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The Theory of Range-Size (RS) Distributions
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ABSTRACT

If the frequency distribution of sizes of geo-
graphic ranges (the range size or RS distribution)
of the species comprising the continental fauna for
a given taxonomic group of organisms is viewed
as a system in dynamic equilibrium and if the
observed “hollow curve” or logarithmic distri-
bution is taken into consideration, it follows that
the geographic range of a species, regardless of its
size, is more likely to decrease than to increase.
Some of the conditions of the system, including
the complications of extinction and speciation, are
examined by simulating the system with a Markov
chain model on a digital computer.

Some general attributes of the system are: di-
versity and the RS distribution are maintained
dynamically, any local change in number of species
or transition probability (TP) ramifies throughout
the system, and the system converges on a theo-
retical equilibrium (that keeps changing, in the real

world). A simple Basic Logarithmic Model that
assumes a logarithmic series of TP values accounts
for most of the variation in RS distributions of
North American vertebrates. The fit of the model
is not improved by making TP values a function
of border length rather than area. The Basic Log-
arithmic Model, regarded as a randomly deter-
mined Null Hypothesis, is rejectable. There re-
main residuals or deviations of data from this
model that need further explanation.

Actual RS distribution curves fof groups of
North American vertebrates can be closely sim-
ulated by specifying six values: minimum and
maximum possible ranges, a logarithmic series of
TP values, an inflection point (somewhere be-
tween 5.0 and 6.3 km?), and TP ratios (of the
probability for an increase, I, to that for a decrease,
D) between 0.66 and 0.75 above the inflection
point and from 0.85 to 0.89 below.

INTRODUCTION

A general theory for the frequency distri-
bution of range sizes of species in a conti-
nental faunal system is developed here. The
effects of various assumptions about in-
creases and decreases in ranges, extinctions,
speciation, and other processes on the model
are examined. The range of conditions that

produce specific models resembling faunal
data for North American vertebrates are
found by trial and error with a computer by
using a Markov chain process.

The frequency distribution of the sizes of
geographic ranges of species in each of the
different groups of vertebrates in North
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Americais a “hollow curve” (Anderson, 1977,

1984a, 1984b). Hollow curves for range sizes
were reported also for North American mam-
mals and for African birds by Rapoport
(1982). Fishes have relatively small ranges
and birds have relatively large ranges among
North American vertebrate groups (fig. 1).
Some aspects of these distributions that are
not otherwise evident may be revealed by
changing the scales of graphical presentations
(compare fig. 2 with fig. 1).

Species with small ranges are more com-
mon than those with larger ranges. The num-
ber of species decreases by about an order of
magnitude for each increase in range size of
an order of magnitude, except at the small
end of the scale (fig. 3). Between values of
102 and 2 x 107 km?, the relationship of
numbers of species per 100 km? increment
in range size (y) having ranges of different
sizes (x) takes the form: y = 100 x x~!, All
range measurements are here considered on
a decimal scale and in km?2. Range sizes in a
given group vary over several orders of mag-
nitude (fish, for example, vary over at least
six orders of magnitude).

The precise form of the frequency distri-
bution varies from group to group. Some-
times the curve approximates a lognormal
distribution (fig. 4), but what, if any, biolog-
ical significance this particular distribution
may have is not clear.

DEFINITIONS

A few terms and concepts need to be de-
fined because they are not familiar or because
they are used in one restricted sense here.

Diversity. The number of species in a fauna.
This is the simplest of several generally used
measures of diversity.

Fauna. The combination of species of a
given larger taxonomic group that are present
in a given geographic area. For example, we
may refer to the mammalian fauna of North
America.

Hollow curve. Any highly concave curve,
such as those shown in figure 1. Such curves
are produced by a great variety of circum-
stances both actual and mathematical (for a
historical review and some examples see An-
derson, 1974, for theoretical and mathemat-
ical background see Boswell and Patil, 1971).
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Range size (RS). The geographic extent or
area of the distribution of a species. In the
studies of North American vertebrates re-
ferred to here, the entire area within a curving
linear boundary drawn somewhat subjec-
tively around known localities on a map was
measured in km?; this measurement was then
rounded to one significant figure.

RS distribution. The frequency distribu-
tion of sizes of geographic ranges of species
in a given larger taxonomic group being con-
sidered in a given geographic area, such as
turtles in North America.

Transition probability (TP). The probabil-
ity that a species with a given size of geo-
graphic range will either increase or decrease
its range by a given amount in a given time.
D will refer to a TP for a decrease and I for
an increase.

FACTORS PRODUCING A GIVEN
DIVERSITY AND RS DISTRIBUTION

At any one time, diversity and RS distri-
bution are the products of the following con-
ditions and processes. Any general or com-
prehensive theory or model of diversity and
RS distributions must embody at least these
six factors.

Factor 1. Past diversity. The diversity at
any one time is viewed as the net result of
the additions to and removals from some ear-
lier diversity. Therefore, that earlier diversity
must be taken into account in modeling a
system in which diversity changes with time.

Factor 2. Past RS distribution. If the RS
distribution is viewed as changing from some
prior condition under the influence of changed
TP values (factor 3), then the prior condition
(factor 2) is important in describing the entire
process.

Factor 3. Transition probabilities. These are
mathematical expressions inferred from the
observation that ranges of certain sizes are
more common than ranges of other sizes,
whatever the causes may be.

Factor 4. Sizes of ranges of species added
to the fauna. In modeling RS distributions
over long (evolutionary) periods of time some
assumptions must be made about the nature
of the process of speciation and the conse-
quent distribution of sizes of ranges of species
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arising in situ or being added to the fauna
from some outside source.

