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INTRODUCTION

THE CHARACTERS BY WHICH the species, sub-
species, populations, or other systematic
units are recognized are, of course, the true
original variates of taxonomy. The recorded
“data” and other symbolic expressions of
these characters are secondary and deriva-
tive.

The original variates by which systematic
units are defined are those of size, form (i.e.,
shapes, patterns, etc.), counts, color, and
physiological properties. Variates of size re-
ferring to the absolute dimensions of the
whole are of slight value for the identification
of a specimen except among the warm-
blooded animals, or when used with reference
to a definite ontogenetic stage, such as mat-
uration of the gonads. Variates of size that
refer to the absolute dimensions of parts are
of direct systematic value only when over-all
size is a specific constant.

In ichthyology data descriptive of forms
far outweigh other features in the space and
attention they receive for the purposes of
diagnosis and differentiation of systematic
units at all levels. Counts occupy second
place. Color, as distinct from color patterns
which are variates of form, run a very poor
third. Absolute size of the whole, but not of
the parts, is of some usefulness.

Form and color are the variates by which a
trained observer immediately recognizes a
familiar species, without close examination.
They are commonly also the wvariates by
which he is first made aware of the presence
of a previously unknown species. As our
knowledge of a group advances, immediate
recognition of the unknown becomes more
difficult, and closer examination of forms,
counts, and colors is required. But the fact
that these are the original variates used for
systematic identification is not changed by
the manner in which they are observed and
recorded symbolically so that a knowledge of
them can be communicated to other students.

In this discussion we are concerned with
the symbolic presentation of the original
variates of form. The most direct and most
complete symbolic presentation of form, in
print, is by pictorial rendering. This method
of communicating information about the
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original variates is, of course, widely used in
taxonomy and particularly heavily relied
upon in paleontology.

In the even more abstract symbols of the
numerical system the original variates of
form can be expressed only as proportions.
Such ratios, indices, or whatever they may
be called are therefore actually the only nu-
merical symbols truly and directly repre-
sentative of the original morphological vari-
ates of taxonomy.

The recording of absolute linear dimensions
of parts is a detour commonly taken for prac-
tical reasons in developing the proper sym-
bols for the original variates. The detour is
not always taken. Many of the proportions
recorded in the literature have been directly
determined as proportions by setting a pair
of dividers to the length of the part (e.g.,
head) and pacing it off against the length of
the whole, to establish that one “‘goes x times
in" the other. And this is still frequently done
for rapid identification of a specimen. The
basic reason for making the detour of record-
ing absolute dimensions of parts is simply
that it reduces the number of manipulations
required, because the figures can be recom-
bined to create the symbols for different ele-
ments of form without remeasuring the parts.
The recorded length of the head serves
equally well to create the symbolic expres-
sions for general elements of form such as
large-headedness or small-headedness, and
for particular form elements such as long-
snouted or short-snouted. This use of abso-
lute measurements in order to save time does
not in any way make them direct expressions
of the original morphological variates of
taxonomy, which are forms that can be ex-
pressed only in mathematical relationships
between dimensions.

A clear understanding of the difference, as
well as the relationship, between the true
original variates of taxonomy and their de-
scriptive symbols is important in order to
secure a proper evaluation, use, and manipu-
lation of these symbols in systematic re-
search.

In the course of ontogeny the forms and
proportions characteristic of species and
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other systematic units undergo changes,
which in fishes apparently continue through-
out the life of the individual. The need to
find expressions that reflect these ontogenetic
changes has therefore received increasing at-
tention among the students of fishes. A sim-
ple method of expression previously proposed
by the writer (Parr, 1949) as a purely practi-
cal measure and further simplified in subse-
quent applications (Parr, 1952, 1954) has re-
ceived little or no use by others. A reéxamina-
tion and comparison of the intrinsic merits
as well as the practical advantages of this
and of other methods currently in use among
ichthyologists would therefore seem in order.

The writer recognizes that allometry equa-
tions, i.e., equations of the form of y=ax?,
will often provide approximations which may
be mathematically superior to those that are
discussed below, and that regressions of this
type offer certain advantages for the study
of variability as such. But for the practical
purposes of taxonomy, such as the identifica-
tion of specimens by means of keys to the
species, it is essential to use functions for
which the graphic expressions are readily
visualized or can be quickly plotted on simple
coordinates, and which can be easily applied
to the observed dimensions of a specimen by
simple and familiar methods of computation.
Diagnostic characters such as ‘‘head less than
a per cent of the length (L)” are already tra-
ditional in fish taxonomy. A refinement such
as ‘head less than (a—5.L) per cent of L”
can be easily absorbed into taxonomic tradi-
tion and practice, both in the field and in the
laboratory. But, in the writer's opinion, an
expression like ‘“head less than a.L*’ would
not be very assimilable in the daily work of
identification. Allometric expressions would
reduce the usefulness far more than they
would enhance the virtues of a synoptic key
or a specific diagnosis and would represent
refinements of method not warranted by the
current lack of refinement of our general
knowledge of the taxonomy of fishes. For the
purpose of general taxonomic practice, we
therefore here consider the adequacy and rel-
ative merits only of methods employing other
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than the allometric, or the less frequently
used exponential, types of regression equa-
tions, with full recognition of the true value
of such functions in the more rigorous study
of large samples bearing upon narrowly de-
fined systematic problems.

Such other methods now in use in syste-
matic ichthyology may be said to fall into
one of two separate categories, depending
on a basic difference in the first approach to
the analysis of the data.

According to the methods widely used in
fisheries research and strongly advocated by
Marr (1955), the analysis should proceed
from a plot of the absolute dimensions of the
variable part against the absolute size of the
whole and should lead to functions that ex-
press the mean regression of these absolute
dimensions upon one another. For the sake of
brevity this is here designated as the size-on-
size approach.

The other methods, here considered, use
the ratios of the parts to the whole, or to one
another, as the basis of analysis. These ra-
tios, usually given in per cent, are plotted
against the length of the whole (e.g., standard
length or total length), and functions are
developed to express the regression of these
ratios upon the size of the whole. This will be
referred to as the ratio-on-size approach, or
ratio-on-size methods.

In the following discussion v, in all in-
stances, stands for the absolute dimensions
of the parts, and x for the absolute dimen-
sions of the whole.! When numerical values
are applied, both dimensions are expressed
in millimeters.

