Points represent joint means of samples. A. Two lines
with slight difference in slope and considerable difference in position. Vertical distance be-
tween lines, yI-y2, shown along the ordinate x0, when xo= mean of one sample. B. Two lines
differing in position but not slope. C. Two lines differing in slope but having identical values
of initial growth index b. D. Two colinear line segments.
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have the same slope. This can be done by cal-
culating the statistic z, where

x V'Ta, -a2 (16)

If the observed value of z is less than 1.96,
the probability (P) that the observed dif-
ference (a, -a) arose by chance is greater
than 0.05. If the observed value of z is
greater than 1.96, the probability that so
great a difference was observed purely by
chance is 0.05 or less. If z is greater than 2.58,
the corresponding probability is 0.01. Other
probability levels can be obtained from tables
of z in any standard statistical text.'
In most taxonomic work, if P is less than

0.05 (z > 1.96) the hypothesis of equal slopes
is rejected, and the observed difference is
considered statistically significant. Under
these circumstances there is no need to apply
step 4, unless additional information on the
nature of the difference is sought. If, how-
ever, P is greater than 0.05 (z < 1.96), the
hypothesis of identical slopes is normally ac-
cepted, and a test is made for the signifi-
cance of positional differences as indicated
below.
STEP 4: Test the hypothesis that the

growth lines characterizing the populations
from which the two samples were drawn are
identical over the size ranges represented in
the samples. Clearly, this hypothesis is to be
tested only if step 3 has demonstrated no
significant difference in slope. At least three
statistical tests of this hypothesis are avail-
able:

a. A test based on the standard error of
the initial growth indices. The rather com-
plicated expression for this standard error is
given by Kermack and Haldane (1950, p.
40). This method in effect tests the signifi-
cance of the difference between the com-
puted growth lines where they cross the y-
axis. Graphically it is evident, and mathe-
matically it has been proved (Kermack, 1954,
p. 410), that whenever the sample means are
large multiples of the unit of measurement,

1 Strictly speaking, assignment of probability levels
to different values of z is valid only if reasonably large
samples are used, say N,+N,=35 or more. Borderline
cases involving small samples must be interpreted with
caution.

as is generally true, a great deal of inaccuracy
is inevitable in the estimate of the initial
growth indices. This method is therefore less
efficient than procedures discussed below.

b. A test based on the assumption that the
slopes of the original populations (a, and a2)
are actually identical (Kermack, 1954, p.
409). The procedure is to form a combined
estimate of the true slope (a) based on data
from both samples and then to test the sig-
nificance of the distance between two theoreti-
cal parallel lines having slope a. This method
has the advantage that the distance between
the two lines is rendered constant. Essen-
tially the only disadvantage is that the com-
putations are laborious.

c. A test based on the assumption that the
slopes of the original populations (a, and
Q2) actually differ and that the observed dif-
ference (a, -a2) is an estimate of the true dif-
ference. The test described in step 3 has
shown that there is no significant difference
in slopes2; hence the amount of error intro-
duced by this assumption would normally be
small. Because the mechanics of this test are
quite simple, it is here recommended as the
best generally applicable technique for test-
ing positional differences. The procedure is as
follows:

1. Choose some value of x, say xo, for
which it is desired to test the observed differ-
ence between the growth lines. Different
values of xo may be selected according to the
nature of the problem. For example, if the
investigator is seeking to show that a signif-
icant difference in growth pattern exists,
he will normally choose a value xo such that
the vertical distance between the growth lines
(YL-Y2) is at a minimum for the range of x
values represented in the samples. Conversely
if the investigator is seeking to demonstrate
that there is no significant difference in
growth pattern, he will normally choose a
value of xo such that the vertical distance is at
a maximum.

2. Test the hypothesis that, for the value
x=xo, the true growth lines of the popula-
tions coincide-in other words, that yi-y2

2 Note that this test does not prove that the popula-
tions are identical with respect to slope, only that one's
data are insufficient to prove that a real difference exists.
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=0 when x,=x2=xo. For this purpose, com-
pute the statistic z, where

xO(ai-a2)+(bl-b2) (17)
ZVa12(Xo-_)2+a2 2(Xo- X2) 2

As above, if z is greater than 1.96, the differ-
ence is taken to be significant at the 5 per
cent level. If z is less than 1.96, the observed
difference will usually not be accepted as sig-
nificant.