Factor 5. Additions. Additions to the
world’s biota (defined as the species there-
upon) come only from the evolutionary pro-
cess of speciation.

Additions to any geographical subset of the
world’s biota, such as the fauna of a conti-
nent, can also come from some other part of
the world. This arrival may result from suf-
ficient individuals dispersing across the in-
tervening barrier to establish a self-main-
taining population, or by the disappearance
of a barrier as in the merging by tectonic
movements of the earth’s crust of two or more
formerly separate land masses with different
faunas.

There are intermediate conditions between
the complete separation of land masses and
their complete merger and there is much bio-
geographical literature dealing with these
conditions, under topics such as island bio-
geography, land bridges, and great faunal in-
terchanges (between North and South Amer-
ica, for example). And, chiefly in regard to
smaller areas and shorter time intervals, there
is also a large volume of ecological literature
dealing with relative degrees of separation of
habitat patches and their causes and effects.

Three different probabilities are relevant
here.

A. The probability that an individual of a
species not already part of the North Amer-
ican fauna, for example, will arrive in North
America from another part of the world var-
ies with the species and with the larger group
of organisms. Extreme examples are: in some
species of birds the probability for each year
is near one since stragglers are observed near-
ly every year; and in some species of fish the
probability is effectively zero, it being un-
likely that any living individual has ever
moved from one continent to another.

B. The probability that a resident self-per-
petuating population of a species represented
by these dispersing individuals will become
established in North America is much lower
than the preceding probability and generally
higher than the probability described in the
next paragraph.

C. The probability that a species will be
added to the fauna of North America by
merger of large land masses is much lower in
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most groups. This sort of event occurs every
few tens of millions of years. However, when
it does occur a relatively large readjustment
of the fauna may follow.

Of the above probabilities, A and B are
logically related and seem reasonable; C is
more subtle and less certain. There may be
groups of organisms having small size, small
ranges, lack of dispersal abilities, or other
attributes such that the probability of trans-
ferral to and establishment on another con-
tinent is actually lower for A or B than for
C, even though C is very low.

Factor 6. Removals. In modeling RS dis-
tributions, some assumptions must be made
about the processes that remove species from
the fauna, namely extinction and continental
fragmentation:

Extinction of the resident population of a
species on a continent under consideration
removes the species from that continent’s
fauna whether or not the species continues
to survive elsewhere. Extinction occurs more
frequently than continental fragmentation.
Continental fragmentation is a relatively rare
event.

The probable rates of these two removal
processes are important to the theory and
practice of biogeography. How does the RS
distribution (in regard to both sizes of ranges
and their placement on the continent) influ-
ence the probability that a given species will
be removed by a given continental fragmen-
tation? This process will not be included in
the models developed here. Some related
questions, concerning the merging of conti-
nents rather than their fragmentation, were
discussed briefly by Anderson and Evensen,
1977.
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MODELING RS DISTRIBUTIONS

The RS distribution is here simulated as a
system in a series of models on a computer.
The expectation in developing these models
and comparing them with real data is not that
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a model will be found that fits the data and
therefore absolutely proves that the assump-
tions of the model are correct. Firstly, models
are inherently simplified and, secondly, there
may be other models that also fit. However,
when the model does not fit, then probably
one or more of the assumptions of the model
are not valid for the real system being sim-
ulated. The process, as I view it, is one of
testing alternatives in order to decrease or
increase our confidence in them, rather than
absolutely proving or disproving them. Com-
puter models simulating natural systems can
be useful in winnowing and testing hypoth-
eses.

Let us make some initial assumptions about
the system and about the model itself.

1. Diversity is maintained dynamically.
The faunal diversity of any given geographic
area can be viewed in the terms of speciation,
colonization, extinction, and emigration (see
Williams, 1964, for examples and discussion
of “birth-death” models in general). Thus di-
versity is dynamic in the sense that active
processes are involved.

2. An RS distribution is dynamic. An RS
distribution also is dynamic because the sizes
of individual ranges change frequently, on a
time scale of a few years. The changes vary
from relatively minor oscillations about a
species boundary with the average position
remaining about the same for hundreds of
years to large-scale shifts in which the bound-
ary retracts in some places and expands in
other places. In extreme cases this may result
in the total range moving from one place to
another completely different place. There were
major changes of this type in some North
American species in the Pleistocene as ice
sheets advanced and contracted.

3. There are no additions or removals. This
assumption is made as an initial simplifica-
tion (in models A through E) in order to ex-
amine more easily how the RS distribution
relates to different TP values. Additions and
removals are then considered in models F
through 1.

The system as a general conceptual model
was examined as a Markov chain process on
a digital computer. It might also be manip-
ulated on an analog computer or as a Monte
Carlo model on a digital computer by track-
ing individual species ranges whose changes
are determined by the use of random num-
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bers in such a way that their average shifts
conform to specified TP values. The Mar-
kovian simulation was selected because it is
relatively easy to create and manipulate and
is an adequate approximation to actual op-
eration of such a system. The computer mod-
el is also simplified by following changing
probabilities (which usually have fractional
values) of cell contents through sequences of
probability cycles. A different and more com-
plex model would be needed to maintain only
integral values to represent species in each
cell. In reality, of course, species are not frac-
tional and the number of species in any given
cell at any one time is an integer value.

The basic methodology of the model is that
values are grouped into cells. A cell is an
arbitrarily defined range of measurements (in
this case of sizes of geographic ranges). For
example, we might consider range sizes as
grouped into cells of 1000 km? intervals and
place all range sizes (regardless of where the
species occur) of from zero to 1000 (all dis-
cussion of range sizes is in terms of km?) in
the first cell and ranges from 1000 to 2000
in the second cell, etc.