1 In ichthyology it is not always clear how the length
of the whole is measured. The present writer uses
“standard length,” ie., length without caudal fin.
“Body length” may be an ambiguous term which the
writer uses only when the available data are so de-
scribed. Even “‘total length” may express different
measurements, e.g., length to the end of middle caudal
fin rays, or length to the tip of the longest caudal fin
lobe, or length to the median point of a straight line
between the tips of the caudal fin lobes. It is unfortunate
that such terms are often used without specific defini-
tion.



RATIO-ON-SIZE APPROACH

THE RATIO-ON-SIZE approach is the method
followed by the present writer in his study of
deep-sea fishes. As a first approximation for
the description of the changes in proportions
with growth, he uses functions of the type
previously proposed (Parr, 1949) which are
of the general character:

100 y/x =a+bx, (¢))

which gives the dimensions of the part (¥)
as per cent of the whole (x).

Solved for the absolute dimensions of the
part, (1) gives

9=1/100 (cx-}+b5x*) mm. 2

Because the value of (2) becomes 0 when
% becomes 0, (1) and (2) offer the possibility
of an approximation to the progress of change
throughout the entire ontogeny of the species.

When 5 in (1) and (2) is negative, as it hap-
pens to be in the case of most of the propor-
tions that the writer has found important in
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Fi1c. 1. Length of heads in Alepocephalus giard:i plotted
against length without caudal. Data from Koehler (1896),
Holt and Byrne (1908), Collett (1905), and Koefoed (1927)
used by Parr (1949). Solid line represents expression used by
Parr (1949); broken line, for rectilinear regression (y=25
- 0.023 57 %) based on specimens larger than 200 mm. (solid

dots).

In recent work, functions of the type of (1)
have been used mainly to define the upper
and lower limits of a band within which all
the actually observed proportions can be con-
tained (Parr, 1952, 1954).
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his own work, the value of (2) reaches a maxi-
mum at

x=a/2b.
If this value of x is less, or only a little
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more, than the maximum size attained by
the species, a breaking point must be recog-
nized, at least if (1) is used to approximate
the progress of change in the average propor-
tions rather than in their upper and lower
limits. Figure 1 shows! how such a breaking
point was recognized in the ratio-on-size plot
at £ =600 mm., although the maximum value
for y is not actually reached until x=1090
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whole (100 y/x) becomes constant in “full-
grown’’ specimens (see Parr, 1949).

If functions of the type of (1) are used to
define only the changing upper and lower
limits of variation, it will often be found un-
necessary for practical systematic purposes
to take the occurrence of a breaking point
into account, when only first approximation
is required.
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F1G. 2. Ratio-on-size plots of Rounsefell’s data on
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the length of the head in the Pacific herring at

entrance to Cook Inlet (see text). Five uppermost dots in left diagram of very unequal weight. The two
above the curvilinear regression represent only one specimen each; the three below, a total of 24. Curve
passes through mean of all five. Curves 4 to D in diagram at right correspond to rectilinear regressions

in left diagram of figure 3.

mm., according to the function of type (1)
represented by the curve from x=0 to x
=600.

When such a breaking point must be rec-
ognized in the upper size range, an adequate
first approximation for the. proportions of
the larger specimens will often be found if it
is assumed that the ratio of the part to the

1The figure also shows that Marr's assumption

(Marr, 1955, p. 28) of a rectilinear regression of size
on size in these data is not correct.

Because deep-sea fishes are too rare in col-
lections to provide adequate samples for a
satisfactory testing of methods, the writer
has not made use of his own data for the pur-
poses of this discussion. Fortunately, there
are abundant examples already available for
use in the published reports of other investi-
gators.

Rounsefell (1930) gives extensive tables
for various proportions of the Alaskan her-
ring. His measurements of the heads are
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chosen as representing a feature of general
systematic importance in all groups of fishes.
Rounsefell’s records of the heads in the her-
ring population at the entrance to Cook Inlet
(totals for Shuyak Strait, Halibut Cove, and
Lower Kachemak Bay in Rounsefell, 1930,
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of these calculated averages against the
whole. Finally, curvilinear regressions for
ratio-on-size were calculated from the recti-
linear regressions of size-on-size and used in
the final presentation. Rounsefell’s curves
should therefore actually be considered under
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F1G. 3. Size-on-size plots of same data as in figure 2. Straight lines 4 to D in left diagram correspond to
curves 4 to D in right diagram in figure 2. Outer converging curves in right diagram express rectilinear
limits, and middle curve represents curvilinear regression, in the left diagram of figure 2.

p- 268) have been selected for study, because
data over a wide range in size, and particu-
larly data including small specimens, are es-
sential for a real test.

Rounsefell based his own studies on ratios
and presented his results in ratio-on-size
plots. But for the development of curves to
fit his data it would appear that he first de-
termined average ratios of parts to the whole
(100 y/x) for each 10-mm. interval in over-all
length. These averages were used for the cal-
culation of average absolute dimensions of
the parts for each interval. Rectilinear regres-
sions were then fitted to a size-on-size plot

the heading of the size-on-size, and not the
ratio-on-size, method of approach.

In the left diagram of figure 2 the present
writer has applied the ratio-on-size approach
to Rounsefell’s data as above identified. The
first approach to a description of the data
is made by fitting to the upper and lower
limits of variation the following two recti-
linear functions:

100 y/x=29.7—0.03 x 3
and
100 y/x =27.5—0.03 x. 4

For comparisons between species, these
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limits might suffice. But it is obvious from
figure 2 that a curvilinear function would pro-
vide a closer fit, as would seem desirable in
population studies.

To obtain a second approximation, the
writer therefore first drew a fair curve by in-
spection. This is shown as a thin line in figure
2. With this as a guide he then fitted a func-
tion! of the general type of

100 y/x=a+bx+cx2. 5)
The actual function arrived at is

100 y/%=29.9—0.048 9 = 4 0.000 048 x2. (6)

! This procedure provides a short cut that can save
a lot of time in arriving at a second approximation likely
to prove serviceable for most taxonomic purposes. This
is particularly true if functions of the type of (5) are
needed to define only upper and lower limits of variation
rather than means or averages.
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Functions of the type of (5) will have a
minimum or maximum value at

x=—b/2c,

which is of concern in this connection if 3
and ¢ are of different sign. Formula 6 has a
minimum value at

x%=509 mm.,

well beyond the maximum size of the species.

Solving (S) for v shows that the value of
¥ in this second approximation becomes 0,
at 0 value of x, as it also does in the first
approximation (1) and as it must in nature.

In the right-hand diagram in figure 3 the
convergence upon 0 of the limits of variation
in absolute dimensions, calculated from func-
tions (3) and (4) of the first approximation,
is shown by the outer curves, with the curve
calculated from (6), of the second approxi-
mation, shown between.