If the observed differences in slope are
slight, and if A>> xl, it may be possible to set xo
equal to xl or x without seriously affecting
the validity of the test. This permits a sav-
ing in computation, as is evident from for-
mula 17. For example, if xo is designated as
91 (as in fig. SA), then

xli(a, -Q+ (b -b2)
-a2(Xl- 2)

CONCEPT OF VARIABILITY IN
BIvARMATE SAmPLES

Biometrical characterization of any sample
should include a measure of the amount of
variation displayed. Two aspects of variation
must be distinguished: absolute variation, re-

1 This expression is derived as follows. The numer-
ator is equal to yi-y2, the vertical distance between the
lines when x =x2 xoX lFrom equation 8,

yl=aixo+bi
and

ys=asxo+b±.
Hence

Yi-y xo(ai-a2)+(bi-b_).
The denominator is the standard errorrof the distance
Y-Y2, which may be symbolized

0ZIrVl2.
The formula for this standard error is giveniby Kermack
(1954, P. 410) as

a7IV2N=N (1-rl) s N 22) 2

From (10) and (11),

Hence

o-,=,a4 vSY I -re

', (o=sz xN )

Vv-t a -l - i

Note that if xo=it,

corded in terms of the units of measurement;
and relative variation, the absolute variation
expressed as a percentage of average size.

It will be helpful to review briefly the con-
cepts of relative and absolute variation as
applied to univariate data (fig. 6A). The best
objective measure of absolute variation in
this case is s., the standard deviation. The
standard deviation is converted into a meas-
ure of relative variation (V) when it is stated
as a percentage of the mean.
The coefficient V is useful in paleontology

because organisms tend to exhibit an absolute
variation that is proportional to absolute size.
By computing V for two samples of different
average size, therefore, one can compare in-
herent morphological variability, provided
that each sample is homogeneous with respect
to growth stage. Usually, however, individ-
uals in a collection of fossil invertebrates
vary widely in age, and objective criteria are
lacking to distinguish growth stages. Under
these circumstances V is unrelated to inher-
ent biological variability, because its value is
determined primarily by geological factors
extrinsic to the organisms.
The difficulty just mentioned can be

avoided if bivariate data are assembled and
variation is defined in terms of the dispersion
of values about the line of relative growth.This definition of variability is illustrated in
figure 1. In figures 1A and IB, the amount of
dispersion about the growth line, and bydefinition the amount of variation, is zero'.
The points represented in figures 1C and ID,
on the other hand, are scattered about the
growth line. In such a case, the amount of
scatter is taken as an index of the amount of
morphological variation. Statistical formali-
zation of this concept takes two basic forms,
as follows:

1. DISPERSION AROUND A REGRESSION
LINE: Figure 6B illustrates the concepts in-
volved in the computation of the amount of
dispersion around a line of relative growth
when a regression line (in this case the regres-
sion of x on y) is used to represent the data.
As y is taken as the independent variate, all
the dispersion is attributed to deviations in
the x direction. Thus the appropriate measureof absolute dispersion is defined by the
standard deviation of the horizontal distances(dx) computed from each point to the regres-
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sion line. This standard deviation, called the
standard error of estimate ( in this case;
ss,.: if the deviations are measured in the y
direction), is the logical measure of absolute
variation about a regression line. To mini-
mize the work of computation, the formula

(18)

F or the regression of y on x,

y (20)
Both D,., and D ,.2 have a standard error
(0D) given by

D
°D= (2.)

should be used.'
Having obtained a measure of absolute

variation around the regression line, one can
proceed to define a measure of relative varia-
tion analogous to the coefficient of variation.
This is necessary because the amount of dis-
persion around a line of relative growth nor-
mally increases with increasing size (fig. 1C).
In fact it is generally approximately true that
the amount of dispersion is proportional to
size, as noted by Burma (1948, p. 748) and
Klauber (1943, p. 54). This relationship is
demonstrated by the tendency for scatter
diagrams constructed for the logarithms of
linear measurements to exhibit constant dis-
persion (see fig. ID).

