BODY MASS IN CERCOPITHECIDAE (PRIMATES, MAMMALIA): ESTIMATION AND SCALING IN EXTINCT AND EXTANT TAXA

ERIC DELSON, CARL J. TERRANOVA, WILLIAM L. JUNGERS, ERIC J. SARGIS, NINA G. JABLONSKI and PAUL C. DECHOW

American Museum of Natural History, Anthropological Papers, Number 83

A brochure listing all the available anthropological reports that have been published by the Museum from 1896 to the present in the *Anthropological Papers*, *Novitates*, and *Memoirs* as well as the *James Arthur Lectures on the Evolution of the Brain* will be sent on request. Write to: Publications, Department of Anthropology, American Museum of Natural History, Central Park West at 79th Street, New York, New York 10024.

BODY MASS IN CERCOPITHECIDAE (PRIMATES, MAMMALIA): ESTIMATION AND SCALING IN EXTINCT AND EXTANT TAXA

ERIC DELSON

Research Associate, Division of Paleontology American Museum of Natural History Professor of Anthropology, Lehman College and the Graduate School City University of New York Director, NYCEP

CARL J. TERRANOVA

Assistant Professor of Anatomy Laboratory of Evolutionary Biology Howard University College of Medicine Washington DC 20059

WILLIAM L. JUNGERS

Professor of Anatomical Sciences State University of New York Stony Brook NY 11794-8081

ERIC J. SARGIS

Graduate Student, NYCEP and Ph.D. Program in Anthropology City University of New York New York NY 10016 Currently Acting Assistant Professor of Anthropology Yale University New Haven CT 06520

NINA G. JABLONSKI

Irvine Chair in Anthropology California Academy of Sciences Golden Gate Park San Francisco CA 94118-4599

PAUL C. DECHOW

Professor of Biomedical Sciences Baylor College of Dentistry Texas A&M Health Science Center Dallas TX 75246

ANTHROPOLOGICAL PAPERS OF THE AMERICAN MUSEUM OF NATURAL HISTORY

Number 83, 159 pp., 19 figures, 23 tables

Issued December 29, 2000

Price: \$16.50 a copy

Copyright © American Museum of Natural History 2000

ISSN 0065-9452

Abstract	. 4
Introduction	. 4
Institutional Abbreviations	. 6
Materials	. 7
Postcrania	. 7
Craniodental Data	. 9
Compiled Mass Data	10
Statistical Methods	16
Mass Estimation	16
Choice of Comparative Samples for Estimating Fossil Masses	17
Estimation Model Construction and Evaluation	18
Postcranial Sample	18
Craniodental Sample	18
Identifying Reliable Estimators	18
Evaluation of Estimator Variables	30
Comparing Estimator Performance Between Anatomical Regions	30
Comparison of Estimation Accuracy with Previous Studies	31
Scaling of Predictor Variables	38
Posteranial Scaling	43
Dental Scaling	46
Cranial Scaling	48
Implications for Estimating Rody Mass	10
Estimated Mass in Eastill Carconitheoid Taxo	50
	50
	50
	50
	51
	62
Eurasia	02
	67
Taxa other than <i>Theropithecus</i>	0/
laxa of the <i>Theropithecus</i> clade	11
	82
Discussion	84
Some Theoretical and Methodological Questions	84
Selection of Variables	84
Selection of Models	86
The Form of the Answer	86
Interregional Estimation Comparisons	8/
Paleobiological Applications of our Estimates	87
Sex Dimorphism	88
Evolution of Cercopithecid Mass through Time	88
Extinct Cercopithecid Mass and Energetics	92
Summary	93
Acknowledgments	9/
References	98
Appendices	102

CONTENTS

FIGURES

Cover Photograph. Reconstruction of partial skeleton of *Paracolobus chemeroni* on exhibit at the AMNH

