MERYCHYINAE, A SUBFAMILY OF OREODONTS

C. BERTRAND SCHULTZ AND

CHARLES H. FALKENBACH OF THE

MERYCHYINAE, A SUBFAMILY OF OREODONTS

MERYCHYINAE, A SUBFAMILY OF OREODONTS

C. BERTRAND SCHULTZ
Director of the University of Nebraska State
Museum and Associate Professor of Geology
CHARLES H. FALKENBACH
Field Associate of the Frick Laboratory
The American Museum of Natural History

CONTRIBUTION TO THE REVISION OF THE OREODONTS (MERYCOIDODONTIDAE), NUMBER 3

BULLETIN
 OF THE

AMERICAN MUSEUM OF NATURAL HISTORY

BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY
Volume 88, article 4, pages 157-286, text figures 1-17,
tables 1-6, charts 1-4
Issued March 25, 1947

CONTENTS

Introduction 165
Method of Approach 166
[Family Merycoidodontidae (Oreodontidae)]
Description of Merychyinae, Subfamily 3 168
I. Merychyus Leidy 171

1. M. arenarum Cope, Wyo., Nebr. (Lower Marsland); Mont. and S. Dak. 175
1a. M. arenarum idahoensis, New Subspecies, Idaho (Approx. Lower Marsland Equiv.) 186
2. M. calaminthus Jahns, Calif. (? = Harrison) 188
3. M. crabilli, New Species, Nebr. and Wyo. (Harrison) 189
4. M. elegans Leidy, Nebr. (Upper Marsland) 192
4a. Geographic Variety, Colo. 202
4b. M. elegans bluei, New Subspecies, Nebr. (Upper Marsland); and Colo. 203
5. M. minimus Peterson, Nebr., Wyo. (Lower Marsland); and S. Dak. 204
6. M. siouxensis Loomis, Nebr., Wyo. (Harrison) 223
6a. Geographic Variety, Mont. 227
7. M., Species Undetermined, Wyo. 228
Table 1. Merychyus Leidy. Comparative Measurements of Skulls and Rami 229
Table 2. Merychyus Leidy. Comparative Measurements of Skeletal Elements 231
IA. Merychyus (Metoreodon) Matthew and Cook 232
8. M. (M.) relictus Matthew and Cook, Nebr. ("Lower Snake Creek") 234
1a. M. (M.) relictus taylori, New Subspecies, Nebr. ("Sheep Creek") 241
1b. M. (M.) relictus fletcheri, New Subspecies, Calif. (Barstow, ?=in Part to
"Lower Snake Creek" or "Sheep Creek") 244
9. M. (M.), Species Undetermined, N. Mex. (Lower "Santa Fe Beds," ? = in Part to "Lower Snake Creek" or "Sheep Creek"') 245
Table 3. Merychyus (Metoreodon) Matthew and Cook. Comparative Measurements of Skulls and Rami 246
Table 4. Merychyus (Metoreodon) Matthew and Cook. Comparative Measurements of Skeletal Elements 247
II. Paramerychyus, New Genus 247
10. P. harrisonensis (Peterson), Wyo. (Harrison) 248
11. P. relictus (Loomis), S. Dak. ("Lower Rosebud," =in Part to Harrison) 249
III. Oreodontoides Thorpe 250
12. O. oregonensis Thorpe, Oreg. (?Middle John Day, =in Part to Harrison) 251
13. ?O. curtus (Loomis), S. Dak. ("Lower Rosebud," = in Part to Harrison) 253
IIIA. Oreodontoides (Paroreodon) (Thorpe) 255
14. O. (P.) marshi (Thorpe), Oreg. (?Middle John Day, =in Part to Harrison) 256
15. O. (P.) stocki, New Species, Oreg. (?Upper John Day, =in Part to Harrison) 257
Table 5. Paramerychyus, New Genus, Oreodontoides Thorpe, and Oreodontoides (Paroreodon) (Thorpe). Comparative Measurements of Skulls and Rami 258
Table 6. Oreodontoides Thorpe and Oreodontoides (Paroreodon) (Thorpe). Comparative Measurements of Skeletal Elements 260
Variation 262
Chart 1. Aspects of Variation and Range in Merychyus and Merychyus (Metoreodon) 264
Chart 2. Aspects of Variation in Merychyus 266
Chart 3. Aspects of Variation in Merychyus crabilli 268
Chart 4. Aspects of Variation in Merychyus crabilli 269

TEXT FIGURES

1. Merychyus, five species and two subspecies, lateral views (in outline) of skulls 170
Merychyus (Metoreodon), one species and one subspecies, lateral views (in outline) of skulls 170
Paramerychyus, two species, lateral views (in outline) of skulls 170
Oreodontoides (Paroreodon), two species, lateral views (in outline) of skulls 170
?Oreodontoides curtus, lateral view (in outline) of skull 170
2. Merychyus arenarum Cope, holotype, skull and ramus, Wyo. 270
Merychyus arenarum Cope, referred, skull and ramus, Wyo. 270
3. Merychyus arenarum Cope, referred, skull and ramus, Wyo. 271
Merychyus arenarum idahoensis, holotype, skull and ramus, Idaho 271
4. Merychyus elegans Leidy, referred, skull, ramus, and superior dental series, Nebr. 272
Merychyus elegans bluei, new subspecies, holotype, skull and ramus, Nebr. 272
5. Merychyus minimus Peterson, holotype, skull and ramus, Nebr. 273
Merychyus minimus Peterson, referred, skull and ramus, Wyo. 273
6. Merychyus minimus Peterson, referred, skull and ramus, S. Dak. 274
Merychyus crabilli, new species, holotype, skull and ramus, Nebr. 274
7. Merychyus siouxensis Loomis, holotype, skull, Nebr. 275
Merychyus siouxensis Loomis, referred, ramus, Nebr. 275
Merychyus, sp. undet., partial skull and ramus, Wyo. 275
8. Merychyus (Metoreodon) relictus Matthew and Cook, referred, skull and ramus, Nebr. 276
Merychyus (Metoreodon) relictus taylori, new subspecies, holotype, skull, Nebr. 276
Merychyus (Metoreodon) relictus taylori, new subspecies, referred, superior dentition and ramus, Nebr. 276
9. Paramerychyus harrisonensis (Peterson), referred, skull, Wyo. 277
Paramerychyus harrisonensis (Peterson), referred, immature skull, Wyo. 277
10. Paramerychyus relictus (Loomis), holotype, skull, S. Dak. 278
Paramerychyus relictus (Loomis), referred, upper dentition, S. Dak. 278
Merychyus (Metoreodon) relictus Matthew and Cook, holotype, ramus, Nebr. 278
?Oreodontoides curtus (Loomis), holotype, skull and ramus, S. Dak. 278
11. Oreodontoides oregonensis Thorpe, holotype, skull, Oreg. 279
Oreodontoides oregonensis Thorpe, referred, two rami, Oreg. 279
Merychyus (Metoreodon) relictus fletcheri, new subspecies, holotype, skull, Calif. 279
Oreodontoides (Paroreodon) marshi (Thorpe), holotype, skull, Oreg. 279
12. Oreodontoides (Paroreodon) marshi (Thorpe), referred, skull and ramus, Oreg. 280
Oreodontoides (Paroreodon) stocki, new species, holotype, skull, Oreg. 280
Oreodontoides (Paroreodon) stocki, new species, referred, ramus, Oreg. 280
13. Merychyus calaminthus Jahns, holotype, partial skull, Calif. 281
Merychyus siouxensis Loomis, referred, superior and inferior dentitions, Nebr. 281
Merychyus arenarum Cope, referred, four upper dentitions, Wyo. 281
Merychyus crabilli, new species, referred, upper dentition, Nebr. 281
Merychyus elegans Leidy, holotype, partial skull and ramus, Nebr. 281
Merychyus elegans Leidy, referred, ramus and lower dentition, Colo. 281
14. Examples of postoccipital regions of skulls:
Merychyus (Metoreodon) relictus Matthew and Cook, referred, Nebr. 282
Merychyus arenarum Cope, referred, Wyo. 282
Merychyus crabilli, new species, holotype, Nebr. 282
Paramerychyus relictus (Loomis), holotype, S. Dak. 282
Oreodontoides (Paroreodon) marshi (Thorpe), referred, Oreg. 282
Ustatochoerus medius (Leidy), referred, Nebr. 282
Merycochoerus proprius Leidy, referred, Nebr. 282
Brachycrus siouense (Sinclair), referred, Nebr. 282
15. Merychyus arenarum Cope, holotype and referred, skeletal elements, Wyo 283
Merychyus arenarum idahoensis, new subspecies, holotype, skeletal elements, Idaho 283
Merychyus crabilli, new species, referred, skeletal elements, Nebr. and Wyo. 283
Merychyus elegans Leidy, referred, skeletal elements, Nebr. 283
Merychyus elegans bluei, new subspecies, holotype, skeletal element, Nebr. 283
Merychyus minimus Peterson, referred, skeletal elements, Wyo. 283
Merychyus siouxensis Loomis, referred, skeletal element, Nebr. and Wyo. 283
Merychyus (Metoreodon) relictus Matthew and Cook, referred, skeletal elements, Nebr. 283
Oreodontoides oregonensis Thorpe, referred, skeletal element, Oreg. 283
Oreodontoides (Paroreodon) marshi (Thorpe), referred, skeletal elements, Nebr. 283
16. Merychyus, Merychyus (Metoreodon), Oreodontoides, and Oreodontoides (Paroreodon), skeletal elements, continued (see figs. 15 and 17) 284
17. Merychyus, Merychyus (Metoreodon), and Oreodontoides, skeletal elements, continued (see figs. 15 and 16) 285

INTRODUCTION

The present paper, the third in a series concerning a revision of the oreodonts (Merycoidodontidae), deals with five closely related genera and subgenera, Merychyus Leidy, Merychyus (Metoreodon) Matthew and Cook, Paramerychyus, new genus, Oreodontoides Thorpe, and Oreodontoides (Paroreodon) (Thorpe), all of which are here included under the subfamily Merychyinae. ${ }^{1}$

One thousand one hundred and twentyseven numbered skulls, mandibular rami, and skeletal elements are here listed or described under the three named genera (of which one is new) and two subgenera. Fifty-nine of these specimens, representing 13 species and four subspecies ${ }^{2}$ (of which two species and four subspecies are new), are illustrated in detail (including 10 refigured types) in 17 text figures. The outline drawings are reproduced at one-third, and the shaded drawings at one-half, actual size.

The illustrations of Merychyinae demonstrate the range in size, shape, and proportions of the skulls, rami, and skeletal elements. Noteworthy are the constant characters (within a genus) of the occipital region, bulla, postglenoid process, height of crowns of teeth, and the uniform length of dental series regardless of the age of the individual.

The writers wish to acknowledge their appreciation to: Mr. Childs Frick for the privilege of continuing the study of the oreodonts and for helpful suggestions in the preparation of the manuscript; Chancellor C. S. Boucher, Dr. E. H. Barbour, and Prof. E. F. Schramm of the University of Nebraska for stimulation in the continuation of this research; Mr. Thompson M. Stout of the University of Nebraska and Mr. Morris F. Skinner of the Frick Laboratory for cooperation in stratigraphic studies; the late Mr. Charles W. Gilmore of the United States Na-

[^0]tional Museum and Dr. C. Lewis Gazin of the same institution, Dr. J. LeRoy Kay of the Carnegie Museum, Dr. Carl O. Dunbar of the Yale Peabody Museum, the late Dr. Walter Granger and Dr. George G. Simpson of the American Museum of Natural History for the loan of various specimens listed in this paper; Dr. D. D. Whitney of the University of Nebraska, and Dr. Richard Goldschmidt and Dr. G. L. Stebbins of the University of California for helpful discussions; Mrs. Elizabeth Bell and Mr. Ralph Mefferd of the Frick Laboratory for the illustrations which were drawn under the supervision of Miss Hazel de Berard; Miss Marjorie Shanafelt and Mr. Nathan Mohler of the University of Nebraska for the arrangement and preparation of the illustrations; Mr. Sydney E. Helprin of the Frick Laboratory for editorial suggestions; Miss Iona May of the University of Nebraska State Museum for help in typing and for preliminary editorial assistance; and Mrs. Charles H. Falkenbach and Mrs. C. Bertrand Schultz for encouragement and aid in the preparation of the manuscript. To all of these and many others the writers are grateful for making the present report possible.

The abundance of new material used in this study along with stratigraphic data has been gathered by the following party leaders and their associates for the Frick Laboratory: Messrs. John C. Blick, Ted Galusha, Morris Skinner, Nelson J. Vaughan, Jack Wilson, and Charles H. Falkenbach; and for the University of Nebraska State Museum: Messrs. E. L. Blue, W. R. Horney, Guy Johnson, Grayson E. Meade, Thompson M. Stout, Loren M. Toohey, and C. Bertrand Schultz. The Frick and the University of Nebraska collections have served as the basis for the revision of the oreodonts.

Thanks are also due members of the Frick Laboratory, especially Messrs. Floyd Blair, Frank Miller, and Joseph Rooney, for preparation and care of the oreodont collection; and Messrs. Guy Johnson, John Mercer, and Henry Reider for supervising the preparation of the specimens in the University of Ne braska State Museum.

The following is a list of abbreviations of institutions cited:
A.C., Amherst College
A.M., American Museum of Natural History
A.N.S.P., Academy of Natural Sciences of Philadelphia
Aug.C., Augustana College
C.I.T., California Institute of Technology
C.M., Carnegie Museum of Pittsburgh
C.N.H.M., Chicago Natural History Museum

Col.M., Colorado Museum of Natural History
F:A.M., Frick Collection American Mammals (American Museum of Natural History)
F:B:A.M., Frick: Barbour Collection
U.C., University of California
U.M., University of Montana
U.N.S.M., University of Nebraska State Museum
U.S.N.M., United States National Museum
Y.P.M., Yale University, Peabody Museum

METHOD OF APPROACH

The problem of revision has been approached by the writers in the same manner as in the previous two papers, i.e., with emphasis on taxonomy, phylogeny, variation, and geologic and geographic distribution.

The establishment of a hypothetical phylogenetic line demands a geologic approach, this entailing a knowledge of the exact or approximate geologic occurrence of the types and referable material, not only the location of the exposures yielding the fossils, but also the level or horizon in the exposure and its correlation with other deposits of known geologic age. Since 1934 the writers have used a convenient method to study oreodont phylogeny based upon geologic distribution. Typical examples of various oreodonts have been arranged according to geologic level upon a large laboratory table, 8 feet by 24 feet, which has served as a working exhibit. The geologic section of the Great Plains has been used as a basis. The table has been divided into sections representing the formations of the White River, Arikaree, Hemingford, and Ogallala groups, and minor subdivisions. Properly prepared specimens with adequate field data have been placed on the table at the proper niche in the geologic section. Fortunately an abundance of material has been available from all the formations of the Great Plains and adjacent areas. Where examples were wanting from certain horizons, field work was planned and material collected. Specimens with similar characters in different formational zones on the table then were selected and aligned in perpendicular phylogenetic columns. Forms with like characters from adjacent formations were especially studied, and soon closely related forms
could be traced through several different geologic levels. Missing links, of course, of ten occurred, but many of these were found later. Continued study revealed that certain characters remained constant during a long geologic interval, while other characters showed distinct changes and therefore were more diagnostic and of morphologic value. This approach has facilitated the determination of the hypothetical lines of development and the establishment of the various subfamilies.

Each specimen from outside the Great Plains area also was placed in the proper phylogenetic line on the table, close to the particular geologic niche evidenced by its stage of development. When the comparison of specimens with similar generic characters but from geographically separated areas was made, it became apparent that independent development had taken place in certain lines. Several closely related lines may have developed paralleling one another, but with differences not sufficient to warrant recognition as separate genera or even subgenera. Such parallel development appears to be demonstrated in the genus Brachycrus ${ }^{1}$ by three species from the Sweetwater River area of Wyoming and two species from the Sheep Creek-Snake Creek area of Nebraska. These species apparently developed independently, in the two localities, from a common ancestor. Other examples of independent geographic development are apparent from the Great Plains and from the John Day region of Oregon.

The majority of the generic breaks in the oreodonts occur at formational contacts.
${ }^{1}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 223.

This is to be expected since the formations are separated by unconformities of one type or another which represent hiatuses of varying lengths of time. Other areas outside the central Great Plains, however, may provide the missing links between genera which are necessary to complete the phylogenetic story of the oreodonts, but so far this has not been demonstrated. Strong evidence has suggested that periods of extensive erosion in the central Great Plains were contemporaneous with analogous erosional cycles over much of western North America.

The difficult aspect of the approach to the present study of the oreodonts has been the scarcity of definite field data accompanying the individual specimens in many of the collections throughout the United States. This is especially true in the older collections which include many of the types. In many instances the types are of little value from a geologic or phylogenetic standpoint. To counterbalance this, the collecting localities of the types have been visited and, wherever possible, additional collections with sufficient geologic data have been made. As a result, good examples of most of the types have been secured from the type localities, thus permitting the placement of the types in their proper geologic positions.

With the exception of the Tick Canyon region of California and the John Day area of Oregon, all of the collecting localities considered in this paper have been visited by one or both of the writers.

The use of oreodont material is ideal for a phylogenetic study based on detailed geological data as well as on morphological characters. Some of the reasons for this are briefly listed below:

1. Oreodonts, so far as now known, were entirely North American. They had a fairly long geologic history, with their first appearance in the Eocene and their extinction near the end of the Pliocene. The history of the oreodonts appears to have been a continuous one on this continent and was not interrupted by migrations to or from other parts
of the world, which seems to have been the case in so many other groups.
2. Oreodont remains are the most common of the mammalian macrofossils found in the Oligocene and lower Miocene continental sediments and are comparatively abundant in the upper Miocene and Pliocene formations. Well-preserved skulls and mandibles, frequently associated with skeletal elements, are available for study.
3. Examples of the oreodonts are sufficiently large so that most morphological characters are readily distinguishable.
4. The oreodonts include a great diversity of forms. Development in many of the phylogenetic lines seems to have been rapid; thus, the osteological characters of the species occurring in the different geological levels are distinct from each other. The oreodonts, therefore, may be considered as good "index fossils" in the Tertiary deposits of North America. The numerous contemporaneous phylogenetic lines also make possible the study of the comparative rate of development.

In the early study of the oreodonts it soon became apparent to the writers that development took place by minute steps (microgenesis). This was confirmed again and again by work on the "phylogeny table" in the laboratory when specimens from many different horizons in a single formation were available. The division between species, therefore, is often an arbitrary one as the characters of one species grade into those of the next; hence, it frequently is necessary to disregard the existent taxonomy in preliminary work. In forthcoming papers the writers will consider the various problems involving the geologic history of the oreodonts in detail.

Variation also has been an important factor in the present revision of the oreodonts. The following five types of variation have been considered: (1) age, (2) sex, (3) individual, (4) geographic, and (5) geologic. This is discussed on page 262 and is indicated on charts 1-4.

DESCRIPTION OF MERYCHYINAE, SUBFAMILY 3^{1}

The subfamily Merychyinae includes the genera Merychyus, Paramerychyus, Oreodontoides, and the subgenera Merychyus (Metoreodon) and Oreodontoides (Paroreodon). Oreodonts of small to medium size; skulls mesocephalic; occipital region showing much variation with the supraoccipital wings incorporated into a fan-shaped occipital; orbits large for size of skull; tendency for slight retraction of the nasals (anterior tip above $\mathrm{C} /$); tympanic bulla well inflated and large, with a round to somewhat flattened inferior surface; teeth moderately large, brachyodont to subhypsodont (all the teeth in Merychyinae are in reality brachyodont, and the terms subhypsodont and brachyodont used in this paper are strictly comparative terms), premolars with simple to complicated pat-
terns, the latter type found in the later Miocene species; $\mathrm{P}^{\perp} \mathrm{P}^{3}$ with anterior intermediate crest and P_{3} with posterior intermediate crest.

Remains of Merychyus are known from the Harrison and Marsland formations and deposits of equivalent age; of Merychyus (Metoreodon) from the "Lower Snake Creek" and "Sheep Creek" beds; of Paramerychyus, Oreondontoides, and Oreodontoides (Paroreodon) from either the Harrison formation or formations of approximately the same geologic age.

[^1]
DISTINCTIVE CHARACTERS ${ }^{2}$

Merychyus (P. 171, figs. 1-7, 13, $14,17)$	$\begin{gathered} M .(\text { Metoreodon }) \\ \text { (P. 232, figs. } 1,8, \\ 10,11,14-17) \end{gathered}$	Paramerychyus (P. 247, figs. 1, 9, $10,14)$	Oreodontoides (P. 250, figs. 1, 10, 11, 15-17)	$\begin{aligned} & \text { O. (Paroreodon) } \\ & \text { (P. 255, figs. 1, 11, } \\ & 12,14-16) \end{aligned}$
Infraorbital foramina above region of $\mathrm{P}^{3}-\mathrm{P}^{4}$	$\mathrm{P}^{3}-\mathrm{P}^{4}$	P^{3}	P^{3}	$\mathrm{P}^{3}-\mathrm{P}^{4}$
Supraoccipital wings incorporated in fan-shaped occipital region, flare not so large as in Ustatochoerus	Completely fanshaped as in Ustatochoerus	Supraoccipital wings produced slightly posteriorly, but incorporated in semi-fan-shaped occipital region; external edge of flare notched	Semi-fan-shaped, similar to Paramerychyus	Semi-fan-shaped, oblong in out line, vertical axis
Superior border of maxilla with abrupt rise to nasals above region of $\mathrm{P}^{1}-\mathrm{P}^{2}$	Region above $\mathrm{P}^{\mathbf{2}}$	Region above P^{1} P^{2}	Region above P^{1}	Region above P^{1}
Prelacrimal vacuity present	Present	Present	Absent	Present
Inferior border of ramus more or less straight, slight downward curve posterior of M_{3}	Slightly concave, gradual downward curve below M_{3}	Unknown	Straight, abrupt downward curve posterior of M_{3}	Straight, abrupt downward curve posterior of $\mathrm{M}_{\mathbf{3}}$
Dentition advanced brachyodont to subhypsodont	Subhypsodont	Brachyodont	Brachyodont, extremely light	Brachyodont, light
Premolars simple pattern	Slightly complex pattern	Tendency of slightly complex pattern	Simple pattern	Simple pattern
Limbs light to moderately heavy	Light	Unknown	Light	Light

$\left\lvert\, \begin{gathered} \dot{\infty} .0 \\ 0.0 \end{gathered}\right.$		eәлу Keg uyof															H		$\stackrel{H}{6}$	F
		oว чs̊neqryse M																H		
		－0ว иошихч							x											
		－0）77วuนวg								x										
		－0ว วt7eld							x	H										
		－0，exexqoin							x				＇							
		－${ }^{\circ}$ ч чоэи！																		
		－\％ว иәчsоэ							x	x			x							
$$													＊							
		$\bigcirc 0$ xno！s					x		H	x										
		－\％ว иер！пуч							x											
		－0ว I！！								x										
		－0，səmed					H	A	x											
		๑๐ว Кıәчว					x													
		－0ว ə⿰丬ng xog					x	H												
		${ }^{\circ} \mathrm{O}$ ！¢ ${ }^{\text {¢ }}$									H									
io		－०ว PipM					x	X												
							x													
												F								
$\begin{aligned} & \dot{凶 禸} \\ & \sum_{\substack{c}}^{\dot{z}} \\ & \hline \end{aligned}$		－oJ of eques				x														
		${ }^{\circ} \mathrm{O}$ sэmed	x																	
	$\ddot{0}$	＂Ұәә„Ј đәәчS＂			\leftrightarrow															
	$\begin{aligned} & \text { 肴 } \\ & \dot{n} \end{aligned}$		H																	
త్		－0）ouip －леurag ues		$\stackrel{\sim}{6}$																
			Merychyus（Metoreodon）relictus（1）		合															

O. (Paroreodon) stocki

Merychyus

Fig. 1. Outlines of skulls representing five species and two subspecies of Merychyus, one species and one subspecies of Merychyus (Metoreodon), two species of Paramerychyus, one species of Oreodontoides, and two species of Oreodontoides (Paroreodon). $\times^{\frac{1}{3}}$.

I. MERYCHYUS ${ }^{1}$ Leidy

Merychyus Leidy, 1858, Proc. Acad. Nat. Sci. Philadelphia, vol. 10, p. 25; 1869, Jour. Acad. Nat. Sci. Philadelphia, ser. 2, vol. 7, p. 115. Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 30.

Genotype: Merychyus elegans Leidy.

Generic Characters

Skull: Small, basal length ranging from 123 mm . to 178 mm .; mesocephalic; supraoccipital wings fan-shaped, widely spread, and incorporated in the occipital flare, but the flare not so pronounced as in the genus Ustatochoerus; exoccipital pits roundish in outline but not so large as in Ustatochoerus; base of paroccipital process not completely incorporated in the fan-shaped region as in Ustatochoerus or Merychyus (Metoreodon) (see fig. 14); sagittal crest prominent but not high; brain case inflated; zygomatic arch light to medium light; lacrimal fossa prominent in Harrison forms and shallow in later species; prelacrimal vacuity present; infraorbital foramen either above posterior portion of P^{3} or above P^{4}; nasals slightly retracted, extending posterior to the anterior of the orbits; premaxillae fused for a short distance; paroccipital process moderately long and heavy for size of skull; postglenoid process wide transversely, narrow anteroposteriorly, and long vertically; occipital condyles medium in size, but varying greatly in dimensions; bullae ${ }^{2}$ with various degrees of flattening.

Mandible: Small; moderately deep for size of skull; inferior border nearly straight with a slight downward curve just posterior to M_{3}; condyle of moderate size; symphysis prominent, posterior point below region of $\mathrm{P}_{5}-\mathrm{P}_{4}$.

Dentition: Advanced brachyodont to subhypsodont; I_{1}^{1} and I_{2}^{2} approximately equal in size, with I_{3}^{3} larger; superior canines vary in size from small to large; P_{1} may be small or large.

Limbs: Light to moderately heavy.
Measurements: Tables 1 and 2.

[^2]Illustrations: Figures 1-7, 13 (skulls, mandibles, and dentitions); 14 (occipital regions of skulls); 15-17 (limbs).

DISCUSSION

The genus Merychyus has been a "catch all" for the smaller oreodonts from the Miocene. Forms with both subhypsodont and brachyodont dentitions have been referred to this genus. To add to the difficulties in the treatment of this group, the holotype of M. elegans Leidy, the genotypic species, is not complete, and, furthermore, the specimen itself is divided between the United States National Museum and the Academy of Natural Sciences of Philadelphia. The geologic age for the type specimen has been considered by many as Ogallala (Pliocene), but the large Frick and University of Nebraska State Museum collections from the Ogallala of Ne braska contain no examples of Merychyus. The writers believe that the type specimen came from the upper Marsland formation and base this belief on the fossilization of the type material compared with examples of the same species from the upper Marsland in the collections of the Frick Laboratory and the University of Nebraska State Museum.

The holotype of M. elegans was found by members of an expedition led by Lt. G. K. Warren in 1857. According to Hayden's report, ${ }^{8}$ Warren's expedition reached the Niobrara River for the first time on August 10 and traveled along the river to the west until August 14 when their camp was 50 miles from their point of contact with the river. The map with the report, however, shows the distance between the camps of August 10 and 14 to be about 20 miles. The geologic deposits encountered between these camps were of both Miocene and Pliocene age. After August 14 the area through which the expedition passed contained chiefly Miocene sediments, and was the region from which the holotype of Merycochoerus proprius ${ }^{4}$ came.

This suggests that M. elegans may have come from the area close to the locality of Merycochoerus proprius, which was near the

[^3]present town of Marsland. It is also possible that the holotype was found farther east later in the same season, but, again, this would place the expedition along Antelope Creek, near what is now the Cherry-Sheridan county line, and in an area including some Miocene deposits.

The evidence now available indicates that the true Merychyus line is restricted to the middle portion of the Miocene (Harrison and Marsland formations or their equivalents). The absence of Merychyus in any of the present collections from the Gering and Monroe Creek formations may indicate that its ancestors migrated during late Harrison times into the regions here discussed.

The genus is represented by the subgenus Metoreodon in the later Miocene formations, such as the "Sheep Creek" and "Lower Snake Creek" deposits of Nebraska.

The two species of Merychyus from the lower Marsland, namely, M. minimus and M. arenarum, are difficult to differentiate when numerous skulls of both are considered. The former species is known throughout the lower Marsland and the latter from only the upper part of the lower Marsland. Although M. minimus is the smaller form, the measurements of the skulls and dentitions overlap those of the smallest examples of M. arenarum. The associated skeletal elements, however, indicate that M. minimus had lighter limbs than M. arenarum. These two species may represent forms close to the branching point of the main line of development, perhaps in late Harrison or very early lower Marsland times. This more progressive line (M. arenarum) with the heavier limbs gradually became distinct and separate from the more conservative, true Merychyus, lightlimbed forms (M. minimus from the lower Marsland, and M. elegans from the upper Marsland deposits).

The remains of Merychyus show considerable individual variation in the size of the $\mathrm{C} /$ and P_{1}, of the premolars, and of the limbs. The writers have tried to group the referred specimens into Group I (small premolars) and Group II (large premolars). The presence of large premolars does not necessarily mean that the over-all length of the dental series is greater than in examples with smaller premolars. The premolars in some specimens
may be crowded and set more obliquely in the skull or ramus, resulting in a shortening of the total length. The grouping of the available material has been difficult because the dentitions are not always complete. Either group may have large or small $\mathrm{C} /$ and P_{1}, and comparatively heavy or light limbs, which may indicate sex differences, the lighter limbs representing the females. In figure 13, four upper dentitions of M. arenarum show variations in the size of canines and premolars. Specimen F: A.M. 43277 illustrates a small C/ with large premolars, F:A.M. 43279 a large C/ with small premolars, F:A.M. 44581 a large $C /$ with large premolars, and F:A.M. 33392 a small C/ with small premolars.
Joseph Leidy, ${ }^{1}$ in a discussion of the distinctive characters of "Oreodon," Merycochoerus, and Merychyus pointed out the following:
"MERYCHYUS.-Teeth as in Merycochoerus. Facial cone intermediate in character to the latter and Oreodon (?) Infraorbital foramen situated above the last premolar, or in a position intermediate to that of Oreodon and Merycochoerus."
G. T. Bettany, ${ }^{2}$ who did not agree with Leidy's observations concerning the validity of Merychyus, made the following statement:
"Since the position of the infraorbital foramen varies in different species, the genus Merychyus may very well be dropped, as it is founded upon this single character. The teeth and portions of jaws assigned to Merychyus elegans and medius . . . appear to belong to Oreodon, while the teeth figured under the name Merychyus major are referable on equally good grounds to Merycochoerus."

In 1890, W. B. Scott ${ }^{8}$ reported the abundance of Merychyus in the "Loup Fork" but failed to list any material. He did mention that the Garman collection in the Museum of Comparative Zoölogy at Harvard University contained some portions of the skeleton of Merychyus but, again, he did not specifically refer to any particular specimens.

[^4]Later W. D. Matthew, ${ }^{1}$ in a reconsideration of the validity of the genus Merychyus, concluded:
"This genus was constituted by Dr. Leidy in 1858 to embrace three species of Oreodonts from the Loup Fork of Nebraska, distinguished from Oreodon by the hypsodont teeth, and from Merycochoerus by the position of the infraorbital foramen. The subsequent reference to Leidy's genus Merycochoerus by Bettany and Cope of species now distinguished as Promerycochoerus seemed to show that the position of the infraorbital foramen was not a valid generic character. Mr. Bettany in consequence united Merycochoerus and Merychyus, and Prof. Cope, whose more complete material demonstrated the distinctness of the two, redefined the genus Merychyus, basing it on the presence of a larmier (lachrymal vacuity),-a character not known in any of Leidy's species, but found in two species from the Deep River of Montana and Wyoming. As is shown on a preceding page, the posterior position of the infraorbital foramen in the true Merycochoerus is correlated with the reduction of the nasals and other important skull changes caused by the presence of a proboscis. It seems to be a valid distinction, and in this case Dr. Leidy's original definition will hold good. The generic characters of chief impor-
tance will then be:
"1. Nasals unreduced (infraorbital foramen above p^{3} or anterior end of p^{4}); premaxillae coössified.
"2. Skull rather short with slender zygomata and moderate occipital crests.
" 3 . Teeth hypsodont, muzzle more or less rounded, canines not large.
"4. Facial vacuity at junction of maxillary, frontal, and lachrymal bones (not known in type species).
" 5 . Limbs and feet slender, manus adaptively reduced."

At the time of the foregoing discussion, the type material, which was very incomplete, included about all of the available specimens. Later collections, however, show that Merychyus elegans does have a lacrimal pit, and that the two species " M." medius and "M." major do not belong to Merychyus, but to a distinct genus, Ustatochoerus. ${ }^{2}$ The material also reveals that the position of the infraorbital foramina varies but slightly within one species.

In March, 1945, the writers had the opportunity of studying the types and reported oreodonts in the various Pacific coast collections. Several of the questionable oreodont specimens were observed and the following conclusions are here reported:

Referred to Cervids

Oreodont cf. Merychyus, Maxson, 1930, Carnegie Inst. Washington Publ., no. 404, p. 111, fig. 18a-18b		
Posterior portion of left ramus with M_{1} (br. ${ }^{\text {a }}$) and M_{3}.	($\mathrm{M}+{ }^{4}$)	U.C. coll. loc. 3555
Ticholeptus (?) sp., Dougherty, 1940, Carnegie Inst. Washington Publ., no. 514, p. 139, pl. 7, fig. 1		
Badly crushed skull and mandible	(w)	C.I.T. 2550
Merycoidodont sp. a, Dougherty, ibid., no. 514, p. 140, pl. 7, figs. 2-2a		
A single M_{2}	(w_{+}^{+})	C.I.T. 2548

Referred to Merycoidodontidae

Merycoidodont sp. b, Dougherty, ibid., no. 514, p. 141, pl. 7, figs. 3-3a
A single M_{1} with limb fragments
This specimen appears to be oreodont, but is too fragmentary for reference to a genus.

[^5]
Distribution

Merychyus remains are widely distributed. Six species and two subspecies are here recorded from middle Miocene deposits (Harrison and Marsland formations or their approximate equivalents) of California, Colorado, Idaho, Nebraska, Montana, South Dakota, and Wyoming. The subgenus M. (Metoreodon) is known from upper Miocene deposits ("Sheep Creek" and "Lower Snake Creek" or their approximate equivalents) of California, Nebraska, and New Mexico. (See distribution chart, p. 169.)

Summary of Species and Types

Six species and two subspecies of Merychyus from 16 Miocene localities are here recorded (of these only one species and one subspecies are from west of the Continental Divide):

1. Merychyus arenarum Cope, from east of Laramie Peak,? Platte County, Wyoming; referred remains from Platte and Goshen counties, Wyoming, Sioux County, Nebraska, and Bennett County, South Dakota; tentatively referred from Morrill County, Nebraska. (Lower Marsland or equivalent.)

Holotype: Partial skull, mandible, and skeletal fragments, A.M. 8146. Figures 2, 15, 17 (in part).

1a. Merychyus arenarum idahoensis, new subspecies, from Lemhi County, Idaho. (Approximate Marsland equivalent.)

Holotype: Skull and skeletal elements, F:A.M. 44827. Figures 1, 3, 15, 16, 17 (in part).
2. Merychyus calaminthus Jahns, from Los Angeles County, California. (Approximate Harrison equivalent.)

Holotype: Partial skull, C.I.T. 1383. Figure 13.
3. Merychyus crabilli, new species, from Morrill County, Nebraska; referred remains
from Dawes County, Nebraska, and Niobrara County, Wyoming. (Harrison.)

Holotype: Skull, F:A.M. 45384A. Figures $1,6,14$.
4. Merychyus elegans Leidy, from "the sands of the Niobrara River," Nebraska; referred remains from Box Butte, Cherry, and Dawes counties, Nebraska; and (4a) geographic variety from Weld and Logan counties, Colorado; tentatively referred from Sioux County, Nebraska. (Upper Marsland or approximate equivalent.)

Holotype: Anterior portion of skull and mandible, U.S.N.M. 121 or 438, A.N.S.P. 11289-11290. Figure 13.

4b. Merychyus elegans bluei, new subspecies, from Box Butte County, Nebraska; referred remains from Dawes County, Nebraska; tentatively referred from Weld County, Colorado. (Upper Marsland or approximate equivalent.)

Holotype: Partial skull, mandible, and skeletal elements, U.N.S.M. 7-10-9-38. Figures $1,4,15,16,17$.
5. Merychyus minimus (Peterson), from Sioux County, Nebraska; referred remains from Sioux, Dawes, and Sheridan counties, Nebraska, Niobrara, Goshen, and Platte counties, Wyoming, and Shannon County, South Dakota. (Lower Marsland or equivalent.)

Holotype: Skull, mandible, and skeletal elements, C.M. 1466. Figure 5.
6. Merychyus siouxensis Loomis, from Sioux County, Nebraska; referred remains from Niobrara and Goshen counties, Wyoming; and (6a) geographic variety from Silver Bow County, Montana. (Harrison or approximate equivalent.)

Holotype: Skull, A.M. 13774. Figures 1, 7.
7. Merychyus species undetermined, from Lincoln County, Wyoming.

Example: Partial skull and mandible, Aug.C. V.120. Figure 7.

DETAILED LISTS ${ }^{1}$ OF TYPES, REFERRED SPECIMENS, AND SYNONYMY

MERYCHYUS

Total available specimens²: 887

1. Merychyus arenarum Cope

From the lower Marsland of Platte County, Wyoming; referred specimens from Goshen County, Wyoming, Sioux County, Nebraska, and Bennett County, South

Dakota; and tentatively referred from Morrill County, Nebraska
Merychyus arenarum Cope, 1884, Amer. Nat., vol. 18, p. 282 (no description or illustration); 1888, ibid., vol. 22, pl. 27, fig. 1. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 217, fig. 160, pl. 32, figs. 1-3. Scott, 1890, Morph. Jahrb., vol. 16, pl. 13, fig. 7, pl. 16, figs. 30-32.

Merychyus arenarum arenarum Cope, 1884 (1885), Proc. Amer. Phil. Soc. Philadelphia, vol. 21, p. 540.

Merychyus arenarum leptorhynchus Cope, 1884 (1885), Proc. Amer. Phil. Soc. Philadelphia, vol. 21, p. 537. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 218, pl. 32, figs. 4-8.

Merychyus euryops (Cope) (nomen nudum Cope in Matthew), Matthew, 1899, Bull. Amer. Mus. Nat. Hist., vol. 12, art. 3, p. 73. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 228.