It will prove useful in the analysis of more
complex situations to develop a dynamic in-
terpretation of the situation in figure 6B.
For this purpose the biological equivalent of
the X- Y plane is considered to be a bivariate
morphological field in which any particular
observed combination of characters defines a
point. The cluster of points in figure 6B thus
represents a group of individuals each of
which has moved from the origin to its ob-
served position. The average path of growth
through this field is taken (in this case) as the
regression line x on y, and the average posi-
tion achieved by the group is the joint mean
of x and y, the point (x, y). In order to
achieve a measure of relative dispersion it is
natural to compare the absolute amount of
variation in the x-direction (sx.,2) with the
average distance traveled in the x-direction
by the entire group (x). This ratio, expressed
in per cent, is here called the coeffcient of rela-
tive dispersion from regression, D..,. Thus

100s-.1,
x (19)

1 This is accurate enough for large samples. For small
samples, the result should be multiplied by the factor

V(N-1)/(N-2).

Klauber (1943, p. 31), describing variation
in rattlesnakes, uses the symbol " V" for the
coefficient of relative dispersion. Although it
is true that both V and D measure variation,
the bases for defining variability are quite
different, and it seems wise to provide dis-
tinct terms and symbols.

In the interpretation of DV.X and Dz.- it is
necessary to bear in mind that use of these
coefficients involves the assumption that all
the variation is in the y or x directions, re-
spectively. As this is never true, it follows
that these statistics systematically over-
estimate the amount of variation actually
present in any character. Provided that
samples are treated uniformly, however, and
that the underlying assumptions are under-
stood, the coefficient of relative dispersion
from regression is a valuable addition to
biometry.

2. DISPERSION AROUND REDUCED MAJOR
Axis: By the use of the reduced major axis it
is possible to derive measures of absolute and
relative variation that do not involve as-
sumptions of independence. Consider the
scatter of points around the reduced major
axis in figure 6C. Each point deviates from
the line by a certain horizontal distance (d4)
and a certain vertical distance (d,). One can
therefore measure the total dispersion in the
bivariate morphological field by computing
the vector sum of dx and d. This vector sum
is equal to the diagonal distance d. The total
dispersion about the reduced major axis can
then be expressed as the standard deviation
(Sd) of these diagonal distances. From Teissier
(1948, p. 30) we have

Sd= /2(1-r)(s.2+sV2). (22)2

2 Teissier actually gives the variance of half of the
diagonal distance as

(1-r) (S,2+SV2)/2,
whence the standard deviation of the whole diagonal is
derived.
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FIG. 6. Diagrams to illustrate concepts of absolute and relative variation in univariate
and bivanrate analysis. Symbols used in formulas explained in text. A. Univariate case.
Observed values of variate x plotted on abscissa. No ordinate scale. Absolute dispersion
measured by standard deviation (s.). Length of arrow corresponds to average distance
traveled in univariate morphological field. Relative dispersion measured by V. B. Bivariate
case. Absolute dispersion measured by standard deviation (se.,V) of distances (d4) measured
from regression of x on y. Length of arrow corresponds to average distance traveled hori-
zontally in bivariate morphological field. Relative dispersion measured by Der. C. Bivariate
case. Absolute dispersion measured by standard deviation (sd) of distances (d) measured
from reduced major axis. Length of arrow corresponds to average distance traveled in
bivariate morphological field. Relative dispersion measured by Dd.
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This statistic can be used as an objective
measure of absolute variation. Moreover, be-
cause a deviation in either y or x affects sd,
this statistic is a measure of shape varia-
bility, whereas V, D., and D,,.. measure
variability in only one dimension.
To arrive at a meaningful measure of rela-

tive dispersion one has only to compare the
absolute variation Sd with the average dis-
tance traveled by the sample in the bivariate
morphological field. This distance can be
defined as the length of a line (FG) extending
from the origin to the joint mean (x, y), or

-/2+ y2

The suggested measure of relative dispersion

Dd is thus given by

,/ 2 2- 2(1-r)(s s2) * (23)