SIZE-ON-SIZE APPROACH

As MENTIONED ABOVE, Rounsefell actually
used the size-on-size method of arriving at
the curvilinear regressions shown in his illus-
trations of ratios-on-size. Rounsefell did not,
however, claim that his data on the Alaskan
herring actually formed rectilinear regres-
sions in a size-on-size plot. In the series here
selected from Rounsefell’s data, as the record
most suitable for a test of method of presenta-
tion, rectilinearity is definitely contra-indi-
cated in the size-on-size regression, as shown
by the left diagram in figure 3.

Figure 3 also indicates four different recti-
linear functions selected at random, to show
the lack of fit of any such function that might
be chosen.! In the right-hand diagram of fig-
ure 2 it is clearly shown that no rectilinear
expression that might be selected for the re-
gression of size on size will give an acceptable
and usable fit for these data.

Other material for an evaluation of the
size-on-size method of approach may be ob-
tained from the data on the yellowfin tuna
of Hawaii independently collected and pub-
lished by Godsil and Greenhood (1951) and
by Schaefer (1952). The size of the head is
again selected as our first example.

Godsil and Greenhood choose functions of
the general type of

y=a+bx+cx™? ©)

to express the regression of size on size. This
function is discontinuous at x=0. As x ap-
proaches 0 from the positive side, y attains
infinite positive or negative values according
to the sign of ¢. Curve B in figure 4 expresses
Godsil and Greenhood’s function for the
heads of the Hawaiian samples, namely:

¥=65.843 326 4+ 0.210 717 727 3 x — 13 398.266 35 x™1.

As an interesting comparison, Godsil and
Greenhood’s function for the Palmyra sam-
ples, likewise from the central Pacific, is en-
tered as curve A4, which expresses

y=>54.970 266 41 4 0.211 003 668 5 x + 139.745 79 71,

1 In seeking a rectilinear expression as a convenience
for roughly describing obviously curvilinear data, the
present writer does not believe that fitting by mathe-
matical calculations, such as the method of least squares,
has any particular meaning. A personal evaluation of
the particular sections of the curvilinear series for which
closeness of fit is most important seems a more sensible
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From function (7) the regression of ratios
on size may be calculated to be

100 v/x =100 (ax—1+b+cx2). (10)

Curves expressing function of the type of
(10) derived from (8) and (9) are entered as
A and B in figure 5. The comparison is of
particular interest in view of Godsil and
Greenhood’s statement that, although the
Palmyra sample regressions have a consist-
ently lesser slope, a comparison of the four
samples available from the central Pacific
does not warrant positive conclusions. But,
if curves as different as 4 and B in figure §
can leave any doubts about whether or not
they represent different populations, not to
say different species, then serious doubts
must surely arise as to whether such curves
can legitimately be used to represent any
systematic data at all.

Investigators using functions of the general
type of (7) or (10) are, of course, always care-
ful to point out that these are intended only
to provide a fit within the size range of the
data available. They also generally leave out
the left portion of such graphs as those shown
in figures 4 and 5 (as indicated by the broken
line in fig. 4), thereby withholding from
proper attention the very real shortcomings
of the method employed.

But the systematists have both the right
and a need to insist that the continuous pro-
cesses of ontogenetic changes be expressed in
continuous curves and functions. Among
other tests to be met is the test that the func-
tion must not indicate a part larger than the
whole at any size of the whole, as indicated
by functions of the type of (7) and (10).

®)

As a practical illustration it is evident from
figure 5 that neither curve 4 nor curve B
could be used as a test of identity for speci-
mens as large as 400 to 500 mm., or only

(9)

procedure under such circumstances. Is it the slope
between end points of the series, or the tangential slope
at some point between, or the slope of a cord that will
be most significant and most revealing for the purposes
intended? These are questions of personal judgment
rather than mathematical solution.
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Fi6. 4. Size-on-size plot of Godsil and Greenhood’s data on the length of the head of the Hawai-
ian yellowfin tuna. Curve B expresses Godsil and Greenhood’s regression (8). Curves Cand D
converging upon 0 correspond to rectilinear limits E and Fin figure 5. Broken curve 4 represents
Godsil and Greenhood'’s regression for Palmyra sample. (See text.)

slightly less than the smallest specimens in
the actual samples.

One of the most objectionable features of
(10), and therefore also of (7), is the occur-
rence of a maximum or minimum value of
100 y/x at x=—2¢/a. If @ and ¢ are of op-
posite sign, and if (10) is used to fit data
showing diminishing values of 100 y/x with
increasing value of %, then a maximum value
of 100 y/x will occur between x equal to 0
and x equal to the length of the smallest
specimen of the series to which (7) or (10)
has been fitted. In other words, the maxi-
mum must, in these circumstances, occur
within the ontogenetic size range of the spe-
cies, a condition that in most instances is
quite unacceptable from the systematist’s
point of view. According to (8) the maximum
occurs at a length of 407 mm.

For purposes of comparison, the writer has
entered, by visual fitting, in figure 5 a median
and two symmetrically converging upper and
lower limits, which express first approxima-
tions of the general type of (1) and, specifi-
cally:

100 y/x=32—0.004 4 x (11)

and
100 y/x=230.65—0.004 x (12)

and
100 y/x=29.3—0.003 6 x. (13)

Figure 5 also shows a second approxima-
tion to the data of the general type of (5)
and, specifically:

100 y/x=32.54—0.008 22 x + 0.000 002 z*. (14)
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F16. 5. Ratio-on-size plot of same data as in figure 4. Curves 4 and B derived from Godsil and
Greenhood’s regression for Hawaiian (B) and Palmyra (A) samples. Rectilinear regressions D, E,
and F, and curve C fitted by the present writer (see text). Curves 4 and B shown above on re-

duced scale of proportions given at left.

Over the significant part of the range of the
data, i.e., 500-1500 mm., (14) differs from
Godsil and Greenhood’s (8) by only 0 to
about 0.16 per cent of the length (x), with
an average difference of about 0.053 per cent
of x, or less than 1 mm. in absolute dimen-
sion. In formulating (14) the writer disre-
garded an isolated, single measurement of a
large head in one of the largest specimens
(see fig. 5). If this were taken into account
and a function of type (10) were fitted specifi-
cally to Godsil and Greenhood’s (8), it would
be
100 y/x=32.64—0.008 63 x -+ 0.000 002 3 x2 (15)

instead of (14). Over the significant range of
the data function (15) differs from (8) only
by 0 to about 0.032 per cent of the length,
with an average difference of only about
0.013 2 per cent, or less than 0.2 mm. The fit
could be made even closer if decimal points
were added to the constants in (15). Terms of
higher powers can also be added when needed.