Specific Characters

Skull: Larger and more massive than other species of genus; malar on the average deeper than that of M. minimus; postglenoid process narrow anteroposteriorly, but heavier than in M. minimus; occipital condyles varying in size, with average larger than in that species.

Mandible: Longer, deeper, and more massive than average examples of M. minimus; condyle large; ascending ramus with less abrupt rise posterior to M_{3} than in the above-mentioned species.

Dentition: Superior and inferior series heavier and longer than in M. minimus.

Limbs: Longer and more massive than in M. minimus.

[^6]
Measurements: Tables 1 and 2.
 Illustrations: Figures 1-3, 13-17.

Discussion

Average examples of this species and of M. minimus may be separated on the basis of the size of the skulls and mandibular rami. In actual measurements of the skulls and mandibles there is some overlapping, but when the limbs of an individual are present the two forms are readily separated. M. arenarum occurs mostly in the upper part of the lower Marsland, while M. minimus has been found throughout the lower Marsland. (See discussion, p. 172, of M. arenarum and M. minimus representing parallel lines.)

The massive limbs of M. arenarum seem to indicate the end of a line of development, i.e., from the lighter-limbed M. minimus and M. elegans. The writers have found no skull or dental characters upon which to base specific differences between M. minimus and M. arenarum, except for size. The similar characters and the stratigraphic occurrences of these two species may indicate the nearness to the point of division of the two lines (light and heavy limbed) with the lightlimbed forms remaining the more conservative group and the heavy-limbed forms becoming more progressive, at least in size.

Diligent search for the name "Merychyus euryops Cope" has revealed that the first usage was in W. D. Matthew's list of the Cope Collection made in Philadelphia. The list is filed in the records of the American Museum of Natural History under the title, "Collection from Laramie Peak, by J. C. Isaac, 1880." Four specimens (A.M. 8142, $8143,{ }^{2} 8144$, and 8145) are listed under the name "Merychyus euryops" and apparently were numbered after the collection arrived at the American Museum of Natural History in 1902.

Matthew ${ }^{4}$ included "Merychyus euryops" in his classification, perhaps because of a note or name which Cope may have placed with the four specimens. Cope may have intended

[^7]to describe the material at some future time.
The U.N.S.M. oreodonts were collected by field parties from the University of Nebraska State Museum; the F:A.M. material was collected by John Lynch, Everett DeGroot, Gene Roll, Nelson J. Vaughan, and Charles
H. Falkenbach; and other specimens were collected by persons noted in the descriptions of the localities.

Two hundred and four specimens are here recorded:

HOLOTYPE

Skull with $\mathrm{P}^{3}-\mathrm{M}^{3}$ (lacking portion anterior of P^{3}, and left zygomatic arch), partial mandible with $I_{1}-M_{3},{ }^{1}$ partial radius, partial ulna, partial tibia, and pes elements. ($w+$)
A.M. 8146

From "East of Laramie Peak," ?Platte County, Wyoming; collected by J. C. Isaac
Figured by Cope, 1888, pl. 27, fig. 1; Thorpe, 1937, fig. 160, pl. 32, figs. 1-3 This paper, figs. 2, 15, 17 (in part)

The location "East of Laramie Peak," to which Cope referred in his type description, is probably the area north of Wheatland in Platte County, Wyoming. The Frick Laboratory has a large collection from this area referable to this species. The fossilization of the Frick specimens is similar to that of the material found by J. C. Isaac.

Fragments of an immature individual also are listed in the American Museum catalogue as belonging to the holotype, A.M. 8146. These fragments include the occipital wings of a skull, partial radius, ulna, and pes, together with other scraps.

The holotype is considered to belong to Group II (large premolars).
REFERRED FROM (A) TYPE AREA, (A') WHEATLAND AREA, AND (A') GUERNSEY AREA, PLATTE COUNTY, (B) GOSHEN COUNTY, WYOMING; (C) SIOUX COUNTY, NEBRASKA; (D) SOUTH DAKOTA; AND (E) TENTATIVELY REFERRED FROM MORRILL COUNTY, NEBRASKA

A. FROM TYPE LOCALITY
(Collected by J. C. Isaac)
Group I (Small Premolars)
3 skulls, etc.

Skull with $I^{1}-M^{3}$ (lacking left zygomatic arch) and mandible with $I_{1}-M_{3}$ (C/ and P_{1} medium size). Figured by Thorpe, 1937, pl. 32, figs. 4-8. This paper, fig. 3

This specimen is the holotype of M. arenarum leptorhynchus Cope, but the writers consider it as belonging to Group I (small premolars) of M. arenarum. The skull compares favorably with referred material of M. arenarum, and is well within the expected individual variation of the species. As to the narrowness of the skull, some of this is due to crushing, but the referred material shows considerable variation in this character. The small premolars, compared with the larger ones of the holotype, illustrate the difference found throughout the Merychyus group, i.e., two groups, I, small premolars, and II, large premolars. The narrower skulls, including this specimen, suggest females, This has been observed in other oreodonts. ${ }^{2}$ In Merychyus, however, most of the material is crushed so that the width of the skulls is of little value in making comparisons. The lighter limbs within a species seem to indicate females. In either group the $C /$ and P_{1} may be large or small and the limbs light or heavy.
Partial skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$, partial right ramus with $\mathrm{I}_{5}-/ \mathrm{C}$ rt. and P_{1} (br.) $-\mathrm{M}_{3}$ (P_{1} large), and fragments
(w_{+}^{++})

[^8]

Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}(\mathrm{C} /$ medium size)	(w_{+}^{+})	$\begin{gathered} \mathrm{F}: \mathrm{A} . \mathrm{M} . \\ 33374 \end{gathered}$
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ ($\mathrm{C} /$ medium size)	(w_{++}^{++})	33375
Posterior portion of skull with $\mathrm{P}^{3}-\mathrm{M}^{3}$	(M+)	34404
Partial skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$. . . . Very small individual.	($\mathrm{w}+$)	34408
Posterior portion of skull with M^{2} (alv.) $-\mathrm{M}^{\mathbf{3}}$, partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{\mathbf{3}}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} small), astragalus, and calcaneum	$\left(w_{+}^{++}\right)$	44584
Partial skull with $\mathrm{C} /\left(\mathrm{br}\right.$.) $-\mathrm{M}^{3}$ (br.) ($\mathrm{P}^{1}-\mathrm{P}^{2}$ rt.), partial mandible with / $\mathrm{C}-\mathrm{M}_{3}$ ($\mathrm{C} /$ and P_{1} small), partial humerus, 2 radii, 2 partial ulnae, 2 partial femora, partial tibia, manus and pes elements, etc.	(w_{++}^{++}	44625
Partial skull with $\mathrm{P}^{1}-\mathrm{M}^{3}$, partial mandible with $/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} small), partial humerus, 2 partial radii, 2 partial ulnae, partial femur, partial tibia, and pes elements		44627
2 mandibular Specimens		
2 partial mandibles with		
$\mathrm{I}_{1}-\mathrm{M}_{2}$ (br.) ($\mathrm{M}_{1} \mathrm{rt}$.) (P_{1} small)	(w_{+}^{+})	44416
$\mathrm{I}_{1}-\mathrm{M}_{3}$ (P_{1} small $)$	(w_{+}^{+})	44417
Group II (Large Premolars)		
9 SKulls, Etc.		
Partial skull with $I^{1}-M^{3}$, partial right ramus with $I_{2}-M_{2}\left(C /\right.$ and P_{1} medium size), and limb fragments	(w)	33370
Skull with $\mathrm{I}^{1} \mathrm{M}^{3}$ ($\mathrm{C} /$ large)	(-M)	33377
Partial skull with $\mathrm{C} /-\mathrm{P}^{2} \mathrm{rt}$. and $\mathrm{P}^{3}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{4}-\mathrm{M}_{3}$	(M)	34403
		44412A
Partial left ramus with $\mathrm{P}_{5}-\mathrm{M}_{3}$ The above two specimens were found associated.	(w_{+}^{+})	44412B
Posterior portion of skull with $\mathrm{M}^{\mathbf{3}}$ (rt.) and partial mandible with $\mathrm{I}_{\mathbf{1}}-\mathrm{M}_{\mathbf{3}}$ (P_{1} large)	(M+)	44414
Left premaxilla and maxilla with $\mathrm{C} /-\mathrm{M}^{3}(\mathrm{C} /$ medium size)	(w)	44415
Partial skull with $I^{1}-M^{3}$, mandible with $I_{1}-M_{3}\left(C /\right.$ and P_{1} large), partial radius, partial ulna, and fragments of pes. Figure 13 (in part)	(M+)	44581
Anterior portion of skull with $\mathrm{I}^{1}($ br. $)-\mathrm{M}^{2}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ ($\mathrm{C} /$ and P_{1} medium size)	(w)	44582
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ and mandible with / $\mathrm{C}(\mathrm{rt})-.\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} large) . .	(w+)	44583
4 mandibular specimens		
3 partial mandibles with		
P_{1} (alv.) $-\mathrm{M}_{3}$ ($\mathrm{P}_{2} \mathrm{rt}$. and $\mathrm{P}_{3} \mathrm{br}$.)		44568
$/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} large)	(M+)	44585
$\mathrm{I}_{2}-\mathrm{M}_{3}$ (P_{1} large)	(w)	44586
Partial right ramus $\mathrm{P}_{5}-\mathrm{M}_{3}$	$\left(w_{+}^{++}\right)$	44587
Group Questionable		
SkEletal elements		
Radius, partial ulna, femur, 2 tibiae (1 partial), and pes elements		44418
Most of the skeleton, lacking skull and mandible		44526
4 SKULLS, etc., immature		
Inferior anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{-} \mathrm{M}^{2}$ and partial mandible with $\mathrm{P}_{1}(\mathrm{rt}$. $)-\mathrm{dP}_{2}-\mathrm{M}_{2}$.	(I)	44645
Inferior anterior portion of skull with $\mathrm{I}^{1}-\mathrm{C} /\left(\right.$ erupt.) $-\mathrm{dP}^{1}-\mathrm{dP}^{4}$ and partial left ramus with $\mathrm{dP}_{4}-\mathrm{M}_{1}$	(I)	44646

B. FROM GOSHEN COUNTY, WYOMING

From 12-15 Mi. District, 1931-1933:

Group I (Small Premolars)

3 partial skulls, etc.

Partial skull with $\mathrm{P}^{3}-\mathrm{M}^{3}$	($\mathrm{w}+$)	$\begin{gathered} \text { F:A.M. } \\ 33386 \end{gathered}$
P_{1} small). Fig. 13 (in part)	(w)	33392
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ (P^{1} alv.) ($\mathrm{C} /$ medium size)	$\left(w_{+}^{++}\right)$	34425
2 mandibles, etc.		
2 partial mandibles with		
P_{2} (br.) $-\mathrm{M}_{3}$.	(w+)	44420
$\mathrm{I}_{1}-\mathrm{M}_{8}$ (P_{1} small) and astragalus	(w_{+}^{++})	44590

Group II (Large Premolars)
 4 skulls, etc.

Skull with $\mathrm{I}^{1-\mathrm{I}^{2}}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{3}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} large)
Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{5}-\mathrm{M}_{8}(\mathrm{C} /$ and P_{1} large)

Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{2}-\mathrm{M}_{8}$ (C/ and P_{1} large), 2 partial scapulae, 2 partial humeri, 2 radii, ulna, 2 femora (1 partial), 2 tibiae (1 partial), pes elements, partial pelvis, and vertebrae M^{3} has a suggestion of an extra lobe on the posterior-internal side.	(w)	F:A.M.
Anterior portion of skull with P^{1} (br.) - M^{3} and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{\mathbf{3}}$.	(w)	45368
mandible		
Partial mandible with / $\mathrm{C}-\mathrm{P}_{1} \mathrm{rt}$. and $\mathrm{P}_{2}-\mathrm{M}_{3}$	(w_{+}^{+})	444589
Group Questionable		
3 skulls		
Partial skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$	(w_{+}^{+})	43268
2 partial skulls, immature, with dP^{2} (br.) $-\mathrm{M}^{3}$ (germ)		44730
$\mathrm{P}^{\mathbf{1}}-\mathrm{dP}^{2}-\mathrm{M}^{2} . .$.	(I)	44731
mandible		
Partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{8} \mathrm{rt}$. and / $\mathrm{C}-\mathrm{dP}_{2}-\mathrm{M}_{3}$ (erupt.)	(1)	44732
From the 16 Mi. District, 16 Mi. S.E. of Lusk, E. Side of U. S. Highway	o. 85,	1939:
From the middle portion of the exposures:		
Grour I (Small Premolars)		
3 skulls, etc.		
Skull with $\mathrm{C} /-\mathrm{M}^{3}$ and mandible with / $\mathrm{C}-\mathrm{M}_{3}$ ($\mathrm{C} /$ and P_{1} large)	(w)	44533A
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{3}}$ (C/ and P_{1} large)	(w)	44533B
Radius, ulna, partial femur, 2 tibiae (1 partial), and manus and pes elements . The three foregoing listings were found associated in the field.		44533A-B
Anterior portion of skull with $\mathrm{I}^{1} \mathrm{C} / \mathrm{rt}$. and $\mathrm{P}^{1}-\mathrm{M}^{3}$ (br.) .	(w)	44553
2 mandibular rami		
Partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (P_{1} large)	(-m)	44541
Partial right ramus with $\mathrm{I}_{2}\left(\mathrm{rt}\right.$.) $-\mathrm{M}_{3}$ (I_{3} alv. and /Crt.)		44609
From the high portions of the exposures:		
Grour I (Small Premolars)		
10 skulls, etc.		
Complete skull with $\mathrm{I}^{-} \mathrm{M}^{3}$, complete mandible with $\mathrm{I}_{1}-\mathrm{M}_{8}$ (C/ and P_{1} large), humerus, radius, ulna, 2 femora, tibia, manus and pes elements, pelvis, and vertebrae. Figures 13, 15, 16, 17 (in part)	$\left(w_{+}^{++}\right)$	43279
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$, partial mandible with / $\mathrm{C}-\mathrm{M}_{3}$ (P_{1} small), partial scapula, 2 partial femora, 2 tibiae (1 partial), pes elements, pelvis, and vertebrae	(w_{+}^{++})	43280
Complete skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{3}(\mathrm{rt})-.\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} medium size), humerus, 2 radii, 2 ulnae, 2 femora (1 partial), 2 tibiae, manus and pes elements, partial pelvis, and vertebrae .	($\mathrm{w}+$)	43282
Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ (P^{1} alv.), partial mandible with $/ \mathrm{C}-\mathrm{M}_{3}$ (C/ and P_{1} small), partial radius, partial ulna, manus elements, and vertebrae	(w^{++})	43283
Partial skull with $\mathrm{I}^{2}-\mathrm{M}^{3}$, partial right ramus with $\mathrm{P}_{5}-\mathrm{M}_{3}$ (C/ large), partial tibia, and fragments	(w+)	43284
Skull with $\mathrm{I}^{2}-\mathrm{M}^{\mathbf{3}}$ ($\mathrm{C} /$ large)	(w)	43285

Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$, partial mandible with $\mathrm{I}_{3}-\mathrm{M}_{3}$ (P_{1} small), partial humerus, partial radius, partial femur, 2 tibiae (1 partial), etc.	$\left(w_{+}^{+}\right)$	$\begin{gathered} \text { F:A.M. } \\ 43288 \end{gathered}$
Partial skull with $C /-M^{3}$, mandible with $P_{1}-M_{8}\left(C /\right.$ and P_{1} large), partial humerus, partial radius, partial ulna, 2 partial femora, 2 partial tibiae, pes elements, and partial pelvis	(M)	43329
Right premaxilla and maxilla with $\mathrm{I}^{2}-\mathrm{M}^{3}$, partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{3}}$ ($\mathrm{C} /$ and P_{1} large), partial radius, partial ulna, partial femur, tibia, and pes .	(w+)	44534
Posterior portion of skull with $\mathrm{M}^{2}-\mathrm{M}^{3}$, partial mandible with $\mathrm{I}_{2}-/ \mathrm{Crt}$. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} small), 2 partial scapulae, 2 humeri, 2 radii, 2 ulnae, and manus elements.	($\mathrm{w} \ddagger$)	44535

Group II (Large Premolars)
 14 skulls, etc.

Crushed skull with $\mathrm{I}^{1}-\mathrm{C} /$ rt. and $\mathrm{P}^{-}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{M}_{1}(\mathrm{rt})-.\mathrm{M}_{3}$ (w) 43270
Crushed skull with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}(\mathrm{C} /$ large) \cdot.
Partial skull with $C /-M^{3}$, partial mandible with $P_{1}-M_{3}\left(C /\right.$ and P_{1} large), astragalus, and calcaneum43272

Posterior portion of skull with $\mathrm{M}^{1}(\mathrm{br})-.\mathrm{M}^{3}$, mandible with $/ \mathrm{C}-\mathrm{M}_{\mathbf{3}}\left(\mathrm{P}_{1}\right.$ large $)$, (w) 43274
2 partial femora, 2 tibiae (1 partial), metatarsal, etc. (w)
Skull with I^{1} (alv.) M^{3} (C/ large) and vertebrae
Skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (C/ and P_{1} large), 2 humeri, 2 radii, 2 ulnae, femur, tibia, manus and pes elements, pelvis, and vertebrae. Figures 13, 15, 16, 17 (in part)
$\left.{ }^{(}{ }^{+}+{ }^{+}\right)$ 43276

Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{8}$ (C/ and P_{1} small), partial radius, 2 partial ulnae, partial femur, tibia, pes elements, and pelvis . . .
Skull with I^{1} (alv.) M^{3}, mandible with $\mathrm{P}_{\mathbf{2}}-\mathrm{M}_{3}$ (C/ large), radius, partial ulna, and partial manus
(w+) 43277

Partial right and left maxillae with $\mathrm{P}^{2}-\mathrm{M}^{3}$.
Inferior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{C} /$ medium size), partial radius, partial ulna, partial femur, partial tibia, and partial pes
$\left(w_{+}^{++}\right) \quad 43281$

Partial right and left maxillae with $\mathrm{C} /\left(\mathrm{rt}\right.$.) $-\mathrm{M}^{3}$ ($\mathrm{P}^{3} \mathrm{rt}$.), partial mandible with $/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} small), partial scapula, 2 partial humeri, partial radius, partial ulna, femur, partial manus, and partial pelvis
(w+) 44571

Partial right and left maxillae with $\mathrm{C} /-\mathrm{M}^{3}$ and partial right ramus with $\mathrm{P}_{1}-\mathrm{M}_{2}$ (C/ large)

44622
Anterior portion of skull with $\mathrm{I}^{1} \mathrm{I}^{2}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}$ ($\mathrm{P}^{1}-\mathrm{P}^{2}$ absent) (C/ large). ($\mathrm{w}_{\dagger \dagger}^{+\ddagger}$). 44623
Fragments of skull with P^{2} (br.) $-\mathrm{M}^{1}\left(\mathrm{br}\right.$.) and partial mandible with $\mathrm{P}_{\mathrm{s}}(\mathrm{br}$. $)-\mathrm{M}_{3}$ and limb fragments
(w_{+}^{+})
44624

5 MANDIBULAR RAMI, ETC.

2 partial mandibles with
$\mathrm{I}_{1}-\mathrm{M}_{3}$ (P_{1} large), partial humerus, partial radius, partial ulna, and partial tibia

44570
P_{1} (br.) M_{3} (P_{1} large), partial femur, partial tibia, astragalus, and calcaneum
(м) 44572

Partial right ramus with $\dot{P}_{4} \mathrm{M}_{\mathbf{8}}$ and partial radius ($\mathrm{M}+$) 44536
2 partial left rami with
$\mathrm{P}_{\mathbf{1}}-\mathrm{M}_{\mathbf{3}}$ (P_{1} large) . (-M)
43351
$\mathrm{I}_{2}-\mathrm{P}_{2}$ alv. and $\mathrm{P}_{\mathbf{z}}-\mathrm{M}_{\mathbf{3}}($ br. $)$. (w)
43352

Group Questionable

PARTIAL SKULL AND PARTIAL MANDIBULAR RAMI
Posterior portion of skull with $M^{2}-M^{3}$ and partial left ramus with M_{3}. . . (w)
43271

6 SKULLS, ETC., IMMATURE

Skull with $\mathrm{dI}^{1}-\mathrm{I}^{3}-\mathrm{C} /($ germ $)-\mathrm{dP}^{1}-\mathrm{M}^{1}$ and mandible with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{1}$, partial femur, partial tibia, etc.	$\begin{gathered} \text { F:A.M. } \\ 44701 \end{gathered}$
Skull with $\mathrm{I}^{1}-\mathrm{dP}^{1}-\mathrm{M}^{\mathbf{2}}$ (germ) . (I)	44733
Partial skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$. (I)	44734
Partial skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (erupt.) and partial mandible with $/ \mathrm{C}-\mathrm{dP}_{2}$ M_{2} (br.)	44735
Partial skull with $\mathrm{I}^{1}-\mathrm{dP}^{1}-\mathrm{M}^{1}$, mandible with $\mathrm{I}_{1}-\mathrm{P}_{1}$ (erupt.) $-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (germ), 2 partial radii, 2 partial tibiae, manus and pes elements, etc.	44736
Partial skull with $\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{3}($ germ $)$, mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ (erupt.) $-\mathrm{dP}_{2}-$ M_{8} (germ), partial femur, tibia, pes, and partial pelvis .	44762
mandible	
Partial mandible with $\mathrm{dI}_{1}-\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$ br. (I)	44737

From the 18 Mi. District, 18 Mi. S.E. of Lusk, E. Side of U. S. Highway No. 85, 1932-1939:
From the middle portion of the exposures:
Group I (Small Premolars)
3 skulls, ETC.

From Questionable Level in the Jay Em District, S.E. of Lusk, E. Side of U. S. Highway No. 85, 1931-1941:

Group I (Small Premolars)

2 mandibles, etc.
2 partial mandibles with
/C(rt.)-M (P_{1} medium size) . (M+) 34422
$/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} small), partial humerus, and atlas (w) 44421

Group II (Large Premolars)
 14 skulls, etc.

Partial skull with $I^{1}-I^{2}$ rt. and $I^{3}-M^{3}(C /$ large $)$, partial humerus, partial radius, partial ulna, and fragments
(w) 33371

Skull with C/-M ${ }^{3}$ (C/ medium size) (w) (w) 33373

Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ ($\mathrm{P}^{1} \mathrm{rt}$.), partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{2}}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right.$ alv.) (M) 33389
(C/ large), and fragmentary limb elements (M)
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} large) . (w_{+}^{++}) 33390
Anterior portion of skull with $\mathrm{I}^{2} \mathrm{M}^{3}$ (br.) (C/ large) and partial pes (w) 33398

Partial skull with $\mathrm{I}^{-} \mathrm{M}^{3}$ and partial right ramus with $\mathrm{P}_{4}-\mathrm{M}_{3}$ ($\mathrm{C} /$ medium size)	(w_{+}^{+})	F:A.M. 34402
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ (C/ br.) and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{8}(\mathrm{C} /$ and		
P_{1} large)	(м)	34427
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (C/br.) ($\mathrm{C} /$ medium size)	(w_{+})	43240
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (C / br.), partial mandible with / $\mathrm{C}-\mathrm{M}_{3}$ (P_{1} large), limb fragments, astragalus, and calcaneum .	(w+)	43275
Partial skull with $\mathrm{I}^{-} \mathrm{M}^{3}$, partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (br.) (C/br.), (C/ and P_{1} very large), radius, partial ulna, partial manus, and vertebrae	($w^{+}+$	44607
Partial skull with $\mathrm{I}^{1}-\mathrm{I}^{2} \mathrm{rt}$. and $\mathrm{I}^{3}-\mathrm{M}^{3}(\mathrm{C} /$ medium size)	(-m)	44608A
Posterior portion of skull and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (P_{1} small) The above two specimens were found associated.	($\mathrm{w}+$)	44608B
Anterior portion of skull with $\mathrm{P}-\mathrm{M}^{2}$	(w)	44769
5 mandibular rami		
3 partial mandibles with		
$\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} large)	(w+)	34416
$\mathrm{I}_{1}-\mathrm{M}_{3}$ (P_{1} medium size)	(w^{+})	34417
$\mathrm{I}_{1}-\mathrm{M}_{8}$ (br.) (P_{1} large)	(w+)	44630
Partial right ramus with $P_{1}-M_{3}$ (P_{1} medium size)	($\mathrm{w}+{ }^{+}$)	44430
Partial left ramus with / $\mathrm{C}(\mathrm{rt})-.\mathrm{M}_{3}$ (P_{1} large)	(w)	44771
Group Questionable		
3 partial skulls		
$\mathrm{M}^{1}-\mathrm{M}^{3}$		44766
$\mathrm{P}^{4}-\mathrm{M}^{3}$	($\mathrm{w}++$)	44768
mandibular ramus		
Partial left ramus with $\mathrm{M}_{1}-\mathrm{M}_{3}$	(${ }_{\text {+ }}$)	44777
7 SKulls, etc., mmature		
Partial skull with $\mathrm{C} /\left(\right.$ erupt.)- $\mathrm{dPL}^{-} \mathrm{M}^{1}$	(1)	44740
Skull with $\mathrm{I}^{1}-\mathrm{dP}^{1}-\mathrm{M}^{2}$ (erupt.) and mandible with $/ \mathrm{C}-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (erupt.)	(1)	44741
Skull with C/(rt.)-dP1-M ${ }^{2}$.	(I)	44742
Partial skull with $\mathrm{dP}^{\mathrm{L}} \mathrm{M}^{2}$ (erupt.)	(1)	44743
Skull with $\mathrm{I}^{3}-\mathrm{dC} /-\mathrm{M}^{2}$, mandible with $\mathrm{I}_{1}-\mathrm{dP}_{4}-\mathrm{M}_{3}$ ($\mathrm{P}_{2}-\mathrm{P}_{3}$ absent), partial scapula, partial humerus, partial radius, partial ulna, and partial manus .	(1)	44744
Anterior portion of skull with C/-dPL M^{2}, partial mandible with $\mathrm{P}_{1}(\mathrm{alv}$.$) -$ $\mathrm{dP}_{2}(\mathrm{rt})-.\mathrm{dP}_{3}$, partial scapula, partial humerus, and metacarpal		44746
Partial skull with $\mathrm{P}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{2}$.	(I)	44748
2 mandibles, immature		
Partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and / $\mathrm{C}(\mathrm{rt})-.\mathrm{dP}_{2}-\mathrm{dP}_{4} \ldots . .$.	(1)	44747
Partial mandible with P_{1} (br.) - $\mathrm{dP}_{4}-\mathrm{M}_{2}\left(\mathrm{P}_{2}-\mathrm{P}_{8}\right.$ absent) and partial manus.	(1)	44682
From 25 Mi. District, 16 Mi. S. and 9 Mi. E. of Lusk, 1936:		
Group I (Small Premolars)		
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{\mathrm{s}}-\mathrm{M}_{3}$, partial scapula, partial humerus, partial femur, 2 tibiae (1 partial), pes elements, etc.	($\mathrm{w} \ddagger$)	34431
Group II (Large Premolars)		
3 skulls, etc.		
Partial skull with $\mathrm{I}^{1} \mathrm{M}^{3}$ (C/ small)	(м)	43278

From S. of Harrison, 1937-1938:

Group I (Small Premolars)
 4 SKUlls, etc.

Inferior anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{3}}$ ($\mathrm{C} /$ and P_{1} large), partial radius, partial ulna, and partial manus	(w_{+}^{+})	$\begin{gathered} \text { F:A.M. } \\ 44539 \end{gathered}$
Partial skull with $\mathrm{I}^{1}-\mathrm{I}^{2}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}$ and partial right ramus with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$ (M_{1} absent) ($\mathrm{C} /$ and P_{1} large)	(w_{+}^{+})	44592
Partial skull with $\mathrm{I}^{1} \mathrm{I}^{2}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}(\mathrm{C} /$ and P_{1} small), radius, and partial ulna	(w_{+}^{+})	44594
Partial skull with $\mathrm{I}^{-} \mathrm{M}^{3}$, partial mandible with P_{3} (br.) $-\mathrm{M}_{3}$ (C/ large), partial radius, 2 partial tibiae, and pes elements	(${ }^{+}+$	44620

Group II (Large Premolars)
 MANDIBLE, ETC.

Partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ large $)$, partial humerus, partial radius, partial
ulna, partial tibia, and fragments (w+) 44593

Group Questionable

2 SKULLS, ETC., IMMATURE

From N. of Agate, 1940:

1a. Merychyus arenarum idahoensis, new subspecies

From Miocene deposits (approximately equal in age to the Marsland of the Great Plains), Lemhi Valley, Lemhi County, Idaho

Subspecific Description

Skull: Characters similar to those in M. arenarum, but larger than average examples of that species.

Mandible: Similar to that of M. arenarum; postsymphysis below anterior portion of P_{4} (in M. arenarum, usually below posterior portion of P_{3}).

Dentition: Series longer than average of
M. arenarum; $\mathrm{P}^{\mathrm{L}} \mathrm{P}^{\mathbf{3}}$ more laterally compressed and overlapping than in examples of that species.

Limbs: Size and construction within the variation found in examples of M. arenarum; definitely of the robust line, not as in the lighter M. elegans group.

Measurements: Tables 1 and 2.
Illustrations: Figures 1, 3, 15-17.

Discussion

The new subspecies, although from west of the Continental Divide, does not differ greatly from M. arenarum of the Great Plains. The holotype, F:A.M. 44827, of this
subspecies was secured from the lower part of the deposits along the Lemhi Valley and a larger example, $\mathrm{F}: \mathrm{A} . \mathrm{M}$. 44828, came from the same exposure, 25 feet above the site of the holotype. The holotype is larger than average examples of M. arenarum, and the referred specimen ($\mathrm{F}: \mathrm{A} . \mathrm{M} .44828$) is as large as any examples of this species from the Great Plains. A third specimen, belonging to Mr. Ralph Nichols of Salmon, Idaho, and deposited in the Montana State University at Missoula, is slightly smaller than the holotype. The geologic level of the third example is not known to the writers.

As far as the writers have been able to determine, this is the first time that fossils, resembling those of the Marsland, have been reported from the Lemhi Valley of Idaho.

Mr. Ralph Nichols, while a student at the Montana State University, collected the first known material from this area. Dr. Charles Deiss of the University showed this collection to Charles H. Falkenbach and granted the Frick Laboratory the privilege of collecting in the Idaho area. At a later date it was found that Dr. John A. Wilson also had collected in the same area.

Associated with the material collected by Ralph Nichols was a maxilla referable to Merycochoerus. The specimen is not complete enough for specific identification.

Remains from Lemhi Valley in the Frick Laboratory collections were collected by Nelson J. Vaughan, Joseph Rooney, and Charles H. Falkenbach, 1942.

Six specimens are here recorded:

HOLOTYPE

Skull (lacking most of occipital region)
with $\mathrm{I}^{1}-\mathrm{M}^{3}, 2$ humeri (1 partial), 2
radii (1 partial), partial ulna, partial manus, partial femur, tibia, partial pes, pelvis, and skeletal fragments. (w+)
The holotype has a small $\mathrm{C} /$, large premolars, and an abnormal M^{3}. The M^{3} has an extra lobe or ridge on the posterior, internal side of the tooth. This, however, does not increase the length of the dental series, and is not considered as of specific value. (See fig. 3.)

REFERRED FROM TYPE AREA
 SKULL AND SKELETAL ELEMENTS

Crushed inferior portion of skull with $\mathrm{I}^{-} \mathrm{M}^{3}(\mathrm{C} / \mathrm{rt}$.$) , partial tibia, astragalus,$
and calcaneum $\ldots . . .$.$\quad \begin{aligned} & \text { F:A.M. } \\ & \text { Large } \mathrm{C} / \text { and premolars. }\end{aligned}$
SKULL AND SKELETAL ELEMENTS, IMMATURE
Partial skull with $I^{1}-\mathrm{dP}^{2}-\mathrm{M}^{3}(\mathrm{germ})\left(\mathrm{I}^{2}\right.$ alv.), 2 partial humeri, 2 partial radii,
2 partial ulnae, partial tibia, calcaneum, partial manus, and skeletal frag-
ments . (I)
SKULL
Posterior portion of skull with M^{3}. (w_{+}^{++}4 45419
MANDIBULAR RAMUS AND SKELETAL ELEMENTS
Fragment of right ramus with P_{4}, astragalus, partial calcaneum, atlas, and
fragments
44830
SKULL AND MANDIBLE
Skull (lacking occipital region and right zygomatic arch) with $I^{1}-I^{2}$ alv. and
$\mathrm{I}^{3}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{3}}$ (M_{1} br.). Fig. 3 (in part) (w) U.M. Large C / and small premolars.

2. Merychyus calaminthus Jahns

From the Miocene deposits, Tick Canyon formation (approximately equal in age to the Harrison of the Great Plains), Los Angeles County, California
Merychyus calaminthus Janns, 1940, Carnegie Inst. Washington Publ., no. 514, paper 9, p. 187, fig. 9, pl. 1, figs. 2-3a, pls. 2, 3.

Specific Characters

Skull: Small size; low and flat; supraoccipital wings widely spread, possibly less fan-shaped occipital region than in average Merychyus examples; brain case well inflated laterally with slight reduction of the postorbital restriction; very short and low sagittal crest; wide frontals; orbits somewhat oblong with anteroposterior axis; lacrimal fossa large but shallow; prelacrimal vacuity small; zygomatic arch with a rounded inferior border, curving upward on both sides of the orbit (a large depression on the side of the face above the dental series causes the zygomatic arch to appear as if it rises from the face almost at the contact of the premaxilla and maxilla); infraorbital foramen above P^{3}; postglenoid process very thin anteroposteriorly, wide transversely, with sloping external and internal borders. (Characters based on immature and fragmentary material.)

Mandible: Moderately heavy construction; gradual increase posteriorly in depth of ramus; posterior border of ascending ramus with inward curve. (Characters based on immature material.)

Dentition: Light; subhypsodont for a small Merychyus; superior premolars crowded, $\mathrm{P}-\mathrm{P}^{2}$ set at a slight angle to the alveolar border; external styles of molars moderately prominent. (Characters based on mature specimen.)

Limbs: Slender construction, approximating small Merychyus from the Great Plains.

Illustration: Figure 13.

Discussion

Unfortunately all the skull remains, excepting one palate, are of immature individuals. The partial skull, C.I.T. 1382, was considered by Jahns ${ }^{1}$ to be mature, but the

[^9]present writers have examined this specimen and consider it immature, with $\mathrm{dP}^{4}-\mathrm{M}^{2}$ in place of $\mathrm{M}^{1} \mathrm{M}^{3}$. All of the superior portions of the available skulls demonstrate that the skull is low and flat with a well-inflated brain case, and a very low and short sagittal crest. In many respects the immature cranium approaches the examples of Oreodontoides, but that genus lacks a facial vacuity. From the available material, the writers consider this species to be equal in geologic age to the species of Merychyus found in the Harrison formation of the Great Plains. (See further discussion of this species under M. crabilli, p. 190.)

In the type description Jahns also noted that P^{4} has a spur projecting from the anterior surface of the internal wall of the tooth. The presence or absence of an anterior spur on P^{4} may be attributed to individual variation.

Jahns further pointed out that cingula are present on P^{4} and M^{3} in " M. delicatus" and M. minimus, but absent in M. calaminthus. This character varies in individuals within a species. In the chart of measurements, Jahns gives the maximum length of skull C.I.T. 1829 as 126 mm ., but the measurement is composite as it is based on two individuals. Taking into consideration the individual variation apparent within a species of Merychyus, this measurement is of questionable value. Jahns also stated that M. calaminthus differs from " M. delicatus" in having a facial or prelacrimal vacuity. The present writers consider " M. delicatus" in synonymy with M. minimus (see p. 205), and the latter species does have a facial vacuity. It is true that the original illustration of "M. delicatus" by Loomis ${ }^{2}$ and by Thorpe ${ }^{3}$ does not show this vacuity but the shaded area anterior to the orbit in the drawing is the location of the facial vacuity (see fig. 6).

Jahns ${ }^{4}$ shows a comparative faunal list and indicates that M. minimus, M. arenarum, and Merycochoerus proprius magnus come from the "Upper Harrison," which is equal to the

[^10]Marsland. The first two species just mentioned are found in the lower Marsland, and the third form comes from a horizon somewhat higher, perhaps in the lower part of the
upper Marsland. Merycochoerus matthewi is found associated with M. minimus and M. arenarum, in the lower Marsland.
Seven specimens are here recorded:

HOLOTYPE

Partial skull with $\mathrm{P}^{1}-\mathrm{M}^{3}$. (w) C.I.T. 1383^{1} From Tick Canyon formation, Los Angeles County, California
Figured by Jahns, 1940, pl. 2, figs. 1-1a
This paper, fig. 13

REFERRED BY JAHNS ${ }^{2}$ FROM TYPE LOCALITY

	C.I.T.
Partial skull with dP4 ${ }^{4}{ }^{\text {2 }}$; figured by Jahns, 1940, pl. 2, figs. 2-2a (1)	1382
Partial skull and mandible; figured by Jahns, 1940, pl. 1, figs. 3, 3a, pl. 3 . . (1)	1829
Partial skull and mandible; figured in part by Jahns, 1940, pl. 1, figs. 2, 2a . . (I)	1384
Partial mandible	1342
Miscellaneous teeth	2684
Partial left pes and tibia; figured by Jahns, 1940, fig. 9	2681

3. Merychyus crabilli, ${ }^{3}$ new species

From the Harrison formation, Box Butte County, Nebraska; referred specimens from Dawes and Morrill counties, Nebraska, and Niobrara County, Wyoming

Description

Skull: Smaller than that of M. minimus and considerably smaller than examples of M. siouxensis from the same formation; nasals light; prelacrimal vacuity very small; lacrimal fossa shallow, slightly deeper than in M. arenarum and M. minimus; infraorbital foramen above anterior portion of P^{4}; postglenoid process light; occipital condyles smaller than in examples of M. minimus and M. siouxensis; bulla well inflated with a somewhat flattened internal surface, large for size of the skull.

Mandible: Light construction; inferior border with a gradual downward trend posteriorly; smaller than M. minimus and decidedly smaller than M. siouxensis.

Dentition: Superior and inferior series crowded, with less over-all length than in

[^11]examples of M. minimus or M. siouxensis; molar series approximately equal in length to those of M. minimus.
Limbs: Short and light; smaller than examples of M. minimus and considerably smaller than examples of M. siouxensis (see figs. 15-17).

Measurements: Tables 1 and 2.
Illustrations: Figures 1, 6, 13-17.