The quantity Dd can be called the coefficient
of relative dispersioin about the reduced major
axis. Statistically, it is the ratio, expressed in
per cent, between the standard deviation of
the vector sums of the deviations from the
reduced major axis in the x and y directions
and the distance from the origin to the joint
mean of the sample. Biologically, it expresses
the amount of shape variation as a propor-
tion of the average shape attained by the
sample.
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SUMMARY AND CONCLUSIONS
THE PRESENT PAPER outlines some of the
statistical methods and concepts that can be
applied to problems involving invertebrate
fossils. In the application of these methods
it must be remembered that statistical con-
clusions are never better than the data on
which they are based. Provided that un-
distorted specimens are measured, however,
and that the characters used represent the
best distinguishing characteristics, the re-
sulting statistical conclusions will be bio-
logically valid.

Perhaps the chief disadvantage of statis-
tical methods is that they are time-consum-
ing. Before dismissing biometrical techniques
on this basis, however, the investigator
should weigh the advantages of biometrical
procedures against the cost in terms of time.
WVith suitable computational short cuts (de-
scribed below) and a calculating machine, a
bivariate sample of 50 specimens can easily
be characterized statistically in 30 minutes.
The average time consumed in testing simi-
larities and differences between two samples
is about 15 minutes. The corresponding fig-
ures when calculation is performed without a
machine are approximately 60 and 20 min-
utes, respectively.
The choice of a technique for any par-

ticular problem will depend primarily on the
nature of the paleontological samples at
hand. Univariate statistical techniques can
be meaningfully applied if it can be deter-
mined that the entire sample (or reasonably
large subsample) consists of individuals at the
same growth stage. The sample is then ade-
quately characterized by sample size (N),
mean (x), and standard deviation (s). A more
elaborate description would include the co-
efficient of variation (V), the standard error
of the mean (a=), and the observed range
(OR). With these statistical data it is pos-
sible not only to test the hypothesis that the
means of two populations are the same, but
also to make a reasonable estimate of the
range of variation in a population (see Simp-
son, 1941).

Bivariate statistical techniques can be ap-
plied when objective criteria for distinguish-
ing growth stages are lacking. The following
step-by-step procedure is here recommended:

1. PRELIMINARY EvALUATION
Identify pairs of logically related quantita-

tive characters likely to be taxonomically sig-
nificant.

2. GRAPHIC ANALYSIS
Construct a scatter diagram of the original

data. The advantages in doing this are two-
fold. First, differences between growth pat-
terns that are obviously significant can be
detected at once. Second, growth patterns
can be identified as isometric or allometric.
If growth is allometric, the original data
must be transformed into logarithms and a
line of the form Y=aX+B fitted. For-
tunately, most paleontological samples can
be treated satisfactorily by the isometric
form of the growth equation, y=ax+b.

3. STATISTICAL CHARACTERIZATION
For each pair of variates compute the fol-

lowing statistics1:
N=number of pairs of measurements
= mean of x (formula 1)

y=mean of y (formula 1)
sx =standard deviation of x (formula 2)
sy= standard deviation of y (formula 2)
r =correlation coefficient (formula 9)

ORz= observed range of x

Publication of these basic bivariate statistics
insures that the sample has been adequately
characterized. From these quantities all the
other measures discussed in this paper can be
computed by simple operations. For special
purposes it may be desirable to record some
of the following:

a= slope of the growth line (formula 10)
aa= standard error of the slope (formula 11)
b =initial growth index (formula 12)

Dx.y{=coefficient of relative dispersion from re-
gression x on y (formula 19); alternatively,
D2,.X (formula 20)

¢D-= standard error of D.., (formula 21)
D,j coefficient of relative dispersion from the

reduced major axis (formula 23); standard
error unknown.