1.	Scaling of postcranial dimensions with body mass in extant Cercopithecidae	44
2.	Scaling of dental dimensions with body mass in extant Cercopithecidae	47
3.	Scaling of cranial dimensions with body mass in extant Cercopithecidae	48
4.	Estimated mass in extinct cercopithecids compared to m3 anterior width, males only	51
5.	Anterior view of male left humerus (A, B, C, D) and femur [of four taxa]	58
6.	Estimated mass in extinct cercopithecids compared to long bone lengths	60
7.	Anterior view of male left humerus (A, B & C) and femur [of three taxa]	61
8.	Anterior view of left humerus and femur [of two taxa]	62
9.	Left lateral views of crania of Papio hamadryas ursinus and Paradolichopithecus arvernensis	
	• • •	66
10.	Estimated mass in extinct cercopithecids compared to humerus anteroposterior diameter	68
11.	Left humerus and femur of Theropithecus oswaldi cf. leakeyi, Olduvai Gorge Upper Bed II	
		79
12.	Left lateral view of male cranium of <i>Theropithecus oswaldi leakeyi</i> , Bodo, Ethiopia	81
13.	Estimated mass in extinct cercopithecids compared to nasion-inion (neurocranial length),	
	males only	82
14.	Estimated mass in extinct cercopithecids compared to orbit width, females only	85
15.	Plot of mass through time for Colobinae	89
16.	Plot of mass through time for European and North African Cercopithecinae	90
17.	Plot of mass through time for African Papionini other than <i>Theropithecus</i>	91
18.	Plot of mass through time for African Theropithecus.	92
19.	Plot of mass through time for selected Cercopithecidae	94
	-	

TABLES

1.	Taxa forming the postcranial dataset, by sex and availability of associated body mass	8
2.	Taxa forming the craniodental dataset, by sex, body part and availability of associated body	
	mass	11
3.	Mean associated mass values for taxa studied here (if no compiled mass value given in table	
	4)	14
4.	Taxa included in this study with compiled mean body mass data, as used in regression model	
	development	15
5.	"Test" Sample: Taxa excluded from preliminary model construction and used to examine	
	estimation accuracy and consistency	19
6.	Ranking of estimator variables in preliminary models, in order of MPE as assessed on test	
	subsamples	20
7.	Model parameters for the final estimation models	22
8.	Modern taxa analyzed in detail	30
9.	Mass prediction evaluation for sample of modern taxa	32
10.	Mean Prediction Errors (MPE) for mass estimates based on lower first molar area	36
11.	Reduced Major Axis regression equations detailing the association between skeletal or dental	
	dimensions and body mass	39
12.	Analysis of covariance (ANCOVA) results of tests for slope and elevation (Y-intercept) dif-	
	ferences based on reduced major axis regression	45
13.	Length-Diameter Scaling in Cercopithecidae	46
14.	Fossil colobine mass estimates	52
15.	North African and Eurasian fossil cercopithecine mass estimates	63
16.	Other African fossil cercopithecine mass estimates	69
17.	Victoriapithecine mass estimates	83

ABSTRACT

Body size, as summarized especially by mass, is one of the simplest yet most significant aspects of an animal's adaptation and life history. Extant Cercopithecidae (Old World monkeys) present a range of mass from ca. 1–50 kg, and extinct species have been suggested to have weighed as much as 100 kg. The development of reliable methods for determining body size in extinct taxa is an important prerequisite to more detailed paleobiological analyses. Here we develop a series of equations to be used in such estimation as well as a protocol for the selection of the "best" such equations.

Data were analyzed for 35 variables from the postcranium, dentition, and cranium in about 1500 individual cercopithecids (roughly half extant and half fossil). Bivariate relationships between each of the variables and mass were determined (using ordinary least squares regression) in a subset of taxa to obtain prediction equations. These equations were then tested on a smaller subset of taxa which had not been included in the previous step, in order to determine prediction accuracy, as judged by Mean Prediction Error. A final set of prediction equations was then developed for the highest-ranked variables in each of seven taxon-sex subgroups. The scaling of these variables with mass was examined in extant taxa using reduced major axis regression.

We compared prediction accuracy in variables from the postcranium, skull, and dentition. Postcranial and dental variables yielded somewhat more accurate estimates than did cranial variables. In addition, we explored the relationships among correlation coefficients, mean prediction error, regression model choice, and scaling patterns with respect to estimation. We determined that 20% on either side of a point estimate of mass is an acceptable range of "answers", given the normal variation in mass in extant Old World monkey populations, the quality of our data, and the statistical methods used for estimation (bivariate OLS regression). Any greater claimed "precision" for a fossil mass estimate is an injustice to the estimation routine as well as to the reader.