In other words, functions of the type of (5)
can be fitted to a function of type (7), over
the range of data actually fitted by (7), with
an accuracy far exceeding anything that the
data will permit. This would seem to leave no
reason for selecting a function of type (7),
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F1G. 6. Ratio-on-size plot of Schaefer’s data on the length of the heads in the Hawaiian yellowfin
tuna. Curves 4 and B express Schaefer’s regressions (18) and (19) in the present text. Rectilinear re-
gressions D, E, and F, and curve C fitted by the present writer (see text). Lower limit of variation
in large specimens marked by broken line at right. Broken curve at left for Godsil and Greenhood’s

regression.

which cannot possibly fit the actual ontogeny
of the species, in preference to a function of
type (5) which does offer such a possibility.

It should also be noted that functions of
type (10), calculated from type (7) as well as
function (17) below, approach a constant
value of 100 b, for high values of x. This
might, in a way, be taken as confirmation of
the writer’s statement (p. 376) that, when a
breaking point must be recognized in the use
of functions of type (1) as first approxima-
tions, it will often be possible to do so by the
use of a constant in first approximation of
the value of 100 y/x for higher values of x.

Schaefer (1952) reéxamined the Hawaiian
population of yellowfin tuna on the basis of
entirely new data, using the size-on-size
method of analysis, and functions of the recti-

linear type:

y=a-+bx (16)
to fit the data. For ratio-on-size this gives
100 y/x =100 (ax~1+b). 17

The value of (17) becomes infinite as x
approaches 0. Functions of type (16) or (17)
can therefore not approximate the true on-
togeny of the species any more than can func-
tions of type (7).

Schaefer’s function for the heads of the
tuna is

y=a+0.225 67 x. (18)

The value of a is not given but can be de-
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F1G. 7. Size-on-size plot of regressions of Schaefer’s data shown by ratio-on-size in figure 6. 4
represents the rectilinear, B the curvilinear, regressions of Schaefer. C and D represent the present
writer’s rectilinear limiting regressions of ratio-on-size in figure 6. Curve C of figure 6 would fall be-
tween C and D in this figure but is not shown. For dotted curve at left and broken line at right, see

legend of figure 6.

termined graphically as approximately 33.
Schaefer also states that a function of type
(7) used by Godsil and Greenhood would pro-
vide a better fit, and he gives it as follows:

9=60.54 + 0.208 05 x — 15 419 z~%.  (19)

In figure 6, curves expressing (18) and (19)
are compared with a curve, C, expressing (14)
of the type of (5), already fitted to Godsil and
Greenhood’s data (see above).

Over the significant range of the curves,
from 600 to 1700 mm., the values of (14)
differ from those calculated from (18) by 0
to about 0.66 x/100, with an average of about
0.29 x/100. From (19), which is better fitting
according to Schaefer, the values of (14) dif-
fer only from O to less than 0.22 x/100, with
an average difference of only about 0.085

x/100, or less than 1 mm. The maximum dif-
ference in the latter comparison does not ex-
ceed 1.5 mm.

On the other hand, the difference between
the values calculated from the two functions
(18) and (19), proposed by Schaefer, range
from 0 to about 0.395 x/100, with an average
of about 0.202 x/100, or nearly 2.5 mm., and
with a2 maximum difference of more than 3.5
mm. This difference is characterized by
Schaefer himself as ‘‘slight.” The difference
between (14) and (19) is less than half as
large, as shown in the preceding paragraph.

An interesting fact brought out by Schaef-
er’s new data is that the convergence of the
limiting functions (11) and (13) fitted to God-
sil and Greenhood’s data was unwarranted.
And it is even more interesting to note from
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F1G. 8. Ratio-on-size plot of Schaefer's data on the length of the second dorsal fin in the Hawaiian
yellowfin tuna. Solid curve (4) expresses Schaefer’s regression; broken curve (B) represents regres-
sion proposed by present author. Open rings indicate averages, used also in figure 9. A single average
for 600-900-mm. interval, other averages by 100-mm. intervals.

figure 6 that the new limits are excellently
fitted by simply changing the coefficients of
slope in the limiting functions (11) and (13)
to the same coefficient as that of the median
function (12) previously fitted to Godsil and
Greenhood’s data by first approximation ac-
cording to (1). No other change is required,
and the new limiting functions become sim-
ply:

100 /% =32—0.004 = (20)

and

100 y/%=29.3—0.004 x. (21)

This confirms the present writer’s general
experience with the scarcer data on deep-sea
fishes that the limiting functions of variabil-
ity in the ratio-on-size plots tend to run par-
allel. In second approximation parallelism
between curves may be looked for. With this
minor emendation, both the first and the sec-
ond approximations to the first set of data

log y=7.649 65 — 5.595 55 log x + 1.266 13 (log x)2.

on the yellowfin tuna of Hawaii, according to
(1) and (S), have proved entirely satisfactory
as approximations of the new data as well.
While the changes required in such approxi-
mations as (8), (18), and (19) may not be
very great over the same size range, they be-
come quite drastic when the range is extended
towards smaller sizes, especially in such cases
as (8) and (19), both of which have maximum
values between 400 and 500 mm. in length.
Even specimens between 350 and 450 mm.
in length would be beyond possibility of fit
by these functions.

The examples that are presented above are
concerned with proportions that diminish
with increasing total length. It may be of
interest to consider a case in which the pro-
portions increase with growth. Schaefer
(1952) gives measurements of the length of
the second dorsal fin in the Hawaiian yellow-
fin tuna, to which he has fitted the following
equation:

(22)
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Curves as in figure 8.

As x approaches 0, (22) approaches infin-
ity; (22) also has a positive minimum value
between 150 and 200 mm.

Using the ratio-on-size approach, the pres-
ent author arrives at the following regression:

100 y/x =10.77—0.003 35 x + 0.000 010 7 #2. (23)

According to (23), the value of 100 y/x
reaches a minimum of 10.508 per cent at a
length of 156.5 mm. This minimum is only
slightly less than the value of (23) at x=0.
Because (23) does not give minimum values
of v for positive values of x, 2 minimum value
for 100 y/x would indicate only that the sec-
ond dorsal fin begins its growth at a slightly
slower rate than the growth rate of the body.
This is certainly not an impossibility and
may even be a reasonable assumption under

the circumstances indicated by these meas-
urements.