1 If statistics are computed from the logarithms of
the original data, the symbol x is replaced by X; y by
Y;rbyr';andbbyB.
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4. STATISTICAL DISCRIMINATION
Whenever there is reasonable doubt that

morphological differences between two
samples (except for differences in absolute
size) are statistically significant, apply the
following two-step procedure.
STEP 1: Test for significant difference in

the slope of the growth lines by computing
the absolute value of z, where

al- a2

Z O-ai2+o.a22
Then, if z is greater than 1.96, the observed
difference is significant on the 5 per cent
level. If z is less than 1.96, the difference is
usually judged to be not significant. If no
statistically significant difference is shown,
proceed to step 2.
STEP 2: Test for difference in the position

of the growth lines. By inspection, choose
some value of x (xo) for which it is desired to

test the observed distance between the two
growth lines (see p. 237). If possible, let xo
equal the mean of one sample (say x1) and
compute z from

gi(a,-Q2 +(b -b2,)
0a2( 1- 2)

Evaluate z as discussed above.
If it is desired to test for positional differ-

ence at some point xo not equal to xl or x2,
compute z as

xo(a,-a2) + (b1-b2)
V/o12(xo-X1) 2++aa22(Xo-X2) 2

and evaluate as above.

5. TAXONoMIc DISCRIMINATION
Evaluate taxonomically the morphological

differences shown to be statistically sig-
nificant.
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ILLUSTRATIVE EXAMPLES
EXAMPLE 1. CHARACTERIZATION OF A
SAMPLE OF Pholidostrophia gracilis gra-

cilis WITH REGARD TO LENGTH
AND WIDTH

TABLE 5 contains a series of measurements of
length and width on the Devonian brachio-
pod Pholidostrophia gracilis gracilis Imbrie.
A convenient and rapid method for comput-
ing the basic bivariate statistics is described
below.

1. Enter the data on a correlation form of
the type illustrated in figure 7.1 Consider x
and y as the width and length, respectively.
Vertical columns in the main body of the
table represent 25 class intervals along the x
axis, and the 25 horizontal rows represent
class intervals along the y axis. Three differ-
ent sets of class intervals are printed on the
form for convenience, with blank spaces left
for the entry of any other set as required.
The printed scale running from 1 to 25 is
chosen as suitable for the data in this ex-
ample. In some problems it may be necessary
to group the data in order to fit the form.
Such grouping will, of course, introduce
small inaccuracies in the results. After the
scale is selected, it is necessary to note the
midpoints of the lowest intervals, symbolized
as GA. and GA, for the x and y scales, re-
spectively, and to enter these in the appropri-
ate places on the form. In this example, both
midpoints equal one. Next, the grouping in-
tervals, symbolized as I. and Iv, are noted
and entered in the appropriate places on the
right-hand side of the form. Both intervals
in this case equal one. Other midpoints and
grouping intervals define other scales. The
values 50.5 and 2, for example, characterize
the middle of the three printed scales. Each
pair of measurements on table 5 is entered by
a tally mark in the appropriate box on the
correlation form.

2. The total frequency in each column is
then entered in the line of boxes labeled f.
Next, the total frequency in each row is indi-
cated in the f, column. Finally, the total fre-

1The correlation form employed here has been
slightly modified from one originated by P. S. Burnham
and his associates at the Student Appointment Bureau,
Yale University, New Haven, Connecticut.

TABLE 5
MEASUREMENTS (IN MILLIMETERS) OF LENGTH
AND WIDTH OF A SAMPLE OF Pholidostrophia

gracilis gracilis
(Lower Ferron Point shale, abandoned quarry

at Rockport, Sec. 6, T. 32 N., R. 9 E.,
Alpena County, Michigan.)

Width

14
15
15
16
16
17
17
17
17
17
17
17
17
17
18
18
18
18
18
18
18
18
18
18
19
19
19
19
19
19
19
19
20
20
20
20
20
20
20
20
20
21
21
21
21

Length

10
12
13
12
13
12
13
13
13
14
14
14
14
14
13
13
15
15
15
15
15
16
16
16
14
15
15
16
16
17
17
18
15
15
15
16
16
16
17
17
18
15
16
17
17
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TABLE 5-continuedc

Width Length

21 18
21 18
21 19
22 15
23 18

quencies along the diagonal paths are en-
tered in the appropriate places along both the
top and the side of the form in the boxes
labeled Diagonal E.

