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ABSTRACT

We investigate the phylogenetic relationships of two poorly known Natricinae, Parahelicops and 
Pararhabdophis, for which we obtained nucleotide sequence data from one mitochondrial gene 
(cytochrome b) and three nuclear genes (CMOS, NT3, and RAG1). Maximum parsimony, maxi-
mum likelihood, and combined and partitioned Bayesian analyses suggest that both Parahelicops 
and Pararhabdophis are embedded within the genus Hebius. To align classification with phylogeny, 
we synonymize Parahelicops and Pararhabdophis with Hebius.

INTRODUCTION

Parahelicops annamensis Bourret, 1934, has a history of entanglement with Amphiesma (e.g., 
Stuart, 2006; Teynie et al., 2013; David et al., 2015) and Opisthotropis (e.g., Bourret, 1934b; Smith, 
1943; Stuart, 2006; Stuart and Chuaynkern, 2007; Murphy et al., 2008; Teynie et al., 2013; David 
et al., 2015). Citing unpublished data, Teynie et al. (2013) thought Parahelicops annamensis 
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seemed “referable to the genus Amphiesma” but ultimately decided to retain the original name 
(despite using “Amphiesma annamense” in their key to species). David et al. (2015) cited unpub-
lished molecular data that supported the monophyly of Amphiesma with respect to Parahelicops 
and, hence, retained the latter. At the same time, however, they listed specific morphological 
character states in Parahelicops also found in the A. venningi complex. Stuart (2006) recognized 
the validity of the genus Parahelicops, at least for P. annamensis, and suggested a close relationship 
of Parahelicops with Opisthotropis. The poorly known Pararhabdophis chapaensis Bourret (1934a) 
also exhibits morphological similarity to Parahelicops annamensis (David et al., 2015). 

More inclusive phylogenetic studies have resulted in rearrangements of taxa relevant to the 
positions of Parahelicops and Pararhabdophis. After finding Amphiesma to be polyphyletic, Guo 
et al. (2014) resurrected the genus Hebius Thompson, 1913, for all species except Amphiesma 
stolatum. Guo et al. (2012) and Figueroa et al. (2016) found Opisthotropis to be outside the 
clade that includes Hebius and Amphiesma and closer to Sinonatrix and New World Natricinae. 
None of the previous molecular studies, however, addressed Parahelicops or Pararhabdophis. 
Herein, we reevaluate the phylogenetic relationships of Parahelicops and Pararhabdophis with 
respect to other natricines using nucleotide sequence data. 

Materials and Methods

Molecular Data: Tissue samples (appendix) were obtained from the American Museum 
of Natural History, New York (AMNH), the Field Museum, Chicago (FMNH), and the North 
Carolina Museum of Natural Sciences, Raleigh (NCSM). In total, we included six new samples 
(fig. 1), from two genera Pararhabdophis and Parahelicops, in the matrix published by Guo et 
al. (2014). In addition, we included Opisthotropis cheni and O. lateralis in phylogenetic analyses 
to root phylogenetic trees. Extracted DNA from the fresh tissue was amplified by PCR Master 
Mix (Fermentas, Burlington, ON, Canada) using the same primers and conditions employed 
by Guo et al. 2014. PCR products were subjected to electrophoresis through a 1% agarose gel 
(UltraPure™, Invitrogen, La Jolla, CA). Gels were stained for 10 min in 1 X TBE buffer with 2 
pg/ml ethidium-bromide, and visualized under UV light. Successful amplifications were puri-
fied to eliminate PCR components using a GeneJET™ PCR Purification kit (Fermentas). Puri-
fied PCR products were sent to FirstBase Malaysia for sequencing. 

Phylogenetic Analyses: The sequences were aligned in Clustal X v2 (Thompson et al., 
1997) with default settings. Data were analyzed using maximum parsimony (MP) and maxi-
mum likelihood (ML) as implemented in PAUP 4.0b10 (Swofford, 2001), and Bayesian analysis 
in MrBayes 3.2 (Ronquist et al., 2012). For MP analysis, heuristic analysis was conducted with 
100 random taxon-addition replicates using tree-bisection and reconnection (TBR) branch-
swapping algorithm, with no upper limit set for the maximum number of trees saved. Boot-
strap support (BP) (Felsenstein, 1985) was calculated using 1,000 pseudoreplicates and 100 
random taxon-addition replicates. All characters were equally weighted and unordered. For 
ML analysis, we used the optimal evolution model as selected by ModelTest v3.7 (Posada and 
Crandall, 1998). To estimate BP in the ML analysis, a simple taxon-addition option and 100 
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pseudoreplicates were employed. We arbitrarily assumed bootstrap values of ≥70 % to represent 
strong support and values of <70 % as weak support (Hillis and Bull, 1993).

For Bayesian analyses, we used the optimal model determined by Modeltest with param-
eters estimated by MrBayes 3.2.1. Two simultaneous analyses with four Markov chains (one 
cold and three heated) were run for 10 million generations with a random starting tree and 
sampled every 1000 generations. Log-likelihood scores of sample points were plotted against 
generation time to determine stationarity of Markov chains. Trees generated before log-likeli-
hood scores reached stationarity were discarded from the final analyses using the burn-in 
function. The posterior probability (PP) values for all clades in the final majority-rule consen-
sus tree are provided. We ran analyses using both combined and partitioned datasets to exam-
ine the robustness of the tree topology (Nylander et al., 2004; Brandley et al., 2005). In the 
mixed-model analysis, we partitioned the data into 12 sets based on gene codon positions (first, 
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FIGURE 1. Combined Bayesian phylogram based on all concatenated data. Numbers above and below 
branches are MP/ML bootstrap values and combined/partitioned Bayesian posterior probabilities (>50%), 
respectively. Hyphen and asterisk denote <50% and 100% values, respectively. Bold text indicates samples 
sequenced for this study.
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second, and third) of cytochrome b, CMOS, NT3, and RAG1. Optimal models of molecular 
evolution for the partitions were calculated using Modeltest, and then assigned to these parti-
tions in MrBayes 3.2 using the command APPLYTO. Model parameters were inferred inde-
pendently for each data partition using the UNLINK command. All models employed in 
Bayesian analyses are shown in table 1. 