4. Movements occur only between adja-
cent cells. We assume that a species cannot
move from one cell to a given larger or small-
er cell without passing through any inter-
mediate cell or cells in the linear series.

There is a special case in which this is not
true, namely the vicariant division of a species
by evolution. In this case some barrier arises
which divides a species range into two parts.
The population of one or of both of the parts
then changes until finally they are different
species. By this process the range of the orig-
inal species is divided directly into two parts
without either of the parts passing through
the intermediate range sizes between the orig-
inal range and the range of the daughter
species. This process is included in one of the
later models (H) developed here. It is negli-
gible over short time intervals and therefore
in most ecological modeling, but it is impor-
tant over long periods and in modeling evo-
lutionary events.

Suppose that a species on its way to ex-
tinction undergoes a contraction of its RS
(which passes through successive cells) until
it reaches the minimal cell and eventually
passes from that cell to extinction. This is
probably the usual course of extinction. In
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contrast, however, it is theoretically possible
to suppose that the individuals comprising
the total population of a species might be-
come fewer and fewer, until a widely scat-
tered and very low-density population sud-
denly ends with the simultaneous death of
the last widely scattered individuals, in which
case the RS would not pass through succes-
sively smaller range sizes as it approached
extinction. This scenario seems much less
probable than the former and therefore will
not be considered further in the modeling
here. These considerations are relative to the
scales of space and of time being considered;
for example, the few years required for the
elimination of the passenger pigeon are prac-
tically an instant, from the perspective of a
geological time scale. Evolutionary and eco-
logical effects of time scales and of random-
ness were discussed by Levandowsky and
White (1977). Another interesting presenta-
tion of effects of scale on form, from a more
mathematical and theoretical perspective, is
that of Mandelbrot (1982).

5. Transition probabilities are defined.
These probabilities express changes from one
cell to another. The terminal cells, the ones
for the smallest and largest possible range
sizes, must have different TP functions than
the intermediate cells, because the definitions
of maximum and minimum exclude the pos-
sibility of transition to a larger or smaller size,
respectively.

Considering only two cells, if the TP (in
any given interval of time) for an increase in
RS were 0.2 and for a decrease were 0.1, then
at equilibrium the number of species in cell
1 would be half that in cell 2. If the number
of species in cell 1 is N(1) and in cell 2 is
N(2), then equilibrium is reached when:

N(1) x 0.2 =N(2) x 0.1

To generalize the above example, if the TP
for an increase from cell 1 to cell 2 = I(1),
from cell 2 to cell 3 = I(2), . . . I(n), and if the
TP for a decrease from cell 2 to cell 1 = D(2),
from cell 3 to cell 2 = D(3), ... D(n), then
the content of any cell n will be:

Nmn)=N@m — 1) X I(n — 1) + N(n)
X (1 — D(n) — I(n))
+ Nn + 1) x D(n + 1)

At the equilibrium point the net rate of
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outflow from each cell would equal the net
rate of inflow.

6. The system converges on equilibrium.
Given the transition probabilities between all
cells in the entire linear sequence of cells, an
equilibrium will be approximated eventually
which will be the same regardless of the initial
RS distribution of species. This can be dem-
onstrated by constructing a model via a com-
puter program that will accept any initial RS
distribution and then run through repeated
cycles in which the contents of each cell are
multiplied by the specified TP values and the
contents of the cells are adjusted accordingly.
In strictly mathematical terms, the above sys-
tem converges on equilibrium rather than ab-
solutely reaches it. In reality, conditions ex-
ternal to the species themselves may never
remain constant long enough for a close ap-
proach of conditions to equilibrium. If this
is true, then the system tracks a changing the-
oretical equilibrium.

There may be another equilibrium at a
higher level of abstraction in which some fau-
nal phenomenon is approaching a theoretical
equilibrium condition at the same rate that
the external conditions are changing. This as-
sumes that environmental conditions are
changing in such a way that the theoretical
equilibrium state is moving away from the
actual current state of the faunal phenome-
non rather than toward it. The faunal phe-
nomenon referred to might be the RS distri-
bution, as in the present context, or it might
be the morphological adaptations of species
or taxonomic diversity in some other evo-
lutionary context. The distance from the cur-
rent state of the RS distribution to the current
theoretical equilibrium might then remain
constant. The RS distribution would then be
tracking the changing environment at the
same rate that it is changing.

7. Changes ramify through the entire sys-
tem. An interesting property of such a system
is that any change of the TP between any two
cells in the entire system or any change in the
content of a cell anywhere in the system will
result in a subsequent readjustment of cell
contents throughout the system.

GRAPHICAL REPRESENTATIONS

There are many graphical means for sum-
marizing frequency distributions such as the
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FiG. 1.
ican fishes (F) and birds (B). The percentage of species in each 1 million km? size-class is shown on an
arithmetic scale.

RS distribution. Most people are more or less
comfortable with simple frequency histo-
grams using arithmetic scales (like that shown
in fig. 1). Those who are uncomfortable with
anything else will be uncomfortable with most
of what follows because a simple arithmetical
frequency histogram is virtually useless in the
present context. Various more abstract graphs
are needed to illustrate what is happening.
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Hollow curve distributions illustrated by frequency histograms of range sizes of North Amer-

The frequency histogram (as shown rather
elaborately in fig. 1) for RS distributions has
already undergone one conversion from the
raw data. The ordinate has been converted
from absolute values to percentages so that
fish and birds may be compared more easily.
Both axes are arithmetically scaled, however.