3. From the total x, y, and diagonal fre-
quencies just recorded, the quantities A, B,
D, E, H, and J are then calculated, as follows:
The quantity A is the sum of the products of
the total frequency of each class times the
corresponding A factor listed in the adjacent
box. Thus
A=(lX169)+(2X196)+ -.. +(1X484)
= 15,771.

This quantity is entered in the appropriate
box on the right-hand side of the form. Simi-
larly, the quantities B, D, E, H, and J are
computed. Expressed in words, these opera-
tions appear to be complex and tedious. For-
tunately, the actual work proceeds rapidly,
especially if an automatic calculator is avail-
able. Such machines, it should be noted, are
designed to cumulate automatically the sum
of a series of products. Moreover, as the num-
bers involved are generally quite modest in
size, it is possible to calculate the pair of
quantities A and B simultaneously. This may
be done by entering the A factor on one side
of the keyboard and the B factor on the other
and multiplying both by the appropriate
total frequency. A similar "short cut" can be
used for the pairs D-E and H-J.

4. Next, the quantities C and F are com-
puted from the previously calculated quanti-
ties. The quantity C, for example, is

B-A-N
2

Hence
17587-15771-50C= _____ = 883.2

5. As a check on the work already per-
formed, H-J should equal 4 (F- C).

6. The quantities K and L are then com-
puted according to the formulas indicated.
K, for example, is given as

VNA-C2.
Hence
K= V(50) (15771)- (883)2= /8861= 94.13.

Note that the entire operation indicated un-
der the radical can be performed directly on
any calculator with a provision for negative
multiplication. Square roots are conveniently
taken from a table (e.g., Comrie, 1930).

7. The operations indicated by the ex-
pressions

C- Ix/N
and

F- I/N
are next performed. For the former,

(883) (1)150= 17.66.

8. The means of x and y are then found by
the addition of the quantities in the two
boxes immediately above the space for the
means. Thus

a = 1.00+17.66=18.66.

9. The standard deviations of x and y are
found as indicated by the expressions

K-IP
and

L. I/P
where

P= VN(N-1).
In this example,

P =V(50) (49) = 49.497.

Appropriate values of P may of course be
tabled for the range of sample sizes likely to
be encountered, so that this work is done once
for all. Thus

S: = (94.13) (1)/49.497 = 1.902.
10. The correlation coefficient, r, is next
computed according to the expression

N
(B+D-2F-J) 2-C F

K-L
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In this example,

(17587+10148-1412-1101)25-(883)(706) 7152 802
(94.13) (94.68) 8912

Note that the entire numerator may be com-
puted in one set of operations on most auto-
matic calculators.
11. Repeat steps 6 to 10 as a check.
12. Note the observed range of x values. In

this example
OR.= 14-32.

In this way, the basic bivariate statistics
(Ns, , ~, s,, sv, r, OR.) are provided with a
minimum of effort. A more elaborate charac-
terization would include other statistics cal-
culated as follows:

EXAMPLE 2. SAMPLES OF VARIOUS SUBSPE-
CIES OF Strophodonta extenuata SHOWN

TO DIFFER SIGNIFICANTLY IN
GROWTH PATTERNS RELATING

LENGTH AND WIDTH
Data in table 6 provide a partial statistical

characterization of four samples of different
subspecies of the Devonian brachiopod Stro-

' Because a is the tangent of the angle of slope, the
angle may be readily computed as 450101. Knowing one
point on the line (x, 9), one can then plot the growth
line without further calculation.

s,, 1.913
a= --1*= 1.006'

sX 1.YU2

7a=/a (1 006) /1-(0.802)= (1.006) \/0.00714 =0.085s0
b = I-xa=15.12-(18.66)(1.006) =-3.65

Dv lOOs.100s. 100s^./1-r2 (100)(1.913)(0.598) 114.4 7.6
9 y ~~~~15.12 15.12

Dv. 7.6
t o2X 10

D,d= 1 /2(0+s2)(1-r) A/2(7.277)(0.98) 100 /2.882 I00\/.00500 7.1

TABLE 6
BIVARIATE STATISTICAL CHARACTERIZATION OF FOUR SUBSPECIES OF Strophodonta extenuata

(x=width; y=length; measurements in millimeters.)