RESULTS

The final matrix consisted of 3162 aligned characters, of which 614 were parsimony infor-
mative. The alignment contained no gap. MP analysis of the dataset recovered nine most par-
simonious trees with 3259 steps (CI = 0.38; RI = 0.59). In the ML analysis, the -Ln likelihood 
score of the single best tree found was 18,729.82. The cutoff point for the burn-in function was 
set to 20 and 21 in combined and partitioned Bayesian analyses as -lnL scores reached station-
arity after 20,000 and 21,000 generations, respectively. The topologies derived from our study 
are similar to those in Guo et al. (2014). Most relevant here, we found Parahelicops and Para-
rhabdophis nested within Hebius with strong support in all analyses, and within the smallest 
clade including H. deschauenseei, H. modestus, and some H. venningi with high statistical values 
from all, but the MP analysis (fig. 1). 

Table 1. Models used in Bayesian analyses

Data analysis Model determined by Modeltest

Combined Bayesian analysis

Concatenated matrix TIM2+I+R

Partitioned Bayesian analysis

Cytochrome b 1st position TrN+I+G

Cytochrome b 2nd position TIM+I+G

Cytochrome b 3rd position TVM+I+G

Cmos 1st position K80

Cmos 2nd position JC

Cmos 3rd position HKY

NT3 1st position JC

NT3 2nd position K80+G

NT3 3rd position K80+I

Rag1 1st position HKY

Rag1 2nd position TrNef+I

Rag1 3rd position HKY
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DISCUSSION

Our analysis provides a phylogenetic explanation for the reported similarity between Para-
helicops, Hebius venningi, and H. deschauenseei noted by David et al. (2015: 216). Specifically, 
we find Parahelicops and Pararhabdophis to be imbedded within Hebius, in a clade including 
H. deschauenseei, H. modestus, and some of the specimens identified as H. venningi. To align 
taxonomy with the recovered phylogeny of this group, we synonymize Parahelicops Bourret, 
1934, and Pararhabdophis Bourret, 1934, with Hebius Thompson (1913), yielding the new com-
binations, Hebius chapaensis (Bourret, 1934) and Hebius annamensis (Bourret, 1934). We cor-
roborated (not presented) Guo et al. (2012) and Figueroa et al. (2016) who found Opisthotropis 
to be outside Hebius and, therefore, not closely related to Parahelicops (contra Stuart, 2006).

Sequence divergence (approximately 6%) between Hebius annamensis from the Ca (Vietnam 
samples) and Mekong (Lao samples) drainages suggests that multiple species might exist under 
that binomial. Divergence between northern and southern H. annamensis might reflect isolation 
by low-elevation habitats characterized by a mixture of evergreen, semievergreen, and dry forest 
types between northern and central Annamite ranges discussed by Bain and Hurley (2011). 

We also corroborate the findings of David et al. (2013) and Guo et al. (2014), who reported 
variation suggestive of additional unrecognized species diversity under the names H. boulengeri and 
H. venningi, the latter of which is polyphyletic in Guo et al. (2014) and herein. Stuart et al. (2006) 
suggested that there are no “geographically widespread, forest-dwelling frog species in Southeast 
Asia.” Such a pattern may also exist in snakes such as Hebius, some of which are known to be con-
nected to anurans through trophic relations (e.g., Moriguchi and Naito, 1982; David et al., 2007).
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APPENDIX

Material Examined

Pararhabdophis chapaensis: LAO PDR: Houaphan Province: Phou Louey National Pro-
tected Area, Viengthong District, near Tad Loi Waterfall (20.23253°N, 103.2108°E), 1186 m 
(NCSM 77924).

Parahelicops anammensis: VIETNAM: Ha Tinh: Huong Son District, Huong Son Reserve, 
Rao An region, near top of Po-mu Mountain (18° 20′ 26″ N, 105° 14′ 13″ E), 870 m (AMNH-R 
147129 [corpus], AMNH-FS 13993 [field series], AMCC 106598 [tissue]). Nghe An Province: 
Pu Mat National Park: Anh Son District (near N 18.8177, E 104.9609), 170 m (AMNH-R 
176469 [corpus], AMNH-FS 12568 [field series]), AMCC 192504–06 [tissue]). Nghe An Prov-
ince: Pu Mat National Park: Anh Son District (N 18.8092, E 104.9499), 357 m (AMNH-R 
176470 [corpus], AMNH-FS 12638 [field series], AMCC 192596–97 [tissue]). Nghe An Prov-
ince: Pu Mat National Park: Anh Son District, Khe Suc River (N 18.8171, E 104.9484), 237 m 
(AMNH-R 176471 [corpus], AMNH-FS 12680 [field series], AMCC 192626–27 [tissue]). LAO 
PDR: Xekong Province: Kaleum District: Xe Sap National Biodiversity Conservation Area (16° 
04′ 10″ N, 106° 58′ 45″ E), 1280–1500 m (FMNH 258637).
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