Discussion

Although no limbs are definitely associated with the holotypic skull and ramus, referred limb elements from the same quarry are illustrated. Figures 1, 5-7, 15-17 show the marked difference in size of the skulls, rami, and limb elements of M. crabilli and M. siouxensis, both from the Harrison formation, and M. minimus from the lower Marsland formation. The morphologic characters, substantiated by geologic evidence, suggest that M. crabilli represents the ancestor of M. minimus.

The material referred to this new species is remarkable in that it includes at least 20 individuals found associated (within two field blocks from one small quarry) with the holotype. This assemblage provides the best example of individual variation in the Merychyinae available at this time. This variation is discussed on page 262 and illustrated in charts 3 and 4.
The various associated specimens representing the genus Merychyus demonstrate the
variation of individuals within a species. Large or small superior canines and inferior first premolars may be present, as well as large or small premolar series (noted under individual listings). This is discussed in more detail under Merychyus on page 172.

Upon close examination of the available material it is evident that M. crabilli and M. calaminthus represent closely related species. The size and characters of the two forms
are very similar. As the California material is incomplete and chiefly immature, however, and as the two collecting localities are geographically widely separated, the two species may best be considered as distinct from each other. Future discovery of additional material of M. calaminthus may demonstrate that M. crabilli is a subspecies or a geographic variant of the California form.

Fifty-five specimens are here recorded:

HOLOTYPE

Skull with $\mathrm{I}^{1-I^{3}}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ and left ramus with I_{3} (alv.) - M_{3} (C/ and P_{1} moderately small, premolars large). (M_{+})

F:A.M. 45384A From the Harrison formation on the West Morava Ranch, 1 mi . S. and 8 mi . W. of Marsland, Box Butte County, Nebraska; collected by Ted Galusha, 1940
Figs. 1, 6, 14

REFERRED FROM (A) BOX BUTTE, (B) MORRILL, AND (C) DAWES COUNTIES, NEBRASKA; AND (D) NIOBRARA COUNTY, WYOMING

A. FROM WEST MORAVA RANCH, TYPE LOCALITY, BOX BUTTE COUNTY, NEBRASKA

(Collected by Ted Galusha, 1940)
Note: All material from the type locality was collected in two field blocks from one small quarry and was associated with the holotype. The premolars are large, except where stated.

FOUR SKULLS AND MANDIBULAR RAMI
Skull with $\mathrm{I}^{1-\mathrm{I}^{3}}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ and right ramus with $\mathrm{P}_{1}-\mathrm{M}_{1}$ ($\mathrm{C} /$ and $\mathrm{P}_{1} \quad$ F:A.M. small) . (w+ (w 45384 C
Inferior anterior portion of skull with $C /-M^{3}$ and right ramus with $\mathrm{I}_{5}-\mathrm{M}_{8}$ ($\mathrm{C} /$ and P_{1} moderate size). Fig. 13
($\mathrm{M}+$) 45384G
This specimen is illustrated to demonstrate the change in the anteroposterior length of the molar crowns as a result of wear.
Inferior anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{L} \mathrm{M}^{2}$ and mandible with / $\mathrm{C}-\mathrm{P}_{1}$ alv. and dP_{2} (br.) $-\mathrm{M}_{2}$
(I) 45384L

Anterior portion of skull with $\mathrm{C} /\left(\right.$ erupt.) $-\mathrm{dP}^{2}-\mathrm{M}^{2}$ and left ramus with dP_{2} (br.) $-\mathrm{M}_{2}$
(I) 45384 M

13 skulls

5 skulls with
$\mathrm{I}^{1} \mathrm{I}^{3}$ alv. and $\mathrm{C} /($ br. $)-\mathrm{M}^{3}$ (P^{1} alv.) (C/ small) ($\mathrm{w} \ddagger^{+}$) 45384B
$\mathrm{I}^{\mathrm{L}} \mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ (P^{1} alv.) (C/moderate size) ($\mathrm{w}+$) 45384D
$\mathrm{I}^{1}-\mathrm{I}^{2}$ alv. and $\mathrm{I}^{3}-\mathrm{M}^{3}(\mathrm{C} /$ moderate size) (w) 45384 E
$\mathrm{I}^{\mathrm{L}} \mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ (C/ and premolars small) (w) 45384F
$\mathrm{I}^{\mathrm{L}} \mathrm{I}^{\mathrm{i}}$ alv. and $\mathrm{C} /\left(\right.$ erupt.) $-\mathrm{dP}^{1} \mathrm{M}^{2}$. (I) 45384N
8 partial skulls with
$\mathrm{I}^{1} \mathrm{C} /$ alv. and $\mathrm{P}^{\perp} \mathrm{M}^{3}$. (w_{+}) 45384H
$\mathrm{M}^{\mathbf{3}} \cdot$. (w_{\ddagger}) 45384J
$\mathrm{C} / \mathrm{M}^{\mathbf{3}}$ (C) small) .
$\begin{array}{ll}(\mathrm{m}) & 45384 \mathrm{~J} \\ \text { (м) }\end{array}$
$\mathrm{I}^{\mathrm{L}} \mathrm{I}^{\mathbf{3}}$ alv. and $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{\mathbf{2}}$. .
$\mathrm{dPL}^{\mathbf{L}} \mathrm{M}^{\mathbf{2}}$. (I)
(I)
(I)

453840

45384P
$\mathrm{C} /-\mathrm{dPL}^{-} \mathrm{M}^{2}$
(I)

45384 Q
$\mathrm{P}^{1}-\mathrm{dP}^{2}-\mathrm{dP}^{4}(\mathrm{br}$.)
(I)

45384R
45384T

9 SKELETAL ELEMENTS

3 humeri (1 partial). Fig. 15 (45384 Z4-Z5 only)
2 radii
Ulna .
3 femoral).

B. FROM 8 MI. N. OF BRIDGEPORT, MORRILL COUNTY, NEBRASKA

(Collected by A. C. G. Kaemphfer of Bridgeport, 1933)
skull
U.N.S.M.

Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (lacking superior occipital region (C/ small)
(w) 1-1-7-33 S.P.

> C. FROM W. OF MARSLAND, DAWES COUNTY, NEBRASKA
> mandibular ramus
> U.N.S.M.

Partial right ramus with $\mathrm{I}_{5}-\mathrm{M}_{3}$
(w+) 3-28-7-34 N.P.
D. FROM NIOBRARA COUNTY, WYOMING
(Collected by John Lynch, Everett DeGroot, and Charles H. Falkenbach, 1931-1932)
From N. of Keeline, 1931-1932:
SKull, mandible, and associated skeletal elements

partial skull, etc.
Anterior portion of skull with $\mathrm{I}^{-\mathrm{I}^{2}}$ rt. and $\mathrm{I}^{2}-\mathrm{M}^{2}$ and fragment of left ramus
(premolars large, C/medium size) (w) 44452
SKULL AND MANDIBLE, IMMATURE
Skull with $\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{1}$ and mandible with $\mathrm{I}_{5}-\mathrm{dP}_{2}-\mathrm{M}_{1}$. (I) 44629
2 maxillae

Partial left maxilla with $\mathrm{M}^{1} \mathrm{M}^{3}$. (w) 44454
3 PARTIAL MANDIBULAR RAMI
3 partial left rami with
$\mathrm{I}_{1}-\mathrm{M}_{1}\left(\mathrm{P}_{1}\right.$ large $)$. (w_{+}) 43392
$/ \mathrm{C}-\mathrm{M}_{\mathbf{2}}$ (P_{1} br.) $\mathrm{P}_{1}-\mathrm{P}_{\mathbf{2}}$ small, P_{4} large $)$. ($\mathrm{w}^{+}+$) 44457
$\mathrm{P}_{1}-\mathrm{M}_{\mathbf{3}}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right.$ large $)$. (w_{+}^{+}) 44458
4 mandibular rami, immature
Partial mandible with /C- $\mathrm{dP}_{2}-\mathrm{M}_{2}$ (germ) (I)
2 partial right rami with
$\mathrm{I}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{1}$ (P_{1} erupt.) . (I)
44631

$\mathrm{dP}_{4}-\mathrm{M}_{2}$ (br.) . (I)	$\begin{gathered} \text { F:A.M. } \\ 44632 \end{gathered}$
Partial left ramus with /C(rt.)- $\mathrm{dP}_{2}-\mathrm{M}_{2}($ br. $)$. (I)	44633
Partial skull and skeletal elements	
Occipital region of skull, 2 humeri (1 partial), 2 radii, 2 ulnae, 2 manus, and vertebrae. Figs. 15, 17	43393
From N. of Lusk, 1931 and 1933:	
MANDIBLE	
Partial mandible with $\mathrm{P}_{4}-\mathrm{M}_{3}$ (br.) ${ }^{\left(\mathrm{w}_{+}^{++}\right)}$	44455
From 77 Hill, N. of Manville:	
3 maxillae	
Partial right maxilla with $\mathrm{M}^{1}-\mathrm{M}^{3}(\mathrm{br}$.$) (\mathrm{w}+$)	44602
2 partial left maxillae with $\mathrm{P}^{1}-\mathrm{M}^{3}$	44456
$\mathrm{P}^{4}-\mathrm{M}^{\mathbf{3}}$. ${ }_{\text {c }}$	44601
From N. of Jeriah:	
mandibular ramus	
Partial right ramus with $\mathrm{I}_{1}-\mathrm{P}_{3}\left(\mathrm{I}_{2}-\mathrm{I}_{3}\right.$ alv., $\mathrm{P}_{1} \mathrm{rt}$.) (premolars large) (w)	44603
From near Van Tassell; Collected by Field Party from Amherst College,	1:
Skull, mandible, amd skeleton	A.C.
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$, and mounted skeleton . . (w_{+}^{+})	1931-26

4. Merychyus elegans Leidy

From the upper Marsland formation, Nebraska; referred specimens from Dawes, Box Butte, and Cherry counties, Vebraska; tentatively referred specimens from Sioux

County, Nebraska; and (4a) a
geographic variety from
Logan and Weld counties, Colorado
Merychyus elegans Leidy, 1858, Proc. Acad. Nat. Sci. Philadelphia, vol. 10, p. 25; 1869, Jour. Acad. Nat. Sci. Philadelphia, ser. 2, vol. 7, p. 118, pl. 11, figs. 1-11. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 226, pl. 31, figs. 5-8.

Merychyus paniensis Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 34, figs. 23-24.

Merychyus elegans paniensis (Loomis), Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 227, fig. 165, pl. 34, fig. 4.

Specific Characters

Skull: Larger than that of M. minimus, approaching that of M. arenarum in size; bulla semi-depressed, somewhat as in Merychyus (Metoreodon). (See generic characters.) MANDIBLE: Same size comparisons as skull. (See generic characters.)
Dentition: Series larger than those of M. minimus and with a tendency to be larger
than in M. arenarum, but with a certain amount of overlapping.

Limbs: Closer to those of M. minimus, smaller and lighter than those of M. arenarum.

Measurements: Tables 1 and 2.
Illustrations: Figures 1, 4, 13, 15-17.

Discussion

This species is the genotype, upon which the generic characters were based. The horizon of the type specimen is discussed on page 171. The limb elements are known only from a few examples, but the available specimens are similar to those of M. minimus in structure and length, and decidedly smaller than those of M. arenarum. Presumably M. minimus gave rise to M. elegans.

The material from Colorado was referred to M. elegans by Matthew. ${ }^{1}$ The writers agree with Matthew's determination that the Colorado specimens do not warrant separation as proposed by Loomis ${ }^{2}$ under " M. paniensis," or by Thorpe ${ }^{3}$ under "M. elegans

[^12]paniensis." Thorpe believed "M. paniensis" should be considered a geographic subspecies. The differences mentioned by both Loomis and Thorpe are well within the range of individual variation of M. elegans.
W. D. Matthew, Barnum Brown, and H.
T. Martin collected the A.M. specimens; Ted Galusha the F:A.M. and F:B:A.M. material; and other collectors are noted in the descriptions of localities.

One hundred and fifty-five specimens are here recorded:

HOLOTYPE

Right maxilla with $\mathrm{C} /-\mathrm{M}^{3}$. (w)
A.N.S.P. 11290 From the "sands of the Niobrara River," upper Marsland formation of the Hemingford group (see discussion, p. 171); collected by Lt. G. K. Warren, 1857
Right ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and P_{1} (rt.) $-M_{2}$ (P_{2} rt.). (w)

Left maxilla with $\mathrm{I}^{1}(\mathrm{rt})-.\mathrm{M}^{3}$. (w)
U.S.N.M. 121 or 438
Left ramus with $I_{1}-P_{2}$ alv. and $P_{5}-M_{3}$. (w)
A.N.S.P. 11289 Figured by Leidy, 1869, pl. 11; Thorpe, 1937, pl. 31; Leidy, figs. 2, 7; Thorpe, figs. 6, 8 This paper, fig. 13
Leidy, figs. 1, 4, 11; Thorpe, figs. 5, 7
Leidy, fig. 5; Thorpe, fig. 6
The above four specimens represent a single individual. Leidy apparently divided them for preservation between the two institutions, the United States National Museum and the Academy of Natural Sciences of Philadelphia. Since the original illustrations were made, left ramus (A.N.S.P. 11289) has lost P_{1} and P_{2}, and maxilla (U.S.N.M. 121 or 438) has lost I^{3}.

Thorpe's figure 6 is labeled U.S.N.M. 121, but this illustration represents the left ramus, A.N.S.P. 11289.

REFERRED FROM (A) TYPE AREA, (A') DAWES, (B) BOX BUTTE, AND (C) CHERRY COUNTIES, NEBRASKA; (4a) GEOGRAPHIC VARIETY FROM (D) LOGAN AND (E) WELD COUNTIES, COLORADO

A. FROM TYPE AREA

MAXILLA AND MANDIBLE

Right maxilla with $\mathrm{C} /-\mathrm{M}^{3}$ and anterior portion of right ramus with $\mathrm{I}_{1}-\mathrm{P}_{4}$. (w)
Left ramus with $I_{1}-I_{2}$ alv. and $I_{8}-M_{2}$. (w)

The above two specimens represent one individual
U.S.N.M. 120 Figured by Leidy, 1869, pl. 11, figs. 3, 8, 9
U.S.N.M. 119 This paper, figs. 6, 10

A'. FROM DAWES COUNTY, NEBRASKA

From N. of Hemingford, 1936-1940:

Group I (Small Premolars)
 3 sKulls, etc.

Skull with $I^{1}-M^{3}$, mandible with $I_{1}-M_{3}\left(C /\right.$ and P_{1} large), partial scapula,
partial humerus, radius, 2 partial ulnae, partial tibia, manus and pes elements, and fragments. Figs. 4, 15, 16
U.N.S.M.
(w+) 2-10-8-36 N.P.
The zygomatic arches are robust below the orbits and flare outwardly.
Partial skull with $I^{1}-M^{3}$, partial mandible with $I_{1}-M_{2}\left(C /\right.$ and P_{1} small), partial humerus, partial ulna, etc. Fig. 4 (in part)
(M+) 3-5-8-36 N.P.
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{C} /$ large), partial ulna, and fragments

2 MANDIBULAR RAMI
F:B:A.M.
Partial left ramus with $P_{1}-P_{4}$ alv. and $M_{1}-M_{2}$
Partial left

From Antelope Valley, 1937:

Group II (Large Premolars) 2 skulls, etc.

From N.E. of Dunlap, 1936:

Group I (Small Premolars)

PARTIAL SKULL, MAXILLA, AND MANDIBULAR RAMUS
F:B:A.M.
Left side of skull with $C /-M^{3}$ and left ramus with $I_{1}-M_{2}\left(C /\right.$ and P_{1} large) . . (w) 34290A

Right maxilla with $\mathrm{P}^{1} \mathrm{M}^{3}$ (w) 34290B
These two specimens were found associated and may represent one individual. There is, however, a slight difference in the wear of the teeth.

ANTERIOR PORTION OF SKULL
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /(\mathrm{br})-.\mathrm{M}^{3}(\mathrm{br}$.$) (\mathrm{P}^{1}$ alv.) (w_{+}^{+}) 34312
The zygomatic arches are robust and flare outwardly below the orbit.
Group Questionable
PARTIAL SKULL AND MANDIBLE, IMMATURE
Partial skull with $\mathrm{P}^{2}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ and mandible with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$. (I) 34314
From Woods Canyon, 1935 and 1937:

Group Questionable
 SKULL AND MANDIBLE, IMMATURE

Skull with $\mathrm{I}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{3}$ (erupt.) and partial mandible with $\mathrm{I}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{3}$ (germ) . . (I) 33634
PARTIAL MAXILLA, IMMATURE
Partial right maxilla with $\mathrm{C} /$ (erupt.) $-\mathrm{dP}^{1}-\mathrm{dP}^{4}(\mathrm{rt}$.$) (I) 37210$
From Sand Canyon Quarry, Sand Canyon Locality, 1937 and 1939:
Group I (Small Premolars)
partial skull and mandible
Left anterior portion of skull with $\mathrm{I}^{3}(\mathrm{rt})-.\mathrm{M}^{3}(\mathrm{C} / \mathrm{br})$ and mandible with
$\mathrm{I}_{1}-\mathrm{M}_{\mathbf{2}}\left(\mathrm{C} /\right.$ and P_{1} small $)$. (w)
ANTERIOR PORTION OF SKULL
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (C/ small) (w) 44780

Group Questionable

MANDIBULAR RAMUS
Partial left ramus with $\mathrm{M}_{1}-\mathrm{M}_{\mathbf{3}}$. (w+) 37222
${ }^{1}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 217.

From Pebble Creer, near Dunlap, 1937-1938:

Group Questionable	
partial maxilla	F:B:A.M.
Partial left maxilla with $\mathrm{M}^{\mathbf{3}}$. (w)	37212
anterior portion of Skull, immature	
Anterior portion of skull with C/-dP1 M^{1}. (I)	44825
mandibular ramus, immature	
Partial left ramus with I_{1} (alv.) $-\mathrm{P}_{1}($ erupt.) $)$ dP $\mathrm{P}_{2}-\mathrm{M}_{1}$. (I)	37217
From near Marsland; Collected by Frank Figgins and Nelson J. Vaughan, 1927:	
Group I (Small Premolars)	
partial skull	Col. M.
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}(\mathrm{C} /$ medium size) $(-\mathrm{m})$	1-10
2 mandibular rami	
Partial right ramus with $\mathrm{P}_{4}-\mathrm{M}_{3}$. (m)	1-19
Left ramus with $\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{\mathbf{z}}\left(\mathrm{P}_{1}\right.$ large) (w+)	2-1927
Group Questionable	
Partial femur, 2 tibiae, etc. Figure 17 (tibia only)	2-31, 34
From Potter Quarry (Sand Canyon Drainage System), 1937:	
Group I (Small Premolars)	
mandibular ramus	F:A.M.
Partial left ramus with $\mathrm{I}_{\mathbf{2}} / \mathrm{C}$ alv. and P_{1} (br.) $-\mathrm{M}_{2}$ (br.) (P_{2} alv., P_{4} br.) . . (-m)	43386
Group II (Large Premolars)	
maxilla	
Partial left maxilla with $\mathrm{P}^{1}(\mathrm{rt})-.\mathrm{M}^{2}$. (w)	37207
Group Questionable	
4 maxillae	
2 partial right maxillae with	
$\mathrm{P}^{\perp} \mathrm{P}^{4}$ alv. and $\mathrm{M}^{1}-\mathrm{M}^{\mathbf{2}}$ (br.) . (w ${ }^{\dagger}$)	37208
C/(alv.)-dP1-M1 ${ }^{1}$. (I)	43385
2 partial left maxillae, immature, with	
$\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2} /$ (erupt.) . ${ }^{\text {a }}$ (. ${ }^{\text {(I) }}$	37206
C/(erupt.)-dPL ${ }^{\text {dP }}$ 2 . (I)	37213
mandibular ramus	
Partial left ramus with $\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{dP}_{1}-\mathrm{dP}_{3}$. (I)	37216
humerus	
Partial humerus	43387
B. FROM BOX BUTTE COUNTY, NEBRASKA	
From Hemingford Quarry 2, N. of Hemingford, 1936-1938:	
Group Questionable	
maxilla	U.N.S.M.
Partial left maxilla with $\mathrm{M}^{2}-\mathrm{M}^{3}$. (M_{+})	55-77-38

From S.E. of Hemingford Quarry 12A, 1939:

```
Group II (Large Premolars)
maxilla
U.N.S.M.
```

Left maxilla with $\mathrm{C} /(\mathrm{br})-.\mathrm{M}^{3}$
$\left(w_{+}^{+}\right)$6-10-9-39
mandible
$\left.\begin{array}{c}\text { Mandible with } \mathrm{I}_{\mathbf{2}}-\mathrm{M}_{\mathbf{z}}\left(\mathrm{P}_{1} \text { medium size }\right) \\ \text { This specimen is rather robust. }\end{array}\right)\left(w_{+}^{++}\right)$30-10-9-39

Group Questionable

mandibular ramus
Partial left ramus with /C- $\mathrm{P}_{\mathbf{3}}$ alv. and $\mathrm{dP}_{4}-\mathrm{M}_{\mathbf{z}}$ (germ) (I) 35-10-9-39
From Hemingford Quarry 12C, N.E. of Hemingford, 1938:
MANDIBULAR RAMUS, IMMATURE
Partial right ramus with $\mathrm{I}_{\mathbf{2}}-\mathrm{P}_{1}$ alv. and dP_{2} (br.) $-\mathrm{M}_{1}$
(I) $9-10-9-38$

From Hemingford Quarry 12D, N.E. of Hemingford, 1937-1941:

Group I (Small Premolars)

maxilla
Partial left maxilla with $\mathrm{P}^{\mathrm{L}} \mathrm{P}^{2}($ br. $)$ and $\mathrm{P}^{3}-\mathrm{M}^{1}$ alv. ($\mathrm{w}_{\ddagger} \ddagger$) 27-10-9-39
3 mandibular rami
2 partial right rami with
$\mathrm{P}_{\mathbf{z}}$ (alv.)- $\mathrm{M}_{\mathbf{z}}$ (br.) . (w+) 117-13-8-38 N.P.
$I_{1}-P_{1}$ alv. and P_{2} (br.) $-M_{3}$ (P_{3} br.).
(w_{\dagger}) 2-10-9-41
Partial left ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} large)
($\mathrm{w}+$) 53-5-11-37

Group II (Large Premolars)
 2 partial skulls

Partial right maxilla with P^{2} (br.) $-\mathrm{M}^{3}$. (M_{+}) 2-10-9-40

4 mandibular rami

3 partial right rami with
$/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} small)
$\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} large)
($\mathrm{w}^{+}+$) 11-8-38 N.P.
$/ \mathrm{C}-\mathrm{M}_{3}$ (P_{2} alv.) (P_{1} large)
(w) 28-10-9-39

Partial left ramus with $\mathrm{P}_{4}-\mathrm{M}_{3}$
(w) 1-10-9-41
(w) 105-13-8-38

Group Questionable
 maxilla

Partial left maxilla with $\mathrm{M}^{2}-\mathrm{M}^{3}$
(w+) 86-27-10-37
From Hemingford Quarry 17, N.E. of Hemingford, 1938:

Group II (Large Premolars)
 2 maxillae

M^{3} has a small third accessory interior-posterior lobe, external-posterior style, exceptionally large.

Group Questionable	
partial skull and mandible, immature	
Anterior portion of skull with $\mathrm{P}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{3}$ (germ)	5-10-9-38
From Hemingford Quarry 21, S.W. of Marsland, 1940:	
Group II (Large Premolars) mandibular ramus	
Partial left ramus with $\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} small) (w_{+})	4-10-9-40
From Hemingrord Quarry 23, S.W. of Marsland, 1935:	
Group Questionable maxilla, immature	
Right maxilla with $\mathrm{P}^{1} \mathrm{dP}^{2}-\mathrm{M}^{\mathbf{2}}$. (I)	7-19-7-35 N.W.P.
tibia	
Partial tibia	7-11-7-35 N.W.

From N.E. of Hemingford, 1939:

Group I (Small Premolars)	
maxilla	
Partial left maxilla with P4-M3 ${ }^{3}$. (M_{+})	37-10-9-39
From W. Marsland Region, 1940:	
Group I (Small Premolars)	
2 maxillae, etc.	
Partial right maxilla with P^{1} (alv.) $-\mathrm{M}^{1}$ (alv.) (P^{2} and P^{4} br.) and partial right ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{P}_{3}$ (alv.) (P_{2} alv.) (P_{1} small)	$\begin{gathered} \text { F:A.M. } \\ 44784 \end{gathered}$
Partial right maxilla with C/-P² ${ }^{\text {(} / / ~ l a r g e ~}$) (w+)	44785
C. FROM CHERRY COUNTY, NEBRASKA	
From W. of Pole Creek; Collected by Morris Skinner and Associates, 1938:	
Grour I (Small Premolars)	
mandibular ramus	F:A.M.
Partial left ramus with $\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and $\mathrm{P}_{2}-\mathrm{M}_{2}$. (w_{+})	43306
Group Questionable	
maxilla, immature	
Partial left maxilla with dP3 ${ }^{3} \mathrm{M}^{1}$ (alv.) (I)	43307
mandibular ramus, immature	
Partial left ramus with $\mathrm{dP}_{2}-\mathrm{M}_{2}$ (germ, br.) (1)	43308
From E. of Pole Creer:	
Grour I (Small Premolars)	
maxilla, mandibular ramus, and limb elements	
Partial left maxilla with $P^{4}-M^{3}$, partial right ramus with $I_{1}-P_{4}$ and M_{3} ($\mathrm{C} /$ and P_{1} br.), partial scapula, partial humerus, 2 partial radii, and manus and pes elements. Fig. 17 (in part)	43305

Group Questionable

From E. of Gordon, 1940:
Group I (Small Premolars)

3 MANDIBULAR RAMI, ETC.

Right ramus with I_{1} (alv.)- M_{3} ($P_{2} r$.) (P_{1} large), partial humerus, radius, partial ulna, partial tibia, and manus and pes elements. Figured by Loomis, 1924, fig. 23; Thorpe, 1937, fig. 165, pl. 34, fig. 4. This paper, fig. 13 (in part)
This specimen was the holotype of "Merychyus paniensis" Loomis. The original description by Loomis mentions the narrowness of the teeth, which is well within individual variation, as is demonstrated in mandible A.M. 9045. The M_{3} of ramus A.M. 9047 is not complete, which makes the posterior molar region appear narrow. Other points of difference noted by Loomis are quite minute and may be considered as individual variation. The upper dentition here listed compares readily with M. elegans.
Partial mandible with / $\mathrm{C}-\mathrm{M}_{3}$ (P_{1} small) and fragments. Fig. 13
($\mathrm{w}+$)
9048

Partial right ramus with $\mathrm{I}_{1} / \mathrm{C}$ alv. and P_{1} (erupt.) $-\mathrm{dP}_{2}\left(\mathrm{dP}_{2}\right.$ rt.) (I) 9044
LIMB ELEMENTS
Radius, partial ulna, and pes; figured by Loomis, 1924, fig. 24
9046

E. FROM PAWNEE BUTTE AREA, WELD COUNTY, COLORADO

 4 partial sKulls, etc.A.M.
Partial skull with $\mathrm{P}^{4} \mathrm{M}^{\mathbf{3}}$. ($\left.\mathbf{w}_{++}^{++}\right) 9442$

Partial skull with I^{1} (alv.) $-\mathrm{dP}^{2}-\mathrm{M}^{2}$. (I) 9444
Partial skull with P^{3} (br.) $-\mathrm{M}^{3}$, mandible with $\mathrm{P}_{4}-\mathrm{M}_{8}$, partial humerus, partial radius, partial ulna, 2 partial tibiae, manus and pes elements, etc.
Partial skull and mandible attached (1)

It is of interest to note that the information in the American Museum catalogue concerning specimens A.M. 9442 and 9443 shows that they were found "five and ten feet above the base," respectively. The "base" evidently is the contact between the Oligocene and the later Tertiary.

In 1941 field work was carried on in the Pawnee Butte area by the Frick Laboratory under the direction of Charles H. Falkenbach. The lithology and stratigraphy of the area were studied and, in July of the same year, C. Bertrand Schultz spent some time with Falkenbach checking the geology. The writers noted the presence of 5 to 10 feet of massive brown sands at the base of the Ogallala (Pliocene) deposits in some instances. These basal deposits may be Miocene in age and may represent a remnant of Marsland (or "Martin Canyon," in part). No identifiable fossils were collected from this basal horizon but the lithology was very suggestive of the Marsland formation in Nebraska, even to the type of sand crystals which were present.

The type section of the "Martin Canyon" of Matthew was also visited by Falkenbach and later by

[^13]Schultz. The exact location from which the skeletons ${ }^{1}$ of Merycochoerus proprius magnus (Loomis) were collected was also determined. Although some of the sediments in the Martin Canyon area have a typical White River appearance, a part of the section appears to be equivalent to the Marsland of Nebraska because of the similarity in mammalian forms and in certain lithologic characteristics.

MANDIBULAR RAMUS
Partial right ramus with P_{3} (rt.) $-M_{3}$ (br.). F:A.M. 44826 From deposits directly overlying the (w_{+}^{+})

Oligocene; collected by C. Frick, 1931

TENTATIVELY REFERRED FROM APHELOPS DRAW, SNAKE CREEK-SHEEP CREEK AREA, SIOUX COUNTY, NEBRASKA

(Collected by Albert Thomson, 1923)
SKULL
A.M.

Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$. $\left(^{\left(w_{+}^{++}\right)} 20523\right.$
The matrix on this specimen indicates that it came from massive pinkish sands and not from the usual channel deposits of the Snake Creek-Sheep Creek area. The American Museum catalogue gives "Sheep Creek" for the horizon. The Snake Creek-Sheep Creek area has been visited frequently by the writers, who venture the opinion that some of the massive pinkish sands below the quarries might well represent upper Marsland deposits.

The muzzle of the skull is wider than Merychyus (Metoreodon) relictus taylori from the "Sheep Creek" and the dentition, although worn, is readily referred to M. elegans from the upper Marsland.

4b. Merychyus elegans bluei, ${ }^{2}$ new subspecies

From the upper Marsland formation, Box Butte
County, Nebraska; referred specimens from Dawes County, Nebraska; and tentatively referred specimen from Weld

County, Colorado

Subspecific Description

Skull: Characters similar to those in M. elegans but postglenoid process somewhat heavier and nasals with more tendency for retraction than in that species.

Mandible: Similar to that of M. elegans.

Dentition: Lighter and more brachyodont than that of M. elegans, but molar series of equal size.

Limbs: Similar to those of M. elegans.
Measurements: Tables 1 and 2.
Illustrations: Figures 1, 4, 15-17.

Discussion

This subspecies occurs in the same formation as M. elegans. The size and characters of the skull are like those of M. elegans except for the differences noted above.

Four specimens are here recorded:

HOLOTYPE

Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with U.N.S.M. 7-10-9-38 From $\frac{1}{4}$ mi. E. of Hemingford Quarry 9,
$I_{1}-M_{3}$, radius, ulna, 2 partial tibiae, astragalus, and calcaneum. (w)
N. and E. of Hemingford, Box Butte County, Nebraska; collected by U.N.S.M. field party, 1938

Figs. 1, 4, 15-17

REFERRED FROM DAWES COUNTY, NEBRASKA

From N. and W. of Hemingford; Collected by University of Nebraska State Museum Field Party, 1940:

MAXILLAE, MANDIBLE, AND LIMB ELEMENTS
Left premaxilla and maxilla, partial right maxilla with $\mathrm{I}^{1} \mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{I}_{8}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} small), partial scapula, partial humerus, partial radius, partial ulna, and pes fragments

$$
\begin{array}{ll}
& \text { U.N.S.M. } \\
\left(w_{+}^{++}\right) & 3-10-9-40
\end{array}
$$

${ }^{1}$ Schultz, C. Bertrand, and Charles H. Falkenbach, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 288.
${ }^{2}$ Named in honor of Emery L. Blue, who was a member of University of Nebraska State Museum field parties from 1930 to 1941.

From Pebble Creek; Collected by Ted Galusha, 1938:

SKULL AND LIMB FRAGMENTS	F:A.M.
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}(\mathrm{C} /$ large $)$, partial humerus, astragalus, calcaneum, etc. $\quad .\left(\mathrm{w}_{+}^{+}\right)$	44788

TENTATIVELY REFERRED FROM PAWNEE CREEK AREA, WELD COUNTY, COLORADO
(Collected by John C. Blick, 1932) SKULL

F:A.M.
Skull with $\mathrm{I}^{-} \mathrm{M}^{3}$ (C/ large) . (w+) 33500
The skull is somewhat lighter and narrower than those of the holotype or referred specimens. It may represent the female of the variety.

5. Merychyus minimus Peterson

From the lower Marsland, Sioux County, Nebraska; referred remains from Sioux, Dawes, and Sheridan counties, Nebraska, Niobrara, Goshen, and Platte counties, Wyoming, and Shannon County, South Dakota
Merychyus minimus subsp. ${ }^{1}$ nov. Peterson, 1906, Ann. Carnegie Mus., vol. 4, no. 1, p. 67, fig. 16.

Merychyus elegans subsp. minimus (Peterson), Peterson, 1923, Ann. Carnegie Mus., vol. 15, no. 1, p. 96, figs. 1-8, pls. 7 and 8 (in part only).

Merychyus minimus (Peterson), Lооміs, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 31 (fig. 7, M. minimus, number of specimen not indicated).

Merychyus arenarum minimus (Peterson), Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 217, fig. 161, pl. 33.

Merychyus delicatus Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 33, fig. 22. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 225, fig. 164, pl. 32, figs. 9-10.

Specific Characters

Skull: Ranges in size from slightly larger than M. crabilli to a small M. arenarum example from the lower Marsland; basal length shorter than that of M. arenarum and M. elegans.

Mandible: Same comparisons as for skull; more abrupt rise of the ascending ramus posterior to M_{3}, than in examples of M. arenarum.

[^14]Dentition: Superior and inferior series larger than those of M. crabilli and smaller than average examples of M. arenarum and M. elegans.

Limbs: Longer than those of M. crabilli and, on the average, shorter and lighter than those of M. arenarum.

Measurements: Tables 1 and 2.
Illustrations: Figures 1, 5, 6, 15-17.

Discussion

The skeleton that is mounted with the holotypic skull and mandible is composite. If a sufficient number of skeletal elements were associated with both M. minimus and " M. delicatus" differentiation between the two forms might become possible. Examples of M. minimus are found throughout the lower Marsland, but specimens representing M. arenarum and exhibiting larger skulls and more robust limbs occur mostly in the upper part of the same geologic section. The material referred to M. minimus has lighter limbs, with examples approaching those of M. arenarum. M. minimus evidently gave rise to both M. arenarum of the upper part of the lower Marsland and M. elegans of the upper Marsland. The limbs of the latter species are somewhat larger than average examples of those of M. minimus, but are smaller than those of M. arenarum. The writers believe that the material here referred to M. minimus has developmental tendencies in two directions, one toward the much larger M. arenarum, and the other toward the moderately larger M. elegans. Thus, if the limbs associated with the holotype of " M. delicatus" had been smaller, and if those associated with M. minimus had been somewhat larger, the former might have warranted recognition as a subspecies.

If the foregoing assumption were correct,
specific identification of the skull or mandible could not be made without associated skeletal elements. This, however, would be a very impracticable method, and thus the combining of the two forms into one species seems to be necessary. If the range of individual variation of M. minimus had been known, Loomis probably would not have named "M. delicatus." Unfortunately the holotype of M. minimus is a skull much larger than the mean, while the type specimen of " M. delicatus" is smaller.

Loomis ${ }^{1}$ and Thorpe ${ }^{2}$ both maintained that a facial vacuity was apparently absent in "M. delicatus." A definite angular opening is present on the holotypic skull, but a part of the surfaceless area is definitely due to breakage. Since, however, the opening is in the
same position as the facial vacuity, the present writers see no reason to doubt its presence (see fig. 6 and also discussion on p. 188). The skull and mandible representing the holotype of "M. delicatus" were not separated from the original matrix until the present writing; thus many of the characters had heretofore been obscured.

Ted Galusha collected the F:A.M. specimens from Dawes and Sheridan counties, Nebraska; John Lynch, Everett DeGroot, Gene Roll, Nelson J. Vaughan, and Charles H. Falkenbach collected the remainder of the listed F:A.M. material; and specimens from other institutions, as well as their collectors, are noted in the descriptions of localities.

Three hundred and ninety-eight specimens are here recorded:

HOLOTYPE

Skull with $\mathrm{I}^{-} \mathrm{M}^{3}$ and mandible with $\mathrm{I}_{2}-\mathrm{M}_{3}$, partial ulna, partial tibia, manus elements, and vertebrae. (C/ and P_{1} large.) (w)
C.M. 1466 From Sioux County, Nebraska; collected by Peterson, 1904
Figured by Peterson, 1906, fig. 16, 1923, figs. $1-2$, pls. 7 and 8 (in part); Thorpe, 1937, fig. 161, pl. 33 This paper, fig. 5

The measurements which Thorpe ${ }^{3}$ used for the skeleton mounted with the type skull and mandible in the Carnegie Museum are less than the actual measurements. Perhaps they were taken from Peterson's ${ }^{4}$ figure which was reproduced smaller than the scale indicates.

The skeleton is a composite made from seven individuals. Peterson based his type description on a series of 15 individuals, but the writers have been unable to locate or definitely to identify all of the other 14 specimens. In 1923, Peterson, ${ }^{\text {b }}$ in a discussion of this species, listed specimens C.M. 565, 1331, $1403,1439,1462,1466,1525$, and 3397.

REFERRED FROM (A) SIOUX, (B) DAWES, AND (C) SHERIDAN COUNTIES, NEBRASKA;
(D) NIOBRARA, (E) GOSHEN, AND (F) PLATTE COUNTIES, WYOMING; AND (G) SHANNON COUNTY, SOUTH DAKOTA

A. FROM SIOUX COUNTY, NEBRASKA

From Running Water (Niobrara River):

[^15]

From S.W. of Andrews; Collected by University of Nebraska State Museum Field Party, 1938:
Group I (Small Premolars)
maxilla U.N.S.M.
Partial left maxilla with $\mathrm{C} /-\mathrm{M}^{3}$ (P^{1} alv.) ($\mathrm{C} /$ medium size) ($\mathrm{w}+$) 11-10-9-39
From S. of Niobrara River; Collected by Olcott, 1907:
SKULL, MANDIBLE, and LIMB ELEMENTS
Partial skull with $I^{1}-M^{3}$, partial mandible with $I_{1}-M_{3},\left(C /\right.$ and P_{1} medium A.M. size), 2 partial femora, tibia, astragalus, and calcaneum (w) 13820

B. FROM DAWES COUNTY, NEBRASKA

From N.W. of Marsland; Collected by Dayton and Sullenberger, 1917, and University of Nebraska State Museum Field Party, 1934:

Group I (Small Premolars)
SKULL
U.N.S.M.

Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (C/ small)
$\left(w_{+}^{++}\right) 2-2-8-34$ N.P.
5 mandibular rami
4 partial right rami with
$\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{2}$ (P_{1} large) (w+) 5-1-1-17
$\mathrm{I}_{\mathbf{2}}-\mathrm{P}_{\mathbf{2}}$ alv. and $\mathrm{P}_{\mathbf{5}}-\mathrm{M}_{\mathbf{3}}$ (br.) ($\left.\mathrm{P}_{\mathbf{4}} \mathrm{rt}.\right)$. (w_{+}^{+}) 6-1-1-17

From Sand Canyon Region:

	Group I (Small Premolars)	
	mandibular ramus	F:A.M.
Partial right ramus with $\mathrm{P}_{\mathbf{2}}-\mathrm{M}_{\mathbf{3}}$. ($\mathrm{w}+$)	37218

From General Area:

Group II (Large Premolars) skull

Partial skull with $\mathrm{C} /(\mathrm{rt})-.\mathrm{M}^{3}$	(w)	34313
C. FROM HAY SPRINGS CREEK AREA, WEST OF HAY SHERIDAN COUNTY, NEBRASKA, 1939	SPRINGS,	
Group I (Small Premolars)		
10 partial skulls, etc.		F:A.M.
Anterior portion of skull with C/-M ${ }^{3}$ (C/small)	($\mathrm{w}+$)	44789
Partial skull with $\mathrm{P}^{1}-\mathrm{M}^{3}$	($w \ddagger^{+}$)	44795
Anterior portion of skull with $\mathrm{P}^{2}-\mathrm{P}^{4} \mathrm{br}$. and $\mathrm{M}^{2} \mathrm{M}^{3}$, partial mandible with $/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small), and partial humerus	(w_{+}^{+})	44804
Partial skull with $\mathrm{I}^{2}-\mathrm{M}^{3}$ ($\mathrm{P}^{4}-\mathrm{M}^{2}$ br.), partial left ramus with $\mathrm{P}_{3}-\mathrm{M}_{1}$ (br.) (C/ large), partial radius, and 2 partial tibiae (limbs heavy)	(w \ddagger^{+})	44806
	($\mathrm{w}+$)	44808
Partial skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{5}-\mathrm{M}_{3}$	(w_{+}^{+})	44819
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{8}$ ($\mathrm{C} /$ and P_{1} small)	(w+)	44791
Anterior portion of skull with $\mathrm{I}^{2}-\mathrm{M}^{3}$	(w)	44801
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$, mandible with $/ \mathrm{C}-\mathrm{M}_{3}$, radius, partial ulna, partial tibia, and manus elements ($\mathrm{C} /$ and P_{1} small)	(w+)	45378
Right side of skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$, partial mandible with / $\mathrm{C}-\mathrm{M}_{\mathbf{3}}$, and skeletal fragments (P_{1} small)	($\mathbf{~} \ddagger$)	45379

MAXILLA

Partial left maxilla with PLPs . (w) 45380
TWO MANDIBULAR RAMI

Group II (Large Premolars)

11 skulls, etc.

Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$, mandible with $\mathrm{P}_{1}-\mathrm{P}_{2}$ rt. and $\mathrm{P}_{3}-\mathrm{M}_{3}$, partial humerus, 2 radii (1 partial), 2 partial ulnae, femur, and 2 tibiae (1 partial) (limbs light)

Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{\mathbf{8}}$ and partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{8}\left(\mathrm{C} /\right.$ and P_{1} small)	(w)	$\begin{gathered} \text { F:A.M. } \\ 33388 \end{gathered}$
Partial skull with I^{1} (alv.) $-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{8}$ (C/ and P_{1} small)	(w_{+}^{+})	34405
Partial skull with $\mathrm{P}^{1} \mathrm{M}^{3}$ ($\mathrm{M}^{\mathbf{2}}$ br.) and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{3}}(\mathrm{C} /$ and P_{1} small)	(w)	43297
Partial skull with $\mathrm{P}^{3}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{3}$ (br.) ($\mathrm{C} /$ and P_{1} small) .	(w_{+}^{+})	43298
Partial skull with $\mathrm{I}^{2} \mathrm{M}^{3}$ (br.), partial right ramus with $\mathrm{M}_{\mathbf{8}}$ (br.) (C/large), and partial tibia (limb light)	(w+)	44406
Skull with $\mathrm{I}^{-} \mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{5}-\mathrm{M}_{3}$ ($\mathrm{C} /$ and P_{1} small)	(w+)	44408
Partial anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{M}^{2} \mathrm{M}^{3}$ br.), partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{3}$ (br.) ($\mathrm{M}_{1}-\mathrm{M}_{2}$ missing) (C/ and P_{1} small), femur, partial tibia, pes elements, and partial pelvis	($\mathrm{w}+ \pm$)	44481
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ (br.) (C/ large)	(w_{+}^{+})	44491
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}$, and calcaneum (C/ and P_{1} large)	($\mathrm{w}_{+\ddagger \text {) }}$	44523
8 partial skulls with		
$\mathrm{I}^{3}-\mathrm{M}^{3}$ (C/ small)	(w)	33376
$\mathrm{I}^{2}-\mathrm{M}^{3}$ (C/ small)	(w+)	33383
$\mathrm{P}^{3}-\mathrm{M}^{3}(\mathrm{br}$.	(м)	34423
$\mathrm{C} /-\mathrm{M}^{3}$ (br.) (C/ large)	(w)	43296
$\mathrm{P}-\mathrm{M}^{3}$	(w)	44409
$\mathrm{C} /-\mathrm{M}^{3}$ (P^{1} alv.) ($\mathrm{C} /$ large)	(w)	44485
$\mathrm{I}^{2}-\mathrm{M}^{3}(\mathrm{br}$.$) (\mathrm{C} /$ small $)$	(w+)	44492
$\mathrm{C} /(\mathrm{br})-.\mathrm{M}^{3}$ (P^{1} absent) ($\mathrm{C} /$ small)	(w)	45376
11 mandibular rami		
partial mandibles with		
$\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small)	($\mathrm{w}+$)	34414
P_{1} (rt.) $-\mathrm{M}_{3}$	(w_{+}^{+})	44496
/C-M ${ }_{3}$	(${ }^{+}+$	44497
$\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} small)	(w^{+})	44500
$\mathrm{P}_{1}-\mathrm{M}_{3}$ (br.) (P_{1} large)	(${ }_{+}^{++}$)	44511
$\mathrm{I}_{1}(\mathrm{rt})-.\mathrm{M}_{3}$ (/C rt.) (P_{1} small)	(w+)	44498
$\mathrm{P}_{5}-\mathrm{M}_{3}$.	(w_{++}^{+})	44499
4 partial right rami with		
$/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small), and partial tibia	(${ }^{+}+{ }^{+}$	44502
/ $\mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small)	($\mathrm{w} \ddagger$)	44503
$\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ large)	(w_{+}^{+})	44504
$\mathrm{P}_{1}\left(\mathrm{rt}\right.$.) $-\mathrm{M}_{3}(\mathrm{br})$.	$\left(w_{+}^{+}\right)$	44514

Group II (Large Premolars)

18 SKULLS, ETC.

12 skulls, mandibular rami, etc.:		
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ (P^{1} missing) and partial mandible with $\mathrm{P}_{8}-\mathrm{M}_{3}$	($\mathrm{w}+$)	44407
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{4}\left(\mathrm{br}\right.$.) $-\mathrm{M}_{3}$	(w_{+})	44478
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{8}-\mathrm{M}_{3}$	($\mathrm{M}+$)	44479
Left maxilla with $\mathrm{C} /-\mathrm{M}^{3}$ all br. and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small)	($\mathrm{w}+$)	44480
Anterior portion of skull with $\mathrm{I}^{2} \mathrm{M}^{\mathbf{3}}$ (br.) and partial mandible with $/ \mathrm{C}-\mathrm{M}_{8}$ (br.) ($\mathrm{C} /$ and P_{1} small)	(w+)	44482
Fragmentary skull with $\mathrm{I}^{2}-\mathrm{C} /$, left ramus with $\mathrm{I}_{2}-\mathrm{M}_{\mathbf{3}}\left(\mathrm{P}_{1}\right.$ alv.; P_{2} and M_{2} br. $)$ (C/ small), astragalus, calcaneum, and fragments .	$\left(w_{+}^{+}\right)$	44483
Partial right maxilla with $\mathrm{C} /-\mathrm{P}^{\mathbf{s}}$ and partial right ramus with $/ \mathrm{C}\left(\mathrm{br}\right.$.) $-\mathrm{M}_{2}$ (br.) ($\mathrm{C} /$ and P_{1} large)	($\mathrm{w} \ddagger$)	44484
Partial skull with $\mathrm{C} /$ (br.) M^{3} and mandible with $\mathrm{I}_{1}-\mathrm{M}_{8}$ (C/ and P_{1} large), partial radius, and partial ulna	$(-\mathrm{N}$	44487

Anterior portion of skull with $\mathrm{I}^{-} \mathrm{M}^{2}$ (M^{1} br.) and partial mandible with $\mathrm{I}_{3}-\mathrm{M}_{3}$ (C/ and P_{1} small); exceptionally large heel on M_{3}	(w)	$\underset{44488}{\text { F:A.M. }}$
Right side of skull with I^{1} (alv.)- M^{3} (M^{2} br.) and partial left ramus with		
	$\left(\mathrm{w}_{+}^{+}\right)$	44489
Right anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (P^{1} alv.) and partial mandible with $/ \mathrm{C}-\mathrm{M}_{8}$ (br.) (P_{1} br.) ($\mathrm{C} /$ and P_{1} large).	($\mathrm{w}+$)	44490
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ and partial mandible with / $\mathrm{C}-\mathrm{M}_{8}$ ($\mathrm{C} /$ and P_{1} small)	(w)	45377
6 partial skulls with		
${ }^{1}-\mathrm{M}^{3}$.	$\left(\mathrm{w}_{+}^{+}\right)$	43174
$\mathrm{C} /-\mathrm{M}^{3}$ (C/small)	($\mathrm{w}+$)	43185
$\mathrm{P}^{4}-\mathrm{M}^{3}$. . . .	(w)	43295
$\mathrm{P}^{-} \mathrm{M}^{3}$	($\mathrm{w}_{+\dagger}^{+}$)	44486
$\mathrm{C} /-\mathrm{M}^{3}$ (C/ large)	(м)	44493
$\mathrm{P}^{4} \mathrm{M}^{3}$.	$\left(\mathrm{w}_{+}^{++}\right)$	44767
6 mandibular rami		
3 partial mandibles with		
/ $\mathrm{C}-\mathrm{M}_{3}$ (P_{1} large) and partial femur (light)	(M)	44495
$\mathrm{P}_{5}-\mathrm{M}_{1}$	($\mathrm{w} \ddagger$)	44509
/ $\mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small)	(w)	44510
Partial right ramus with $\mathrm{P}_{5}-\mathrm{M}_{3}$	$\left(\mathrm{w}_{+}^{+}\right)$	44512
2 partial left rami with		
/C(erupt.)- M_{3} ($\left.\mathrm{P}_{1} \mathrm{br}.\right)$ (P_{1} large)	(-m)	44505
$\mathrm{P}_{1}(\mathrm{br})-.\mathrm{M}_{3} . . .1 ~$	(м)	44506
Group Questionable		
2 partial skulls		
Anterior portion of skull with $\mathrm{M}^{1}(\mathrm{br})-.\mathrm{M}^{3}$	$\left(\mathrm{w}_{\ddagger}^{+}\right)$	44494
Partial left maxilla with $\mathrm{M}^{1} \mathrm{M}^{\mathbf{2}}$ (br.)	(w +	44508
4 mandibular rami		
Partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{\mathbf{3}}\left(\mathrm{P}_{2}-\mathrm{P}_{3}\right.$ alv., P_{4} erupt.) and partial humerus	(-m)	44501
2 partial right rami with		
$\mathrm{P}_{4}-\mathrm{M}_{3}$.	(w+)	44410
$\mathrm{M}_{1}-\mathrm{M}_{3}$	(w_{++})	44513
Partial left ramus with $\mathrm{M}_{1}(\mathrm{br})-.\mathrm{M}_{3}(\mathrm{br}$.)	$\left({ }^{++}\right.$)	44515
17 Partial skulls, etc., immature		
3 partial skulls and partial mandibles with		
$\mathrm{C} /-\mathrm{dPL}^{-\mathrm{M}^{2}(\text { germ })}$ and / $\mathrm{C}-\mathrm{P}_{1}$ (erupt.) $-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (germ)	(1)	44663
Superior dentition not recognizable and $\mathrm{dP}_{2}-\mathrm{M}_{\mathbf{3}}$ (germ)	(I)	44666
$\mathrm{dP}^{2}-\mathrm{M}^{1}$ and $\mathrm{d} / \mathrm{C}\left(\mathrm{rt}\right.$.)- P_{1} (erupt.) $-\mathrm{M}_{1}$.	(I)	44667
Skull with $\mathrm{I}^{2}-\mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{dP}^{2} \mathrm{M}^{2}$ (erupt.), mandible with $\mathrm{dP}_{1}-\mathrm{M}_{2}$, partial tibia, and partial manus	(1)	44706
Partial skull with $\mathrm{C} /-\mathrm{P}^{1} \mathrm{rt}$. and $\mathrm{dP}^{2}-\mathrm{M}^{2}$, partial radius, and partial ulna.	(I)	44755
11 partial skulls, immature, with		
$\mathrm{I}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{2}\left(\mathrm{I}^{2}\right.$ alv.)	(1)	44654
$\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{2}$	(1)	44655
$\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (germ) ($\mathrm{dPl}^{1} \mathrm{br}$.)	(1)	44656
$\mathrm{I}^{1}-\mathrm{C} /\left(\right.$ erupt.) $\mathrm{dP}^{1}-\mathrm{M}^{1}$	(1)	44657
$\mathrm{I}^{2} \mathrm{C} /$ (erupt.) $-\mathrm{dP}^{1}-\mathrm{M}^{1}$ (br.) ($\mathrm{dP}^{4} \mathrm{rt}$.)	(1)	44658
$\mathrm{dP}^{2}-\mathrm{M}^{2}$ (germ)	(1)	44659
$\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{2}$		44660
$\mathrm{C} /$ (erupt.) $\mathrm{dP}^{1}-\mathrm{M}^{2}$ (germ)		44661
$\mathrm{C} /(\mathrm{br})-.\mathrm{dP}^{1}-\mathrm{M}^{2}$	(I)	44662
dP^{1} (br.) $-\mathrm{M}^{2}$ (br.)		44664

From Silver Springs Area, N.W. of Rawhide Butte, 1935-1938:

Group I (Small Premolars)
 3 partial skulls, etc.

MANDIBLE
Partial mandible with $\mathrm{P}_{8}-\mathrm{M}_{3}$. $\left(w_{+}^{+}\right) ~ 44550$
Group II (Large Premolars)
2 partial skulls
2 anterior portions of skulls with
$\mathrm{C} /-\mathrm{M}^{3}$ (C/ small) . (w) 44548
$\mathrm{C} /-\mathrm{M}^{3}$ (br.) (C/ small) . (м) 44549

Group Questionable
2 partial skulls, etc., immature
Partial skull with $\mathrm{dP}^{2}-\mathrm{M}^{1}$ (germ) and partial mandible with $\mathrm{dP}_{2}-\mathrm{M}_{1}$ (germ) . (I) 44707
Partial skull with C/-dP² ${ }^{2}$. (I) 44708
2 mandibular rami
Partial mandible with $\mathrm{dP}_{\mathbf{3}}-\mathrm{M}_{2}$ (germ) (I) 44710
Partial left ramus with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$
(I)

44711

E. FROM GOSHEN COUNTY, WYOMING

From 12-15 Mi. District, 12-15 Mi. S.E. of Lusk, 1932-1933:

Group I (Small Premolars)

4 SKulls, ETC.
F:A.M. 33382
Partial skull with $I^{3}-M^{3}$ and mandible with $P_{1}-M_{8}\left(C /\right.$ and P_{1} large $)$
Partial skull with $I^{1}-M^{3}\left(P^{4}-M^{2}\right.$ br.) and partial mandible with $/ C-M_{3}($ br. $)$ ($\mathrm{M}_{1}-\mathrm{M}_{2}$ absent) ($\mathrm{C} /$ and P_{1} small)
(w)

Partial skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$ and partial left ramus with $\mathrm{M}_{2}-\mathrm{M}_{3}$. (w_{+}) 34424
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}(\mathrm{C} /$ small) and partial humerus ($\mathrm{M}+$) 44419
3 mandibular rami

From the high portion of the exposures:

Group I (Small Premolars) 3 skulls, etc.		
Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{2}-\mathrm{M}_{3}(\mathrm{C} /$ small), and partial humerus	(w+)	43353
Anterior portion of skull with $\mathrm{I}^{2}(\mathrm{rt})-.\mathrm{M}^{3}\left(\mathrm{P}^{1}, \mathrm{M}^{1}-\mathrm{M}^{2}\right.$ br.), partial mandible with $I_{1}-M_{3}\left(I_{2}-I_{3}\right.$ and M_{2} alv.) (C/ and P_{1} small), and 2 partial humeri .	(w_{+}^{+})	44613
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ ($\mathrm{P}_{1}-\mathrm{P}_{2}$ alv.) (C/ small), partial humerus, partial radius, and partial ulna	($\mathrm{w}+\ddagger$)	44470
partial mandible		
Partial mandible with / $\mathrm{C}-\mathrm{M}_{3}\left(\mathrm{M}_{1}-\mathrm{M}_{2}\right.$ br.) (P_{1} small)	$\left(w_{+}^{+}\right)$	44474
Group II (Large Premolars)		
11 skulls, etc.		
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}(\mathrm{C} /$ small), atlas, and partial pelvis	(w+)	43175
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$, mandible with $/ \mathrm{C}(\mathrm{rt})-.\mathrm{M}_{3}$ (C/ and P_{1} large), and 2 partial manus	$\left(w_{+}^{+}\right)$	43190
Left inferior side of skull with $\mathrm{P}^{1}(\mathrm{br})-.\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}\left(\mathrm{br}\right.$.) $-\mathrm{M}_{3}$ ($\mathrm{P}_{1} \mathrm{br}$.)	(w+)	43300
Skull with I^{2} (rt.) M^{3} and partial left ramus with $\mathrm{P}_{1}-\mathrm{M}_{1}$ (br.) (P_{2} alv.) ($\mathrm{C} /$ and P_{1} small)		43301
Partial skull with $\dot{\mathrm{C}} / \mathrm{M}^{3}(\dot{\mathrm{C}} /$ small $)$ and metatarsal	(w+)	43303
Inferior portion of skull with $\mathrm{I}^{-}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{2}-\mathrm{M}_{3}$ (C/ and P_{1} large), and partial pes .	(w+)	43337
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{8}-\mathrm{M}_{8}$	(м)	43350
Partial skull with $\mathrm{P}^{4}-\mathrm{M}^{3}$	($\mathrm{M}+$)	44612
Right maxilla with $\mathrm{P}^{2}-\mathrm{M}^{1}$	(w_{\ddagger})	44473
Partial skull with $\mathrm{C} /-\mathrm{M}^{\mathbf{3}}$ and mandible with / $\mathrm{C}-\mathrm{M}_{3}$ ($\mathrm{C} /$ and P_{1} large)	(w)	45371
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ (erupt.) (P^{1} alv. and $\mathrm{P}^{2-} \mathrm{P}^{4}$ erupt.) ($\mathrm{C} /$ large)	(-m)	45372
2 mandibular rami		
Mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (P_{1} small)	(w)	44476
Partial left ramus with $\mathrm{P}_{2}(\mathrm{rt})-.\mathrm{M}_{3}$ (br.) ($\mathrm{P}_{3} \mathrm{br}$.)	(w+)	44566
Group Questionable		
10 partial skulls, etc., immature		
Partial right and left maxillae with $\mathrm{dP}^{2}-\mathrm{M}^{1}$ and partial mandible with $\mathrm{dP}_{2}-\mathrm{M}_{1}$	(1)	44686
Anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{3}$ (germ)	(1)	44687
Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{1}$ and partial mandible with $\mathrm{P}_{1}-$ $\mathrm{dP}_{4}-\mathrm{M}_{2}$	(I)	44697
Partial skull with $\mathrm{dP}^{2}-\mathrm{M}^{2}$ (germ, br.) and partial mandible with $/ \mathrm{C}-\mathrm{dP}_{2}-$ M_{2} (germ)	(1)	44698

Skull with $\mathrm{I}^{1} \mathrm{C} /\left(\right.$ erupt.) $-\mathrm{dP}^{1}-\mathrm{M}^{1}$, mandible with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{dP}_{1}-\mathrm{M}_{2}$ (germ), and pes elements	$\begin{gathered} \text { F:A.M } \\ 44699 \end{gathered}$
Fragmentary skull with $\mathrm{P}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (germ), left ramus with $/ \mathrm{C}-\mathrm{dP}_{2}-\mathrm{dP}_{4}$, calcaneum, etc. .	44700
Partial skull with $C /-d P^{1}-M^{1}$, partial mandible with $P_{1}(r t)-.\mathrm{dP}_{2}-M_{1}$, and partial manus	44702
Posterior portion of skull and partial mandible with $\mathrm{dP}_{1}-\mathrm{M}_{1}$. (I)	44703
Anterior portion of skull with $\mathrm{I}^{3}(\mathrm{br})-.\mathrm{dP}^{1}-\mathrm{M}^{1}\left(\mathrm{dP}^{3}-\mathrm{dP}^{4} \mathrm{br}\right.$.) and partial right ramus with $\mathrm{dP}_{2}-\mathrm{dP}_{4}$	44760
Skull with $\mathrm{I}^{1}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (erupt.) and mandible with $\mathrm{I}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (P_{1} alv.) . . . (I)	45373
From questionable level of the exposures:	
Group I (Small Premolars)	
2 partial skulls, mandibles, etc.	
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (C/ and P_{1} small). (w_{+}^{+})	45374
Left premaxilla and maxilla with $I^{1}-M^{3}$, partial mandible with $I_{1}-I_{3}$ br. and $/ C-M_{3}$, calcaneum, and partial pelvis ($C /$ and P_{1} medium size) .	45375
SKULL	
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}(\mathrm{br}).\left(\mathrm{P}^{4} \mathrm{M}^{2}\right.$ absent) ($\mathrm{C} / \mathrm{small}$) $\left(\mathrm{w}_{+}^{++}\right)$	34406
Group Questionable	
mandibular ramus	
Partial left ramus with P_{4} (br.) $-\mathrm{M}_{3}$ (br.) w_{+}^{+})	44770

From the 18 Mi. District, 18 Mi. S.E. of Lusk, E. Side of U. S. Highway No. 85, 1931-1940:

From the lowest portion of the exposures:

Group I (Small Premolars)
 SKULL and mandibular rami

Partial skull with $C /(r t)-.M^{3}\left(\mathrm{P}^{1}\right.$ alv.) and partial left ramus with $\mathrm{I}_{1}($ alv. $)-$
$\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} small) . (w+) 43191

From the middle portion of the exposures:

Group I (Small Premolars)
 SKULL AND MANDIBLE

Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}\left(\mathrm{P}^{2}-\mathrm{P}^{3}\right.$ br. and M^{2} alv.) and partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{\mathbf{3}}$ (C/ and P_{1} small) . ($\left.\mathrm{w}_{+}^{+}\right)$

44517
From the upper portion of the exposures:

Group I (Small Premolars)
 2 partial skulls, etc.

Partial skull with I^{1} (alv.) $-\mathrm{M}^{3}$ (P^{1} alv.) (C/ large) (w_{+}^{++}) 44520
Left maxilla with $\mathrm{P}^{1}-\mathrm{M}^{3}$, radius, partial ulna, and partial manus $\left(\mathrm{w}_{+}^{++}\right) 44521$

Group Questionable

PARTIAL SKULL, ETC., IMMATURE

Anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (erupt.), partial mandible with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$ (erupt.) (P_{1} large), radius, partial ulna, and partial manus .	$\begin{gathered} \text { F:A.M } \\ 44690 \end{gathered}$
mandibular ramus	
Partial right ràmus with / $\mathrm{C}-\mathrm{dP}_{\mathrm{z}}-\mathrm{M}_{2}$ (erupt.) (I)	44692

From questionable level of the exposures:

Group I (Small Premolars)		
Posterior portion of skull with $\mathrm{M}^{\perp} \mathrm{M}^{3}$, partial mandible with / $\mathrm{C}-\mathrm{M}_{3}$ (P_{1} large), 2 partial humeri, radius, ulna, 2 partial femora, 2 tibiae, manus and pes elements, vertebrae, and partial pelvis. Figs. 15, 16, 17	$\left(w_{+}^{+}\right)$	44610
Partial skull with $\mathrm{I}^{\llcorner }-\mathrm{P}^{4}$, partial mandible with I_{1} (alv.) $-\mathrm{M}_{3}$, (C/ and P_{1} small), 2 partial tibiae, partial pes, and partial pelvis	$\left(w_{+\ddagger}^{+}\right)$	44611
2 mandibles		
2 partial mandibles with		
$\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ large)	(w+)	44464
$/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small)	(w)	44468

Group II (Large Premolars)

4 partial skulls, etc.
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{5}-\mathrm{M}_{3}$, and limb fragments . (M) 34410
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{I}_{2} \mathrm{rt}$ and $\mathrm{I}_{\mathbf{3}}-\mathrm{M}_{\mathbf{3}}\left(\mathrm{C} /\right.$ and P_{1}
large) . (M)
Partial skull with $\mathrm{P}^{2} \mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{2}$ (P_{1} large) . . . (M) 43302
Skull with I^{1} (alv.) $-M^{3}$, mandible with $I_{2}-M_{3}\left(C /\right.$ and P_{1} small), 2 partial humeri, 2 radii, ulna, 2 femora, 2 tibiae (1 partial), manus and pes elements, vertebrae, and ribs
(w)

44459

Group Questionable

PARTIAL SKULL, IMMATURE
Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{2}$. (I) 44689
MANDIBLE, IMMATURE
Partial mandible with $\mathrm{I}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$
(I) 44691

From Jay Em District, Area 2 Mi. S. to 5 Mi. N. of Jay Em, E. Side of U. S. Highway No. 85, 1931-1940:
From middle portions of the exposures:

Group I (Small Premolars)
 partial skull, etc.

Anterior portion of skull with $\mathrm{I}^{1}-\mathrm{M}^{3}\left(\mathrm{C} /\right.$ small), tibia, and pes elements . . ($\mathrm{w}_{+\dagger}^{+}$) 44461
Group II (Large Premolars)
3 partial skulls, etc.
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ and mandible with $/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1}

Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$ and partial right ramus with $\mathrm{P}_{1}-\mathrm{M}_{3}$ (C/ and P_{1} large)
(w_{+}^{+})

Partial left ramus with $\mathrm{I}_{8}-\mathrm{dP}_{4}-\mathrm{M}_{8}$ (br.) $\left(\mathrm{P}_{2}-\mathrm{P}_{8}\right.$ alv.)
From questionable level of the exposures:
Group I (Small Premolars)
4 skulls and mandibular rami

11 mandibular rami

4 partial mandibles with
$\mathrm{I}_{2}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small), partial radius, and partial manus $\left(\mathrm{w}_{+}^{++}\right)$
$\mathrm{I}_{2}-\mathrm{M}_{\mathbf{3}}$ (P_{1} large) . ($\mathrm{w}+$) 44555
$/ \mathrm{C}-\mathrm{M}_{3}$ (P_{1} large) . ($\mathrm{w}++$) 44556
$\mathrm{I}_{1}-\mathrm{M}_{2}$ (P_{1} small) . ($\mathrm{w}+$) 44775
7 partial right rami with
/C(rt.) $-\mathrm{M}_{3}$ (P_{1} large) . (w) 44477
I_{3} (rt.)- M_{3} (P_{1} large) . (w+) 44557
I_{2} (alv.) $-\mathrm{M}_{3}\left(\mathrm{I}_{2}-/ \mathrm{Cr}\right.$.) (P_{1} small) $\left(\mathrm{w}_{+}^{+}\right) \quad 44558$
$/ \mathrm{C}-\mathrm{P}_{3}$ alv. and $\mathrm{P}_{4}-\mathrm{M}_{3}$ (br.) . (w_{+}^{++}) 44559
$\mathrm{I}_{3}-\mathrm{M}_{3}$ (/C missing) (P_{1} small) m_{+}^{+}) 44560
$\mathrm{P}_{3}-\mathrm{M}_{3}$. (w) 44757
$\mathrm{P}_{4}-\mathrm{M}_{3}$. (w+) 44774

Group II (Large Premolars)

2 SKULLS and mandibular rami
Skull with $I^{2}-M^{3}\left(C /-P^{1}\right.$ br. $)$ and mandible with $I_{1}-M_{3}\left(C / \text { and } P_{1} \text { small) }\right)^{\left(w_{+}^{++}\right)}$
Partial skull with $I^{3}-M^{3}\left(P^{1}-P^{2}\right.$ absent and partial right ramus with $M_{2}-M_{3}\left(W_{+}\right)$
ANTERIOR PORTION OF SKULL AND ASSOCIATED IMMATURE MANDIBLE
Anterior portion of skull with $\mathrm{I}^{1} \mathrm{P}^{\mathbf{3}}(\mathrm{C} /$ small) (w) (w) 44681A
Partial mandible with /C- $\mathrm{dP}_{2}-\mathrm{M}_{2}$. (I) 44681B

6 PARTIAL SKULLS

6 partial skulls with
$\mathrm{I}^{2} \mathrm{M}^{3}$ (C/ small) (very small skull) $\left(\mathrm{w}_{+}^{++}\right) 33394$
$\mathrm{I}^{1} \mathrm{M}^{\mathbf{3}}$ (C/ small) . ($\mathrm{w}_{+}^{\ddagger}$) 33395
$\mathrm{P}^{\mathbf{1}} \mathrm{M}^{\mathbf{3}}$. (w) 34355
$\mathrm{I}^{3}-\mathrm{M}^{3}$ (C/ small) . (M) 34407
C/(br.) $-\mathrm{M}^{3}$ (erupt.) (P^{1} rt.) (C/ small) (-M) 34426
$\mathrm{C} /(\mathrm{rt})-.\mathrm{M}^{3}$ (C/ small) . (w) 44518

5 mandibular rami

Group Questionable

PARTIAL SKULL

Partial skull with $\mathrm{M}^{2} \mathrm{M}^{3}$. (w_{+}^{++}) 44554

4 Partial skulls, etc., immature

Partial skull with $\mathrm{dP}^{2}-\mathrm{M}^{\mathbf{2}}$ (erupt.) ($\mathrm{M}^{1} \mathrm{br}$.) (I) 44672
Anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{P}_{1}$
alv. and $\mathrm{dP}_{2}-\mathrm{M}_{3}($ germ $)$. (I)
Partial left maxilla with $\mathrm{P}^{1}(\mathrm{br})-.\mathrm{dP}^{2}-\mathrm{M}^{1}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{dP}_{5}$
$\mathrm{M}_{1}\left(\mathrm{P}_{\mathbf{2}}\right.$ alv.) . (I)
Anterior portion of skull with $\mathrm{dP}^{1}-\mathrm{dP}^{4}$. (I) 44684

2 mandibular rami

Partial right ramus with $\mathrm{I}_{2}-\mathrm{dP}_{2}-\mathrm{M}_{1}($ br. $)$. (I)
Partial left ramus with $\mathrm{I}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$. (I)

From 25 Mi. District, 16 Mi. S. and 9 Mi. E. of Lusk, 1936:

Group I (Small Premolars)
 3 Skulls, mandibular rami, and skeletal elements

Skull with $I^{1}-M^{3}$, mandible with $\mathrm{I}_{5}-\mathrm{M}_{3}$, partial scapula, 2 partial humeri,
radius, ulna, 2 partial femora, 2 tibiae (1 partial), manus and pes elements,
vertebrae, ribs, and pelvis .

Group II (Large Premolars)
2 sKULLS, ETC.
Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{M}^{\mathbf{3}}$ (C/ small) (w_{+}^{+}) 43293
Partial skull with $\mathrm{P}^{2}-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}$ (P_{1} small) . . . (w_{+}^{+}) 43294
3 mandibular rami

Group Questionable

MANDIBULAR RAMUS, IMMATURE
Partial left ramus with P_{1} (erupt.) $-\mathrm{dP}_{2}-\mathrm{M}_{1}$. (I)
44688

From Sand Gulch (Middle of Exposures), 18 Mi. S.E. of Lusk, 1937:		
Group I (Small Premolars)		
SKull, etc.		F:A.M.
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{C} /$ medium size) and radius	($\mathrm{w}+$)	43179
From Rawhide Creek Area; Collected by J. B. Abbott, 1906:		
2 skulls and mandibles		C.N.H.M.
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$	(w)	P 12242
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{3}-\mathrm{M}_{3}$	(w)	P 12244
F. FROM PLATTE COUNTY, WYOMING		
From Guernsey Area, 1940-1941:		
Group I (Small Premolars)		
9 skulls, etc.		F:A.M.
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} large)	$\left(w_{+}^{+}\right)$	44434
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ (br.) ($\mathrm{C} /-\mathrm{P}^{2}$ br.) and partial mandible with $\mathrm{P}_{4}-\mathrm{M}_{8}$ (br.)		44436
Anterior portion of skull with $\mathrm{I}^{2}-\mathrm{M}^{3}$ ($\mathrm{C} /$ large)	(w +	44437
Partial skull with $\mathrm{I}^{3}-\mathrm{M}^{3}$, mandible with $/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} small), radius, and 2 partial ulnae (limbs light)	(w_{+}^{+})	44524
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{\mathbf{3}}$ (C/ and P_{1} small)		44527
partial skull and mandible		
Partial skull with I^{1} (alv.) $-\mathrm{M}^{3}$ (I^{3} rt.) and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (C/ and P_{1} small)	(w_{+}^{+})	44529
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$ (C/ and P_{1} small), 2 partial humeri, 2 radii (1 partial), 2 ulnae (1 partial), manus elements, partial tibia, pes elements, pelvis, and vertebrae	(w)	44531
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$, partial mandible with / $\mathrm{C}-\mathrm{M}_{8}(\mathrm{C} /$ and		
P_{1} medium size), and tibia	(w)	44532
Partial skull with $\mathrm{I}^{1}-\mathrm{P}^{2}$ and right ramus with / $\mathrm{C}-\mathrm{M}_{3}$ ($\mathrm{C} /$ and P_{1} large)	(w)	44552
3 mandibular specimens		
Partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}$	(w)	44525
Partial mandible with $\mathrm{I}_{3}(\mathrm{rt})-.\mathrm{M}_{3}\left(\mathrm{rt}\right.$. .) (P_{1} large)	($\mathrm{w}+$)	44526
Partial left ramus with $\mathrm{P}_{4}-\mathrm{M}_{3}$ (br.)		44528
Group II (Large Premolars)		
6 partial skulls		
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ ($\mathrm{C} /$ medium size)	($\mathrm{w}+$)	44438
Anterior portion of skull with $\mathrm{I}^{2} \mathrm{M}^{1}$ (C/ large)	($\mathrm{w}+$)	44439
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-\mathrm{M}_{8}$ (C/ and P_{1} small), radius, partial ulna, partial manus, partial femur, tibia, and partial pes	(w_{+}^{+})	44431
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$, partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{8}(\mathrm{C} /$ and		
P_{1} small), and atlas		44712
Anterior portion of skull with $\mathrm{I}^{3}-\mathrm{M}^{2}$ (br.) ($\mathrm{C} /$ medium size)	(w)	44713A
Anterior portion of skull with ${ }^{3}-\mathrm{dP}^{\text {- }}-\mathrm{M}^{2}$	(1)	44713B
The above two specimens were found associated.		
Group Questionable		
9 partial skulls, etc., immature		
Partial skull with $\mathrm{I}^{2}-\mathrm{dP}^{2}-\mathrm{M}^{2}$, partial mandible with $/ \mathrm{C}-\mathrm{dP}_{2}-\mathrm{M}_{2}$, partial tibia, and astragalus	(1)	44714

Anterior portion of skull with C/-dPL-M² (I)	F:A.M. 44715
Partial skull with $\mathrm{I}^{3}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (br.) and partial left ramus with $/ \mathrm{C}-\mathrm{dP}_{2}$ (br.) $-\mathrm{M}_{1}$ (I)	44716
Partial skull with $\mathrm{C} /-\mathrm{dP}^{4}-\mathrm{M}^{3}$ (erupt.) ($\mathrm{dP}^{2}-\mathrm{dP}^{3}$ present on left side) (I)	44717
Skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}, 2$ femora (1 partial), 2 partial tibiae, and pes . . . (I)	44718
Fragments of skull with $\mathrm{dP}^{2}-\mathrm{M}^{1}$ (germ br.) and partial mandible with $\mathrm{I}_{2}-\mathrm{dP}_{2}-\mathrm{M}_{1}$ (erupt.) (P_{1} germ)	44719
Fragments of skull with $\mathrm{dP}^{2}-\mathrm{M}^{1}$ and left ramus with $\mathrm{I}_{2}-\mathrm{P}_{1}$ (erupt.) $-\mathrm{dP}_{2}-\mathrm{M}_{1}$. (I)	44720
Anterior portion of skull with $\mathrm{dP}^{1}-\mathrm{M}^{1}\left(\right.$ br.) and partial mandible with $\mathrm{dP}_{5}-\mathrm{M}_{1}$ (I)	44721
Anterior portion of skull with $\mathrm{C} /-\mathrm{dP}^{\mathrm{L}}-\mathrm{M}^{2}$ (br.) and partial right ramus with $/ \mathrm{C}-\mathrm{dP}_{2}-\mathrm{M}_{3}$ (germ)	44759
maxilla	
	44442
imb el	
Partial humerus, partial radius, partial ulna, 2 femora (1 partial), 2 tibiae (1 partial), and partial manus	44441
From Wheatland Area, 1933 and 1938:	
Group I (Small Premolars) 2 partial skulls and mandibles	
Partial skull with $\mathrm{M}^{2} \mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{4}-\mathrm{M}_{8}$. (w_{\ddagger})	34428
Partial skull with $\mathrm{I}^{-} \mathrm{M}^{3}$ and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{C} /\right.$ and P_{1} large) . (w_{+}^{+})	44551
mandible, etc.	
Partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small) and metacarpal ${ }^{\text {a }} \mathrm{w}_{+}^{+}$)	44540
Group II (Large Premolars)	
partial skull, mandible, and skeletal elements	
Occipital of skull, partial mandible with $\mathrm{I}_{2}-\mathrm{M}_{2}, 2$ humeri, radius, ulna, partial femur, partial tibia, manus and pes elements, vertebrae, and ribs . (w_{+}^{+})	45370
al skull	
	44413
Group Questionable skull	
Posterior portion of skull with $\mathrm{P}^{4}(\mathrm{br})-.\mathrm{M}^{3}$. (m)	43193
3 partial skulls, etc., mmature	
Partial skull with $\mathrm{I}^{1}-\mathrm{dP}^{2}$ (germ), partial radius, partial femur, fragments of pes, and partial pelvis	44651
Anterior portion of skull with $\mathrm{dP}^{1}(\mathrm{br})-.\mathrm{M}^{2}$. (I)	44652
Partial right maxilla with $\mathrm{dP}^{2}-\mathrm{M}^{1}$ (br.) and partial mandible with $\mathrm{I}_{1}-\mathrm{P}_{1}$ (erupt.) $-\mathrm{dP}_{2}-\mathrm{M}_{1}$	44653
From 5-8 Mi. S.E. of Chugwater:	
Group I (Small Premolars)	
partial skull and mandible	
Anterior inferior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{5}-\mathrm{M}_{3}$ (br.) (C/ small)	44860
2 partial mandibles with 6 mandibular rami	
$\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{3}(\mathrm{rt})-.\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ br.$)$. ${ }^{\left(w_{+}^{++}\right)}$	44868

G. FROM PORCUPINE AREA, SHANNON COUNTY, SOUTH DAKOTA (Collected by Albert Thomson, 1906)

From Porcupine Butte:
Group I (Small Premolars)
3 Individuals under 1 Number
A.M.