As indicated by figures 8 and 9, it is quite
impossible to distinguish graphically between
curves representing (22) and (23), in any form
of presentation, over the entire range of the
available measurements. The elaborate treat-
ment of the data! and the physically impossi-
ble assumptions required by (22) are there-
fore completely unnecessary in order to ob-
tain an equally good fit by using the ratio-
on-size approach to arrive at a simple poly-
nomial regression, such as (23).

1 In its generalized form (22) can be written as follows:
log y=a—b log x + ¢ (log x)?
By solving for y we obtain:
y= 10e x ¢ log 2=



VARIABILITY

A ENOWLEDGE OF THE variability of morpho-
metric characters is essential for a proper
evaluation of their systematic significance.
The ontogeny of variability may also be a
subject of independent interest. To the ex-
tent that variability undergoes change in the
course of ontogeny, it may be safely assumed
that the change is a continuous process. The
systematist is therefore also entitled to an ex-
pression of variability which does, at least,
offer the possibility of providing a continuous
approximation to the actual state of affairs
throughout the life of the species. This condi-
tion is not fulfilled by the expressions of vari-
ance customarily used in the size-on-size pres-
entation and analysis of morphometric data.

The usual expressions of variance are based
on the squares of individual deviations. In the
size-on-size comparisons, the deviations are
measured in units of absolute dimensions,
e.g., millimeters. Such expressions of variance
as those implicitly or explicitly used by Godsil
and Greenhood (1951) and by Schaefer
(1952), e.g., “mean square,” therefore express
variability as a constant, absolute linear
dimension regardless of the size of the indi-
vidual. To assume that actual variability dur-
ing ontogeny would remain constant in the
absolute sense of such expressions would be
contrary to all experience and all logic. For
example, a variance of heads equivalent to
+6.5 mm., established on data from speci-
mens of 600 to 1600 mm. in length, can obvi-
ously not apply to specimens of 100-mm.
length. If the mean size of the head at 100
mm. is 30 per cent of the length, this variance
alone would cover a range of from 23.5 to 36.5
per-cent of the length, with the total range
of variability even much wider. This would
be range enough for several species or even
genera and bears no relation to facts of ex-
perience.

It seems obvious that, for the needs of the
systematist concerned with the species as a
whole, variability must be expressed as a
function of the length (x) equally applicable
at all stages of ontogeny. The experience il-
lustrated in figure 6, of finding all individual
variations in a ratio-on-size plot confined
within parallel lines, suggests a very simple
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solution, namely, that variability may, in
first approximation, be assumed to have a
constant ratio to the length, as already noted
by students of other groups (see Imbrie, 1956,
p- 239). If individual deviations from the
curve that expresses the mean ratio of the
part to the whole are measured as propor-
tions (e.g., per cent) of the whole, standard
methods of computing variance would lead
to expressions of variance as a constant func-
tion of the whole (# per cent of x) instead of
an absolute constant, which would probably
provide a fair fit for the actual ontogenetic
changes of variability.

When the size-on-size regression of the part
upon the whole is not rectilinear and a second
approximation is needed for the description
of variability, the method of determining dis-
persion around a regression line proposed by
Klauber (1943) and further discussed by
Imbrie (1956) should prove useful. According
to this method, a measure of the dispersion
of ¥ (D, in Imbrie’s expression of thefor-
mula) would be obtained when the standard
deviation of y from the regression line is ex-
pressed as per cent of the mean value of y (§)
for the entire series, which thus makes the
measure of dispersion a direct function of y
and an indirect function of x, of which y is re-
garded as a dependent variable, thus!:

1001/ 2 (dy)? Jify)z
; .

5 YL A E—

A further refinement might be obtained by
computation of a standard wvariation (SV),
as distinct from a standard deviation, di-
rectly from the individual measurements by
determining the percentage deviation of
each value of ¥ (y;) from the mean value
91) indicated by the regression equation for
the same total length (value of x), thus:

100 (yz,—z) \?
1/ S
SV= =

1 N freedoms are used in this discussion merely for the
purpose of defining measures descriptive of the data
available. The actual number of freedoms (N-m) to be
used in the computation of probable errors, etc., may
depend on the form of the regression line.
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SV and D,. would in most instances ap-
proximate each other very closely.

Philosophically the concept that in tax-
onomy we are concerned with forms and
their symbolic description might be carried
one step farther. It may be argued that form
is only a perceptual, as distinct from a con-
ceptual, symbol of the distribution of matter
in space, and that the basic dimensions of
reference should therefore be the quantity of
matter, not any particular linear distance.
The thought is not without practical sig-
nificance. It would lead to the treatment of
all linear dimensions, including total length,
as dependent variables.

In various forms of life that lack a linear
main axis uniquely defined by morphological
characteristics, as in many invertebrates,
such treatment of the data serves a very
useful purpose and has already been incor-
porated in Imbrie’s Dy, or coefficient of
relative dispersions about a reduced major
axis (Imbrie, 1956, p. 241). If the actual size
of, say, a shellfish is uniquely determined
only by its volume or its weight, it follows
that no linear dimension that can be selected
in the absence of an unambiguously defined
main axis can be regarded as more directly
representative of total size than is any other
linear measurement. If total size attained is
considered the independent wvariable of the
ontogenetic process, this therefore means that
all linear dimensions of the shellfish must be
treated as dependent variables in relation to
the total mass. This, in turn, means that all
linear dimensions must be regarded as equally
independent with respect to one another.
Thus interpreted, Imbrie’s Coefficient analy-
zes the mathematical relationship between
dependent variables without direct reference
to the independent variate of total size, and
therefore without directly implying com-
parisons between the dimensions of a speci-
men of a given size and the dimension it
might have had if it had reached another size.
Although such comparisons may be, and un-
doubtedly often will be, involved indirectly,
they do not in themselves form the actual
basis of computation of the coefficient.

The reasoning here advanced will, in prin-
ciple, apply to all forms of life. But the degree
of freedom from implication of total size in
arriving at Imbrie’s Coefficient will differ ac-
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cording to the morphology of the organism.
In the presence of a well-defined main axis, as
in fishes, the dimensions of this axis are, in a
sense, more directly representative of actual
total size (total matter) than are any other
linear dimensions that are likely to be con-
sidered (except girth and, to a slightly less
extent, depth of body). Therefore it becomes
less logical to assign to total length, and to
other linear dimensions, equal independence
with reference to one another, and more
likely that such assignments will auto-
matically involve comparisons with hypo-
thetical dimensions at an actual size not
attained by the specimen and, in many cases,
even beyond any actual size attainable by the
species. For these reasons the author prefers
Klauber’s coefficient of relative dispersion
from a regression, as further defined by Im-
brie, or the standard variation suggested here
on page 386, in dealing with organisms hav-
ing a well-defined and morphologically fixed
main axis, using total length as a dimen-
sion representative of the total size attained
by growth, which may be considered the in-
dependent variable of the growth process
with reference to ontogenetic changes in
proportions.