Statistic S. e. beUensis" S. e. extenuatab S. e. ferronensie S. e. rockportensisd

N 50 49 49 40
20.50 18.15 25.17 21.05
16.54 15.95 20.48 18.75
3.387 4.091 3.637 4.528

Sv 3.458 3.770 3.745 4.954
r 0.864 0.953 0.905 0.899
ORz 6-14 6-15 8-18 7-20
a 1.021 0.922 1.030 1.094
0'a 0.073 0.040 0.063 0.076
b -4.39 -0.78 -5.45 -4.28

Upper Bell shale, abandoned quarry at Rockport, Sec. 6, T. 32 N., R. 9 E., Alpena County, Michigan.
b Lower Ferron Point shale, abandoned quarry at Rockport, Sec. 6, T. 32 N., R. 9 E., Alpena County, Michiga.
Upper Ferron Point shale, SE i, Sec. 18, T. 32 N., R. 9 E., Alpena County, Michigan.

dRockport Quarry limestone, abandoned quarry at Rockport, Sec. 6, T. 32 N., R. 9 E., Alpena Co., Michigan
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FIG. 8. Samples of four subspecies of Strophodonta extenuata

characterized by reduced major axes relating length and width.
Length of lines corresponds to observed range. Points represent
joint means. Data given in table 6.

phodonta extenuata. Growth lines relating
width and length constructed from these data
are presented in figure 8. The use of these
data in statistical discrimination is illustrated
below.

EXAMPLE 2A. Strophodonta extenuata rockpor-
tensis AND Strophodonta extenuata fer-

ronensis: DIFFERENCE SHOWN
BY INSPECTION

From an inspection of growth lines repre-

al-a2 0.922-1.094

EXAMPLE 2B. Strophodonta extenuata extenu-
uata AND Strophodonta extenuata
rockportensis SHOWN TO HAVFE

DIFFERENT SLOPES
From an inspection of figure 8 it is evident

that the two samples in question differ
slightly in the slope of the growth line relat-
ing length and width. It is not clear, however,
that the observed difference in slope is sig-
nificant. With the use of the test previously
described,

-0.172 -0.172
z += 4= =

Voral2+0a22 -v/(0.040) 2+(0.076) 2 %/0.00738 0.0859
senting samples of these two subspecies, and
from a consideration of the sample size and
dispersion, it is evident that the difference
between the two growth patterns is too great
to have arisen by chance. Formal statistical
tests are therefore unnecessary.

-2.00.

Because the absolute value of z is greater
than 1.96, the observed difference is consi-
dered to be significant at the 5 per cent level.

EXAMPLE 2c. Strophodonta extenuata bellensis
AND Strophodonta extenuata ferronensis
SHOWN TO HAVE THE SAME SLOPE

BUT DIFFERENT POSITION
Testing for slope difference, as above, one

has
al-a2 1.021-1.030 -0.009 -0.009

z _ =- == =--0.093.

o/a12+oa22 V/(0.073)2+(0.063)2 VO*.00930 0.0964

I
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TABLE 7

BIVARIATE STATISTICAL CHARACTERIZATION OF Two SUBSPECIES OF Pholidostrophia gracilis
(MEASUREMENTS IN MILLIMETERS)

x=Width x=Width x=Log-Width
y= Length y= Thickness y= Log-Thickness

P. gracilis nanus4
N 50 50 SO
Xc 14.12 14.16 1.149
9 11.12 2.22 0.331
ST 1.409 1.405 0.0463
SY 1.206 0.465 0.0933
r 0.793 0.383 0.609
ORz 11-16 11-16 1.04-1.20
a 0.856 0.331 2.015
Ti 0.073 0.043 0.226
b -0.97 -2.47 -1.984

P. gracilis gracilisb
N 50 50 50
x 18.66 18.66 1.268
9 15.12 3.96 0.579
sz 1.902 1.902 0.0477
sy 1.913 1.009 0.1010
r 0.802 0.546 0.580
ORz 14-23 14-23 1.15-1.36
a 1.006 0.530 2.117
0aa 0.085 0.063 0.243
b -3.65 -5.93 -2.105

aUpper Bell shale, abandoned quarry at Rockport, Sec. 6, T. 32 N., R. 9 E., Alpena County, Michigan.
bLower Ferron Point shale, same locality as above.