In figure 2 (showing fish only), the vertical
axis of figure 1 has been converted to a log-
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Fig. 2. The effect of converting the vertical
scale from arithmetic to logarithmic. Frequency
histogram for fish, data as in figure 1.

arithmic scale. A logarithmic distribution is
suggested by the approximation of the fre-
quency values to a straight line. This rela-
tionship was not clearly evident in figure 1.

In figure 3 (from Anderson, 1984b; and in
subsequent figures), the horizontal axis also
has been converted to a logarithmic scale and
it is now possible to see logarithmic relation-
ships that were not so evident in figures 1 or
2. In comparing figures 2 and 3, note that the
logarithmic relationship that is evident in fig-
ure 3 lies entirely within the leftmost cell of
figure 2. The value of 1 x 10°is marked with
an asterisk on both figures to emphasize this
difference. Figure 2 reveals information about
sizes of ranges larger than 1 x 106 that is hid-
den at the extreme right in figure 3 and figure
3 provides information about sizes of ranges
smaller than 1 X 109 that is hidden at the
extreme left in figure 2. -

A graphical test for lognormality is pro-
vided in figure 4. The vertical axis is a prob-
ability scale and the horizontal axis is a log-
arithmic scale. A straight line for the plotted
cumulative frequencies would indicate a log-

SIZE OF AREA IN KM2

FiG. 3. The negative area-rarity correlation
(from Anderson, 1984b). Graph for North Amer-
ican fish, amphibians, and reptiles showing num-
bers of species (averaged for each succeeding order
of magnitude) having ranges of any given size.
Counts of species are expressed in terms of the
number per 100 km? increment.

normal distribution. These RS distributions
are logarithmic but not exactly lognormal,
although the approach is close for the reptiles
R).

In figure S5, the values are plotted cumu-
latively, with the percentages of species scaled
arithmetically at the left and logarithmically
at the right. All data points except the right-
hand one for each frequency class are omitted
and a line is drawn connecting these terminal
points in order to make the pattern easier to
see. Figures 1 through 5 are different ways of
looking at the same set of data.

Any cumulative curve of this type will be-
gin at the upper left of the graph and end at
the lower right. The left curve in figure 5 is
the type used for data on various vertebrate
groups in earlier studies (Anderson, 1977,
1984a, 1984b) and this type of curve is used
here to compare the models simulated on
computers.

SELECTED MODELS

Model A. This, the Basic Random Model,
may be regarded as a Null Hypothesis in-
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Fig. 4. A test for lognormality. Cumulative
percentages of species in x 10 (1-10, 11-100, 101-
1000, etc.) log classes of geographic ranges in km?
(abscissa) are plotted against cumulative percent-
ages on a probability scale (on the ordinate), to see
whether distributions are lognormal. This would
be the case if points fell on a straight line. Fish (F)
and reptiles (R) are plotted. Neither is precisely
lognormal although reptiles approach that con-
dition (from Anderson, 1984b).

volving the simplest possible assumptions
about transition probabilities. We will sub-
sequently reject the hypothesis, but this mod-
el is theoretically possible, not unreasonable,
and helpful in thinking about the system. The
simple assumptions are:

(1) Cells are of equal size on an arithmetic
scale.

(2) Transition probabilities are equal. All
species have the same probabilities for change.
The TP for an increase (I) of a given absolute
amount (in km?) in range size is equal to the
TP for a decrease (D) of like amount.

Given these conditions, the RS distribu-
tion will be uniform among ranges of all pos-
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sible sizes. If the distribution is not uniform
initially, then it will move toward uniformity,
regardless of the initial distribution.

The upper boundary condition or maxi-
mum for sizes of ranges of terrestrial animals
in North America is about 2 X 107 km? which
is the area of the continent (as treated by
Anderson, 1977, 1984a; south through Pan-
ama). The theoretical minimum might be
perceived as the space occupied by the last
individual of a species just before it dies (about
1 x 10-¢ km?). Although there are a few
species that actually have ranges smaller than
100 km?2 (such as several species of pupfish
each known to inhabit only one tiny isolated
spring in the deserts of the Great Basin), I
have arbitrarily assumed, for practical pur-
poses, a minimum RS of 100 km?2.

If the sizes of ranges for each group in figure
3 were distributed uniformly among all pos-
sible sizes, the line for each group would be
horizontal. Since the lines are not horizontal,
one or more of the assumptions of Model A
is invalid. The minimum, maximum, and cell
dimensions are axiomatic, so the assumption
of equal TP values is not tenable. Clearly a
logarithmic model would fit better than an
arithmetic one. It seems reasonable to equate
an increase of say 5 percent in one range size
with 5 percent in another one, even though
the absolute change is quite different.

Model B. The Basic Logarithmic Model.
This might also be termed the Smaller is Bet-
ter Model. A logarithmic relationship could
be embodied in the Markovian model by
specifying cell dimensions logarithmically, by
specifying the TP logarithmically, or both.
The assumptions of Model B, which involve
both, are:

(1) Cells are of equal increments on a log-
arithmic scale. The possible range sizes are
arbitrarily placed in 54 cells (with values of
2.0,2.1,...,7.3, to encompass actual ranges
from 1 x 10?2 to 2 x 107 km?).

(2) Transition probabilities are equivalent
between all cells, in the sense that all species
have the same probabilities for an increase
or decrease sufficient to move the species to
an adjacent cell.