Muzzle of skull with I^{1} (erupt.)- P^{3} (I^{2} and C/br., I^{3} and $\mathrm{P}^{1} \mathrm{P}^{2}$ erupt.) . . . (I) 27854

From Porcupine Creek:

Group I (Small Premolars)
SKULL, MANDIBLE, AND SKELETAL ELEMENTS
Skull with $C /-M^{3}$, mandible with $I_{1}-/ C$ alv. and $P_{1}(r t)-.M_{3}$, radius, ulna, and skeletal fragments; figured by Loomis, 1924, fig. 22; Thorpe, 1937, fig. 164, pl. 32, figs. 9-10; this paper figs. 6, 15, 17 (w+) 12980
This specimen is the holotype of "Merychyus delicatus" Loomis. See discussion, page 204.

MAXILLA AND MANDIBULAR RAMUS

Right maxilla with $\mathrm{P}^{1} \mathrm{M}^{3}\left(\mathrm{M}^{1}\right.$ br.) and right ramus with / $\mathrm{C}-\mathrm{M}_{3}$ (P_{1} large) . (w_{+}) 27862
Group Questionable
2 SKULLS, ETC., immature

Anterior portion of skull with $\mathrm{I}^{2} \mathrm{dP}^{2} \mathrm{M}^{1}$ (br.) (I) 27860
From W. of Porcupine Creek:
Group II (Large Premolars)
SKULL and mandible
Partial skull with $\mathrm{I}^{1}-\mathrm{M}^{3}\left(\mathrm{C} /-\mathrm{P}^{1}\right.$ alv.) and partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{3}}$. . (w^{+}) 27859
From E. of Porcupine Creek:
Group I (Small Premolars)
2 Individuals under 1 Number
Partial right maxilla with $\mathrm{P}^{3}-\mathrm{M}^{3}(\mathrm{br}$.$) (w)$
Partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{1}\right.$ small $)$. (w)
Partial left ramus with $\mathrm{I}_{8}-\mathrm{M}_{2}\left(\mathrm{~b}_{\mathrm{l}}\right)$, ($\mathrm{P}_{1}, \mathrm{P}_{8}-\mathrm{P}_{4}$ br.) ($\mathrm{w}+$)
Fragments
3 INDIVIDUALS UNDER 1 NUMBER

Partial right ramus with $\mathrm{M}_{1}-\mathrm{M}_{2}$
(w+)
And skeletal elements not prepared

6. Merychyus siouxensis Loomis

From the Harrison formation, Sioux County, Nebraska; referred specimens from Niobrara and Goshen counties, Wyoming; and (6a) geographic variety from Silver Bow County, Montana
Merychyus siouxensis Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 33, fig. 21. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 232, fig. 169, pl. 34, figs. 5-6.

Phenacocoelus munroensis Peterson, 1928, Mem. Carnegie Mus., vol. 11, no. 3, p. 161, pl. 18, figs. 1-9. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 181, pl. 37, fig. 9.

Specific Characters

Skull: Larger than that of M. crabilli; approximate size of large examples of M. arenarum; nasals heavier than those of M. crabilli; lacrimal fossa deep and large; prelacrimal vacuity moderately large; postglenoid process decidedly heavier than that of M. crabilli; occipital condyles moderately large, larger than in M. crabilli; bulla large and well inflated.

Mandible: Larger than that of M. crabilli.
Dentition: Superior and inferior series decidedly longer and heavier than those of M. crabilli; closer to those of M. arenarum.

Limbs: Decidedly longer and heavier than those of M. crabilli.

Measurements: Tables 1 and 2.
Illustrations: Figures 1, 7, 13, 15-17.

Discussion

Loomis ${ }^{1}$ stated in his original reference that the anterior portions of $\mathrm{P}^{\mathbf{2}}$ and $\mathrm{P}^{\mathbf{3}}$ are especially long for this genus, and that the anterior basin is divided into two parts. The present writers believe this to be individual variation due to wear of the teeth of the holotype.

Thorpe ${ }^{2}$ stated that the premolars are not spaced properly, and that a noticeable diastema is present between I^{8} and $C /$. When several skulls of the same species are examined, it is apparent that spacing and size of diastema can be attributed to individual variation within a species of oreodonts.

The holotype of "Phenacocoelus munroensis" is typical of Merychyus. The dentition is lighter, more hypsodont, and completely

[^16]lacks the squarish appearance of that of Phenacocoelus. The ramus differs from examples of Phenacocoelus as follows: lighter construction; less prominent chin; ascending ramus of less width (anteroposteriorly); and less posterior projection beyond the condyle. The limb elements, as pointed out by Peterson 3 and Thorpe, ${ }^{4}$ are long and light compared with those of Phenacocoelus typus.

It is unfortunate that the skeletal elements of Merychyus siouxensis are not well represented in the collections. The complete femur C.M. 1288 (holotype of " P. munroensis") compares favorably with the immature femur F:A.M. 44628 of M. siouxensis. The partial tibia of the former specimen compares readily with the partial tibia F:A.M. 37530. The manus and pes elements of the Carnegie Museum specimen are slightly smaller than the not quite mature example of M. siouxensis, A.M. 17222.

The geologic horizon for "Phenacocoelus munroensis" was given by Peterson as "upper Monroe Creek," but the fossiliferous zone from which the holotype was collected is in the lower part of the Harrison. ${ }^{5}$ The upper Monroe Creek exposures along this part of Pine Ridge form perpendicular bluffs, and it is a rarity to find any fossils in these deposits. All of the referred specimens of M. siouxensis have been collected from the Harrison. There also is a question as to whether the holotype of Phenacocoelus typus actually came from the Monroe Creek, but this will be discussed at a later time when that genus is considered.

The referred specimens here listed under M. siouxensis include the first published ramal and limb evidence of the species. All of the superior canines and the inferior first premolars are large. A few might be called medium size, but none are equal to the small size found in other Merychyus listings in this paper. The F:A.M. material from Wyoming was collected by Nelson J. Vaughan, John Lynch, Everett DeGroot, Gene Roll, and Charles H. Falkenbach, 1931-1939.

Fifty-seven specimens are here recorded:

[^17]
HOLOTYPE

From the Head of Warbonnett Creek:
mandible and skeletal elements
Mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}, 2$ partial radii, femur, partial tibia, manus and pes

From N. of Keeline:

From N. of Lusk (Near U. S. Highway No. 85), 1931, 1932, and 1938:

Group I (Small Premolars)
 SKULL and mandible

Skull with $\mathrm{C} /-\mathrm{M}^{3}$ and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$. (w_{+}^{+})

Group Questionable
PARTIAL SKULL F:A.M.
Partial skull with C/-M ${ }^{3}$ (P2-P³ absent) (w) 43398
MAXILLA
Partial left maxilla with $\mathrm{P}^{4}-\mathrm{M}^{3}\left(\mathrm{P}^{4}-\mathrm{M}^{2}\right.$ br.) (w_{+}^{+}) 44453
2 mandibular rami, mmature
Mandible with $\mathrm{I}_{1}-\mathrm{I}_{2}$ rt. and $\mathrm{I}_{\mathbf{2}}-\mathrm{dP}_{2}-\mathrm{M}_{\mathbf{2}}$ (br.) (I) 44638
Partial right ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}(\mathrm{rt})-.\mathrm{dP}_{2}-\mathrm{dP}_{4}$. (I) 44639
From N. of Van Tassell, 1931:

Group II (Large Premolars)
 partial skull and mandible

Partial skull with $\mathrm{P}^{1}\left(\mathrm{br}\right.$.) $-\mathrm{M}^{3}$ and partial mandible with $\mathrm{P}_{2}($ br. $)-\mathrm{M}_{\mathbf{3}}$. . . ($\mathrm{w}+$) 34421
From N. of Jeriaf, 1932-1933:
Group II (Large Premolars)
mandible
Partial mandible with P_{1} (alv.) $\mathrm{M}_{\mathbf{3}}$. (w_{+}) 44600

From 8 Mi. S.W. of Keeline:

Group I (Small Premolars) mandible

Partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{\mathbf{z}}$. (w_{+}) 44605

Group Questionable

MANDIBULAR RAMUS
Partial right ramus with $\mathrm{I}_{1}-\mathrm{M}_{3}($ rt. $) ~\left(/ C ~ b r ., ~ P_{1}\right.$ absent, P_{2} br.) (w_{+}) 44604

C. FROM GOSHEN COUNTY, WYOMING

From 13 Mi. S. of Jay Em, 1931:
partial skull F:A.M.
Anterior portion of skull with C/-M ${ }^{3}$ (C/ large) (w_{\ddagger}) 43269
From 6 Mi. N.W. of Lingle, 1931:
maxilla, mandible, etc.
Right maxilla with $C /-M^{3}$, partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{5}-\mathrm{M}_{3}\left(\mathrm{P}_{5}-\mathrm{M}_{1}\right.$ absent), 2 astragali, and 2 calcanea (w)

44621
6a. QUESTIONABLE GEOGRAPHIC VARIETY FROM $\frac{1}{2}$ MILE EAST OF WOODIN, SILVER BOW COUNTY, MONTANA
(Collected by Charles H. Falkenbach, 1936 and 1942)
partial maxilla and partial mandible F:A.M.
Partial right maxilla with $\mathrm{C} /-\mathrm{P}^{3} \mathrm{br}$. and partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{\mathbf{3}} \mathrm{br}$. . (w_{\ddagger}) 44858
mandible
Partial mandible with $\mathrm{I}_{\mathbf{5}}-\mathrm{M}_{\mathbf{3}}$ (/C rt.) (M+) 44857
The dentition in specimen F:A.M. 44858 is not separable from the average examples of Merychyus siouxensis from the central Great Plains. The dentition of mandible F:A.M. 44857 differs in having a rather small P_{4} but large $\mathrm{P}_{1}-\mathrm{P}_{3}$, and the teeth are more hypsodont than examples of Merychyus siouxensis.

This material is of importance in that it is the first Merychyus remains to be reported from Montana. The location is a very short distance from the collecting locality of "Ticholeptus breviceps" of Douglass, 1 mile southeast of Woodin, Montana. "Ticholeptus breviceps" is closely related to "Ticholeptus petersoni" of Loomis which comes from the Harrison formation of the central Great Plains. Both Merychyus siouxensis and "Ticholeptus petersoni" are found in the same formation, which fact indicates that this questionable geographic variety probably comes from deposits approximating the Harrison in age.
7. Merychyus, species undetermined

From Miocene deposits of questionable age, Jackson Hole, Lincoln County, Wyoming
Merychyus arenarum Cope, Colbert, 1943, Jour. Paleont., vol. 17, no. 3, p. 298, fig. 1.

Description

Skull: Narrow (although laterally crushed, the skull is not so wide as other examples of Merychyus); muzzle indicating a skull in width comparable with examples of Merychyus (Metoreodon) relicitus taylori; lacrimal fossa small, size of either Merychyus or M. (Metoreodon); anterior border of prelacrimal vacuity above anterior edge of P^{4}; infraorbital foramen above anterior border of P^{4}; muzzle joined for longer distance than in Merychyus, similar to that of M. (Metoreodon); anterior palatine foramen small, anterior border in line with posterior portion of P^{1} [similar to M. crabilli and smaller than most examples of M. (Metoreodon)]. (Skull known from anterior portion only.)
Mandible: Light construction, comparable to that of M. crabilli; inferior border like Merychyus, lacking concave curve of M. (Metoreodon); postsymphysis below anterior portion of P_{3}; muzzle slightly concave, similar to M. arenarum.

Dentition: Similar to Merychyus; lacking the suggested cusps on P^{2} and P^{3} and the deep external grooving on $\mathrm{P}_{2}-\mathrm{P}_{4}$ as in M. (Metoreo$d o n$); superior and inferior dentition measurements within the variation found in either M. arenarum, M. minimus, or M. (Metoreodon) relictus; premolars more or less in line with the alveolar border, in M. (Metoreodon);
$\mathrm{P}_{1}-\mathrm{P}_{3}$ set at an angle to the ramus; $\mathrm{C} /$ small; $/ \mathrm{C}$ larger than P_{1} (a rarity in Merychus). Limbs: Unknown. Measurements: Table 1. Illustrations: Figure 7.

Discussion

The skull from the Jackson Hole area is of interest as it comes from a new locality in Wyoming where heretofore fossils had not been reported. Although Colbert identified the specimen as Merychyus arenarum Cope, there appears to be little evidence to substantiate this determination. As the specimen had not been fully removed from the original matrix when first described, some of the characters were obscured. The writers are indebted to Dr. F. M. Fryxell of Augustana College for permission to have the skull and mandible separated and the specimen further prepared for study (see fig. 7).

The specimen in question has many characters similar to those of Merychyus and some like those of the subgenus M. (Metoreodon). The small superior canine is not diagnostic, since both large and small canines are found within the same species of Merychyus. In M. (Metoreodon), however, all of the superior canines are small. The inferior canine in the mandible of the Wyoming specimen is unique because of its large size, but perhaps this may be attributed to individual variation. The well-worn teeth leave in doubt the distinguishing characters of the superior premolars. The discovery of a skull having the posterior portion present, as well as of associated skeletal elements, undoubtedly would aid in a definite identification of the form. The writers do believe that the skull in question can be referred to the genus Merychyus but definitely not to the species M. arenarum. Additional material may prove that the narrow width of the skull and the large size of the inferior canine may be of specific value but on the other hand may represent individual variation of a known species. It seems best, therefore, to list the specimen as undetermined.

The geologic age of the Jackson Hole sediments seems to be very questionable at this time. It appears, however, that the deposits are of Miocene origin but whether

TABLE 1
Merychyus Leidy. Comparative Measurements ${ }^{1}$ of Skulls and Rami

	M. crabilli, new species	$\begin{gathered} M . \\ \text { siouxensis } \\ \text { Loomis } \end{gathered}$	M. arenarum Cope			M. arenarum idahoensis, new subspecies
	Holotype U.N.S.M. 1-1-7-33 S.P.	Holotype A.M. 13774	Holotype A.M. 8146	Referred A.M. 8149^{2}	$\begin{gathered} \text { Referred } \\ \text { F:A.M. } \\ 33369 \end{gathered}$	Holotype F:A.M. 44827
Stage of wear of teeth	(w)	(w)	(w+)	($\mathrm{w}+$)	($\mathrm{w}+$)	(w+)
Length (including supraoccipital crest and incisors)	((153))	177.5	-	168	168	((173))
Basal length (from anterior notch of foramen magnum to posterior base of I^{1})	$((130))$	153.5	-	153	152.5	161
Width (max.)	(88)	104	((100))	(85)	102	((111))
Width of brain case (max.)	(48)	55	(52)	41	53	(54)
Width, interorbital (min.)	40	55	55	41	50	46.5
Distance from anterior rim of orbit to anterior base of canine	55	68	-	63.5	66	70
Distance from anterior rim of orbit to supraoccipital crest	-	113	124	116	109	-
Length of nasal	46.5	60.5	-	-	58	62
Width of muzzle at infraorbital foramina	40	49	54	39	52	47.5
Width across canines .	23.5	29	-	16.5	29	30
Length, $\mathrm{C} /-\mathrm{M}^{3}$ incl.	72	88	-	81	82.5	86.5
Length, $\mathrm{P}^{1}-\mathrm{M}^{3}$ incl	67	80	-	73.5	74.5	80.5
Length, $\mathrm{P}^{1}-\mathrm{P}^{4}$ incl. .	28.5	35.5	-	33	32.5	36
Length, $\mathrm{M}^{1}-\mathrm{M}^{3}$ incl.	40.5	46	45	43.5	44.5	46.5
Width of M^{3} (max.) . . .	14	17.5	15.5	16	16	16.5
Depth of malar below orbit .	15	18.5	18.5	17.5	18	17.5
	$\begin{gathered} \text { Referred } \\ \text { F:A.M. } \\ \text { 44458 } \end{gathered}$	Referred F:A.M. 44446				Referred U.M.
Stage of wear of teeth	$\left(\mathbf{w}_{+}^{++}\right)$	(w)				(w)
Length (max., including incisors)		(-	138	(136)	(
Length, /C-condyle incl. . .	-	-	-	127	127.5	-
Depth of jaw under coronoid.	-	-	-	69.5	72	-
Depth of jaw below anterior edge of M_{3}	26.5	29.5	33	28	29	28.5
Length, / $\mathrm{C}-\mathrm{M}_{3}$ incl. . . .	-	90.5	95	85.5	84	90
Length, $\mathrm{P}_{1}-\mathrm{M}_{3}$ incl.	71	85	88	79	78.5	83
Length, $\mathrm{P}_{1}-\mathrm{P}_{4}$ incl.	31	35	40	32	32	36
Length, $\mathrm{M}_{1}-\mathrm{M}_{3}$ incl.	40	50	48.5	48	47	47

[^18]TABLE 1-Continued

[^19]TABLE 2
Merychyus Leidy. Comparative Measurements ${ }^{1}$ of Skeletal Elements

TABLE 2-Continued

${ }^{1}$ () Approximate; (()) estimated. All measurements in millimeters.
they are Arikareean or Hemingfordian is not certain. To the northwest of Jackson Hole in eastern Idaho there are deposits equivalent to the Marsland (see p. 186) and to the southeast in central Wyoming there are various exposures that have yielded Brachycrus remains ${ }^{2}$ which have close affinities to those found in the "Sheep Creek" and "Lower

[^20]Snake Creek" sediments of Nebraska. The Marsland formation is well exposed in many sections of eastern Wyoming. Harrison deposits which are fossiliferous are chiefly concentrated in the Lusk area and the Pine Ridge region adjacent to Nebraska. The Miocene exposures in eastern Wyoming have been explored extensively by field parties from the Frick Laboratory and have yielded a large paleontological collection.

One specimen is here recorded:

SKULL AND MANDIBLE
Partial skull with $\mathrm{I}^{2}-\mathrm{M}^{3}$ and partial Aug.C. V120 From Pilgrim Creek, Jackson Hole, mandible with $\mathrm{I}_{1}-\mathrm{I}_{\mathbf{3}}$. ($\mathrm{w}_{\dagger}^{\dagger}$) Lincoln County, Wyoming; collected by Roy A. Saunders
Figured by Colbert, 1943, fig. 1
This paper, fig. 7

IA. MERYCHYUS (METOREODON)
 Matthew and Cook

Merychyus, sub. gen. Metoreodon sub. gen. nov. Matthew and Cook, 1909, Bull. Amer. Mus. Nat. Hist., vol. 26, art. 27, p. 391.

Metoreodon (Matthew and Cook), Cook, 1912, Nebraska Geol. Surv., vol. 7, pt. 5, p. 45. Matthew, 1918, Bull. Amer. Mus. Nat. Hist., vol. 38, art. 7, p. 215; 1924, ibid., vol. 50, art. 2, p. 181. Hay, 1930, Carnegie Inst. Washington Publ., no. 390, p. 788. Thorpe, 1937, Mem. Peabody Mus. Nat. Hist., vol. 3, pt. 4, p. 202.

SUbgenotype: Merychyus (Metoreodon) relictus ${ }^{1}$ Matthew and Cook.

Subgeneric Characters

Skull: Small size; ranging in basal length from 147 mm . to 152 mm .; occipital region completely fan-shaped, the base of the paroccipital process being incorporated in the flare; exoccipital pits small, but more like those typical of Ustatochoerus (see fig. 14), fan-shaped flare as in Ustatochoerus and greater than in Merychyus; lacrimal fossa very shallow to absent; prelacrimal vacuity present; infraorbital foramen above region of $\mathrm{P}^{3}-\mathrm{P}^{4}$; paroccipital process expanded laterally, forming part of the fan-shaped occipital region; postglenoid process compressed anteroposteriorly (in average Merychyus the process is comparatively heavy); bulla large, semidepressed (depressed in basioccipital region and inflated anterior of paroccipital process); auditory meatus expanded between postglenoid and paroccipital processes (somewhat similar to that of Ustatochoerus).
Mandible: Similar to that of Merychyus but differing in having a more developed apophysis or process posterior to the condyle; inferior ramal border more concave than in Merychyus.

[^21]Dentition:Subhypsodont; premolars more complicated than those of Merychyus; $\mathrm{P}^{2}-\mathrm{P}^{3}$ with a suggestion of cusps on the posterior crescent (in Ustatochoerus these cusps are well developed); $\mathrm{P}_{1}-\mathrm{P}_{3}$ set obliquely in ramus; $\mathrm{C} /$ and P_{1} small (in Merychyus there are large and small superior canines and inferior first premolars within a species; see fig. 13 and discussion on p. 172); $\mathrm{P}_{2}-\mathrm{P}_{4}$ well grooved externally.

Limbs: Light and moderately long; approximately equal to those of M. elegans, an intermediate-sized Merychyus.

Measurements: Tables 3 and 4.
Illustrations: Figures 1, 8, 10, 11 (skulls, mandibles, and dentitions); 14 (occipital region of skull); 15-17 (limbs).

Discussion

Merychyus (Metoreodon) and Merychyus are similar in size. Matthew and Cook ${ }^{2}$ established the subgenus to provide for the forms with more complicated premolars, namely, M. (Metoreodon) relictus and " M. (Metoreodon) profectus" (=Ustatochoerus profectus). In 1941 Schultz and Falkenbach ${ }^{3}$ proposed the separation of the two species, designating profectus as the genotypic species of the new genus Ustatochoerus, and recognizing relictus as the subgenotypic species of Merychyus (Metoreodon) Matthew and Cook.

Under the discussion of Ustatochoerus it was stated that the premolars of both species were complicated, but that the premolars of U. profectus were decidedly more advanced than M. (Metoreodon) relictus. Furthermore, Ustatochoerus represents a much larger form (which is confined to the Valentine and Ash Hollow of the Ogallala or to formations of approximately the same age) than Merychyus (Metoreodon) (which is known from the "Sheep

[^22]Creek" and "LowerSnake Creek" deposits or from beds of equivalent age).

Merychyus and Merychyus (Metoreodon) could not be readily separated were it not for the complicated superior and inferior premolars of the latter and the simpler premolars of the former. Other noticeable differences which distinguish the subgenus from Merychyus are the more pronounced fan-shaped occipital region, the lighter postglenoid process, the more prominent postcondyle process of the ramus, and the slightly more concave inferior ramal border.

The dentition of Merychyus (Metoreodon) approaches that of Ticholeptus, but is of smaller size. In the former, $\mathrm{P}_{1}-\mathrm{P}_{3}$ are set at an angle to the ramal border, while in Ticholeptus there is less crowding of the premolars. Ticholeptus is known from a horizon correlated with the "Sheep Creek" and "Lower Snake Creek" or with other late Miocene deposits of similar age.

The "Lower Snake Creek" is considered by the writers to be a part of the Sheep Creek formation, ${ }^{1}$ but the terms "Sheep Creek" and "Lower Snake Creek" of Matthew will be retained for convenience in this paper. The writers find that the fauna may be divided into two horizons according to Matthew, 1924. Perhaps the terms Lower Sheep Creek fauna and Upper Sheep Creek fauna
${ }^{1}$ Lugn, A. L., 1938, Amer. Jour. Sci., ser. 5, vol. 36, p. 226; Matthew, W. D., 1924, Bull. Amer. Mus. Nat. Hist., vol. 50, art. 2, p. 61 ; Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 220; 1941, ibid., vol. 79, art. 1, p. 76.
would simplify the matter, the former equaling Matthew's "Sheep Creek" and the latter equaling "Lower Snake Creek."

Merychyus (Metoreodon) represents the last known group of the oreodonts to be considered by the writers from the Snake CreekSheep Creek areas of Sioux County, Nebraska. The table below indicates the known distribution of the four genera and one subgenus recognized from this area.

Distribution

One species, two subspecies, and one undetermined species are here recorded from the upper Miocene of California, Nebraska, and New Mexico. This is the first report of the occurrences of Merychyus (Metoreodon) in California and New Mexico. (See distribution chart, p. 169, and figs. 1, 8, 10, 11, 14-17; also comparisons and distribution of Merycochoerinae ${ }^{2}$ and Ticholeptinae. ${ }^{3}$)

Summary of Species and Types

One species and two varieties of Merychyus (Metoreodon) from three Miocene localities are here recorded:

1. Merychyus (Metoreodon) relictus Matthew and Cook, 1909, from Sioux County, Nebraska; referred remains from Dawes County, Nebraska. ("Lower Snake Creek" or equivalent.)
[^23]Distribution of Oreodonts ${ }^{4}$ within the Snake Creek-Sheep Creek Areas

	"Sheep Creek"	"Lower Snake Creek'	"Upper Snake Creek"
Brachycrus siouense (small species)		x	
Brachycrus wilsoni (large species)	\mathbf{x}		
Ticholeptus hypsodus		x	
Merychyus (Metoreodon) relictus taylori (small species)	x		
Merychyus (Metoreodon) relictus (slightly larger species)		x	
Mediocherus blicki .		x	
Ustatochoerus profectus (small species)			x
Ustatochoerus major (larger species)			x

[^24]Holotype: Partial right ramus, A.M. 14056. Figure 10.

1a. Merychyus (Metoreodon) relictus taylori, new subspecies, from Sioux County, Nebraska. ("Sheep Creek.')

Holotype: Skull, F:A.M. 34319. Figures 1, 8.

1b. Merychyus (Metoreodon) relictus fetcheri, new subspecies, from the Barstow area, San Bernardino County, California. (?Ap-
proximate "Sheep Creek" or "Lower Snake Creek" equivalent.)

Holotype: Partial left maxilla, F:A.M. 34491. Figure 11.
2. Merychyus (Metoreodon), species undetermined, from west of Chimayo, Santa Fe County, New Mexico. (?Approximate "Sheep Creek" or "Lower Snake Creek" equivalent.)

Example: Partial maxilla and fragmentary limbs, F:A.M. 43129.

DETAILED LISTS OF TYPES, REFERRED SPECIMENS, AND SYNONYMY

MERYCHYUS (METOREODON)

Total available specimens: 199

1. Merychyus (Metoreodon) relictus

Matthew and Cook
From the Miocene deposits ("Lower Snake
Creek'), Sioux County, Nebraska; and referred specimens from Dawes County, Nebraska
Merychyus (Metoreodon) relictus Matthew and Cook, 1909, Bull. Amer. Mus. Nat. Hist., vol. 26, art. 27, p. 392, fig. 14.

Metoreodon relictus (Matthew and Cook), Coor, 1912, Nebraska Geol. Surv., vol. 7, pt. 5, p. 45. Matthew, 1918, Bull. Amer. Mus. Nat. Hist., vol. 38, art. 7, p. 215; 1924, ibid., vol. 50, art. 2, p. 182. Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, fig. 6. Hay, 1930, Carnegie Inst. Washington Publ., no. 390, p. 788. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 212, figs. 5, 154.

Specific Characters

Skull: Approximate size of M. elegans; nasals broad; malar deep below orbits; bulla large and semi-depressed; postglenoid process moderate size, but light and crowded by bulla.

Mandible: Approximate size of M. elegans.

Dentition: Superior and inferior series
equal in length to those of M. elegans; premolars complicated (see subgeneric characters, p. 232).

Limbs: Light and long, approximating those of M. elegans.

Measurements: Tables 3 and 4.
Illustrations: Figures 1, 8, 10, 14-17.

Discussion

The skull and limb elements of M. (Metoreodon) relictus are figured here for the first time. The subspecific differences between M. (Metoreodon) relictus from the "Lower Snake Creek" and M. (Metoreodon) relictus taylori, new subspecies, from the "Sheep Creek," although well marked, do not demonstrate the specific size difference noted in Brachycrus siouense from the "Lower Snake Creek" and B. wilsoni from the "Sheep Creek."

The F:A.M. specimens from Sioux County, Nebraska, were collected in 1934-1940 by Jack Wilson and Carl Long, in 1941 by Morris Skinner, Gordon Fletcher, and associates, and in 1935-1938 from Dawes County, Nebraska, by Ted Galusha and associates. The A.M. specimens were collected in 1908 by Dr. W. D. Matthew and Albert Thomson and in 1921 and 1925 by Albert Thomson.

One hundred and thirty-six specimens are here recorded:

HOLOTYPE

Partial right ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $P_{1}-M_{3}$ (M_{2} alv.). (w_{+}^{+})
A.M. 14056

From "Lower Snake Creek" horizon, Sioux County, Nebraska, 1908
Figured by Matthew and Cook, 1909, fig. 14; Loomis, 1924, fig. 6; Thorpe, 1937, figs. 5, 154; Schultz and Falkenbach, 1941, fig. 17E
This paper, fig. 10

REFERRED FROM (A) SIOUX AND (B) DAWES COUNTIES, NEBRASKA A. FROM TYPE AREA, SIOUX COUNTY, NEBRASKA

From Humbug Quarry, Ranchiouse Draw, 1939-1941:

Group I (Small Premolars)

2 skulls

3 partial left maxillae with		
$\mathrm{P}^{1}-\mathrm{M}^{3}(\mathrm{br}).$.	(w)	43093
$\mathrm{P}^{2}-\mathrm{M}^{3}$ (br.) .	. (w_{+})	43094
$\mathrm{P}^{4}-\mathrm{M}^{3}$	(w)	43095

18 MANDIBULAR RAMI

3 mandibles with
$\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and /C-P44 $\mathrm{Pr}_{\text {. }}$)

(w_{\ddagger}) 37541
$\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and $\mathrm{P}_{2}-\mathrm{M}_{8}$ 43091
($\mathrm{w}+$)
$\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{8}-\mathrm{M}_{8}$. Figure 8 43098
5 right rami with
$\mathrm{P}_{2}(\mathrm{rt})-.\mathrm{M}_{3}$ 43101
$\mathrm{P}_{2}-\mathrm{M}_{3}$ $\left(w_{ \pm}^{+}\right)$
$\left(w_{t}^{+}\right)$ 43102
P_{1} (alv.)- M_{8} (br.) 43103
$\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{2}$ 43104
$\mathrm{P}_{1}-\mathrm{M}_{3}$ 43227
10 left rami with
P_{3} (br.) M_{s} (br.) 43110
$\mathrm{P}_{4}-\mathrm{M}_{3}$. 43111
$\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{2}$ 43112
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{1}$ 43113
$/ \mathrm{C}-\mathrm{P}_{1}$ alv. and $\mathrm{P}_{2}-\mathrm{M}_{8}$ (br.) (P_{4} alv.) 43116
$\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and $\mathrm{P}_{2}-\mathrm{M}_{3}$ 43117
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ 43360
$\mathrm{I}_{2}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ 43361
P_{3} (br.) - P_{4} 43362
P_{2} (alv.) M_{1} (P_{4} br.) 43363
Group II (Large Premolars) 2 Skulls
Skull (lacking nasals and posterior of skull) with $\mathrm{I}^{2}-\mathrm{M}^{3}$ (long basal length) . ($\mathrm{w} \ddagger$) 43238 length) ($w+{ }^{+}$) 43370
2 maxillae
Partial right maxilla with $\mathrm{PL}^{1} \mathrm{M}^{3}$ 43219
Partial left maxilla with $\mathrm{P}^{2}-\mathrm{M}^{1}$ 43357
14 MANDIBULAR RAMI
2 mandibles with
$\mathrm{I}_{1}-\mathrm{I}_{8} \mathrm{alv}$. and $/ \mathrm{C}-\mathrm{M}_{8}(\mathrm{br}$.) 43099
$\mathrm{I}_{1}-\mathrm{I}_{\mathbf{3}}$ alv. and $/ \mathrm{C}-\mathrm{M}_{1}$ (br.) 43223
$\mathrm{P}_{4}-\mathrm{M}_{8}$ (br.) ($w_{\ddagger}+$ 43106
F:A.M.

$$
\underset{\mathrm{D}}{\mathrm{P}_{1}-\mathrm{M}_{3}\left(\mathrm{P}_{4} \mathrm{rt} .\right)} \text {. }\left(\mathrm{w}_{+}^{+}\right)
$$

$\mathrm{P}_{1}-\mathrm{M}_{3}$ (w_{+}^{+})43197
$\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{8}-\mathrm{M}_{3}$ 43224
$\mathrm{P}_{5}-\mathrm{M}_{3}$ (br.) ($\mathrm{P}_{4}-\mathrm{M}_{1}$ br.) 43225 (w+)
$/ \mathrm{C}-\mathrm{P}_{1}$ (alv.) and $\mathrm{P}_{2}-\mathrm{M}_{1}$ 43230
$\mathrm{P}_{2}-\mathrm{M}_{2}$ (br.) 43231
P_{1} (rt.) $-\mathrm{M}_{1}$ (rt.) 43232
4 left rami with
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ 43107 (${ }^{+}+$)
$/ \mathrm{C}-\mathrm{P}_{4}\left(\mathrm{P}_{1}-\mathrm{P}_{2}\right.$ alv. $)$ 43115
/C-M (w+) 43235
$\mathrm{P}_{4}-\mathrm{M}_{3}$ (br.) 43237
Group Questionable 3 partial skulls, immature
3 partial skulls, immature, with$\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (lacking nasals and premaxillae)(I) 43080
$\mathrm{C} /($ germ $)-\mathrm{dP}^{2}-\mathrm{M}^{1}$ (P^{1} alv.) (I) 43088
$\mathrm{dP}^{1}-\mathrm{M}^{2}$ (I) 43218
3 partial right maxillae with
$M^{2}-M^{3}$ 43089
$\mathrm{M}^{2}-\mathrm{M}^{3}$ 43266
$\mathrm{M}^{2} \mathrm{M}^{3}$ (br.) 43358
3 partial right maxillae, immature, with $\mathrm{dP}^{4}-\mathrm{M}^{2}$ (1) 43090
P^{1} (alv.) $-\mathrm{dP}^{2}-\mathrm{dP}^{4}$ (I) 43092
$\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ 43220
Partial left maxilla with $\mathrm{M}^{1}-\mathrm{M}^{3}(\mathrm{br}$.) 43222
2 partial left maxillae with
$\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{1}$ 43096 (I)
$\mathrm{dP}^{4} \mathrm{M}^{1}$ (br.) 43097
14 MANDIBULAR RAMI
Mandible with $\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and $\mathrm{dP}_{2}-\mathrm{M}_{2}$ (1) 43100
5 partial right rami with
(w+) 43105
$\mathrm{M}_{1}-\mathrm{M}_{3}$ $\left(w_{+}^{+}\right)$ 43226
$\mathrm{M}_{1}-\mathrm{M}_{\mathbf{3}}$ 43228
(w_{+}^{+})
$\mathrm{M}_{2}-\mathrm{M}_{8}$ 43229
$\left(w_{+}^{++}\right)$ M_{1} (br.) M_{3} 43359
4 partial right rami, immature, with
dP_{4} (br.) $-\mathrm{M}_{1}$ (br.)(1)43108
dP_{4} (br.) $-\mathrm{M}_{2}$ (I) 43109
P_{3} (erupt.) - $\mathrm{dP}_{4}-\mathrm{M}_{2}$ (br.) (P_{4} germ) 43233
$\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{1}$ 43234 (I)
2 partial left rami with
M_{1} (br.) M_{s} 43236 (w)
$\mathrm{P}_{4}\left(\mathrm{rt}\right.$.) $-\mathrm{M}_{2}$ 43239
2 partial left rami, immature, with$\mathrm{P}_{1}-\mathrm{P}_{2}$ alv. and $\mathrm{dP}_{5}-\mathrm{M}_{1}$(I)43118
$\mathrm{I}_{5}-\mathrm{P}_{1}$ alv. and $\mathrm{dP}_{2}-\mathrm{M}_{2}$ (dP_{4} br.) ($)$ 43241
3 SKELETAL ELEMENTS
2 radii (43119B immature) 43119A-B
Ulna, immature 43120

From East Ravine Quarry, near Antelope Draw, 1939:

 MANDIBLE
 Partial mandible with $\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{8}-\mathrm{M}_{2}\left(\mathrm{P}_{2}\right.$ and P_{4} alv. $)$. (-M) 43251
From Quarry 2, Sinclair Draw, 1939-1941:
Group II (Large Premolars) maxilla
Partial right maxilla with $\mathrm{C} /-\mathrm{M}^{1}$ $\left(w_{+}^{+}\right)$3 partial right rami with$\mathrm{P}_{4}-\mathrm{M}_{\mathbf{3}}$ (br.) . $\left.\mathbf{(w +}_{+}^{+}\right)$43121

With the exception of ramus F:A.M. 43249, the material from Quarry 2 seems to be larger than average specimens referred to this species. The partial skull, F:A.M. 43284, differs in having a more massive postglenoid process than average examples, and the inferior edge of the foramen magnum lacks the usual notch. The heavier postglenoid process is more like that found in true Merychyus. The inferior dental series, in most cases, are longer than average referred specimens, but the complicated premolars are approximately equal. Ramus F:A.M. 43125 completely lacks the postcondyle process which is present in all other examples, i.e., when the ascending ramus is complete. In this respect the ramus resembles examples of Merychyus in that the postcondyle process is less prominent.