A statistically significant difference in slope
is therefore not demonstrated. Inspection of
figure 8 indicates that the significance of posi-
tional difference may be tested at the point
xo=2x (where t indicates the mean of the
sample of S. e. bellensis). Thus

xi(ai-a2)+(b1-b2) (20.50) (-0.009)-4.39+
aft(:ej£-X (0.063) (20.50-25.17,

As z>2.58, the observed difference in position
is taken to be statistically significant at the
1 per cent level.

EXAMPLE 3. SAMPLES OF SUBSPECIES OF

Pholidostrophia gracilis SHOWN NOT TO

DIFFER SIGNIFICANTLY B LENGTH-
WIDTH AND THICKNESS-WIDTH

GROWTH PATTERNS

tical characterization of two subspecies of the
Devonian brachiopod Pholidostrophia gra-
cilis. Growth lines constructed from these
statistics are plotted on figures 9 and 10 to-
gether with the observed points.

-0.18-4.39+5.45 0.88
(0.063)(-4.67) -0.294 -2.99.

EXAMPLE 3A. Pholidostrophia gracilis
gracilis AND Pholidostrophia gracilis

nanus SHOWN NOT TO DIFFER IN GROWTH
PATTERNS RELATING LENGTH

AND WIDTH
Let sample 1 be P. gracilis nanus and

sample 2 be P. gracilis gracilis. In testing for
slope difference, one has

The data in table 7 provide a partial statis-

=
ai-a2 - 0.856-1.006 -0.1508-__032_05_-= =-1.341

V'.12+o'.2 VX(0.073)2+(0.085)2 0.112

=~w~
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calculated for linear measurements. P. g. nanus from the upper Bell shale. P. g. graciis from the lowerFerron Point shale. Data given in table 7. A. Growth pattern of length and width. B. Growth pattern
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FIG. 10. Samples of two subspecies of Pholidostrophia gracilis characterized by

reduced major axes calculated for log-thickness and log-width. Points correspond to
figure 9B. Data given in table 7.
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and the observed difference is not significant. An inspection of figure 9A indicates that it is
reasonable to test for positional differences at xO = xl. Thus

x1(ai-a2)+(bi-b2) 14.12(0.856-1.006)-0.97+3.65 0.56 0.56
Oa2(X1 -22) (0.085)(14.12-18.66) (0.085)(-4.54) -0.386 =

and the difference in position is not shown to
be significant at the 5 per cent level.

EXAMPLE 3B. Pholidostrophia gracilis gracilis
AND Pholidostrophia gracilis nanus
SHOWN NOT TO DIFFER SIGNIFI-
CANTLY IN GROWTH PATTERNS
RELATING LOG-THICKNESS AND

LOG-WIDTH
An inspection of the scatter of points repre-

senting the original data on thickness and

width (fig. 9B) indicates that there is a con-
siderable difference in the linear trends of the
two samples. This difference is statistically
significant. From the over-all nature of the
trend, however, it is apparent that growth is
allometric in this pair of characters. Statisti-
cal analysis therefore requires that logarithms
of the original data be employed. Data so
transformed are plotted on figure 10 together
with the calculated growth lines. The test for
slope is then carried out as usual.

al-a2 2.117-2.015 0.102
___ __ _. _ _ _ _ _ _ =--_ =0.31

s/oa12+Oa22 V/(0.243)2+(0.226)2 V0. 1 10

The difference in slope is not significant. Testing for positional differences at xo= 2i (with P.
g. gracilis taken as sample 1), one has

l(a,-a2)+(bI-b2) (1.268)(2.117-2.015)-2.105+1.984 0.129-2.105+1.984 -0.008 =0.30
Ca42 (X1-:R2) (0.226)(1.268-1.149) (0.226) (0.119) 0.027

and the difference in position is not signifi- length and width or thickness and width, the
cant. conclusion is justified that (for these charac-

Because the data at hand do not indicate a ters) the only demonstrable differences are
significant difference between P. g. gracilis directly or indirectly related to differences in
and P. g. nanus in growth patterns relating absolute size.
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