It should also be noted that Imbrie's Co-
efficient has been introduced with particular
reference to the measurement of dispersion
around a size-on-size regression, for which
purpose it provides an admirable tool, except
in the particular case of a great disparity be-
tween the variates in regard to their degree
of independent wvariability. Imbrie’'s Co-
efficient is not, however, always adaptable to
the measurement of dispersion around a
ratio-on-size regression, for which it was not
primarily designed. The difficulties arise from
the facts that positive ¥ intercepts are quite
normal, and maxima or minima fairly fre-
quent features of ratio-on-size regressions. As
aresult, d, for data that refer to a small speci-
men may often have to be measured from an
imaginary starting point corresponding to
negative values of x (e.g., for a point above
the curve at low values of x in fig. 2). For
deviations above a maximum (see fig. 13) or
below a minimum the value of d, would be-
come infinite. For deviations below the ratio-
on-size regression curve, in the region in
which the curve attains a maximum, two
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different values of d. would be obtainable
(see fig. 13), and it is not certain that the
least of these two values could always be

considered the significant one.

Taking for granted the fact of common ex-
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mean variance over the size range of the ma-
terial. Other things being equal, a sample
with heavier representation of specimens in
the upper part of the size range should show
a larger variance than another sample of the
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F16. 10. Size-on-size plot of mean sample lengths of the heads in the Australian mullet calculated
from Kesteven’s tables. Line C represents Kesteven’s regression. Curves 4 and D represent cor-
responding limiting regressions in figure 11.

perience that the limits of variability in ab-
solute terms must diminish with diminishing
absolute size, one will find that the signifi-
cance of variances calculated on the basis of
the squares of individual deviations meas-

ured in absolute dimensions is even

limited than is shown above. Such measures
of variance cannot be taken to represent the

same range but with a different size distribu-
tion. Nor can the variance be taken to repre-
sent the variance of either the mean or the
median size of the material. Owing to the use
of the squares of the individual deviations, a
sample with a preponderance of specimens
near the two ends of the size range will give
a larger calculated variance than another

more
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sample of the same range and the same mean
(or the same median) size in which the speci-
mens are preponderantly clustered around
the mean (or around the median). In other
words, variances calculated in this manner
can be taken to be representative only of the

25
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plot for the graphic presentation and study
of morphometric data. In such a plot the
significance of individual deviations in the
smaller specimens is completely obscured by
the two facts that the absolute limits of vari-
ability for each species or population must
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F1G. 11. Ratio-on-size plot of lengths of heads of Australian mullet according to Kesteven's
tables 3A and 3B. Curve C expresses Kesteven’s regression. Compare with figure 10.

particular size composition of the sample, in
the sense that they are valid only for com-
parisons with other samples of the identical
size composition, and not merely of the iden-
tical size range, or identical mean, or median
size. The use of variances so restricted seems
of very slight purpose.

The discussion of variability leads to an-
other objection to the use of the size-on-size

diminish with diminishing absolute size, and
that the regressions of a part upon the whole
must converge upon the zero point of the co-
ordinate system in all species and popula-
tions, making even the interspecific differ-
ences indistinguishable. A comparison be-
tween the ratio-on-size plot in figure 6, which
shows a uniform spread of correlation points
through the size range, with the size-on-size



390 BULLETIN AMERICAN MUSEUM OF NATURAL HISTORY

plot in figure 7, in which the same data would
be confined between the converging curves
C and D, will serve to illustrate this point.

A still better illustration of the advantages
afforded by the open scale of the ratio-on-
size plot may be obtained from the data on
the length of the head of the Australian mul-
let given by Kesteven (1942). Kesteven used
the size-on-size plot and rectilinear regres-
sions of type (16), describing the length, of
the head specifically as

9=0.172 x 4 2.16 (here expressed in mm.). (24)

Figure 10 shows both the justification of
Kesteven’s use of (24) as a first approxima-
tion, represented by line C, and also its short-
comings. Figure 10 is based on the mean
lengths and mean values of 100 y/x for each
sample, given in Kesteven’s tables 3A and
3B. Even in Kesteven's figure 3, where all
the individual measurements are entered on
a very small scale, a very slight curvilinearity
is revealed by close scrutiny. The subtlety
of the deviation from actual rectilinearity in
the size-on-size regression is also revealed, if
one should not say concealed, in figure 10 of
the present paper. But the ratio-on-size plot
of the same data in our figure 11 makes it
abundantly clear that first approximations of
the form of (1) are more serviceable for the
description of these data, and the wide dis-
persal of the correlation points may even sug-
gest a possibility of heterogeneity of material
(populations). The distribution of the data
in the ratio-on-size plot is contained between
lines D and 4 (fig. 11), expressing:

100 y/x=19.2—0.009 x (25)
and
100 y/x=23.8—0.009 «. (26)

The coefficient of slope (0.009) used in (25)
and (26) was obtained by first drawing a fair
line through the scatter diagram, shown as
line B in figure 11.

The values of ¥ computed from (25) and
(26) are entered in figure 10 as the limiting
curves 4 and D for comparison with the data
and with Kesteven’s rectilinear regression,
represented by C.

The important points to note in the com-
parison between figures 10 and 11 are: (A)
the manner in which the band confining the
data in figure 10 contracts towards small val-
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ues of x, with the result that the true signifi-
cance of individual variations emerging from
the ratio-on-size plot (fig. 11) is nearly lost
sight of in the size-on-size presentation, and
with the further consequence (B) that only
the ratio-on-size plot was able to reveal
clearly the actual unsuitability of a rectilinear
regression of type (16}, represented by (24),
which seemed quite reasonable in the size-
on-size plot.