The differences just considered may indicate that Quarry 2 represents a slightly different horizon within the "Lower Snake Creek" than is apparent in the other quarries mentioned. There is not sufficient material available, however, for a more definite classification at this time.
From Quarry 3, Sinclair Draw, 1932:

Group II (Large Premolars)

RIGHT MANDIBULAR RAMUS F:A.M.
Partial right ramus with /C(alv.)- $\mathrm{M}_{\mathbf{3}}$ (P_{1} rt.) (w) 37546
From Quarry 4, Sinclair Draw, 1938:

Group I (Small Premolars)
 RIGHT MANDIBULAR RAMUS

Partial right ramus with $\mathrm{P}_{\mathbf{3}}$ (br.) $\mathrm{M}_{\mathbf{3}}\left(\mathrm{M}_{1}\right.$ br.) ($\mathrm{w}_{\ddagger}^{+}$) 33545
Group Questionable
LEFT MAXILLA, IMMATURE
Partial left maxilla with $\mathrm{P}^{\mathrm{L}} \mathrm{dP}^{2}-\mathrm{M}^{1}$. (I)
43375
From Quarry 8, Sinclair Draw, 1941:
Group I (Small Premolars)
mandible
Mandible with I_{1} (alv.) M_{3} (I_{3} alv.)
(\mathbf{w}_{++}^{+})
Group II (Large Premolars)
maxilla

Partial right maxilla with $\mathrm{C} /-\mathrm{P}^{4}$ (P^{1} alv.) (w_{+}^{++})

2 MANDIBULAR RAMI F:A.M.
Partial right ramus with $\mathrm{P}_{2}-\mathrm{M}_{3}\left(\mathrm{P}_{4}-\mathrm{M}_{3}\right.$ br. $)$. (w_{\ddagger}) 37166

From Quarry 9, Sinclair Draw, 1941:
Group Questionable
3 mandibular rami

Partial left ramus with $\mathrm{I}_{1}-\mathrm{P}_{2}$ alv. and $\mathrm{P}_{3}-\mathrm{P}_{4}$ (br.) $\left(w_{+}^{++}\right) 43369$
From Version Quarry, 1936:

Group II (Large Premolars) maxilla

Partial right maxilla with $\mathrm{C} /-\mathrm{P}^{\mathbf{3}}$ (br.)
From West Surface Quarry, Sinclair Draw, 1938:

Group I (Small Premolars)
 mandibular ramus

Partial right ramus with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and /C-M M_{1}. ($\mathrm{w}+$) 43374
From New Surface Quarry, 1939:

Group II (Large Premolars)
 mandibular ramus

Partial right ramus with $\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and $\mathrm{P}_{2}-\mathrm{M}_{2}$. (w+)
From East Sinclair Draw, 1937:

Group II (Large Premolars)
 mandibular ramus

Group Questionable maxilla
Partial left maxilla with $M^{2}-\mathrm{M}^{\mathbf{3}}$. (w_{+}^{+}) 33586
From West Sinclair Draw, 1933:

Group Questionable
 mandibular ramus, immature

Partial left ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}$. (I)
33631
A'. FROM TYPE AREA
(American Museum specimens, 1908, 1921, and 1925)
From "Sheep Creek Quarry" of 1921 ("Lower Snake Creek" Horizon):

Group I (Small Premolars)		
	2 mandibles	
2 partial mandibles with		A.M.
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$ ${ }^{\left(w_{+}^{+}\right)}$	18339
$\mathrm{I}_{1}-\mathrm{I}_{8}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{2} \mathrm{br}.\right)$. (${ }_{+}^{+}+$)	18340

Group Questionable

mandibular ramus
Partial left ramus with $\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{2}\left(\mathrm{dP}_{4}\right.$ br.) (I)
18342
From Grass Root Quarry, Kilpatrick Pasture, 1925:
Group I (Small Premolars)
mandibular ramus
Partial right ramus with $I_{1}-I_{3}$ alv. and /C-M M_{3} (P_{4} br.)
21424
From General Area, 1908:

Group II (Large Premolars)
 mandibular ramus

Partial right ramus with / $\mathrm{C}($ alv. $)-\mathrm{P}_{4}$ (P_{1} rt.)
(w+) 14064^{1}
Matthew and Cook ${ }^{2}$ associated this specimen with material (A.M. 14058, 14060, 14065, and 14067) which they considered to represent a large variety or a distinct species. With the additional material now available in the Frick Collections, Schultz and Falkenbach ${ }^{3}$ were able to refer these specimens to Ticholeptus hypsodus Loomis.

Thorpe ${ }^{4}$ considered A.M. 14057, 14058, and 14065 as paratypes of Metoreodon relictus. Ramus A.M. 14057 is the holotype of Ticholeptus hypsodus Loomis. ${ }^{5}$

B. FROM HAY SPRINGS AREA, DAWES COUNTY, NEBRASKA

From Pepper Creek Area, 1935 and 1938:
Group I (Small Premolars)
SKULL AND ASSOCIATED SKELETAL ELEMENTS

Group Questionable
2 mandibular rami
2 partial left rami with
$\mathrm{I}_{1}-/ \mathrm{C}$ alv. and P_{1} (rt.) $-\mathrm{dP}_{2}-\mathrm{dP}_{4}$. (I) 43383
I_{Σ} / C alv. and $P_{1}-\mathrm{dP}_{\mathbf{8}}-\mathrm{M}_{1}\left(\mathrm{P}_{2}\right.$ alv. $)$. (I) 43384

[^25]From Observation Quarry, 1936:
Group Questionable

maxilla			F:A.M.
Partial left maxilla with $\mathrm{M}^{1}\left(\mathrm{rrt}\right.$)-M ${ }^{3}$ (br.)From Grnn Quarry,			34328
Group I (Small Premolars)			
maxilla			
Right maxilla with I^{1} (alv.)-M ${ }^{3}$		($w_{+}+\ddagger$	33637

Group II (Large Premolars)
 PARTIAL SKULL

Inferior anterior portion of skull with $\mathrm{I}^{-} \mathrm{M}^{3}$. (w_{+}^{+}) 43382

MANDIBULAR RAMUS

Right ramus with /C(erupt.)-M
From near Ginn Quarry, 1938:

Group I (Small Premolars)

maxilla
Partial left maxilla with $\mathrm{P}^{2}-\mathrm{M}^{3}\left(\mathrm{P}^{4}-\mathrm{M}^{2}\right.$ alv.) (w_{+}^{+}) 43381

1a. Merychyus (Metoreodon) relictus taylori, ${ }^{1}$ new subspecies

From the Miocene deposits ("Sheep Creek'), Sioux County, Nebraska

Subspecific Description

Skull: Narrower throughout than that of M. (Metoreodon) relictus, but of approximately the same length; supraoccipital wings narrow; nasals lighter than those of M. (Metoreodon) relictus; postglenoid process slightly lighter and not so wide transversely as in the previously named species.
Mandible: Symphyseal portion not so wide as that of M. (Metoreodon) relictus.

Dentition: Characters and size range ap-
proximately the same as examples of M.
(Metoreodon) relictus.
Limbs: Approximately equal to those of M. (Metoreodon) relictus.

Measurements: Table 3.
Illustrations: Figures 1, 8.

Discussion

Although the dentition of this subspecies is similar to that of Merychyus (Metoreodon) relictus, the skull in all available examples is narrower throughout and the occipital condyles are noticeably smaller and lighter. More complete limb material may help to identify additional subspecific or specific differences.

Merychyus (Metoreodon) relictus comes from the "Lower Snake Creek" horizon and M. (Metoreodon) relictus taylori from the "Sheep Creek" horizon. In Brachycrus there is considerable size difference. B. siouense, the smaller-sized form, comes from the "Lower Snake Creek" and B. wilsoni, the larger, from the "Sheep Creek." ${ }^{2}$

The F:A.M. specimens were collected by Jack Wilson, Carl Long, and associates, 1933-1940; the A.M. material by Albert Thomson, 1921-1927.

Sixty specimens are here recorded:

HOLOTYPE

Skull with I^{1} (alv.)- $\mathrm{M}^{\mathbf{3}}$ (lacking frontals and most of nasals). (w_{+}^{+})

The type has small premolars

F:A.M. 34319 From Long Quarry, Antelope Draw, "Sheep Creek" deposits, Sioux County, Nebraska; collected by Jack Wilson and Carl Long, 1936
Figs. 1, 8

[^26]
REFERRED FROM TYPE AREA, SIOUX COUNTY, NEBRASKA

 From Type Locality (Long Quarry), 1934-1937:
Group I (Small Premolars)

maxilla F:A.M.

Partial left maxilla with $\mathrm{P}^{1}-\mathrm{M}^{\mathbf{1}}$. $\left(\mathrm{w}_{+}^{++}\right) \quad 33527$
4 mandibular rami
Partial mandible with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$. (w) 33584
Partial right ramus with $\mathrm{I}_{1}-\mathrm{I}_{\mathbf{3}}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$ (br.) $\left(\mathrm{w}_{+}^{++}\right) 37162$
2 partial left rami with $\mathrm{P}_{\mathrm{L}}-\mathrm{M}_{2}$
$\mathrm{P}_{\mathrm{r}}-\mathrm{M}_{\mathbf{3}}$. $\left(\mathrm{w}_{+}^{+}\right)$

37178
Group II (Large Premolars)
SKULL
Partial skull with $\mathrm{I}^{1} \mathrm{I}^{3}$ alv. and $\mathrm{C} /-\mathrm{M}^{3}$ (P^{4} alv.). Figure 8 (-M) 33524
This specimen is figured in order to illustrate the characters of unworn $\mathrm{P}^{1}-\mathrm{P}^{3}$.

MAXILLA
Partial left maxilla with $\mathrm{P}^{2}-\mathrm{M}^{3}$. (W+) 33590
4 mandibular rami
2 partial right rami with
$\mathrm{P}_{4}-\mathrm{M}_{3}$. (w) 33541
$\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}\left(\mathrm{P}_{2}-\mathrm{P}_{3}\right.$ alv.) (w_{+}^{+}) 33583
2 partial left rami with
$\left./ \mathrm{C}-\mathrm{M}_{1} . \operatorname{.} . \operatorname{~.~(~} \mathrm{w}_{+}^{+}\right)$
33520
$\mathrm{P}_{1}-\mathrm{M}_{\mathbf{3}}(\mathrm{br}$.$) . (\mathrm{w}+)$
34318

Group Questionable

3 maxillae

3 MANDIBULAR RAMI
3 partial left rami with
$P_{1}-M_{1}$ rt. and $M_{2}-M_{3}$ (br.)

33543
P_{2} (alv.) $-\mathrm{dP}_{\mathbf{3}}-\mathrm{M}_{2}$ (br.) . (I)
37179
From Greenside Quarry, Ranchiouse Draw, 1935-1937:
Group I (Small Premolars)
3 maxillae
2 partial right maxillae with

$\mathrm{P}^{4}-\mathrm{M}^{3}$ (M^{1} br.) . (w_{+}^{+}) 34332
Partial left maxilla with $\mathrm{P}^{2} \mathrm{P}^{2}$ alv. and $\mathrm{P}^{3}-\mathrm{M}^{3}$. (w_{+}^{+}) 34322
2 mandibular rami
Partial right ramus with $\mathrm{P}_{2}-\mathrm{M}_{3}$. (w_{+}^{+}) 33517
Partial left ramus with $\mathrm{I}_{\mathbf{3}}$ (alv.) $-\mathrm{M}_{3}$. Figure 8 (w+) 34320

6 mandibular rami

3 partial right rami with			F:A.M.
$\mathrm{M}_{2}-\mathrm{M}_{3}($ br.)	(w)	43380
$\mathrm{dP}_{5}-\mathrm{M}_{1}$		(1)	37173
dP_{4} (br.)-M M_{2}		(1)	37174
3 partial left rami with			
$\mathrm{M}_{2}-\mathrm{M}_{3}$ (br.)		(w_{+}^{+})	37183
dP_{8} (br.) $-\mathrm{M}_{1}$		(I)	37184
$\mathrm{P}_{1}(\mathrm{rt}$. $)$ - $\mathrm{dP}_{5}-\mathrm{M}_{1}$			37189

From Thistle Quarry, Antelope Draw:

> Group I (Small Premolars) mandibular ramus (w) 33542

Partial left ramus with $\mathrm{P}_{1}-\mathrm{M}_{\mathbf{2}}$
Group II (Large Premolars) MANDIBULAR RAMUS
Partial right ramus with $\mathrm{I}_{1}-\mathrm{I}_{2}$ alv. and $\mathrm{I}_{\mathbf{z}}-\mathrm{M}_{\mathbf{3}}$. (w_{+}) 33523
Group Questionable
3 mandibular rami
2 partial right rami with
$\mathrm{I}_{1}-\mathrm{P}_{1}$ alv. and $\mathrm{dP}_{2}-\mathrm{M}_{1}$. (1) 33518
$\mathrm{P}_{1}-\mathrm{dP}_{2}-\mathrm{M}_{1}$. (I)
33540
Partial left ramus with $\mathrm{P}_{5}-\mathrm{P}_{\mathbf{4}}$ alv. and $\mathrm{M}_{1}-\mathrm{M}_{\mathbf{3}}$. ($\mathrm{w}_{\ddagger}^{+}$) 33547
From General Area, 1932:
Group Questionable
partial skull, immature
Partial skull with $\mathrm{I}^{1}-\mathrm{P}^{2} \mathrm{dP}^{2}-\mathrm{M}^{2}$
(1) 33548

From Type Area, Various Locations (A.M. Specimens):
Group I (Small Premolars)
maxilla
Partial right maxilla with $\mathrm{P}^{2} \mathrm{M}^{3}$. (w_{+}^{+}) A.M. 18954 From Stonehouse Draw, 1922 MANDIBULAR RAMUS
Partial right ramus with $\mathrm{P}_{\mathbf{5}}-\mathrm{M}_{\mathbf{z}}$ (br.) (w_{\ddagger}) $22380 \quad$ From Ashbrook Pasture, 1927

Group Questionable

2 mandibular rami

| Partial right ramus with $\mathrm{dP}_{2}-\mathrm{M}_{2}(\mathrm{br}$.$\left.) (\mathrm{I}\right)$ | 18346 | From Channel Quarry, 1922 |
| :--- | :--- | :--- | :--- |
| Partial left ramus with $\mathrm{P}_{3}(\mathrm{rt})-.\mathrm{M}_{3}($ alv. $)$. | 18844 | 1921 | ($w^{+}{ }^{+}$)

1b. Merychyus (Metoreodon) relictus fletcheri, ${ }^{1}$ new subspecies
 From the Miocene deposits, north of Barstow, San Bernardino County, California
 SUBSpecific Description

Skull: Appears to be wider than that of

[^27]either M. (Metoreodon) relictus or M. (Metoreodon) relictus taylori.

Mandible: Unknown.
Dentition: Superior premolar series longer than average of M. (Metoreodon) relictus series, but molar series approximately equal.

Limbs: Unknown.
Measurements: Table 3.
Illustration: Figure 11.

Discussion

The holotype is the only specimen known at this time, but the teeth, although well worn, indicate the size difference mentioned above. The proportions of the superior dental series indicate that the anterior portion of the skull was slightly elongated.

The occurrence of Merychyus (Metoreodon) in the deposits underlying the later beds which include the Hemicyon Stratum ${ }^{1}$ is of interest in determining faunal association. Brachycrus ${ }^{2}$ and Merychyus (Metoreodon) have been found associated in the "Lower

Snake Creek" and "Sheep Creek" of Sioux County, Nebraska, in the Barstow area of California, and in the Miocene of Santa Fe County of New Mexico. Merychyus (Metoreodon), however, has not been reported from Montana or the Sweetwater River area of central Wyoming, where Brachycrus material is quite common. Ticholeptus ${ }^{8}$ has been found associated with Brachycrus and Merychyus (Metoreodon) only in the "Lower Snake Creek" of Nebraska.

One specimen is here recorded:

HOLOTYPE

F:A.M. 34491
From "Red or Third Division," north of Barstow, San Bernardino County, California; collected by Jack Wilson and Carl Long, 1932
Figure 11
2. Merychyus (Metoreodon), species undetermined

Two specimens are here recorded:

A. FROM THE LOWER PART (MIOCENE) OF THE "SANTA FE BEDS," EAST OF ESPANOLA, SANTA FE COUNTY, NEW MEXICO

(Collected by John C. Blick, William Klaus, and associates, 1940)

maxilla and limb Elements

Partial left maxilla with $\mathrm{C} /-\mathrm{M}^{2}$, partial humerus, partial femur, partial tibia,
astragalus, and metapodials \ldots F:A.M.
The well-worn teeth obscure the characters. The size of the dental series and fragments of limb elements compare well with Merychyus (Metoreodon) relictus.

LIMB ELEMENTS
Partial humerus, partial radius, partial ulna, partial tibia, 2 astragali, etc. 43330
The occurrence of Merychyus (Metoreodon) material in this part of the "Santa Fe Beds," where it is associated with examples of Brachycrus, ${ }^{4}$ is of importance. The two forms also have been found associated in the "Sheep Creek" and "Lower Snake Creek" deposits in Sioux County, Nebraska, and in the Barstow deposits of San Bernardino County, California.

[^28]TABLE 3
Merychyus (Metoreodon) Matthew and Cook. Comparative Measurements ${ }^{1}$ of Skulls and Rami

	M. (Metoreodon) relictus Matthew and Cook		M. (Metoreodon) relictus taylori, new subspecies	M. (Metoreodon) relictus fletcheri, new subspecies
Skuld	Holotype A.M. 14056	$\begin{gathered} \text { Referred } \\ \text { F:B:A.M. } \\ 33635 \end{gathered}$	Holotype F:A.M. 34319	Holotype F:A.M. 34491
Stage of wear of teeth	(w_{+}^{+})	(${ }_{+}^{+}+{ }^{+}$	(${ }_{+}^{+}+{ }^{+}$	(${ }_{+}^{+}+{ }^{+}$)
Length (including supraoccipital crest and incisors)	-	165.5	170	-
Basal length (from anterior notch of foramen magnum to posterior base of I^{1})	-	146.5	153	-
Width (max.) .	-	((107))	91.5	
Width of brain case (max.)	-	52	50.5	-
Width, interorbital (min.)	-	53.5	-	-
Distance from anterior rim of orbit to anterior base of canine .	-	69	64	-
Distance from anterior rim of orbit to supraoccipital crest	-	103.5	-	-
Length of nasal	-	-	-	
Width of muzzle at infraorbital foramina	-	48	48.5	-
Width across canines .	-	27.5	19	-
Length, $\mathrm{C} /-\mathrm{M}^{3} \mathrm{incl}$.	-	82	78.5	-
Length, $\mathrm{P}-\mathrm{M}^{3}$ incl.	-	74	71.5	69.5
Length, $\mathrm{P}^{1} \mathrm{P}^{4} \mathrm{incl}$.	-	33.5	32	30
Length, $\mathrm{M}^{1}-\mathrm{M}^{3}$ incl.	-	42.5	41	41
Width of M^{3} (max.)	-	15.5	14	17
Depth of malar below orbit	-	21	13.5	-
Ramus		$\begin{gathered} \text { F:A.M. } \\ 43098 \end{gathered}$	Referred F:A.M. 34420	
Stage of wear of teeth		(w_{+}^{+})	(w_{+})	
Length (max., including incisors)	-	(138)	-	-
Length, /C-condyle incl.	-	180	-	
Depth of jaw under coronoid		66.5	-	
Depth of jaw below anterior edge of M_{3}	27	27.5	24.5	-
Length, / $\mathrm{C}-\mathrm{M}_{3} \mathrm{incl}$.	-	82.5	-	-
Length, $\mathrm{P}_{1}-\mathrm{M}_{3}$ incl.	(78.5)	77	79.5	-
Length, $\mathrm{P}_{1}-\mathrm{P}_{4}$ incl.	33	30.5	30	-
Length, $\mathrm{M}_{1}-\mathrm{M}_{3}$ incl.	(47)	46.5	49.5	-

[^29]TABLE 4
Merychyus (Metoreodon) Matthew and Cook. Comparative Measurements ${ }^{1}$ of Skeletal Elements

	M. (Metore- odon) relictus Matthew and Cook
	Referred
F:B:A.M.	
Length of humerus (articular) . .	111.5
Length of radius (articular) . . .	(141)
Length of ulna (max.) Length of metacarpal III (max.)	-
Length of femur (articular) Length of tibia (articular) Length of metatarsal III (max.)	.

${ }^{1}$ () Approximate. All measurements in millimeters.

II. PARAMERYCHYUS, NEW GENUS

Genotype: Paramerychyus harrisonensis (Peterson).

Generic Characters

Skull: Small, ranging in basal length from 164 mm . to 170 mm .; mesocephalic; low and flat; occipital region somewhat fanshaped; supraoccipital wings with slight posterior projection, but with tendency to form a fan-shaped region, but still retaining the curved notch below and to the side of the supraoccipital wings; exoccipital pits elongated instead of round as in Merychyus and Merychyus (Metoreodon); occipital area similar to that found in Oreodontoides, considerably less fan-shaped than in Merychyus and M. (Metoreodon) (see fig. 14); sagittal crest low; brain case well inflated and broad; frontals moderately wide; lacrimal fossa deep; prelacrimal vacuity present; infraorbital foramen above region of P^{3}; nasals pointed anteriorly, widest portion at anterior nasalmaxilla contact; occipital condyles moderately small; paroccipital process very wide at base (actually a part of the somewhat fanshaped postoccipital region) and perpendicular to longitudinal axis of skull, tapering to a triangular cross section; bulla well inflated with highest point at external side, sloping off internally as found in examples of Mery-
chyus; postglenoid process moderately heavy and deep, cone-shaped or peg-shaped in outline (in Merychyus the postglenoid process is anteroposteriorly compressed with sloping external border).

Mandible: Unknown.
Dentition: Brachyodont in comparison with examples of Merychyus; premolars not crowded; premolars with reduced anterior portion (in unworn specimens); a small incipient cusp on the interior-posterior portion of P^{2} and P^{3}.

Limbs: Unknown.
Measurements: Tables 5 and 6.
Illustrations: Figures 1, 9, 10 (skulls and dentitions); 14 (occipital region of skull).

Discussion

The proposed new genus, although having many characters in common with Merychyus, differs sufficiently to warrant generic rather than subgeneric rank. Paramerychyus differs primarily from Merychyus in that it has more brachyodont teeth, a lower, flatter skull with a peg-shaped postglenoid process, and a less fan-shaped postoccipital region.

Paramerychyus also has some characters similar to those of Eporeodon but differs in having a fan-shaped occipital region, a low skull, and wide, sloping, tympanic bulla. In Eporeodon the bullae are greatly inflated and are very long vertically.
The small, incipient cusp on the slightly worn P^{2} and P^{3} is similar to cusps found on the premolars of Ustatochoerus. In the latter genus, however, the cusps are well developed on $\mathrm{P}^{1}-\mathrm{P}^{3}$, while in Ticholeptus the P^{3} is the only tooth to show a development of a cusp. From the standpoint of the development of cusps on the premolars, P. harrisonensis seems to be more advanced than any species of either Ticholeptus or Merychyus, the latter giving no evidence of complicated premolar cusps. The partially fan-shaped occipital region of this genus seems more primitive than the fan-shaped occipital of Ticholeptus or of Merychyus (see fig. 14).

Distribution

Remains of Paramerychyus, although not common, are known from Harrison deposits in South Dakota and Wyoming. (See distribution chart, p. 169.)

Summary of Species and Types

Two species of Paramerychyus, new genus, from two Miocene localities are here recorded:

1. Paramerychyus harrisonensis (Peterson), from Niobrara County, Wyoming. (Harrison.)

Holotype: Skull, C.M. 1341.
2. Paramerychyus relictus (Loomis), from Washington County, South Dakota. (Harrison equivalent.)

Holotype: Partial skull, A.M. 13813. Figures 1, 10, 14.

DETAILED LISTS OF TYPES, REFERRED SPECIMENS, AND SYNONYMY

PARAMERYCHYUS

Total available specimens: 5

1. Paramerychyus harrisonensis (Peterson)

From the Harrison formation, Niobrara County, Wyoming
Merychyus harrisonensis Peterson, 1906, Ann. Carnegie Mus., vol. 4, p. 37, figs. 7-8. Schlaikjer, 1935, Bull. Mus. Comp. Zool., vol. 76, no. 4, p. 169, pl. 41, fig. 3. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 229, figs. 166-168.
"Merychyus" harrisonensis (Peterson) O'Hara, 1920, South Dakota School Mines, Dept. Geol., bull. no. 13, p. 157.
Ticholeptus harrisonensis (Peterson) Loomis, 1923, Amer. Jour. Sci., vol. 6, p. 227, fig. 5 (not this species, see following discussion).

Ticholeptus (Merychyus) harrisonensis (Peterson) Loomis, 1923, ibid., vol. 6, p. 228.

Specific Characters

Skull: Larger than any known examples of Merychyus; smaller than known specimens of Ticholeptus; approximate size of P. relictus; lacrimal fossa moderately large and deep; prelacrimal vacuity present (in the holotype the very large prelacrimal vacuity may be due to damage of the area; in the referred skull the vacuity is much smaller); malar moderately robust, with a slight but gradual upward trend posteriorly; zygomatic arch of medium construction with shallow rise posteriorly; orbits round, looking forward and upward; postorbital pillar quite heavy; bulla covering large area (Peterson described the bulla as "flask-like in form with a conical swelling on the posterior-external surface'); palatal surface vaulted.

Mandible: Unknown.
Dentition: C/ heavy but not long; premolars not crowded; external styles of molars prominent.

Limbs: Unknown.
Measurements: Table 5.
Illustrations: Figures 1, 9.

Discussion

Remains of P. harrisonensis are not well represented in the various collections. Loomis ${ }^{1}$ reported two skulls of this species in the Amherst Collection. Basing his decision on these two skulls, he placed this species under the genus Ticholeptus. Loomis also illustrated one of the skulls, an immature individual, and identified it in the caption as Ticholeptus (Merychyus) harrisonensis. He considered this species too large and too heavy for Merychyus, but evidently used the two referred specimens for his basis of comparison. These two skulls, however, are not referable to P. harrisonensis but to a genus and species to be discussed in a later paper. Presumably Loomis used the type of "Ticholeptus petersoni" for his basis of generic comparison and was correct in noting the likeness of the two skulls in question and the larger " T. petersoni" but neither form belongs to the genus Ticholeptus. ${ }^{2}$

The two skulls referred to "T. harrisonensis" by Loomis appear more like a dwarf of "T. petersoni." In fact, in the Amherst College exhibit, one of these dwarf type skulls is mounted and labeled "T. petersoni," and in the same display case is the illustrated immature skull mentioned above, identified by the accompanying label in the case as " T. harrisonensis."

In 1935 Schlaikjer 3 referred a maxilla, M.C.Z. 2869, to "M. harrisonensis." Among the reasons given by Schlaikjer for retaining the species under the genus Merychyus was that it is smaller than "typical" Ticholeptus and the dental series is shorter than in such

[^30]species as M. arenarum and M. siouxensis. The chart of measurements accompanying his discussion gives the length of the premolars of the M.C.Z. specimen as 37 mm . and of the molars as 44.5 mm . The premolars and molars of the holotype of M. siouxensis measure 35.5 mm . and 46 mm ., respectively, and of the holotype of Paramerychyus harrisonensis, 35 mm . and 46 mm .

The M.C.Z. maxilla was reported to have come from the "Lower Harrison formation" from deposits located about 6 miles south of Old Fort Laramie. This does not give the precise stratigraphic occurrence, however, since Schlaikjer ${ }^{1}$ considered the Gering, Monroe Creek, and Harrison as all "Lower

Harrison." Both M. siouxensis and P. harrisonensis do come from the Harrison formation. Unfortunately the teeth in the maxilla in question are at a very advanced stage of wear and it is difficult definitely to demonstrate that the teeth are as brachyodont as those of P. harrisonensis. The maxilla may belong to either of the two Harrison species of Merychyus.

Figure 9 demonstrates the likeness of skull characters in mature and immature individuals. It is apparent that the bulla of the immature individual is almost the same size as that of the mature skull.

Three specimens are here recorded:

HOLOTYPE

Skull with $\mathrm{I}^{2}-\mathrm{M}^{3}$, (w) C.M. 1341

From Van Tassel Creek, Niobrara ${ }^{2}$ County, Wyoming
Figured by Peterson, 1906, figs. 7-8; Thorpe, 1937, figs. 166-168

REFERRED FROM "Z QUARRY," NORTH OF KEELINE, NIOBRARA COUNTY, WYOMING

(Collected by John Lynch, Everett DeGroot, and Charles H. Falkenbach, 1932)

2. Paramerychyus relictus (Loomis)

From the Lower Miocene deposits (equal to the Harrison formation), Washington County, South Dakota

Eporeodon relictus Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 36, fig. 26.

Eporeodon major relictus (Loomis) Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, pp. 78-79, fig. 39, pl. 6, figs. 4-5.

Specific Characters

Skull: Slightly larger than known examples of P. harrisonensis and Eporeodon occidentalis; small but deep lacrimal fossa; prelacrimal vacuity questionably present;
${ }^{1}$ Schlaikjer, Erich M., 1935, ibid., vol. 76, no. 4, pp. 111-120.
${ }^{2}$ This specimen was recorded as having been collected in Converse County, Wyoming. Since the time the specimen was actually collected, however, the county has been divided into two parts. The Van Tassel area is no longer included in Converse County but is now a part of Niobrara County, Wyoming.
posterior border of nasals extended beyond the anterior line of the orbits; infraorbital foramen above the posterior border of P^{3}; postglenoid process slightly more robust than in examples of P. harrisonensis; orbits slightly oval in outline, axis anteroposterior to skull, looking forward and outward; malar robust, inferior border slightly arched; external auditory meatus opening more outwardly than posteriorly.

Mandible: Unknown.
Dentition: Series slightly longer and premolars larger than examples of P. harrisonensis; premolars set at a slight angle to alveolar border.

Limbs: Unknown.
Measurements: Table 5.
Illustrations: Figures 1, 10, 14.

Discussion

Loomis, ${ }^{3}$ in the original description of ${ }^{3}$ Loomis, Frederic B., 1924, loc. cit.
"Eporeodon relictus," referred two specimens to this species, A.M. 13814 and A.M. 8949. The latter example, however, is the holotype of Eporeodon cedrensis Matthew, a fact which was pointed out by Thorpe. ${ }^{1}$ This specimen is immature and makes comparisons very difficult. Fortunately a mature skull, F:A.M. 45272, with the characters of Matthew's type, was found in the same area in northeastern Colorado. The second skull thus has afforded the present writers an opportunity to observe the differences between E. cedrensis and P. relictus and these are compared as follows: In the former species the skull is smaller but with a higher sagittal crest than in the latter, the brain case is more rounded, the lacrimal fossa larger, the bulla decidedly smaller, and the postglenoid process laterally compressed with a sloping external border, a character not observed in P. relictus. The
that the lateral wings of the occiput are not greatly spread. The present writers consider the spread of the lateral wings as moderate, decidedly more so than that of E. occidentalis (the genotypic species of Eporeodon) and less so than examples of Merychyus.

The difference in geologic age of the deposits producing remains of P. relictus and E. cedrensis also should be taken into account. The field records at the American Museum of Natural History show that the holotype of the former species was from the same locality in South Dakota as the holotype of the large oreodont Promerycochoerus thompsoni Loomis, which was found in deposits equivalent to the Harrison of Nebraska and Wyoming. E. cedrensis comes from sediments in Colorado which are correlated with the Brule clay of Nebraska.

Two specimens are here recorded:

HOLOTYPE

Partial skull with $\mathrm{C} /(\mathrm{rt})-.\mathrm{M}^{3}$. ($\mathrm{M}+$) A.M. 13813 From "Lower Rosebud," 6 mi. W. of American Horse Creek, Washington County, South Dakota; collected by Paul Miller, 1907
Figured by Loomis, 1924, fig. 26; Thorpe, 1937, fig. 39, pl. 6, figs. 4-5
This paper, figs. 1, 10, 14
REFERRED FROM TYPE AREA
(Collected by Paul Miller, 1907)
Partial skull with PLM3. Fig. 10 (in part) (${ }^{+}{ }^{+}$) 13814
The dental series is figured for comparison of the premolars with those of the holotype. The age difference has caused the referred older individual to show a reduction of the crown surface in the anterior portion of $\mathrm{P}^{1} \mathrm{P}^{3}$.
dental series in both species are quite similar, but the dentition of E. cedrensis does not suggest the presence of incipient cusps on any of the premolars.

In his original description of P. relictus, Loomis ${ }^{2}$ also included the limb elements of the holotype of E. cedrensis as examples of the former species. The limbs of P. relictus, however, are still unknown. Thorpe ${ }^{3}$ observed that the supraoccipital crest of P. relictus is produced beyond the condyle and
${ }^{1}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 79.
${ }^{2}$ Loomis, Frederic B., 1924, loc. cit.
${ }^{3}$ Thorpe, Malcolm R., 1937, loc. cit.

III. OREODONTOIDES Thorpe

Eporeodon (Oreodontoides) ${ }^{4}$ Thorpe, 1921, Amer. Jour. Sci., ser. 5, vol. 2, p. 107, figs. 11-13.

Oreodontoides Thorpe, 1923, Amer. Jour. Sci., ser. 5, vol. 6, p. 240; 1924, ibid., ser. 5, vol. 7, p. 316; 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 213.

[^31]Merychyus (Oreodontoides) (Thorpe) Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 31.

GENOTYPE: Oreodontoides oregonensis Thorpe.

Generic Characters

Skull: Small, ranging in basal length from 158 mm . to 160 mm . ; flat, superior contour slightly arched [not to the degree found in O. (Paroreodon)]; postoccipital region somewhat fan-shaped, similar to Paramerychyus; frontals moderately wide; lacrimal fossa rather small but deep; postglenoid process high and more or less peg-shaped. (Paroccipital process, bulla, and condyle not preserved on available material.)

Mandible:Shallow;inferiorborderstraight to a point posterior of M_{3} (posterior portion of ascending ramus incomplete in type), with abrupt downward curve posterior of M_{3}; postsymphysis below M_{3}.

Dentition : Brachyodont and light in comparison with Merychyus.

Limbs: Moderately short and light.
Measurements: Tables 5 and 6.
Illustrations: Figures 1, 10, 11 (skulls, mandibles, and dentitions) ; 15-17 (limbs).

Discussion

The genus Oreodontoides, which is poorly
represented in the collections, is more closely related to the genera and subgenera of Merychyinae than to Eporeodon. In its more brachyodont dentition Oreodontoides differs from Merychyus, but resembles Paramerychyus. The writers consider the closely related Paroreodon as a subgenus of Oreodontoides.

Distribution

Remains of Oreodontoides are known from the John Day area of Oregon and questionably from South Dakota (see distribution chart, p. 169).

Summary of Species and Types

One species and one questionably referred species of Oreodontoides from two Miocene localities are here recorded:

1. Oreodontoides oregonensis Thorpe, 1921, from the John Day Valley, Oregon. (Approximate Harrison equivalent.)

Holotype: Partial skull, Y.P.M. 12329. Figure 11.
2. ?Oreodontoides curtus (Loomis), 1924, from Washabaugh County, South Dakota. (Harrison equivalent.)

Holotype: Skull and mandible, A.M. 13817. Figures 1, 10.

DETAILED LISTS OF TYPES, REFERRED SPECIMENS, AND SYNONYMY

OREODONTOIDES

Total available specimens: 16

1. Oreodontoides oregonensis Thorpe

From Miocene deposits (approximately equal to the Harrison formation), John Day Valley, Oregon
Eporeodon (Oreodontoides) oregonensis ${ }^{1}$ Thorpe, 1921, Amer. Jour. Sci., ser. 5, vol. 2, p. 107, figs. 11-14.

Oreodontoides oregonensis Thorpe, 1923, Amer. Jour. Sci., ser. 5, vol. 6, p. 240; 1924, ibid., ser. 5, vol. 7, p. 316, figs. 1-3; 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 213, figs. 155-159.

Merychyus (Oreodontoides) oregonensis (Thorpe) Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 31.

[^32]
Specific Characters

Skull: Approximately the size of a small Merychyus; low and flat; frontals moderately wide, with ridge or protrusion at mid-line, not so pronounced as in Eporeodon occidentalis or as in most examples of Desmatochoerus; nasals not reaching the region of the orbits posteriorly, uniform in width; no prelacrimal vacuity [Oreodontoides (Paroreodon) marshi with a facial vacuity]; infraorbital foramen above posterior border of P^{3}; malar moderately light; zygomatic arch incomplete, suggesting gradual rise posteriorly; palate slightly produced posterior of M^{3}.

Mandible: See generic characters.
Dentition : Lighter than in Paramerychyus or O. (Paroreodon) ; $\mathrm{C} /$ and P_{1} of moderate
size but short, similar to small superior canine and inferior first premolar in various species of Merychyus; $\mathrm{P}^{1}-\mathrm{P}^{4}$ damaged on holotype; premolar pattern simple; anterior portions of $\mathrm{P}^{1} \mathrm{P}^{3}$ slightly less reduced than in the holotype of ?O. curtus (a variable character due to wear of the individual teeth); premolars appearing to be at a slight angle to the ramus as in ?O. curtus; inferior premolars (of referred rami, Y.P.M. 12635 and 12638) showing a definite crowding and overlapping, including P_{4}.

Limbs: Slightly longer than examples of ?O. curtus.

Measurements: Tables 5 and 6.
Illustrations: Figures 11, 15-17.

Discussion

The characters of this species, except for the low flat skull and the light teeth, are very similar to those of O. (Paroreodon) marshi. Additional material is necessary for more complete description.