The amount of change on an arithmetic
scale needed to do this is not equal as a per-
centage, however. For example, the change
from the midpoint of the cell with the value
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Fic. 5. Graph showing the effect of plotting the same data for fish that were used in figures 1 and 2
as a cumulative frequency, and the effect of using arithmetic and logarithmic ordinate scales. Percentages
are shown on the ordinate and are expressed on an arithmetic scale at the left and a logarithmic scale

at the right.

of 2.0 on a log scale (=100) to the midpoint
of the adjacent cell with the value of 2.1
(=125.89) is 25.89, which is 25.89 percent of
100 and 20.57 percent of 125.89. The same
percentage relationships apply to every pair
of adjacent cells. If we assume, as mentioned
above, that equal percentage changes are
equivalent for purposes of our Null Hypoth-
esis, then a change of 25.89 percent is less
likely to occur than one of 20.57 percent. The
TP ratio of I/D is 0.79.

In figure 6 the results of two computer runs
(p for changes between cells = 0.1 in both
directions) beginning with different RS dis-
tributions, illustrate the convergence of the
system on an equilibrium. A diagonal line
represents the equilibrium in which there
would be equal numbers of species in each
cell (as in Model A, except that the cells are
now of logarithmically graded sizes).

Model C. An Exaggerated Smaller is Better
Model. The effect of making the I/D ratio less
than that of the Basic Logarithmic Model

(0.79) is shown in figure 7. The ratio here is
0.26 [0.26 = (0.1/0.3) x 0.79, where 0.1 and
0.3 are the probabilities for changes from cell
to cell].

The computer run began with species uni-
formly distributed among all cells. The RS
distribution converges on a curve to the left
of the curve for 400 cycles, in which each cell
will have three times as many species as the
next larger cell and the most species, of course,
will be in the smallest possible cell.

Comparison of figures 6 and 7 with the left
curve of figure 5 (representing an actual RS
distribution drawn in a comparable way) in-
dicates that Model B is closer than Model C
to the real distributions. Departures of sev-
eral real distributions from the condition of
Model B are shown in figure 8.

The probability ratio (I/D) of 0.26 drives
the curve of figure 7 far to the left. A ratio
closer to 0.79 would drive any beginning curve
to an equilibrium position more or less par-
alleling the intermediate curves of figure 7,
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FiG. 6. The Basic Logarithmic Model, with I/D ratio of 0.79 (or with equal probabilities between
log cells of increases and decreases). Sets of curves showing changes in cumulative percentage distributions
of range sizes in computer simulations after various numbers (doubling values) of cycles. At the left are
curves after 50, 100, etc. cycles, beginning with all species in cell 1 (the smallest possible value), and
with transition probabilities of 0.1 in both directions for every cell. At the right are curves, beginning
with all species in the cell for 1 x 103 km?2, and with the same TP values. In all such cases the distribution
converges (arrows) on the diagonal line, which represents the system with equal numbers of species in

each cell.

and the nearer the ratio is to 0.79, the nearer
the equilibrium curve will be to the diagonal
line. In all cases, however, the curve will lie
below the diagonal.

Model D. A Reduced Ratio Model (less
bias in favor of smaller ranges). The effect of
making the I/D ratio more than that of the
Basic Logarithmic Model (0.79) is shown in
figure 9.

Since the curves representing actual RS
distributions of North American vertebrate
groups mostly lie above the diagonal (all are
within the shaded area in fig. 9), the proba-
bility ratio (I/D) for the animals must be, in
some significant part, more than 0.79 (al-

though still less than 1.0). The other curves
are sample equilibrium curves when the ra-
tios of probability of decrease to that of in-
crease is 0.79 and four values more than 0.79.
In contrast to the condition shown in figure
7, all curves lie above the diagonal.

Model E. The Border Model. The previous
models make the transition probability a
function of the size of the range (a two-di-
mensional area). Since the only place that a
range can change in size is at its border, it
might be more reasonable to make the prob-
ability of change a function of the length of
the border (which is measured in one dimen-
sion). This model tests the effect of making
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FiG. 7. The Exaggerated Smaller is Better Model. Intercellular transition probabilities of 0.3 and 0.1
are given. Computer simulation of system, beginning with equal numbers of species in all cells, showing

cumulative curves after various numbers of cycles.

the probability a function of length of the
border rather than size of area. Assumptions
of the model are:

(1) Cells are logarithmically equal as in
Models B to D.

(2) Transition probability functions are
equal for increases and decreases for each cell,
but are a function of the square root of the
area represented by each cell.

The square root of the area expressed as a
percentage of the size of the area ranges from
10 for the smallest cell (1 x 102) to 0.02 for
the largest cell (1 x 107-3). Each cell has a
slightly lower TP for a decrease (D) than the
smaller of the two adjacent cells has for an
increase (I) and so at equilibrium will have
more species than the smaller cell. The sys-
tem at equilibrium was computed and dis-
plays a curve slightly above that labeled 0.87
in figure 9.

The relation between length of border and

area of range will depend on the shape of the
range including its gross dimensions and the
fine structure of the border (Rapoport, 1982).
The smallest border for a given area occurs
when the area is circular. An oval, rectangle,
or any other shape for an area of the same
size will have a longer border. There is no
maximum border length in theory unless one
postulates a limit on how finely folded a bor-
der can be (Mandelbrot, 1982).

It has been noted (Cain, 1944; Anderson,
1984a) that some species ranges tend to have
greater longitudinal spans than latitudinal
spans. Rapoport (1982, p. 151) plotted the
long axes of mammalian ranges on a map of
North America and of bird ranges on a map
of South America and thus presented a more
detailed picture of the orientation of long
axes. Most of these axes parallel coastlines or
mountain ranges rather than latitudinal lines.