The measurements of the heads of the Pa-
cific mackerel from the Viscaino region pub-
lished by Roedel (1952) have been selected
as anillustration of a fairly common situation
in which the near-rectilinearity of the data
in a size-on-size plot is deceptively close. Al-
though the series covers the widest size range
found in Roedel’s material, it still lacks data
from the lowest two-fifths of the full size at-
tained by the species. The data therefore lack
evidence from the size groups in which the
curvilinearity of the size-on-size regression
would be most clearly revealed. The nearly
rectilinear arrangement of the data available
furthermore points to a very low ¥ intercept
for which Roedel has given the value of 5.13
in his regression:

¥=5.134+0.254 2 x. @7

A low y intercept in a rectilinear approxi-
mation to data from the larger specimens im-
plies a relatively slight curvature of the true
size-on-size regression. This fact, combined
with the lack of revealing data from small
specimens, makes the use of rectilinear ex-
pressions particularly tempting. On the basis
of the size-on-size plot shown in the lower
portion of figure 12 there would scarcely be
any justification for questioning the validity
of Roedel’s regression (27). But, even with
such subtle differences and inadequate data,
we again find the deficiencies of the rectilinear
size-on-size approximation clearly revealed
when the data are replotted on the open scale
of the ratio-on-size diagram shown in the
upper part of figure 12. Although it is possible
that the slope of the regression for smaller
sizes may be steeper, it seems beyond ques-
tion of doubt that (27), represented by curves
C in figure 12, cannot possibly describe the
mean course of ontogeny below about 120-
150 mm. in length. Nor can there be any
doubt that functions of type (1), e.g., as rep-
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F1G. 12. Ratio-on-size plot (above) and size-on-size plot (below) of the lengths of the
heads of the Pacific mackerel in the Viscaino region according to Roedel (1952). Head
lengths and total lengths averaged for 10-mm. intervals for each sample separately.
Curves C express Roedel’s regression. Other curves represent first (4 and B) and
tentative second (D) approximations suggested by the present writer. (See text.)

resented by the limiting curves A and B in  more credible description of the data avail-
figure 12, or of type (2), very tentatively rep-  able.
resented by curve D,!offer a much better and

Curve D: 100 y/x=32.05—0.027 2 x -+ 0.000 035 2.
The departure of the size-on-size plot of D, for small
1 The regressions expressed by these lines are: values of x, from the band defined by 4 and B could
Curves 4: 100 y/x=31—0.01 x not be visibly rendered on the scale of the lower diagram
Curves B: 100 y/x=29.25—0.01 x in figure 12.



GENERAL DISCUSSION

ONE OF THE MAIN purposes of the preceding
sections is to show that the practice of fitting
limited series of data by functions that cannot
possibly fit the species represented by the
data is not an acceptable procedure in system-
atic research. It is shown by several exam-
ples that the apparent justification of such
functions depends on the lack of material

so that these first approximations, in the
literal sense of time, can become starting
points for the ultimate development of ac-
curate descriptions, by gradual refinement,
rather than having to be discarded and re-
placed. When the morphometric character-
istics of a systematic unit are described in a
manner that involves physically impossible
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F16. 13. Ratio-on-size plot of lengths of pectoral fins in yellowfin tuna of Hawaii, according to
Schaefer’s measurements. Curve 4 expresses Schaefer’s regression; B, the present author’s own regres-
sion. Cross indicates mean of nine measurements between 550 and 900 mm. total length.

rather than on the evidence of the data ac-
tually available, which can also be described
in other ways.

One of the primary purposes and needs of
taxonomy is to develop expressions that de-
scribe a species, or other systematic unit, as
a whole. The task can be approached only if
we induce from the available data functions
combining a fair fit for these data with a fair
possibility of their being serviceable approxi-
mations also beyond the range of the data,

392

mathematical assumptions, it means that the
description is offered with full knowledge that
it cannot actually be valid for the taxonomic
unit concerned and cannot offer a basis for
the development of systematic definitions
by an orderly progress of improvement. Re-
gardless of abstract mathematical merits, it
also seems questionable in logic to use physi-
cally impossible assumptions for the com-
parison of physical realities, even over the
range covered by the data.
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DESCRIPTION OF DATA

In suggesting that serviceable functions
for first and second approximations to the ac-
curate description of fishes may commonly
be found in binomial or short polynomial
series fitted to ratios plotted against absolute
length, the author is fully aware that such
expressions may not be suitable in all in-
stances.

It is true, of course, that rectilinear func-
tions could always be used to define the limits
of the occupied area of a scatter diagram and
could in that sense always be claimed to offer
a first approximation. But the designation
would scarcely have any justification in some
cases. It may also be true that a sufficiently
extended polynomial function might be made
to fit almost any distribution of morphomet-
ric data likely to be encountered. But the
advantage of simplicity would then be lost,

and other functions would become preferable
in most instances.

The usefulness and superiority of the
linear and quadratic functions are shown by
various examples given above, taken from
data previously fitted by other methods that
involved physically impossible assumptions.
It may be of interest to examine a case in
which quadratic functions would provide
merely first approximations of limits, and in
which cubic functions must be sought for a
second approximation.

Schaefer (1952) has provided a very in-
teresting series of measurements of the
lengths of the pectoral fins of the yellowfin
tuna, to which he fitted the following func-

tion:
¥=491.9 log x—1184. (28)

In common with the functions examined
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above, (28) also involves physically impossi-
ble assumptions. As x approaches 0, y ap-
proaches negative infinity. The indicated
length of the pectorals becomes 0 at the very
substantial size of 255 mm.

Figure 13 shows a ratio-on-size plot of
Schaefer’s data in which a curve (4), calcu-
lated from Schaefer’s regression (28), has been
entered for comparison with curve B sug-
gested by the present writer as an expression
of the following equation:
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A positive y intercept (positive value of a)
is normal and natural in the ratio-on-size re-
gression, which makes the choice of a reason-
able fit much easier.

A positive y intercept in a size-on-size re-
gression indicates the assumption of a physi-
cal impossibility under all circumstances and
should therefore not be permissible in system-
atic research.

A negative y intercept of either a ratio-on-
size, or a size-on-size, regression will also in-

100 y/x=16.89 -+ 0.039 495 5 x — 0.000 036 119 4 =2 -+ 0.000 000 008 965 . (29)

It will be seen that the curves representing
(28) and (29) do not differ significantly,
within the size range of the data, except in
the region of maximum curvature from 550
to 900 mm. in total length.!

Over this part of the size range the re-
corded measurements are so few (only nine
out of a total of 204) and so widely scattered
(from 28.6 to 32.8 per cent) that the distribu-
tion of the individual correlation points does
not offer much guidance for a choice between
the two curves. But if the average total length
(774 mm.) and the average pectoral length
(232.222...2 mm.} are calculated for all
of the nine specimens, the average relative
length of the pectorals (30.003 per cent of
total length) agrees almost precisely with
(29), which gives 100 y/x=29.978 at x="774
(a difference of only 0.025) as shown by the
cross in figure 13. The value for 100 y/x cal-
culated from Schaefer’s regression (28) is
30.616, which differs from the mean of the
nine specimens by 0.613.