Fourteen specimens are here recorded:

HOLOTYPE

Partial skull with $\mathrm{I}^{1}(\mathrm{br})-.\mathrm{M}^{3}\left(\mathrm{I}^{3}, \mathrm{P}^{4}\right.$, and M^{1} br.). ($\mathrm{w}+$)	Y.P.M. 12329	From ?middle John Day, Turtle Cove, John Day Valley, Oregon; collected by William Day, 1875 Figured by Thorpe, 1921, figs. 11-13; 1924, fig. 1; 1937, figs. 155-157 This paper, fig. 11

REFERRED FROM THE JOHN DAY VALLEY AREA, OREGON

3 SKULLS WITH associated mandibular rami

Anterior portion of skull with I^{1} (alv.)-M ${ }^{2}$ and partial right ramus with P_{g} M_{3} (br.). (w)	C.I.T.	From the John Day Valley
Crushed skull with $\mathrm{C} /-\mathrm{dP}^{2}-\mathrm{M}^{2}$ and partial mandible with $\mathrm{P}_{1}-\mathrm{dP}_{8}-\mathrm{M}_{2}$. (I)	504	From C.I.T. coll. loc. no. 27, E. of Cants Ranch, N. of Sheep Mountain
Partial skull with dP^{2} (br.)- dP^{4}, partial	A.M. 7538	From the John Day River

SKULL and associated limb elements
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}\left(\mathrm{P}^{3}\right.$ alv.), \quad A.M. $7513 \quad \begin{array}{l}\text { From the John Day Valley } \\ \text { humerus, } 2 \text { partial femora, partial }\end{array}$
Figures 15, 16, 17 (in part) tibia, and partial pes. (w)

5 sKulls
Crushed partial skull with $I^{1-I^{3}}$ rt. and
C.I.T. 510 From the John Day Valley
$\mathrm{C} /-\mathrm{M}^{3} \mathrm{br}$. (w_{+}^{+})
Partial skull with $\mathrm{C} /\left(\mathrm{br}\right.$.) $-\mathrm{M}^{3}$ (br.) ($\mathrm{P}^{1}-\mathrm{P}^{2}$
rt., $\mathrm{P}^{4} \mathrm{br}$., and M^{1} alv.). ($\mathrm{w}+\ddagger$)

Anterior portion of skull with dP^{3} (br.)M^{3} (germ). (I)

Associated with this specimen are fragments of large limbs which appear to be those of Promerycochoerus and which show association of the two genera.

Partial skull with $\mathrm{dP}^{\mathbf{2}}-\mathrm{M}^{\mathbf{1}}$ and fragments. (I)
Center section of skull with $\mathrm{dP}^{2}-\mathrm{M}^{1}$. (I)
A.M. 7768
Y.P.M. 10149

From the Cove, John Day Valley; collected by Wortman, 1879
From the Clarno Bottom; collected by S. Snook, 1874

MANDIBLE AND SKELETAL ELEMENTS

Partial mandible with / $\mathrm{C}-\mathrm{P}_{4}$ (P_{1} br.),
A.M. 7677
From the Cove; collected by Wortman partial humerus, partial radius, 2 partial femora, 2 partial tibiae, and fragments. (w)

3 mandibular rami
Partial mandible with $\mathrm{P}_{1}-\mathrm{M}_{\mathbf{3}}$. (M_{+}) A.M. $7519 \quad$ From Haystack Valley
Partial mandible with $\mathrm{I}_{1}-\mathrm{M}_{1}$ (br.). (w)
Y.P.M. 12635

12638 From Turtle Cove; collected by William Day, 1875
Figured by Thorpe, 1924, figs. 2-3; 1937, figs. 158-159
This paper, fig. 11

2. ? Oreodontoides curtus (Loomis)
From Miocene deposits (equal to the Harrison formation), Washabaugh County, South Dakota

Merychyus curtus Loomis, 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 31, figs. 19-20; 1933, Bull. Geol. Soc. Amer., vol. 44, p. 723, figs. 1-3. Thorpe, 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 222, figs. 162-163, pl. 34, figs. 1-3, pl. 48, fig. 1.

Specific Characters

Skull: Small size, approximately that of O. oregonensis; occipital region somewhat fan-shaped; no sagittal crest; temporal ridges robust and not joined until they reach the latter quarter of the skull, at which point they lose their robust surface (the robust temporal ridges may represent individual variation within a species); superior surface slightly arched; brain case long and well inflated; frontals narrow, sharply angular in outline; nasals light, widest portion at anterior maxilla contact; orbits slightly oblong in outline, axis vertical with skull, looking forward and upward; malar moderately deep with a gradual posterior rise; zygomatic arch moderately light; lacrimal fossa large and deep; infraorbital foramen above posterior border of P^{3}; prelacrimal vacuity ${ }^{1}$; muzzle

[^33]joined for short distance; anterior nasal-maxilla contact above P^{2}; occipital condyle moderately small and widely expanded; paroccipital process wide at base, tapering somewhat to a triangular outline, adhering to the bulla; bulla comparatively large (lacking the internal surface slope as in Merychyus) and crowding the postglenoid process; postglenoid process more peg-shaped than in examples of Merychyus, which are laterally compressed, wide transversely, and with an external sloping border; glenoid surface arched; posterior palate extending beyond M^{3}.
Mandible: Rather light in construction; moderately deep with gradual increase in depth to below $\mathrm{M}_{\mathbf{3}}$; inferior border straight until a point posterior of M_{3} and then an abrupt downward curve, giving considerable depth to the ascending ramus (the abrupt descent of the inferior border of the ramus in this form is completely lacking in Merychyus); ascending ramus somewhat wide anteroposteriorly; condyle of moderate size, placed at angle to ramus; postsymphysis below P_{2}.

Dentition: Brachyodont in comparison with Merychyus; similar to O. oregonensis and Paroreodon marshi; C/ small; superior premolars slightly crowded with P^{2} and P^{3} set at slight angle to the skull; $\mathrm{M}^{\mathbf{1}} \mathrm{M}^{\mathbf{8}}$ graduated in size; external styles of molars moder-

[^34]ately prominent; P_{1} small; P_{2} and P_{3} crowded and set at an angle to the ramus (anterior portions of $\mathrm{P}_{1}^{1}-\mathrm{P}_{3}^{3}$ reduced in holotype).

Limbs: Known from referred specimen only (see discussion of A. C. 31-31, below); light construction, similar to Merychyus; slightly smaller than examples of M. crabilli.

Measurements: Tables 5 and 6.
Illustrations: Figures 1, 10.

Discussion

As far as it is possible to compare the characters of this species and those of O. oregonensis, they appear to be very similar. The difficulty of making comparisons is due to lack of important characters of the holotype of O. oregonensis. ?O. curtus differs from species of Merychyus in having a more rounded bulla, more peg-shaped postglenoid process, and more brachyodont teeth.

Loomis ${ }^{1}$ referred a skeleton, A.C. 31-31, to "Merychyus curtus." The individual bones of this specimen are difficult to measure since they are mounted in a plaster plaque, and the skull and mandible are not easily studied because they show a great deal of restoration. Loomis, in describing the holotype, stated that the skull measured 158 mm . in length, but in 1933 he 2 reported the length for his
referred skull (A.C. 31-31) as 120 mm . Perhaps the latter skull was restored incorrectly, thus shortening its actual length. The dental series of this second specimen compares with the dentition of the holotype and seems to be more brachyodont when compared with Merychyus. Even if this skeleton is accepted as referable to this species, the limb elements are incomplete and do not significantly add to the information. In the skeleton and Loomis' 1933 illustration, the only complete limb elements are the radius and metacarpal III. The measurements of these skeletal parts suggest an animal slightly shorter than Merychyus crabilli, the smallest species known of that genus.

In 1933, Loomis ${ }^{3}$ also compared the skeleton of ?O. curtus with the skeleton of M. minimus, presumably using A.C. 31-31 for the former and skeleton A.C. 1931-26 as a basis for the latter. Loomis' measurements of the latter skeleton do not check with the measurements of the same skeleton taken by the writers. A photograph on display with the label and skeleton shows the bluffs south of Van Tassell, Wyoming, which are of Harrison age. M. minimus comes from the lower Marsland beds and M. crabilli, the species to which A.C. 1931-26 has been referred in this report, from the Harrison.

Two specimens are here recorded:

HOLOTYPE

Skull with $\mathrm{I}^{1-\mathrm{M}^{3}}$ and mandible with $\mathrm{I}_{1}-\mathrm{M}_{3}$. (w)
A.M. 13817

From 10 mi . E. of Kyle Post Office, Washabaugh County, South Dakota; collected by Albert Thomson, 1925
Figured by Loomis, 1924, figs. 19-20; Thorpe, 1937, figs. 162-168; pl. 34, figs. 1-3
This paper, figs. 1, 10

REFERRED FROM PORCUPINE CREEK, SOUTH DAKOTA

(Collected by Frederic B. Loomis and John Harlow, 1931)

Mounted skeleton consisting of partial skull, partial mandible, and skeletal elements (considerable restoration). ($\mathrm{w}+$)

This skeleton was considered by Thorpe ${ }^{4}$ as a plesiotype of "Merychyus curtus."
${ }^{1}$ Loomis, Frederic B., 1933, loc. cit.
${ }^{2}$ Idem.
${ }^{3}$ Idem.
${ }^{4}$ Thorpe, Malcolm R., 1937, op. cit.
A.C. 31-31

Figured by Loomis, 1933, figs. 1-3; Thorpe, 1937, pl. 48, fig. 1

IIIA. OREODONTOIDES (PAROREODON)

(Thorpe)

Paroreodon Thorpe, 1921, Amer. Jour. Sci., ser. 5, vol. 2, p. 109; 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 177.

Genotype: Oreodontoides (Paroreodon) marshi (Thorpe).

Generic Characters

Skull: Small size, equal to that of a large species of Merychyus; mesocephalic; superior surface well arched, more so than in Oreodontoides; occipital region somewhat fanshaped (less than in typical Merychyus) but oblong (vertically); supraoccipital wings widely spread; incipient exoccipital pits; sagittal crest low and short; brain case inflated, with moderate postorbital restriction; lacrimal fossa large but shallow, slightly deeper than in average examples of Merychyus minimus; infraorbital foramen above region of posterior portion of P^{3} and anterior portion of P^{4}; small triangular prelacrimal vacuity, placed more posteriorly than in Merychyus; zygomatic arch moderately heavy, with an abrupt rise posterior of malar; bulla well inflated, tapering to an anteroposterior ridge; paraoccipital process wide at base, tapering rapidly for lower one-half and adhering to the bulla; postglenoid process moderately heavy, anteroposteriorly compressed.

Mandible: Inferior border increasing in depth anteroposteriorly, with moderate abrupt downward curve posterior of M_{3}; ascending ramus wide anteroposteriorly and high; condyle set at slight angle to ramus.

Dentition: Light but heavier than in Oreodontoides; comparatively brachyodont in comparison with examples of Merychyus; superior premolars set in straight line with alveolar border; C/ heavy; anterior portion of P^{3} shortened; external styles of M^{2} and M^{3} prominent; $\mathrm{P}_{1}-\mathrm{P}_{3}$ set straight with exterior alveolar border; inferior premolars not crowded and superior $\mathrm{P}^{1} \mathrm{P}^{3}$ not at angular position as in Oreodontoides; M_{3} with exceptionally prominent heel.

Limbs: Light construction, similar to those of Merychyus. (Known only from a referred specimen.)

Measurements: Tables 5 and 6.
Illustrations: Figures 1, 11, 12 (skulls,
mandibles, and dentitions); 14 (occipital region of skull); 15, 16 (limbs).

DISCUSSION

The generic characters are based on the type and on the referred specimen C.I.T. 400, a nearly complete skeleton which is somewhat larger than the type but agrees in all the characters that are comparable. The genus is not well represented in the collections, nor is the geologic horizon for either the type or the referred specimen known. In other John Day oreodonts there is an apparent change of characters in the various lines, depending upon their position in the vertical section; the fact that the referred specimen is somewhat larger than the type may indicate that it came from a slightly different geologic level. Additional material from known horizons within the John Day is needed in order to determine stratigrahpic (vertical) and individual variation ranges.

Thorpe ${ }^{1}$ gave his opinion that O. (Paroreodon) is a branch of the Ticholeptus line nearest to Merycoides but not referable to that genus. The writers believe that Ticholeptus and O. (Paroreodon) did come from the same ancestral stock, the former a direct descendant of Merychyus (Metoreodon) and the latter branching from Merychyus previous to the present known history of that genus. The relationship of Merycoides, however, is not apparent at this time; it includes forms of larger size with low, flat skulls and a comparably low bulla. It comes from beds equal in age to the Gering formation of the Great Plains.

Loomis ${ }^{2}$ suggested a close relationship between O. (Paroreodon) and Merychyus, the former differing from the latter in the height of the skull and the unique pointed bulla. The writers agree with Loomis in the close relationship, but the comparatively brachyodont teeth and the unique bulla of 0 . (Paroreodon) separate it from Merychyus, even though many characters are common in both forms. The names Oreodontoides and O. (Paroreodon) were both established on material from the John Day beds of Oregon.

[^35]Although the two forms are considered to be closely related, the writers propose to continue the use of Paroreodon but as a subgenus of Oreodontoides.

The geologic level for the holotype of 0 . (Paroreodon) marshi is "Upper Oligocene, Middle John Day" according to the catalogue at the Yale Peabody Museum and to Thorpe. ${ }^{1}$ The locality for this specimen is given as "Hay Stack Valley, Turtle Cove area, John Day Valley, Oregon." Throughout Thorpe's entire monograph on the oreodonts, the color of the matrix adhering to the John Day specimens was used as an indication of the age or level of the deposits from which the remains were collected. From personal conversations with Dr. J. P. Buwalda, Mr. Eustace L. Furlong, and Dr. Chester Stock, all of whom are very familiar with the John Day area, the present writers have learned that color of matrix is of little value in determining faunal levels. Mr. Carl Sorenson, who at the present time is preparing the John Day oreodonts in the Cope Collection at the

American Museum of Natural History, confirms this with his observations that some specimens were embedded in both gray and green matrix.

Distribution

Oreodontoides (Paroreodon) remains are not well represented in the collections. The only recorded specimens of this genus are from the John Day beds of Oregon.

Summary of Species and Types

Two species of Oreodontoides (Paroreodon) from one Miocene locality are here recorded:

1. Oreodontoides (Paroreodon) marshi (Thorpe), 1921, from John Day Valley, Oregon. (?Middle John Day, Harrison equivalent.)

Holotype: Partial skull, Y.P.M. 12415. Figure 11.
2. Oreodontoides (Paroreodon) stocki, new species, from John Day Valley, Oregon. (?Upper John Day, Harrison equivalent.)

Holotype: Skull, C.I.T. 537. Figures 1, 12.

DETAILED LISTS OF TYPES, REFERRED SPECIMENS, AND SYNONYMY

OREODONTOIDES (PAROREODON)

Total available specimens: 20

1. Oreodontoides (Paroreodon) marshi
(Thorpe)
From Miocene deposits (approximately equal to the Harrison), John Day Valley, Oregon
Paroreodon marshi Thorpe, 1921, Amer. Jour. Sci., ser. 5, vol. 2, p. 109, figs. 14-16; 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 178, figs. 129-131.

Specific Characters

Skull: Orbits appearing oblong, looking outward and slightly upward; malar robust; bulla with a noticeable external groove for the hyoid bone for the complete depth of the bulla; external auditory meatus opening mostly outward and slightly posteriorly; pos-

[^36]terior palate extending beyond M^{3}. Mandible: See generic description.
Dentition: Brachyodont in comparison with Merychyus; more like Paramerychyus and Oreodontoides.

Limbs: Light construction, approximating in length those of a large example of Merychyus arenarum.

Measurements: Tables 5 and 6.
Illustrations: Figures 1, 11, 12, 14-16.

Discussion

The holotypic skull is not complete, but additional characters of the genus and species have been added from an almost complete skeleton (C.I.T. 400) referred to this species. (See discussion, p. 255.)

Ten specimens are here recorded:

HOLOTYPE

Y.P.M. 12415 From middle John Day, Hay Stack Valley-Turtle Cove area, the John Day Valley, Oregon; collected by L. S. Davis, 1875
Figured by Thorpe, 1921, figs. 14-16; 1937, figs. 129-131
This paper, fig. 11

REFERRED FROM JOHN DAY VALLEY, OREGON

3 sKulls, mandibles, and skeletal elements

Skull with $\mathrm{C} /-\mathrm{M}^{3}$, mandible with $\mathrm{P}_{2}-\mathrm{M}_{3}$,	C.I.T. 400	From C.I.T. coll. loc. no. 29a, entrance to Haystack Valley
and most of skeleton. ($\mathrm{w}+$)		Figures 1, 12, 14, 15, 16
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$, mandible with $\mathrm{I}_{1}-/ \mathrm{C}$	3493	From the John Day Valley
rt. and $\mathrm{P}_{1}-\mathrm{M}_{3}$, partial humerus, verte-		
brae, and ribs. (w_{+}^{++})		

2 Partial skulls and associated mandibles

Crushed skull with $\mathrm{I}^{1}-\mathrm{I}^{3} \mathrm{rt}$. and $\mathrm{C} /(\mathrm{br}$	C.I.T. 1495	From C.I.T. coll. loc. no. 372
M^{3} and mandible (attached) with		Day Highway, at junctio
$\mathrm{P}_{4}-\mathrm{M}_{3}$. (w+)		Road
Partial skull with $\mathrm{C} /-\mathrm{M}^{3}$ and mandible (attached) with $\mathrm{I}_{1}-\mathrm{I}_{3}$ alv. and $/ \mathrm{C}-\mathrm{M}_{3}$. (w)	3496	From C.I.T. coll. loc. no. 29 Valley
	Partial sku	
Partial skull with $\mathrm{P}^{3}-\mathrm{M}^{3}$ ($\mathrm{M}^{1}-\mathrm{M}^{3}$ br.). ($\mathrm{w}+$)	3494	From Haystack Valley
Anterior portion of skull with $\mathrm{C} /-\mathrm{M}^{3}$. ($\mathrm{w}_{\dagger}^{\dagger}$)	3497	From the John Day Valley
Partial skull with $\mathrm{C} /(\mathrm{rt})-.\mathrm{M}^{3}$. ($\mathrm{w}+$)	3501	From Haystack Valley

SKULL AND ASSOCIATED SKELETAL ELEMENTS

Skull with $\mathrm{C} /-\mathrm{P}^{2}$ alv. and $\mathrm{dP}^{3}(\mathrm{rt})-.\mathrm{M}^{2}$ (germ), tibia, and 2 partial femora. (I)
A.M. 7550

From Haystack Valley; collected by Wortman and Day
2. Oreodontoides (Paroreodon) stocki, ${ }^{1}$ new species
Questionably from the upper John Day beds (approximately equal to the Harrison of the Great Plains), John Day area, Oregon

Specific Description

Skull: Tendency to be larger than examples of P. marshi; characters equal to those of P. marshi, except for the bullae

[^37]which are somewhat flattened on the inferior surface instead of coming to a sharp ridge as in the genotypic species; infraorbital foramen above the posterior portion of P^{3}.

Mandible: Somewhat heavier and larger than examples of P. marshi.

Dentition : Somewhat heavier and slightly longer series than examples of P. marshi.

Limbs: Unknown.
Measurements: Table 5.
Illustrations: Figures 1, 12.

Discussion

The writers have discussed the John Day stratigraphy with a number of the collectors

TABLE 5
Paramerychyus, New Genus, Oreodontoides Thorpe, and Oreodontoides (Paroreodon) (Thorpe). Comparative Measurements ${ }^{1}$ of Skulls and Rami

	Paramerychyus harrisonensis (Peterson)		Paramerychyus relictus (Loomis)	Oreodontoides oregonensis Thorpe	?Oreodon- toides curtus (Loomis)
Skull	Holotype C.M. 1341	$\begin{gathered} \text { Referred } \\ \text { F:A.M. } \\ 33314 \end{gathered}$	$\begin{gathered} \text { Holotype } \\ \text { A.M. } \\ 13813 \end{gathered}$	Holotype Y.P.M. 12329	Holotype A.M. 13817
Stage of wear of teeth	(w)	(w)	($\mathrm{M}+$)	($\mathrm{w}+$)	(w)
Length (including supraoccipital crest and incisors)	195	(192)	((200))	((160))	158
Basal length (from anterior notch of foramen magnum to posterior base of I^{1})	169	(164)	(170)	-	139
Width (max.)	(109)	113	((105))	((87))	99
Width of brain case (max.)	56	59	62	((52))	47
Width, interorbital (min.) .	60	58	(64)	42	43.5
Distance from anterior rim of orbit to anterior base of canine	76	77	81	59	55.5
Distance from anterior rim of orbit to supraoccipital crest	123.5	(120)	127	((103))	106
Length of nasals	-		-		58.5
Width of muzzle at infraorbital foramina	51	42	-	38	44
Width across canines	34.5	35	-	-	(28.5)
Length, $\mathrm{C} /-\mathrm{M}^{3}$ incl.	91	88	96	70	73.5
Length, $\mathrm{P}^{1}-\mathrm{M}^{3}$ incl.	80	76	84	62	65.5
Length, $\mathrm{P}^{1}-\mathrm{P}^{4}$ incl.	35	36.5	40.5	30	30
Length, $\mathrm{M}^{1} \mathrm{M}^{3}$ incl.	46	41.5	44	31.5	36
Depth of malar below orbit	-	16.5	16.5	-	15.5
Ramus				c Referred Y.P.M. $12638 \quad 7519$	
Stage of wear of teeth .				(w) (M+)	
Length (max., including incisors)	-	-	-		127.5
Length, /C-condyle incl. . .	-	-	-		117.5
Depth of jaw under coronoid	-	-	-	70	68
Depth of jaw below anterior edge of M_{3}	-	-	-	23.526	27
Length, / $\mathrm{C}-\mathrm{M}_{8}$ incl.	-	-	-	- -	76.5
Length, $\mathrm{P}_{1}-\mathrm{M}_{3}$ incl. .	-	-	-	- 71.5	71
Length, $\mathrm{P}_{1}-\mathrm{P}_{4}$ incl. .	-	-	-	$33 \quad 30$	31
Length, $\mathrm{M}_{1}-\mathrm{M}_{3}$ incl. .	-	-	-	- 41.5	41

[^38]TABLE 5-Continued

	Oreodontoides (Paroreodon) marshi (Thorpe)		Oreodontoides (Paroreodon) stocki, new species
Skull	Holotype Y.P.M. 12415	$\begin{gathered} \text { Referred } \\ \text { C.I.T. } \\ 400 \end{gathered}$	Holotype C.I.T. 537
Stage of wear of teeth . Length (including supraoccipital crest and incisors)	$\begin{array}{r} \left(w_{+}\right) \\ ((164)) \end{array}$	$\begin{gathered} \left(w_{+}\right) \\ (179) \end{gathered}$	(w) $((179))$
Basal length (from anterior notch of foramen magnum to posterior base of I^{1}) Width (max.)	$\begin{aligned} & 140 \\ & ((95)) \end{aligned}$	(159) ((95))	$((161))$ $((103))$
Width of brain case (max.)	57	50	65
Width, interorbital (min.) .	49	((38))	52.5
Distance from anterior rim of orbit to anterior base of canine	62	65.5	69
Distance from anterior rim of orbit to supraoccipital crest	((104))	112.5	-
Length of nasals	-	53	
Width of muzzle at infraorbital foramina	45	37	44
Width across canines	-	(35)	39
Length, $\mathrm{C} /-\mathrm{M}^{3}$ incl.	79	83	84.5
Length, $\mathrm{P}^{1}-\mathrm{M}^{3}$ incl. .	70	71	76
Length, P1-P ${ }^{4}$ incl.	32	31.5	34.5
Length, $\mathrm{M}^{1} \mathrm{M}^{3}$ incl. . . ${ }^{\text {a }}$	40	39.5	45.5
Depth of malar below orbit	20	18	16
Ramus			Referred A.M. 7578
Stage of wear of teeth			(w_{+}^{+})
Length (max., including incisors)	-	-	-
Length, /C-condyle incl.	-	-	-
Depth of jaw under coronoid. . . .	-	73.5	-
Depth of jaw below anterior edge of $\mathrm{M}_{\mathbf{3}}$	-	28.5	32.5
Length, / $\mathrm{C}-\mathrm{M}_{3}$ incl.	二	-	
$\underset{\text { Length, } \mathrm{P}_{1}-\mathrm{M}_{3} \text { incl. }}{\text { Length, } \mathrm{P}_{1}-\mathrm{P}_{\text {s incl }} \text { incl. }}$	二	-	92.5 43.5
Length, $\mathrm{M}_{1}-\mathrm{M}_{3}$ incl.	-	42	48

TABLE 6
Oreodontoides Thorpe and Oreodontoides (Paroreodon) (Thorpe). Comparative Measurements ${ }^{1}$ of Skeletal Elements

	Oreodontoides oregonensis Thorpe	$\begin{gathered} \text { POreodontoides } \\ \text { curtus } \\ \text { (Loomis) } \end{gathered}$	Oreodontoides (Paroreodon) marshi (Thorpe)
	Referred A.M. 7513	Referred A.C. 31-31	$\begin{aligned} & \text { Referred } \\ & \text { C.I.T. } \\ & 400 \end{aligned}$
Length of humerus (articular)	128.5	-	127.5
Length of radius (articular)	-	94.5	112.5
Length of ulna (max.) . . .	-	((120))	147
Length of metacarpal III (max.)	-	51.5	$\bar{\square}$
Length of femur (articular) . .	-	(127)	147.5
Length of tibia (articular) . .	,	(116)	48
Length of metatarsal III (max.)	62.5	(58)	48.5
Length of calcaneum (max.)	-	-	49

${ }^{1}$ () Approximate; (()) estimated. All measurements in millimeters.
and geologists who have worked in the John Day beds, and who generally agree that at least two horizons are present-a conclusion which is substantiated by differences in the various oreodont forms from this area. No definite stratigraphic break, however, seems to be apparent; thus the term middle or upper John Day appears to be of little value. In the records accompanying the various collections of John Day oreodonts, which the writers have had the privilege of seeing, no clean-cut separation of the horizons is evident. Another point of interest in the collections from the John Day is that small forms like O. (Paroreodon) and others are found in
the same horizons as the large Promerycochoerus. This is true also in the Great Plains, where Promerycochoerus carrikeri and Merychyus siouxensis are found associated.

The change in the type of bulla from 0 . (P.) marshi to that of O. (P.) stocki seems to indicate a difference in geological levels, as is evident in the changes of the bullae of forms from the great Plains, for example in the development from Merychyus to M. (Metoreodon). The prelacrimal vacuity was not observed in the available material, but this may be owing to the crushing and poor preservation of the facial region of the skulls.
Ten specimens are here recorded:

HOLOTYPE

Skull (somewhat crushed) with I^{1} (alv.)M^{3}. (w)	C.I.T. 537	From C.I.T. coll. loc. no. 32, 1 mi. E. N.E. of Cressen Ranch, near Haystack Valley, John Day area, Oregon This paper, figs. 1, 12

REFERRED FROM THE JOHN DAY VALLEY, OREGON
 partial skull and partial mandible

Partial skull with $\mathrm{I}^{1}-\mathrm{I}^{3}$ rt. and $\mathrm{C} /-\mathrm{M}^{3}$ ($\mathrm{P}^{3}, \mathrm{P}^{4}$, and M^{3} erupt.) and partial left ramus with $/ \mathrm{C}(\mathrm{rt})-.\mathrm{M}_{3}$ (erupt.) ($\mathrm{P}_{2}-\mathrm{P}_{3}$ erupt. and P_{4} alv.). (-M)

Although this specimen is not quite mature, it is larger than the holotype.
partial skull, mandible, and atlas, immature
Partial skull with $\mathrm{C} /(\mathrm{rt})-.\mathrm{M}^{3}$ (germ) A.M. 8228 From the Cove
($\mathrm{P}^{3}-\mathrm{P}^{4}$ erupt.), partial mandible (at-
A.M. $7785 \quad$ From the John Day Valley
tached) with P_{1} (br.) $-\mathrm{dP}_{2}-\mathrm{M}_{3}$ (erupt.),
and atlas. (I)
The skull is rather small, but the bullae are very large and flattened as in this species.
5 partial skulls

Badly crushed skull with $\mathrm{I}^{1}-\mathrm{C} / \mathrm{rt}$. and $\mathrm{P}^{\mathrm{L}} \mathrm{M}^{3}$. (w+)
Anterior portion of skull with $\mathrm{I}^{1} \mathrm{I}^{3} \mathrm{rt}$. and $\mathrm{C} /-\mathrm{M}^{3}$ (M^{2} br.). (-M) Small C/.
Skull with $\mathrm{I}^{1}-\mathrm{M}^{3}$ (C/br.). (M) 3502
Anterior portion of skull with $\mathrm{P}^{3}-\mathrm{M}^{3}$. (w_{+}^{+})
Skull with $\mathrm{I}^{2}-\mathrm{dP}^{2}-\mathrm{M}^{2}$ (erupt.) (C / rt.). (I)
A.M. 7814 From the John Day Valley
C.I.T. 3499 From C.I.T. coll. loc. no. 29, Haystack Valley

3502 From the John Day Valley
A.M. 7690 From the Cove, collected by L. S. Davis, 1879
7649 From Camp Creek, Crooked River; collected by Wortman

2 partial rami
A.M. 7543 From the Cove; collected by Day and Warfield, 1877?
7578 From the John Day Valley This paper, fig. 12

Partial right ramus with $\mathrm{I}_{1}-/ \mathrm{C}$ alv. and $\mathrm{P}_{1}-\mathrm{M}_{3}$. (-M)
Partial left ramus with $/ \mathrm{C}-\mathrm{P}_{2}$ rt. and $P_{3}-M_{3} . \quad\left(w_{+}^{+}\right)$

This ramus is somewhat larger than examples of Oreodontoides (Paroreodon) marshi, but its characters are typical of that species.

VARIATION ${ }^{1}$

The following five types of variation have been considered in this study of the subfamily Merychyinae:

1. Age variation of the individual (see charts 3 and 4).
2. Sex variation (see chart 3).
3. Individual variation, without regard to age or sex variation (see charts 1 and 2).
4. Geographic variation (see chart 2).
5. Geologic variation (see chart 2).

1. AGE VARIATION OF THE INDIVIDUAL

Age variation of the individual is demonstrated in chart 3. Twenty-four individuals of Merychyus crabilli, found associated in two field blocks, are the basis for chart 3 and represent the best available assemblage for this type of study. Eleven of these specimens are fully mature and are represented by skulls, partial skulls, or rami. The balance of the associated material is immature and would not add materially to this study. The age of the individual has been determined by the external, vertical height of the enamel on M^{3}. On chart 3 the individuals are listed in order from youngest to oldest.

From a study of chart 3 it is evident that the individual age of a mature specimen does not govern any one measurement or even a combination of measurements. For example, the oldest individual may not have the longest basal length nor the youngest the shortest; and the youngest example may not have the shortest dental series nor the oldest the longest. Other possible measurements also do not relate to the age of the individual.

Figure 13 illustrates the dentition of one of the 10 associated specimens of Merychyus crabilli. From the illustration it may be seen that the actual length of the crowns of the premolar series does not alter appreciably with age. Changes due to age are apparent in the outline of the premolars, but not in the over-all measurements of this series. Like-

[^39]wise, the total length of the crowns of the molar series vary but slightly. M1, either superior or inferior, may be seen to change noticeably, becoming less with wear in its anteroposterior length; M2 likewise decreases but to a lesser degree; but M3 increases with wear in its anteroposterior length, almost compensating for the decrease in the other two molars.

Chart 4, which represents a rearrangement of the data on chart 3 , retaining the same age succession from youngest to oldest, illustrates individual variation of a different type. It demonstrates that according to six different measurements of the skull and dentition, there is no mutual relationship between these measurements. In chart 4 a specimen symbol is used to designate the relative position of the individual when each measurement is considered independently of the others, for example, the fourth specimen (W^{4}) in the age succession of chart 3 ranks first in basal length, third in width, and fifth in length of $\mathrm{M}^{2}-\mathrm{M}^{3}$ in chart 4. Therefore, a skull which has the longest basal length may not have the longest $\mathrm{C} /-\mathrm{M}^{3}$ measurements, or the skull with the longest $\mathrm{C} /-\mathrm{M}^{3}$ series may not have the longest $\mathrm{P}^{1}-\mathrm{M}^{3}$ series.

2. SEX VARIATION

Sex variation is not evident at this time in examples of the subfamily Merychyinae. The wider skulls in chart 3 may represent males and the narrower, females. In Ticholeptinae, however, differences are apparent, and specimens referred to the genus Ustatochoerus, ${ }^{2}$ which have the light and narrow skulls, are considered to represent females.

3. INDIVIDUAL VARIATION (Without Regard to Sex or Age Variation)

In the opinion of the writers, individual variation must be recognized as a factor of utmost importance when the revision of any group of fossil mammals is undertaken. Examples of individual variation are demon-

[^40]strated in charts 1 and 4, particularly in the latter. These charts also illustrate possible geographic and geologic variations, but the geologic differences are exhibited best in chart 2.

In chart 1 the basal lengths of the skulls and the inferior and superior dental series of the specimens listed under Merychyus and Merychyus (Metoreodon) are recorded in millimeters according to individual age. The weighted mean and the range also are cited. It is apparent that the age factor has no exclusive control over size.

4. GEOGRAPHIC VARIATION

Geographic (or horizontal) variation in this study may be best demonstrated in chart 2. As an example, two species (Merychyus arenarum and M. minimus) which are found in the same collecting localities and geologic levels form the basis for chart 2.

The weighted mean, the minimum, and the maximum of three measurements of examples of each species are cited, as well as the age of the particular individual used and the number of individuals considered in each case. These data show that M. minimus is known from the 13 localities mentioned, and M. arenarum from nine of these. It may be noted that the mean basal lengths in M. arenarum are longer in specimens from Goshen County, Wyoming, than they are in those from Platte County, Wyoming, and from South Dakota. Other measurements cited for the same localities, however, are within the expected individual variation.

In M. minimus the basal lengths, with the exception of the material from Sheridan County, Nebraska, seem to be well within
individual variation. The skull from Sheridan County shows a basal length larger than small examples of M. arenarum, but the mean of the measurements of the dental series representing all of the specimens from this area is close to other examples of M. minimus. Such evidence of variation may represent either geologic or geographic differences.

5. GEOLOGIC VARIATION

Geologic (or vertical) variation in the oreodonts is usually evidenced by specific or subspecific changes in the forms from successive geologic levels. Within a species of Merychyus, geologic variation (or size changes due to difference in geologic time) is important, but without exact geologic data it is impossible to distinguish this time element from the geographic and individual factors. If one considers only two specimens of a species from the same locality, the larger specimen being from a slightly higher geologic level, the total amount of the observed size difference is not necessarily due to the time factor alone but also may be accounted for by individual variation. If a series of specimens from each geologic level were available, it would be possible to distinguish between those differences due to time and those due only to individual variation. The actual size differences due to the time element alone are important because they represent steps in the phylogeny of the species and the genus as a whole. These same factors must be considered when studying specimens from deposits of two separate geographic areas of approximately the same geologic age. (See chart 2.)