If the average North American mammal’s
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FiG. 8. The residuals or percentage points by
which cumulative distributions of range sizes of
different groups depart from the Basic Logarithmic
Model as explained in text. The range size with
the greatest departure is the “most favored.” The
groups are fish (F), salamanders (C for Caudata),
mammals (M), frogs and toads (A for Anura),
snakes (S), and birds (B). The geometric means of
range sizes (not of the departure values shown) are
indicated by arrows.

range were a straight-sided rectangle, the
length would need to be 25 times the width
in order to provide a border of the measured
length (based on Rapoport’s measurements
for 62 species). Because actual borders are
irregularly curved rather than straight lines,
the greatest length of a range is generally less
than 25 times its gross width. In Rapoport’s
data the border is 10.34 times the square root
of the area on the average, and the correlation
of area and this multiple (values from Ra-
poport’s table, p. 26, calculated by me) was
r = 0.54. The range of a population (such as
a colony of mold on an agar plate) expanding
from a propagule in an isotropic and suitable
medium is circular. Few vertebrates are in
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that situation and a nearly circular range is
unusual. These are all interesting aspects for
consideration in developing more detailed
models than those discussed here.

Model F. An Extinction Model. In models
A to E, the number of species has been held
constant and the effects of different assump-
tions about range sizes and probability func-
tions upon the RS distribution have been ex-
amined. In this model extinction will be
assumed to occur and its effects will be ex-
amined. Assumptions of this model are:

(1) Cells are equal increments on a loga-
rithmic scale as in models B to E.

(2) Transition probabilities are equal as in
Model B.

(3) Extinctions occur from cell 1 with the
same probability as all other transitions.

In the first computer simulation under these
assumptions (fig. 10), TP is set at 0.2 (for all
transitions between any two adjacent cells and
for the transition from cell 1 to extinction).
Since no provision has been made for addi-
tions of species to replace those removed by
extinction, this system will gradually decline
in diversity and converge on total extinction
of the fauna. What we are interested in ex-
amining is the effect of the extinctions through
the one-way gate at the bottom of the RS
distribution upon the shape of the cumulative
curve for that distribution. This simulation
begins with 1080 species uniformly distrib-
uted among cells (represented by the diagonal
line in fig. 10). The original fauna of 1080
has been reduced to 887 after 400 cycles. If
the data for the 400-cycle curve below the
diagonal are plotted as cumulative percent-
ages of these 887 species, the curve repre-
sented by the broken line above the other
curves is produced.

Model G. Extinction with Replacement
Model. The previous Extinction Model con-
verges on an equilibrium only in oblivion,
when all species are extinct. In order for the
system to reach a different equilibrium it is
necessary to postulate the addition of new
species. Two sources of new species have been
noted above. For purposes of this simplified
model, the computer program was modified
to add a new species whenever a species be-
came extinct. Assumptions of this model are:

(1) Cells are logarithmic as in models B
to F.



1985

ANDERSON: RS DISTRIBUTIONS 13

'OOT =
% -

T

5

LOG KM?

Fi16.9. The Reduced Ratio Model. Graph of a sample of five cumulative curves showing equilibrium
states when the I/D ratio is greater than 0.79. These equilibrium curves all lie above the diagonal. The
cumulative curves for actual RS distributions of North American vertebrates all lie within the shaded
area. The lower border is the curve for freshwater fish and the upper border is that for birds.

(2) Transition probabilities (set as 0.2) are
equal as in Model F.

(3) Extinctions occur from cell 1 as in
Model F.

(4) A new species with range size of 4.0 on
alog scale, as explained below, is added every
time that an extinction occurs.

The results of a computer simulation of
Model G are shown in figure 11 (numbered
solid curves above the diagonal line). Model
G does provide a better fit to actual RS dis-
tribution curves (such as the left curve in fig.
5) than any of the other models, however
there are the following noticeable differences:

(1) Conspicuous peaks in the residuals (as
shown in fig. 9). If the base level were ad-
justed to reflect the equilibrium curve being
approached by the Extinction with Replace-

ment Model rather than the diagonal line (of
fig. 11, which is also the baseline for fig. 9),
these peaks would be lower but would re-
main.

(2) Most peaks are at larger range sizes than
in the model.

(3) Species in the largest range sizes in most
groups are relatively few.

The above selection of 4.0 as the range size
of species to be introduced was arbitrary but
not capricious. The rationale for selection is
as follows. If a range of any given size is as-
sumed to divide at random (as a broken stick
in this example, for reasons discussed by An-
derson and Evensen, 1977) into two parts (for
the fission products or species present after
an allopatric or parapatric vicariant event of
speciation), the larger of the two parts on the
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FiGc. 10. The Extinction Model (shown below the diagonal line, beginning with 20 species in each
cell and with all transition probabilities set at 0.2) after various numbers of cycles. The percentage scale
for these curves is of the initial fauna of 1080 species, which declines over time with extinctions, there
being no replacements to compensate for these losses. Above the diagonal is the “Extinction-Replacement
Model,” which has conditions as in the Extinction Model except that a new species having a range size
(A) of 4.0 is added for each species that becomes extinct. The broken line is explained in text.

average will equal 0.75 of the original range
and the smaller will equal 0.25. Because of
the logarithmic scale of cell sizes, the two
resulting ranges will, on the average, fall in
the first and the sixth cells below the original
cell. For example, a range of 100,000 would
divide into ranges of 75,000 and 25,000. The
logs of these three values are roughly 5.0, 4.9,
and 4.4. Since the median cell has a size of
4.7, its fission products would have sizes of
about 4.6 and 4.1. The latter value was
rounded to 4.0 for the size of the added species
and the originating value was not changed.
This simplified the calculations and was
deemed acceptable since the TP values tend
to reset the RS values toward equilibrium
relatively rapidly anyway.