Again we find, even in this more complex
case, that the accurate description of the data
does not require physically impossible as-
sumptions, and that a better fit is actually ob-
tained from a short polynomial series not in-
volving physical impossibilities.

There are dangers of physically impossible
assumptions inherent in almost any type of
regression that might be used. The dangers
are less and more easily guarded against when
simple regressions are derived from a ratio-
on-size plot than when an attempt is made
to fit a size-on-size presentation of the data.

1 In the size-on-log size and size-on-size plots shown
in figure 14 even the difference in the 550-900-mm.
range seems almost imperceptible.

volve physical impossibilities except when
the data refer to characteristics that actually
do not appear until a certain size has been
reached (e.g., scales in fishes, calcification in
many vertebrates). In the latter case the %
intercept [f(x) =0] should agree with the size
at which the feature makes its first appear-
ance.

Physically impossible assumptions are in-
volved whenever %, or a product of x, forms
the entire denominator of any term in a
size-on-size regression, and if x, or a product
of x, with an exponent of x greater than 1
forms the entire denominator of any term in
a ratio-on-size regression.

Fractions in which the denominator is an
algebraic sum formed by x, or a product of x
and a constant, e.g., a/(k+mx»), may be use-
ful in ratio-on-size regressions, in which such
fractions do not involve physical impossibili-
ties unless they make the entire regression
negative as x approaches 0. In size-on-size
regressions fractions of this type imply a ¥
intercept other than 0, unless the enumerator
is a product of x or the zero value of the frac-
tion is canceled by the zero value of other
terms in the regression.

The regression functions must, in all in-
stances, be tested for the possible occurrence
of maxima or minima at values of x lying be-
tween 0 and a value somewhat larger than the
maximum length attained by the species.
Such maxima or minima may be justified
(see fig. 13) but should always be critically
examined and may often invalidate a chosen
regression. .

ILLUSTRATION OF DATA

The purpose of illustrations, whether pub-
lished or used merely as a tool of research, is
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to help make available for visual comparison
as many of the significant characteristics of
the data as possible. The value of a graphic
presentation must therefore be measured by
what it reveals, not by what it contains math-
ematically but successfully conceals visually.
In the preceding sections of the present
paper many examples are given of the supe-
rior resolving power of the ratio-on-size plot
as compared with the size-on-size diagram.
An even more striking example is provided
by Schaefer’s data on the pectoral fins.
From the ratio-on-size plot in figure 13 we
learn that the yellowfin tuna goes through a
long-finned stage only to revert to a short-
finned form when fully grown. This is in-
formation of considerable interest to students
of evolution, to practicing taxonomists, to
students of the dynamics of fish locomotion,
to physiologists, and to ecologists. It gives
rise to many questions. Does the curve ex-
press a simple growth process, or growth
combined with deterioration from use, ac-
celerated by a change in the mode of life at a
length of about 600 to 800 mm.? Does the
scarcity of data from the 550-900-mm. range
suggest reduced availability to the fisheries
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at this size, which, in turn, might relate to a
change in mode of life at this size? Does the
change in the curve relate to increasing cal-
cium demands from maturing gonads, or to
changed nutrition related to migration or
change of habits, or to increased physical
strain on the fins due to increased locomotion
or changed dynamic properties of the larger
body, or to any combination of these factors,
or to none of them?

Turning to figure 14, we now see that none
of these interesting questions could arise from
a visual inspection of the plot of pectoral
length against the logarithm of total length
used by Schaefer, and here shown at the left.
In this form of presentation the basic infor-
mation about the change in the appearance
of the fish is completely concealed from the
eyve. Even in the simple size-on-size plot
shown at the right the change of form at mid-
size is not visually revealed. The fact that the
information is contained in, and could be
mathematically deduced from, the curves
has nothing to do with the value of these
graphs as visual presentations of the morpho-
logical characteristics of the species and their
ontogenetic development.



SUMMARY

DURING ONTOGENY THE proportions charac-
teristic of a species, race, or population under-
go changes which, in fishes, apparently con-
tinue throughout the life of the individual.

The processes of ontogeny are continuous.
It is therefore not only necessary but should
also be possible to use mathematical func-
tions that will provide continuous approxi-
mations of the actual morphometric char-
acters through all stages of growth.

Beyond the fitting of the data available,
such functions must be of a form that will
not at any point within the size range of the
species indicate integral parts of the whole!
larger than the whole itself, or other condi-
tions contrary to logic and experience. These
requirements are easily met by polynomial
series of low degrees fitted to the regression
upon the whole of the ratio of parts to the
whole or to one another.

For the general purposes of fish taxonomy,
adequate first approximations can often be
obtained from linear (first-degree polynomial)
functions of the general form:

100 y/x=a+bx

In other instances, and for purposes of sec-
ond approximations, one may use functions
of the forms of:

100 y/x=a+bx+cx?
or :
100 y/x=a+bx+cx2+dx3.
Many of the methods of fitting the data
currently used and recommended in ichthyo-

logical research rest upon or lead to physically
impossible assumptions. As a result, the re-

gression functions developed by these meth-
ods are usually incapable of expressing the
course of ontogeny beyond, or even to, the
limits of the data available, which generally
do not include a substantial lower portion
of the size range of the species. As a further
result, these functions are therefore also un-
suitable as a basis for the continued develop-
ment of our knowledge of the species as a
whole, by an orderly process of gradual re-
finement and improvement instead of seriatim
substitutions and abandonments.

That functions using low-degree poly-
nomial series for the regressions of ratios upon
the whole will fit actually available ichthyo-
logical data equally well or better than func-
tions with physically impossible assumptions,
previously applied to the same data, is dem-
onstrated by many examples.

The absolute dimensions of variability are
related to, and limited by, the absolute di-
mensions of the part and thus indirectly of
the whole. Variability, measured in units of
absolute length, must therefore also undergo
a continuous process of change during on-
togeny. Variability can accordingly not be
expressed by absolute constants but must be
described by continuous functions. It is sug-
gested that individual deviations be meas-
ured, in first approximation, as per cent of
the whole, or, in second approximation, as
per cent of the average size of the deviating
part at the given length of the whole. Vari-
ances or other expressions of variability cal-
culated from such measures of deviations will
then take the form of continuous functions
capable of fitting the entire course of ontogeny.
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