CHART 1

Aspects of Variation and Range in Merychyus and Merychyus（Metoreodon） Comparisons of species，emphasizing apparent individual and age variation in basal lengths，superior and inferior dentitions

		Skull			Dentition					
		Basal length ${ }^{1}$			$\mathrm{P}^{1}-\mathrm{M}^{3}$			$\mathrm{P}_{1}-\mathrm{M}_{3}$		
	Wear	No．of Ex－ amples	Range	Mean ${ }^{2}$	No．of Ex－ amples	Range	Mean	No．of Ex－ amples	Range	Mean
M．（M．）relictus ＂Lower Snake Creek＂ 136 specimens	M M＋ w W＋ ${ }^{\mathbf{w}}+$ $\mathbf{w}_{+}^{+}+$ \mathbf{w}_{++}^{++}	2 - - - -	$\begin{array}{r} 149 \\ - \\ - \\ \overline{147} \\ \hline \end{array}$	148	$\begin{array}{r} 2 \\ \hline 2 \\ 1 \\ 1 \\ 3 \\ 1 \end{array}$	$\begin{aligned} & 74-75 \\ & 77-79 \\ & 75 \\ & 76 \\ & 74-75 \\ & 70 \end{aligned}$	75	$\begin{array}{r} 3 \\ \hline 2 \\ 1 \\ 9 \\ \hline 1 \end{array}$	$\begin{aligned} & 81-85 \\ & -80-84 \\ & 81 \\ & 78-91 \\ & \frac{87}{87} \end{aligned}$	83
M．（M．）r．taylori ＂Sheep Creek＂ 60 specimens	M M＋ W W＋ w_{+}^{+} $\mathbf{w}_{+}^{+}+$ w_{++}^{++}	\square	$\begin{gathered} - \\ \text { 二 } \\ \text { 二 } \\ 152 \end{gathered}$	152	1 — — 1	78 － — － —	75	$\begin{array}{r} - \\ \hline 2 \\ 3 \\ 1 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & \text { - } \\ & 74-79 \\ & 76-80 \\ & 80 \\ & 83 \\ & 73 \end{aligned}$	78
M．elegans Upper Marsland 155 specimens	M M＋ W W＋ \mathbf{w}_{+}^{+} \mathbf{w}_{+}^{+} \mathbf{w}_{++}^{+}	1 1 2 - - -	$\begin{aligned} & 151 \\ & 149 \\ & 162-171 \\ & \text { 二 } \\ & = \\ & = \end{aligned}$	158	$\begin{aligned} & 2 \\ & 1 \\ & 8 \\ & 6 \\ & 2 \\ & 2 \\ & \hline \end{aligned}$	$\begin{aligned} & 75-81 \\ & 81 \\ & 70-79 \\ & 76-81 \\ & 72-80 \\ & 76-77 \end{aligned}$	77	$\begin{array}{r} \text { — } \\ \hline 10 \\ 6 \\ 7 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \overline{-} \\ & 79-84 \\ & 81-86 \\ & 72-84 \\ & 79 \end{aligned}$	81
M．e．bluei Upper Marsland 4 specimens	M M＋ W W＋ \mathbf{w}_{+}^{+} \mathbf{w}_{+}^{+} \mathbf{w}_{++}^{++}	－ -1 -1 -	－ － 153 153	153	$\begin{array}{r} - \\ \hline 1 \\ 1 \\ \hline 2 \\ \hline \end{array}$	$\begin{aligned} & \overline{-} \\ & 71 \\ & 68 \\ & \overline{69-71} \end{aligned}$	70	$\begin{aligned} & \text { - } \\ & \text { 1 } \\ & - \\ & -1 \end{aligned}$	$\begin{aligned} & \overline{\overline{79}} \\ & \overline{\overline{74}} \end{aligned}$	77
M．minimus Lower Marsland 398 specimens	M M＋ W W＋ \mathbf{w}_{+}^{+} $\mathbf{w}_{+}^{+}+$ \mathbf{w}_{++}^{++}	$\begin{array}{r} 5 \\ 1 \\ 5 \\ 11 \\ 5 \\ 4 \\ 1 \end{array}$	$\begin{aligned} & 123-141 \\ & 141 \\ & 131-142 \\ & 123-152 \\ & 130-142 \\ & 125-135 \\ & 133 \end{aligned}$	135	$\begin{array}{r} 14 \\ 6 \\ 29 \\ 37 \\ 21 \\ 8 \\ 6 \end{array}$	$\begin{aligned} & 65-75 \\ & 63-73 \\ & 63-77 \\ & 62-82 \\ & 59-73 \\ & 62-72 \\ & 63-70 \end{aligned}$	67	$\begin{array}{r} 13 \\ 2 \\ 23 \\ 27 \\ 28 \\ 8 \\ 4 \end{array}$	$\begin{aligned} & 65-78 \\ & 70-77 \\ & 65-80 \\ & 64-80 \\ & 66-79 \\ & 66-74 \\ & 69-75 \end{aligned}$	73

[^41]CHART 1－Continued

	Wear	$\frac{\text { Skull }}{\text { Basal length }}$			Dentition					
					$\mathrm{P}^{1}-\mathrm{M}^{3}$			$\mathrm{P}_{1}-\mathrm{M}_{3}$		
		No．of Ex－ amples	Range－	Mean	No．of Ex－ amples	Range	Mean		Range	Mean
M．arenarum Lower Marsland 204 specimens	M ${ }^{\mathrm{M}+}$ w w＋ $\stackrel{w_{f}^{+}}{w_{+}}$ $\mathrm{w}_{+}^{+}+$	$\begin{array}{r} 3 \\ 2 \\ 12 \\ 10 \\ 7 \\ 4 \\ 1 \end{array}$	$\begin{aligned} & 156-177 \\ & 145-164 \\ & 145-167 \\ & 151-178 \\ & 150-171 \\ & 145-157 \\ & 159 \end{aligned}$	156	$\begin{array}{r} 9 \\ 4 \\ 20 \\ 15 \\ 15 \\ 11 \\ 1 \end{array}$	$\begin{aligned} & 73-85 \\ & 751-85 \\ & 71-87 \\ & 70-88 \\ & 70-84 \\ & 73-87 \\ & 78 \end{aligned}$	78	$\begin{array}{r} 7 \\ 4 \\ 45 \\ 15 \\ 10 \\ 14 \\ 3 \end{array}$	$\begin{aligned} & 70-90 \\ & 79-91 \\ & 76-91 \\ & 72-93 \\ & 75-87 \\ & 76-90 \\ & 77-79 \end{aligned}$	82
M．a．idahoensis Approximate Lower Mars－ land equiva－ lent 6 specimens	м M＋ w w＋ $\underset{\mathrm{w}_{+}^{+}}{\mathrm{w}_{+}^{+}}$ $\mathrm{w}_{++}^{+}+$	－ 1 -	$\begin{array}{r}\text { 165 } \\ \text {－} \\ \text {－} \\ \hline 177\end{array}$	171	－ 二 － 1	$\begin{aligned} & \overline{77}-81 \\ & \overline{-} \\ & \overline{85} \end{aligned}$	81	二 二 二 －	－ 二 二 二	85
M．siouxensis Harrison 57 specimens	$\begin{aligned} & \mathrm{M} \\ & \mathrm{M}+ \\ & \mathrm{w} \\ & \mathrm{w}_{+} \\ & \mathrm{w}_{+}^{+} \\ & \mathrm{w}_{+}^{+} \\ & \mathbf{w}_{+}^{+} \end{aligned}$	$\begin{array}{r} -1 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{array}{r} - \\ 147 \\ 154 \\ 163 \\ 164 \\ \hline \end{array}$	157	$\begin{array}{r} - \\ 3 \\ 10 \\ 3 \\ 3 \\ 1 \\ 1 \end{array}$	$\begin{aligned} & \overline{77}-80 \\ & 77-82 \\ & 74-82 \\ & 75-82 \\ & 77 \\ & 78 \end{aligned}$	78	$\begin{array}{r} - \\ \hline 3 \\ 2 \\ 1 \\ 6 \\ \hline 1 \end{array}$	$\begin{aligned} & \overline{84-87} \\ & 85-86 \\ & 79-9 \\ & 77-91 \\ & \frac{82}{} \end{aligned}$	84
M．crabilli Harrison 55 specimens	M ${ }^{\text {M }}+$ w w＋ w_{+}^{+} $\stackrel{+}{\mathrm{w}_{+}^{+}}+$	$\begin{array}{r} -1 \\ 3 \\ 1 \\ 1 \\ 1 \\ \hline \end{array}$	$\begin{aligned} & \overline{125} \\ & 123-130 \\ & 133 \\ & 129 \\ & 132 \end{aligned}$	128		$\begin{aligned} & 64-66 \\ & 64 \\ & 59-67 \\ & 63-70 \\ & 62 \\ & 62 \end{aligned}$	64	－ － - -	$\begin{aligned} & \overline{65-70} \\ & \overline{-} \\ & \overline{71} \end{aligned}$	69

CHART 2
Aspects of Variation in Merychyus
Comparison of two species from the same general geologic level, intended to
Comparison of two species from the same general geologic level, intended to show possible geographic variation,

States			Wyoming									Nebraska			So. Dak.
Counties			Niobrara	Goshen					Platte			Sioux	Dawes	Sheridan	Various
Areas			Royal Valley	$12 \mathrm{mi} .$ Distr.	16 mi . Distr.	$18 \mathrm{mi} .$ Distr.	Jay Em Distr.	25 mi . Distr.	Guernsey	Wheatland	Chugwater	Harrison	Marsland	$\begin{aligned} & \text { Hay } \\ & \text { Springs } \end{aligned}$	Various
Merychyus arenarum Cope From the lower part of the Marsland formation or equivalent	Basal Length	Mean	-	${ }_{171}{ }^{[1]}$	$\begin{aligned} & {[12]} \\ & 158.1 \end{aligned}$	$\begin{aligned} & {[11]} \\ & 161.5 \end{aligned}$	$\begin{gathered} {[3]} \\ 160 \end{gathered}$	$\begin{gathered} {[2]} \\ 164 \end{gathered}$	$\stackrel{[2]}{[148.5}^{2}$	$\begin{gathered} {[5]} \\ 154.2 \end{gathered}$	-	-	-	-	$\begin{gathered} {[1]} \\ 151 \end{gathered}$
		Min.	-	$\stackrel{171}{\mathrm{w}} \ddagger$	${ }_{\text {1 }}^{145}{ }^{\text {+ }}+$	145 w	151 \mathbf{w}	151.5 $\mathrm{~W}+$	147 w	148 w	-	-	-	-	$\underset{\mathrm{w}+}{151}$
		Max.	-		$\begin{gathered} 169.5 \\ w \ddagger \end{gathered}$	$\underset{w+}{178}$	$\underset{\mathrm{w}+}{173}$	$\begin{array}{r} 177 \\ M \end{array}$	$\stackrel{150}{\mathrm{w} \ddagger}$	$\underset{\mathrm{w} \ddagger \ddagger}{158.5}$	-	-	-	-	
	$\mathrm{P}^{1} \mathrm{M}^{3}$	Mean	-	$\begin{aligned} & {[4]} \\ & 78 \end{aligned}$	$\begin{gathered} {[7]} \\ 77 \end{gathered}$	$\begin{gathered} {[17]} \\ 79 \end{gathered}$	$\begin{aligned} & { }_{80.6}^{[12]} \end{aligned}$	$\begin{aligned} & {[3]} \\ & 81.5 \end{aligned}$	$\begin{aligned} & {[4]} \\ & 75.8 \end{aligned}$	$\begin{gathered} {[10]} \\ 78 \end{gathered}$	-	$\begin{aligned} & {[4]} \\ & 74.7 \end{aligned}$	-	-	$\begin{aligned} & {[3]} \\ & 78.8 \end{aligned}$
		Min.	-	$\begin{gathered} 74 \\ \mathbf{w}^{++} \end{gathered}$	$\begin{aligned} & 70 \\ & \mathrm{w}+ \end{aligned}$	70 w	$\begin{gathered} 72.5 \\ \mathrm{M} \end{gathered}$	$\begin{aligned} & 75 \\ & \mathrm{w}+ \end{aligned}$	71 w	74.5 $\mathrm{w} ;{ }^{+}+$ 83	-	${ }_{7}^{73}$	-	-	$\begin{aligned} & 74.5 \\ & \mathrm{w}+ \end{aligned}$
		Max.	-	$\underset{\mathrm{w}}{82.5}$	$\begin{array}{r} 84 \\ \mathbf{w} \end{array}$	$\begin{aligned} & 87.5 \\ & w_{+} \end{aligned}$	$\begin{aligned} & 86.5 \\ & w_{\ddagger}^{+} \end{aligned}$	$\underset{M}{85}$	$\begin{aligned} & 78 \\ & \mathrm{w} \ddagger \ddagger \end{aligned}$	${ }_{-M}^{83.5}$	-	$\underset{w_{\ddagger} \ddagger}{75.5}$	-	-	$\begin{aligned} & 85 \\ & M+ \end{aligned}$
	$\mathrm{P}_{1}-\mathrm{M}_{2}$	Mean	-	${ }_{85.1}^{[4]}$	$\begin{aligned} & {[18]} \\ & 81.6 \end{aligned}$	$\begin{gathered} {[13]} \\ 84.7 \end{gathered}$	$\begin{gathered} {[11]} \\ 82.9 \end{gathered}$	-	$\begin{gathered} {[2]} \\ 77 \end{gathered}$	$\begin{aligned} & {[12]} \\ & 82.5 \end{aligned}$	-	-	-	-	$\begin{aligned} & {[5]} \\ & 83.1 \end{aligned}$
		Min.	-	$\begin{aligned} & 82.5 \\ & \mathrm{w} \ddagger \end{aligned}$	$\begin{aligned} & 72 \\ & \mathrm{w}_{+} \end{aligned}$	76 w	76 w	-	$\begin{aligned} & 76.5 \\ & w+\ddagger \end{aligned}$	$\begin{aligned} & 77 \\ & w \ddagger^{+} \end{aligned}$	-	-	-	-	77 w
		Max.	-	91 \mathbf{w}	$\mathrm{m}_{\mathrm{m}}^{\mathrm{w}+}$	$\mathrm{9}_{\mathrm{w}} \mathrm{m}$	$\stackrel{89.5}{w_{+}^{+}}$	-	${ }_{\text {w }}{ }_{\text {7 }}$		-	-	-	-	$\begin{aligned} & 90.5 \\ & M+ \end{aligned}$

CHART 2-Continued

States			Wyoming									Nebraska			So. Dak.
Counties			Niobrara	Goshen					Platte			Sioux	Dawes	Sheridan	Various
Areas			$\begin{aligned} & \text { Royal } \\ & \text { Valley } \end{aligned}$	12 mi. Distr.	16 mi . Distr.	18 mi . Distr.	Jay Em Distr.	$\begin{gathered} 25 \mathrm{mi} . \\ \text { Distr. } \end{gathered}$	Guernsey	Wheat land	Chugwater	Harrison	Marsland	$\begin{gathered} \text { Hay } \\ \text { Springs } \end{gathered}$	Various
Merychyus minimus Peterson From the lower part of the Marsland formation or equivalent	Basal Length	Mean	$\begin{gathered} {[2]} \\ 140.2 \end{gathered}$	$\begin{gathered} {[3]} \\ 133 \end{gathered}$	$\begin{gathered} {[9]} \\ 135 \end{gathered}$	-	$\begin{gathered} {[8]} \\ 128.4 \end{gathered}$	-	$\begin{gathered} { }_{136.5}^{[2]} \end{gathered}$	-	-	-	$\begin{array}{r} {[1]} \\ 142 \end{array}$	$\begin{gathered} {[1]} \\ 152 \end{gathered}$	$\begin{gathered} {[2]} \\ 137 \end{gathered}$
		Min.	$\begin{gathered} 139 \\ \mathrm{w}+ \end{gathered}$	$\begin{gathered} 129 \\ \mathrm{w}+ \end{gathered}$	$\begin{gathered} 130 \\ w \neq \end{gathered}$	-	$\underset{M}{122.5}$	-	$\begin{array}{r} 131 \\ \mathbf{w} \end{array}$	-	-	-	$\begin{gathered} 142 \\ \mathbf{w}_{+}^{++} \end{gathered}$	$\underset{\mathrm{w}+}{152}$	$\begin{gathered} 136.5 \\ \mathrm{w}_{+}^{++} \end{gathered}$
		Max.	$\underset{w}{141.5}$	$\begin{array}{r} 141 \\ M \end{array}$	$\begin{gathered} 141 \\ \mathrm{w}+ \end{gathered}$	-	$\underset{\mathbf{w}_{+}^{+}}{134}$	-	$\begin{gathered} 141.5 \\ \mathrm{w}+ \end{gathered}$	-	-	-			$\underset{w+}{138}$
	$\mathrm{P}^{1}-\mathrm{M}^{3}$	Mean	$\begin{aligned} & {[26]} \\ & 71.7 \end{aligned}$	$\begin{aligned} & {[6]} \\ & 68.6 \end{aligned}$	$\begin{gathered} {[19]} \\ 67.8 \end{gathered}$	$\begin{aligned} & {[9]} \\ & 65.9 \end{aligned}$	$\begin{aligned} & {[23]} \\ & 65.3 \end{aligned}$	$\begin{aligned} & {[3]} \\ & 70.7 \end{aligned}$	$\begin{gathered} {[11]} \\ 67.2 \end{gathered}$	$\begin{aligned} & {[1]} \\ & 72 \end{aligned}$	$\begin{aligned} & {[2]} \\ & 69 \end{aligned}$	$\begin{aligned} & {[3]} \\ & 66.5 \end{aligned}$	$\begin{aligned} & {[1]} \\ & 72 \end{aligned}$	$\begin{aligned} & {[12]} \\ & 70.8 \end{aligned}$	$\begin{aligned} & {[4]} \\ & 66.5 \end{aligned}$
		Min.	$\left\|\begin{array}{c} 65 \\ w_{\ddagger}^{+} ; w_{+}+ \end{array}\right\|$	65.5	$\begin{aligned} & 63 \\ & \mathrm{M}+ \end{aligned}$	$\begin{aligned} & 58.5 \\ & \mathrm{w} \ddagger \end{aligned}$	$\begin{aligned} & 58.5 \\ & w \ddagger \end{aligned}$	$\begin{aligned} & 69 \\ & \mathrm{M}+ \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{w}_{+} \end{aligned}$	$\stackrel{72}{\mathrm{w}_{+}^{++}}$	$\begin{gathered} 65 \\ \mathbf{w} \end{gathered}$	$\begin{aligned} & 64.5 \\ & w_{+}^{+} \end{aligned}$	$\begin{aligned} & 72 \\ & \mathbf{w}_{\ddagger}^{+} \end{aligned}$	$\underset{\mathrm{w}_{+}^{+}}{62}$	$\begin{aligned} & 64.5 \\ & w_{+} \end{aligned}$
		Max.	$\begin{aligned} & 73 \\ & \mathrm{w}+ \end{aligned}$	$\begin{gathered} 70.5 \\ M \end{gathered}$	$\begin{gathered} 74.5 \\ M \end{gathered}$	72 w	$\begin{aligned} & 69.5 \\ & w \ddagger \end{aligned}$	$\begin{gathered} 71.5 \\ \mathrm{w} ; \mathrm{w} \ddagger \end{gathered}$	$\begin{aligned} & 72 \\ & \mathbf{w}_{+} \end{aligned}$		$\begin{aligned} & 73 \\ & \mathrm{M}+ \end{aligned}$	70 w		$\begin{aligned} & 82 \\ & \mathrm{w}+ \end{aligned}$	$\begin{aligned} & 70 \\ & \mathrm{w}_{+} \end{aligned}$
	$\mathrm{P}_{1}-\mathrm{M}_{3}$	Mean	$\begin{aligned} & {[20]} \\ & 70.2 \end{aligned}$	${ }_{74.5}^{[6]}$	$\begin{aligned} & {[13]} \\ & 71.3 \end{aligned}$	$\begin{aligned} & {[10]} \\ & 69.6 \end{aligned}$	$\begin{aligned} & {[17]} \\ & 70.5 \end{aligned}$	$\begin{aligned} & {[3]} \\ & 71.3 \end{aligned}$	$\begin{aligned} & {[9]} \\ & 71.5 \end{aligned}$	$\begin{aligned} & {[2]} \\ & 73.7 \end{aligned}$	$\begin{aligned} & {[2]} \\ & 74.8 \end{aligned}$	$\begin{gathered} {[2]} \\ 71 \end{gathered}$	-	${ }_{71.9}^{[7]}$	$\begin{aligned} & {[5]} \\ & 69.7 \end{aligned}$
		Min.	$\begin{gathered} 66 \\ \mathbf{w}^{+} \end{gathered}$	$\begin{aligned} & 70.5 \\ & \mathrm{w} \ddagger \end{aligned}$	$\begin{aligned} & 63 \\ & \mathrm{M}+ \end{aligned}$	$\begin{aligned} & 63.5 \\ & \mathrm{w}_{+} \end{aligned}$	$\begin{aligned} & 66 \\ & \mathrm{w} \ddagger \end{aligned}$	$\begin{gathered} 71 \\ \mathrm{w}+\mathrm{w} ; \mathrm{w} \end{gathered}$	$\begin{gathered} 66.5 \\ w \end{gathered}$	$\begin{aligned} & 73 \\ & \mathrm{w}_{\ddagger}^{\ddagger} \end{aligned}$	$\begin{aligned} & 71 \\ & \mathbf{w +} \end{aligned}$	$\begin{gathered} 69 \\ w++ \end{gathered}$	-	$\begin{aligned} & 66.5 \\ & w_{\ddagger} \ddagger \end{aligned}$	$\begin{array}{r} 67.5 \\ w ; w \ddagger \end{array}$
		Max.	$\begin{gathered} 75 \\ \mathrm{w} \end{gathered}$	$\begin{aligned} & 79.5 \\ & \mathrm{w}+ \end{aligned}$	$\underset{M}{74.5}$	$\begin{gathered} 74 \\ \mathrm{w} \end{gathered}$	$\begin{aligned} & 73 \\ & \mathrm{w} \ddagger \end{aligned}$	72 $\mathrm{w}+$	$\begin{aligned} & 74.5 \\ & \mathrm{w} \ddagger \ddagger \end{aligned}$	74.5 w_{+}		73 w_{+}	-	75 w+	75 m

${ }^{1}$ The figures in the square brackets are the number of individuals. The mean is a weighted mean. The stage of wear follows the measurements cited. All measurements in millimeters.
CHART 3
Comparison of measurements of associated mature individuals of a single species as a measurement of the effects of age variation

F:A.M.	Identify-ingSymbolsofSpeci-mens 1	M^{3}	Skull				Superior Dentition																	
		External Height	Basal Length	Width	Bulla Length	Malar Depth below Orbit	$\begin{aligned} & \mathrm{C} / 2 \\ & \mathrm{M}^{3} \end{aligned}$	$\mathrm{P}^{1}-\mathrm{M}^{3}$	$\mathrm{P}^{1} \mathrm{P}^{4}$	$\begin{aligned} & \mathrm{M}^{2} \\ & \mathrm{M}^{3} \end{aligned}$	P^{1}		P^{2}		P^{3}		P^{4}		M^{1}		M^{2}		M ${ }^{3}$	
											L.	W.												
45384G	W^{1}	$13.0+$	-	-	-	-	72.3	66.0	30.0	38.0	6.04	87	7.37	7.0	. 48	. 0	. 6	9.4	11.0	10.8	13.2	13.0	15.2	12.7
45384S	W ${ }^{2}$	13.0	-	-	-	15.0	69.6	64.0	29.0	37.8	5.14	4.5	6.5	6.3	.	8.8	. 3	9.8	11.2	12.3	13.7	13.1	16.3	13.2
45384A	W^{3}	12.6	125.0	85.5	21.6	13.5	71.0	65.5	29.0	38.5	5.04	4.5	7.06	6.0	8.7	76	6.7	9.6	11.0	11.0	14.1	13.0	15.0	13.2
45384C	W4	11.6	132.5	85.5	24.0	11.9	70.0	63.1	28.2	36.4	4.5	4.5	6.76	6.5	. 5	7.5	6.5	9.3	9.0	10.8	11.3	11.2	17.5	13.6
45384E	W^{5}	(11.5)	126.5	92.7	21.5	11.5	71.0	65.0	30.0	37.0	5.0	4.2	9.2	8.0	. 5	8.2	. 6	10.0	11.0	11.5	13.7	12.	18.0	12.3
45384F	W6	10.5	(123.0)	79.5	(22.5)	11.0	65.2	59.2	27.1	33.6	4.3	3.4	6.0	5.5	. 7	6.8	7.0	9.0	9.4	10.8	13.0	12.5	14.	11.7
45384I	W^{7}	9.6	-	-	-	-	-	-	-	35.5	-	-	7.6	6.	. 6	-	6.2	9.7	10.0	10.2	-	-	16.5	12.6
45384D	W ${ }^{8}$	$8.3+$	129.5	84.5	(24.0)	13.0	69.8	63.0	(25.8)	35.5	-	-	7.	7.0	7.	7.8	7.6	9.5	9.0	11.5	11.	12	15	13.4
45384H	W9	8.3	-	-	-	-	-	65.0	29.0	36.2	5.0	4.5	7.	6.0	. 0	7.3	7.4	10.0	10.5	11.7	14.2	12.	16.0	12.4
45384B	W^{10}	7.5	131.7	88.6	24.0	14.3	68.7	(62.5)	(27.5)	35.0	-	-	7.0	6.3	7.5	7.4	7.5	8.3		11.0	9.5	12.2	16.8	13.7

${ }^{1}$ The identifying symbols $W^{-} W^{10}$ refer to the $F: A . M$. specimens which are listed in sequence from youngest to oldest based on the wear (height) of M^{3}; for $\underset{2}{\text { example, } W^{4} \text { is fourth from youngest. }}$ ($)=$ approximate.

CHART 4

Aspects of Variation in Merychyus crabilli

Rearrangement of the data on chart 3 using the same wear symbols (W^{1} to W^{10}) which designate the age sequence based on the external height (longest to shortest) of M^{3}. (Example: specimen W^{4} ranked fourth from the longest in height of M^{3} and first (longest) in the basal length of the skull.) This chart emphasizes that individual variation is more significant than age variation

Rank Based on Cited Measurements (Longest to Shortest)	Skull		Dentition			
	Basal Length	Width	Length $\mathrm{C} /-\mathrm{M}^{3}$	$\begin{aligned} & \text { Length } \\ & \mathrm{P}^{1}-\mathrm{M}^{3} \end{aligned}$	$\underset{\mathrm{P}^{1}-\mathrm{P}^{4}}{\substack{\text { Length }}}$	$\begin{aligned} & \text { Length } \\ & \mathrm{M}^{1}-\mathrm{M}^{3} \end{aligned}$
First	W ${ }^{4}$	W5	W^{1}	W^{1}	$\mathrm{W}^{1}, \mathrm{~W}^{5}$	W^{3}
Second	W^{10}	W^{10}	$\mathrm{W}^{3}, \mathrm{~W}^{5}$	W^{3}	$\mathrm{W}^{2}, \mathrm{~W}^{3}, \mathrm{~W}^{9}$	W^{1}
Third	W ${ }^{8}$	$\mathrm{W}^{3}, \mathrm{~W}^{4}$	W^{4}	W^{5}, W^{9}	W ${ }^{4}$	W^{2}
Fourth	W ${ }^{5}$	W ${ }^{8}$	W ${ }^{8}$	W^{2}	w^{10}	W ${ }^{\text {b }}$
Fifth	W ${ }^{\text {s }}$	W^{6}	W^{2}	W ${ }^{4}$	W^{6}	W ${ }^{4}$
Sixth	W ${ }^{6}$		W^{10}	W^{8}	W ${ }^{8}$	W9
Seventh			W ${ }^{6}$	W^{10}		W^{7}, $\mathrm{W}^{\text {¢ }}$
Eighth				W^{6}		W^{10}
Ninth						W^{6}

M. arenarum

F: A.M. 33369
 Wyoming $\times \frac{1}{3}$.

Fig. 3. Merychyus arenarum Cope, referred, A.M. 8149 , skull and ramus (skull, combination of both sides; P_{4} and last lobe of M_{8} from opmen, ramus, equal to lower Marsland, Lemhi County, Idaho. $\times \frac{1}{2}$.

U.N.S.M. 7-10-9-38

Fig. 4. Merychyus elegans Leidy, referred, U.N.S.M. 2-10-8-36, skull and ramus (skull, combination of both sides) and U.N.S.M. skull and ramus, upper Marsland, Box Butte County, Nebraska. $\times \frac{1}{2}$.
M. minimus

FIG 5. Merychyus minimus Peterson, holotype, C.M. 1466, skull and ramus (skull, combination of both sides; inferior incisors from opposite side), lower Marsland, Sioux County, Nebraska; referred, F:A.M. 33364, skull and ramus, lower Marsland, Goshen County, Wyoming. $\times \frac{1}{2}$.

Fig. 6. Merychyus minimus Peterson, referred, A.M. 12980, skull and ramus (P_{2} from opposite side), lower Marsland, Fig. 6. Merychyus minimus Peterson, County, Nebraska. $\times \frac{1}{2}$.

Fig. 7. Merychyus siouxensis Loomis, holotype, A.M. 13774, skull, and referred, C.M. 1288, ramus, Harrison, Sioux County, Nebraska; Merychyus, species undetermined, Aug.C. V120, partial skull and ramus (C/from opposite side, M^{3} and last lobe of M_{z} restored), Lincoln County, Wyoming. X $\frac{1}{2}$. APF, Anterior palatine foramen; B, auditory bulla; IF , palarine foramen; PS, posterior border of symphysis; SOF, supraorbital foramen; 5, lacerated foramina; 6 , glenoid foramina; 7 , condylar foramen.

F:A.M.

Fig. 8. Merychyus (Metoreodon) relictus Matthew and Cook, referred, F:A.M. 43078, skull (vacuity and posterior ridge of palate from op-菏 holotype, F:A.M. 34319, skull (combination of both sides), and referred, F:A.M. 33524, superior dentition, and F:A.M. 34320, ramus, "Sheep Creek," Sioux County, Nebraska. $\times \frac{1}{2}$.
Paramerychyus harrisonensis

Fig. 9. Paramerychyus harrisonensis (Peterson), referred, F:A.M. 33314, skull, and F:A.M. 33387, immature skull (combination of both sides), Harrison, Niobrara County, Wyoming. $X_{\frac{1}{2}}$.

Fig. 10. Paramerychyus relictus (Loomis), holotype, A.M. 13813, skull (P^{2} from opposite side), and referred, A.M. 13814, upper dentition, Harrison, Washington County, South Dakota; Merychyus (Metoreodon) relictus Matthew and Cook, holotype, A.M. 14056, ramus,
 County, South Dakota. $\times \frac{1}{2}$.

$\therefore-$

A. M. 13814 rev. oseagorn ung

cecsuny

Fig. 11. Oreodontoides oregonensis Thorpe, holotype, Y.P.M. 12329, skull, and referred, Y.P.M. 12638 and A.M. 7519, rami, ?middle John Day, Oregon; Merychyus (Metoreodon) relictus fletcheri, new subspecies, holotype, F:A.M. 34491, partial skull, San Bernardino County, California; Oreodontoides (Paroreodon) marshi (Thorpe), holotype, Y.P.M. 12415, skull (combination of both sides, in outline), middle John Day, Oregon. $\times \frac{1}{2}$.

茳 A.M. 7578, ramus, John Day, Oregon. $\times \frac{1}{2}$.

M. elegans

M. siouxensis

F:A.M. 45384A

F:A. M. 33369
M. arenarum
M. (Metoreodon) relictus

F:A.M. 43078

 15 Merychyus (Metoreodon) Matthew and Cook, and Oreodontoides (Paroreodon) (Thorpe), comparison of skeletal elements. A, M. arenarum Cope; B, M. arenarum idahoensis, new subspecies; C, M. crabilli, new species; D, M. elegans Leidy, E, M. eloides oregonensis Thorpe; cies; F, M. minimus Peterson; G, M. siouxensis Loon

$08621 W_{\infty} \theta_{s}$

Fig. 17. Merychyus Leidy and Merychyus (Metoreodon) Matthew and Cook, comparison of skeletal elements. (See caption to fig. 15.) $\times \frac{1}{2}$.
(R)

[^0]: ${ }^{1}$ The name Merychyinae was proposed by Simpson, 1945, Bull. Amer. Mus. Nat. Hist., vol. 85, pp. 149, 264. The writers, however, have used the name Merychyinae independently in manuscript since 1940.
 ${ }^{2}$ In this paper the term "subspecies" is used in its true sense to indicate osteological differences, as distinguished from "variety," which may indicate variation due to geologic or geographic occurrence.

[^1]: ${ }^{1}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 215 (subfamily 1, Merycochoerinae); 1941, ibid., vol. 79, art. 1, p. 1 (subfamily 2, Ticholeptinae).

[^2]: ${ }^{1}$ Scott, W. B., 1890, Morph. Jahrb., vol. 16, pp. 340, 347, considered Ticholeptus a synonym of Merychyus.
 ${ }^{2}$ The bullae are rarely preserved. Perhaps a series of complete bullae would prove to be of diagnostic value.

[^3]: ${ }^{2}$ Hayden, F. V., 1863, Trans. Amer. Phil. Soc., new ser., vol. 12, p. 13.
 ${ }^{4}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 277.

[^4]: ${ }^{1}$ Leidy, Joseph, 1873, Rept. U. S. Geol. Surv. Terr., vol. 1, pt. 1, pp. 201-202.
 ${ }^{2}$ Bettany, G. T., 1876, Quart. Jour. Geol. Soc. London, vol. 32, p. 262.
 ${ }^{3}$ Scott, W. B., 1890, Bull. Mus. Comp. Zool., vol. 20, no. 3, pt. 2, pp. 72-76.

[^5]: ${ }^{1}$ Matthew, W. D., 1901, Mem. Amer. Mus. Nat. Hist., vol. 1, pt. 7, p. 418.
 ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, ibid., vol. 79, art. 1, pp. 16, 23.
 ${ }^{2}$ Abbreviations used in descriptions: alv., alveolus or alveoli; br., broken; erupt., erupting; rt., root or roots.
 ${ }^{4}$ Stage of wear of teeth: (I), immature; ($(\mathbb{M}$, mature; (\mathbf{w}), worn.

[^6]: ${ }^{1}$ In many instances notations referring to individual variation or significant geologic data follow the listing of a specimen.
 ${ }^{2}$ A specimen includes all known associated material which definitely represents one individual. A single catalogue number is assigned to each specimen.

[^7]: ${ }^{8}$ Specimen A.M. 8143 was not located by the writers.
 ${ }^{4}$ Matthew, W. D., 1899, Bull. Amer. Mus. Nat. Hist., vol. 12, art. 3, p. 72.

[^8]: ${ }^{1}$ Until recently the right ramus was incorrectly restored in that no allowance was made for $\mathrm{P}_{\mathbf{2}}$. (See Thorpe, 1937, pl. 32, fig. 3.) The remaining portion of the left ramus, which has been missing for many years, has been located in the American Museum collection.
 ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 11, fig. 6.

[^9]: ${ }^{1}$ Jahns, Richard H., 1940, ibid.

[^10]: ${ }^{2}$ Loomis, Frederic B., 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 33, fig. 22.
 ${ }^{8}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 225, fig. 164, pl. 32, figs. 9-10.
 ${ }^{4}$ Jahns, Richard H., 1940, Carnegie Inst. Washington Publ., no. 514, paper 9, p. 175.

[^11]: ${ }^{1}$ Jahns gives the holotype number as C.I.T. 1383, but on pl. 2, figs. 1 and 1a, the number is given as 1382 . The latter number, however, is used for a second skull in the text and also on pl. 2.
 ${ }^{2}$ The specimens listed here were considered cotypes and paratypes by Jahns.
 ${ }^{2}$ Named in honor of Frank Crabill, who worked with the South Field Party of the University of Nebraska State Museum from 1929 to 1935.

[^12]: ${ }^{1}$ Matthew, W. D., 1901, Mem. Amer. Mus. Nat. Hist., vol. 1, pt. 7, p. 419.
 ${ }^{2}$ Loomis, F. B., 1924, loc. cit.
 ${ }^{8}$ Thorpe, M. R., 1937, op. cit., p. 227, fig. 164, pl. 34. fig. 4.

[^13]: ${ }^{1}$ Matthew, W. D., 1901, Mem. Amer. Mus. Nat. Hist., vol. 1, pt. 7, p. 357, fig. 17.

[^14]: ${ }^{1}$ The writers do not clearly understand which species was used originally by Peterson as a basis for this subspecies. The type description of the subspecies directly follows Peterson's discussion of "M." medius Leidy, which is now recognized as a species of Ustatochoerus (Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 23). In 1923, however, Peterson did consider minimus as a subspecies of M. elegans.

[^15]: ${ }^{1}$ Loomis, Frederic B., 1924, op. cit., p. 33.
 ${ }^{2}$ Thorpe, Malcolm R., 1937, op. cit., p. 225.
 ${ }^{8}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., vol. 3, pt. 4, table 12, p. 290.
 ${ }^{4}$ Peterson, O. A., 1923, Ann. Carnegie Mus., vol. 15, no. 1, pls. 7-8.
 ${ }^{5}$ Peterson, O. A., 1923, ibid., vol. 15, no. 1, p. 96.

[^16]: ${ }^{1}$ Loomis, Frederic B., 1924, ibid., p. 33.
 ${ }^{2}$ Thorpe, Malcolm R., 1937, ibid., p. 234.

[^17]: ${ }^{3}$ Peterson, O. A., 1928, loc. cit.
 ${ }^{4}$ Thorpe, Malcolm R., 1937, loc. cit.
 ${ }^{5}$ Schultz, C. Bertrand, 1938, Amer. Jour. Sci., vol. 35, pp. 441-444; 1941, Bull. Univ. Nebraska State Mus., vol. 2, no. 8, pp. 69-82, figs. 28, 29, 32.

[^18]: ${ }^{1}$ () Approximate; (()) estimated. All measurements in millimeters.
 ${ }^{2}$ Holotype of M. arenarum leptorhynchus Cope.

[^19]: ${ }^{1}$ Holotype of M. delicatus Loomis.
 ${ }^{2}$ U.S.N.M. 438 or 121 and A.N.S.P. 11289 and 11290.
 ${ }^{3}$ Holotype of M. paniensis Loomis.
 ${ }^{4}$ U.S.N.M. 119 or 120.

[^20]: ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, pp. 247-254.

[^21]: ${ }^{1}$ For discussion of the subgenotypic species relictus, see Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 10.

[^22]: ${ }^{2}$ Matthew, W. D., and Cook, H. J., 1909, loc. cit.
 ${ }^{3}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, loc. cit.

[^23]: ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, ibid., vol. 77, art. 5, p. 216.
 ${ }^{8}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, ibid., vol. 79, art. 1, p. 6.

[^24]: ${ }^{4}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 218; 1941, ibid., vol. 79, art. 1, pp. 10, 72, 92.

[^25]: ${ }^{1}$ Merychyus, species undetermined, Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 81.
 ${ }^{2}$ Matthew, W. D., and H. J. Cook, 1909, Bull. Amer. Mus. Nat. Hist., vol. 26, art. 27, p. 393.
 ${ }^{3}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 81.
 ${ }^{4}$ Thorpe, Malcolm R., 1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 212.
 ${ }^{5}$ Loomis, Frederic B., 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 35, fig. 25. Thorpe, Malcolm R.,1937, Mem. Peabody Mus., vol. 3, pt. 4, p. 191. Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 76.

[^26]: ${ }^{1}$ Named in honor of Beryl Taylor, member of the staff of the Frick Laboratory, who has helped the authors in compiling field data from the various locations.
 ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, pp. 232, 242.

[^27]: ${ }^{1}$ Named in honor of Gordon Fletcher, who assisted in making the Frick Collections from the Mohave Desert of California.

[^28]: ${ }^{1}$ Frick, Childs, 1926, Bull. Amer. Mus. Nat. Hist., vol. 56, art. 1, p. 34; Schultz, C. Bertrand, and Charles H.
 Falkenbach, 1940, Bull. Amer. Mus. Nat. Hist., vol. 77, art. 5, p. 224; 1941, ibid., vol. 79, art. 1, p. 32.
 ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, ibid., vol. 77, art. 5, pp. 218-276.
 ${ }^{3}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, ibid., vol. 79, art. 1, pp. 72-91.
 ${ }^{4}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1940, ibid., vol. 77, art. 5, p. 254.

[^29]: ${ }^{1}$ () Approximate; (()) estimated. All measurements in millimeters.

[^30]: ${ }^{1}$ Loomis, Frederic B., 1923, Amer. Jour. Sci., vol. 6, fig. 5.
 ${ }_{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 72.
 ${ }^{8}$ Schlaikjer, Erich M., 1935, Bull. Mus. Comp. Zool., vol. 76, no. 4, p. 169.

[^31]: ${ }^{4}$ Thorpe, Malcolm R., 1921, Amer. Jour. Sci., ser. 5, vol. 2, p. 107, described Oreodontoides oregonensis, "subgen. et sp. nov." Although it was stated that Oreodontoides was a new subgenus, it appeared in the rank of a full genus. From the fact that the type description followed a consideration of Eporeodon, it is here taken for granted that Thorpe considered Oreodontoides a subgenus of Eporeodon.

[^32]: ${ }^{1}$ See footnote 4, page 250.

[^33]: ${ }^{1}$ Loomis, Frederic B., 1924, loc. cit., and Thorpe, Malcolm R., 1937, loc. cit., stated that the holotype skull has a small facial vacuity. Both sides of the skull in question, however, are damaged within the area of the prelacrimal vacuity. The left side, which was figured by both authors, is damaged and has a small piece of

[^34]: bone that is out of place, thus forming what was called a vacuity. The present writers doubt if a prelacrimal vacuity was present; at least it cannot be definitely observed on material now available. The skull with the mounted skeleton at Amherst, A.C. 31-31, is mostly plaster. See discussion, page 254.

[^35]: ${ }^{1}$ Thorpe, Malcolm R., 1937, loc. cit.
 ${ }^{2}$ Loomis, Frederic B., 1924, Bull. Amer. Mus. Nat. Hist., vol. 51, art. 1, p. 14.

[^36]: ${ }^{1}$ Thorpe, Malcolm R., 1937, loc. cit.

[^37]: ${ }^{1}$ Named in honor of Dr. Chester Stock who kindly allowed the writers the privilege of studying the John Day oreodont material in the California Institute of Technology.

[^38]: ${ }^{1}$ () Approximate; (()) estimated. All measurements in millimeters.

[^39]: ${ }^{1}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, Bull. Amer. Mus. Nat. Hist., vol. 79, art. 1, p. 97, tables 6-9. Individual variation was briefly discussed and demonstrated by four tables, and the data presented from a slightly different approach.

[^40]: ${ }^{2}$ Schultz, C. Bertrand, and Charles H. Falkenbach, 1941, ibid., p. 48.

[^41]: ${ }^{1}$ All measurements in millimeters．
 ${ }^{2}$ Weighted mean．