In the following model this splitting of

species to yield additional species is ex-
pressed in more detail. The presumed size or
range of the average species being split is in-
creased by an order of magnitude to see if the
discrepancy (2, just above) of larger range
sizes would be thereby reduced, and a better
fit of model to data achieved.

Model H. A Second Extinction-Replace-
ment Model, assumes that species with
smaller ranges are less likely to split than
species with larger ranges and will examine
how this affects the RS distribution curve.
The assumptions of this model are:

(1to 3) Asin model G and earlier models.

(4) The average species undergoing fission
is assumed to have an RS value of 5.7, or ten
times the median size of 4.7 in Model G.

The computer program was modified to




1985

ANDERSON: RS DISTRIBUTIONS 15

100
%

50

@) T T l T 1
2 3 4 5 6 7
LOG KM?3
FiG. 11. The Extinction-Replacement Model as in figure 10, but with a species of size A divided

into two species of sizes B and C each time a species becomes extinct. The simulation began with equal

numbers of species in each cell.

reduce the RS of one species (the one being
split) from 5.7 to 5.6 and to add a species at
5.1 each time an extinction occurs from cell 1.

Results of the simulation under Model H
are shown in figure 11. The position of the
greatest departure of the curve from the Null
Hypothesis lies farther to the right than in
Model G, but otherwise the shape of the curve
is not much closer to the data. In the data
the peak is higher and the curve drops below
expectation in the high range sizes.

The models tested thus far show that the
introduction of extinctions and species di-
visions moves the theoretical RS distribution
curve of the Basic Logarithmic Model toward
the actual RS distribution curves, as does the
division of species with larger than average
ranges rather than species selected at random.
The actual RS distribution curves differ from
the best approximation under the conditions

of models A to H. In these models there are
relatively uniform gradients of transition
probabilities. In reality, the probabilities for
changes of ranges vary in a slightly more sub-
tle way.

Model I. A sigmoid Curve Model. The as-
sumptions of this model are:

(1) Cells are logarithmic as in models B
to G.

(2) There is an inflection point of geo-
graphic range, below which the ratio of I/D
is more than the basic ratio of Model B, and
above which the ratio is less.

By changing one or more of the three val-
ues, namely the inflection point of the sig-
moid curve of the cumulative distribution,
the ratio of I to D below the favored size,
and the ratio above it, we can observe how
the change affects the RS distribution curve
in computer simulations.
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Fig. 12. The Sigmoid Curve Model. Computed cumulative equilibrium curves when the inflection
point is assumed to be 4.5. Below this value the ratio of the probability for an increase (I) and that for
a decrease (D) is less than the ratio (0.79) stipulated in the basic logarithmic model. Ratios of 0.9 and
0.8 (in the area below 4.5) are shown in sample curves, and (above 4.5) ratios of 1.01, 1.05, and 1.1 are

illustrated. See discussion in text.

Although species with ranges smaller than
the inflection point have a greater ratio (I/D)
than occurs under the conditions of Model
B, the basic probability for contraction, as
measured in absolute arithmetic units, is still
greater than for expansion.

In figure 12 are shown the computed equi-
librium curves (cumulative percentages) when
the I/D ratio is set at 0.88 for range sizes
below 4.5 and at three different values less
than 0.79 above 4.5. As seen in figure 7, a
ratio of less than 0.79 produces a curve that
bulges downward and (as seen in fig. 10) a
ratio of more than 0.79 produces an upwardly
bulging curve. For comparison, the broken
line shows the equilibrium curve when the
TP ratio below 4.5 is set at 0.99 instead of
0.88 and the ratio above 4.5 is set at 0.75.

The cumulative curve now approaches the

sigmoid form of the real curves (within the
shaded area of fig. 10). The inflection point
(which is 4.5 in the examples of fig. 13) must
be adjusted as shown in figure 14 to closely
approximate the real curves. By trial and error
it was established that the inflection point
here is in the 5.0-6.3 range. The I/D ratio
below the inflection point must be adjusted
to the 0.85-0.89 range and above the inflec-
tion point it must be adjusted to the 0.66—
0.75 range.

In summary, the real curves can be sim-
ulated rather closely by specifying (1) the
minimum and maximum values, (2) a loga-
rithmic series (of cell dimensions or of TP
values), (3) the inflection point, and (4) the
TP ratios, which are always more than 0.79
below and always less than 0.79 above the
inflection point. Furthermore, the difference
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FiG. 13. Sigmoid Curve Model as in figure 12, but adjusted so that the curves approximate actual
data curves such as the upper and lower curves of the shaded area in figure 9. See discussion in text.

from 0.79 of this ratio is always greater below
than above the inflection point.

The three fitted variables, used to obtain
the curves in figure 13, are the I/D ratio among
range sizes of less than the inflection point,
the ratio among values greater than the in-
flection point, and the inflection point itself.
These values are shown in figure 13. The low-
er curve approximates the real curve for fish
and the upper curve approximates the real
curve for birds.

EXPLAINING THE RS DISTRIBUTION

The hollow curve or logarithmic frequency
distribution is the most obvious general pat-
tern when range sizes for a continental fauna
are considered. It may well be asked what, if
any, ecological implications the RS distri-
bution has, or how it may be explained eco-

logically or in terms of the individual species
of the fauna.

The “Basic Logarithmic Model,” in which
all species are equally likely to increase or
decrease their ranges sufficiently to move from
a given logarithmically dimensioned cell to
an adjacent cell, is a (Null) hypothesis which
accounts for most of the variation in range
sizes of North American vertebrates. But
there is residual deviation of data from this
Null Hypothesis including differences be-
tween groups (fig. 8) and patterns within
groups that need further explanation.

It might become possible to reason from
knowledge or theory about the characteristics
of individual species, other than the mea-
surements of range sizes themselves, to the
observed RS distributions. However, any such
reasoning would need to consider the envi-
ronment as well as the characteristics of the
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species. It is not possible to reason from the
observed generality about RS distributions to
what the RS for any one species will be.

The main ecological implication here is that
in many complex situations, ranging from the
“community” ecology of microorganisms or
mites in a cubic meter or soil to the biota of
a continent, the best single predictor of cer-
tain major patterns seems to be luck.

The major patterns of taxonomic diversity
described earlier (Anderson, 1974) and of RS
distributions summarized here cannot now
be derived from any reasonable set of deter-
ministic assumptions known to me, nor from
premises established by study of lower levels
of ecological and evolutionary organization.
Perhaps our knowledge will increase to the
point that this will no longer be true.

“Philosophically, this approach does not
refute a deterministic position, for an ap-
pearance of randomness can result from great
ignorance as well as from real disorder. Prac-
tically speaking, it means that we are a long
way from a ‘causal’ explanation for any spe-
cific large-scale example of faunal evolution
or of ecological dynamics and that our pre-
dictions about these things are likely to be
poor in most cases’” (Anderson, 1974).

In the few cases where range sizes have
been correlated with some other biological
property of the same set of species or with
some environmental variable, the analysis
generally ends with the correlation. For ex-
ample, it has been observed that larger fish
(McAllister et al., in press) and larger mam-
mals (Anderson, 1977; Brown, 1981; Rapo-
port, 1982; Van Valen, 1973) have larger geo-
graphic ranges, on the average. Such
correlations may be in the neighborhood of
r = 0.4. However, this is not a high correla-
tion and it may also be true that among the
species of any given size there are more species
with smaller ranges than with larger ranges,
and we are left with questions such as—why
are logarithmic distributions so prevalent?
How do body size, trophic level, heat toler-
ance, home range size, tooth size, competi-
tion, and other biological properties interact
and relate to range size?

Pianka (1977), Kiester (1971), and Mc-
Allister et al. (in press) have used multivari-
ate methods or multiple regression analysis
to relate the species densities of different
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groups to each other and to various environ-
mental factors, but none of these studies has
directly included range sizes in the analysis.
Smaller ranges have been associated in one
context or another (summary in Anderson,
1984b, 1985) with more competition, greater
species density, younger taxa, stenotopy, nar-
row ecological niches, reduced vagility, low
population density, smaller individuals, low-
er trophic levels, less available space, and
patchier distributions. Usually the associa-
tion is suggestive rather than definitive. Rare-
ly is a set of measurements of range size cor-
related with data on one of these factors, and
I know of no analysis attempting to compare
data on range size with data on two or more
of these factors.

There has been some recent interest in the
correlation of population density and range
size. Bock (1984) summarized the few pub-
lished works on the subject and used data on
70 species derived from Christmas Bird Cen-
suses in the United States and southern Can-
ada to derive correlations of from 0.346 to
0.476. J. H. Brown (personal commun.) has
correlated (r = 0.574) the mean densities of
individuals of 25 North American species of
raptors and the areas of their winter ranges.
The correlation of sizes of individuals and
sizes of the geographic ranges of 144 species
of North American fish has been calculated
by McAllister et al. (in press), r = 0.40 for
area versus length, and 0.38 for log area ver-
sus log length.

These values suggest the range of correla-
tions that may be expected, but detailed com-
parisons of reported studies will be needed
to evaluate the meaning of these and other
differences.

The range of every species is determined
by an interaction of the species and the en-
vironment on both short-term and long-term
time scales. The physiological, morphologi-
cal, and genetic properties of the populations
of individuals comprising the species are all
involved.

If the environment changes more rapidly
than a species can adapt, then the species
becomes extinct, and sooner or later this is
what happens. Most species are extinct. Since
most environmental changes are indepen-
dent of organismic changes, and in significant
measure are unpredictable, luck (or stochas-
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tic processes in the jargon of science) plays a
major role in determining the success of
species. They gamble for existence as well as
struggle for it, and in the long run most of
them lose (Reddingius, 1971).

The existence of stochastic processes has
been acknowledged often, but the relevance
and importance of luck are not often ad-
dressed. Tilman (1982, p. 4), for example,
wrote:

Admittedly, numerous stochastic processes
. . . decrease the ability of any theory to predict
accurately the dynamics of populations. How-
ever, this book is based on the assumption that
the interactions among species and of species
with their environment are sufficiently strong as
to establish major patterns which are discernible
over such stochastic noise.

The border of a geographic range of a
species is where it is because of the dynamic
interaction of organisms and environment.
Beyond the border either conditions are not
suitable, or insufficient time has elapsed since
the species arrived or since the environment
changed from unsuitable to suitable. The
concept of suitable is not absolute but is rel-
ative to space and time. An environment that
is unsuitable for a species at one time can
become suitable by evolutionary adaptation
by that species.

Our understanding of these complex inter-
actions can be increased by more and better
observational data, by better theory (includ-
ing the formulation of more testable hypoth-
eses), and by using conceptual models. With
these models it is easier to ask complex “what
if” questions. However, it may not be easier
to get data to test the models; in fact, it may
be quite laborious simply because more data
are needed for complex multivariate analy-
ses.
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