The prediction equations were finally applied to over 90 fossil taxa, using postcranial, dental, and cranial specimens from both sexes. As suggested previously, males of the largest population studied (*Theropithecus* from Olorgesailie, Kenya) may have averaged 85 kg, with some isolated teeth indicating a mass of 95 kg. Other taxa, such as *Papio (Dinopithecus) ingens* from Swartkrans (South Africa), were estimated to have had a far lower mass than predicted by other workers.

The resulting mass estimates were used to examine sexual dimorphism, body size evolution, and energetics in extinct cercopithecids. In *Theropithecus*, for example, mass increased rather steadily through time, as noted previously by many workers. However, although the Olorge-sailie population had an average (mixed-sex) mass of ca. 62 kg, roughly contemporaneous populations from Tighenif and Hopefield averaged only 43 kg. This might have resulted from a late lineage split in this clade or factors relating to energetics.

INTRODUCTION

It is by now a truism that body size is an important biological characteristic of any organism. Numerous authors have discussed the ways in which size can affect the adaptations and lifeways of primate species (e.g., Kay, 1975; Clutton-Brock and Harvey, 1977 [and related papers]; Fleagle, 1978, 1985, 1988; Jungers, 1985) and those of other animals (e.g., Peters, 1983; Calder, 1984; Schmidt-Nielsen, 1984; Damuth and Mac-Fadden, 1990). Some statistical analyses attempt to partial out its effects in order to concentrate on the study of "shape", while other studies seek to understand the allometric effects of evolutionary changes in size.

Body mass is an important summary measure of body size as it can be determined (and compared) in groups of widely varying body design. Additionally, analyses of functional morphology as well as of many physiological and life history variables depend upon a reliable knowledge of body mass. Although there is a formal distinction between mass and weight (the former is an inherent property of matter, while the latter results from the interaction of mass with local gravitational forces), near the earth's surface (and thus for all biological purposes) they are identical; we will here use body mass for this property, in part because it is the more universal concept (see also Smith and Jungers, 1997).

The estimation of body mass in fossil (and lesser-known modern) taxa has been the subject of numerous books and papers (e.g., for nonhuman primates: Aiello, 1981; Gingerich et al., 1982; Conroy, 1987; Jungers, 1987; Damuth and MacFadden, 1990; Dagosto and Terranova, 1992; Rafferty et al., 1995). The majority of these contributions have examined size in a range of primate taxa, utilizing dental, cranial, and/or postcranial data to infer mass. In most cases, authors spread their taxonomic nets wide, including modern and extinct taxa from all or a large portion of the order Primates. These broad surveys provided large samples and a great range of size in which to examine relationships among the variables used. They also tended to dilute the reliability of the proposed mass predictions, given that different taxa may not behave identically in terms of morphological response to increasing mass. Conroy (1987), for example, found that equations used to predict masses for animals included in his prosimian, monkey, or ape grades differed from each other and from those derived from all primates. Moreover, the sources of data in these and related studies varied widely. Body mass was often cited from "the literature", that is published sources of species mean masses chosen almost ad hoc. Measurements were either culled from "the literature" (e.g., Swindler, 1976, for teeth) or provided by the authors. In few cases were the masses and measurements from the same individuals. In this paper, we attempt to recognize and control some of these potential sources of error by concentrating on a restricted primate group, the Cercopithecidae, and using only carefully screened raw data.

Living cercopithecids present a range of body masses from *Miopithecus* at about 1 kg to nearly 50 kg in the largest *Mandrillus*. This 50:1 range is somewhat more than in Hominoidea (where the smallest *Hylobates* may be about 5 kg and the largest *Gorilla* 175 kg, for a 35:1 range). The cercopithecid range is not as great as in all primates (*Mi*- crocebus to Gorilla range of 30-175,000 g, ca. 6000:1), Strepsirhini (from Microcebus to the largest Propithecus at ca. 7000 g, for a 230:1 range over seven families), or even platyrrhines (Cebuella at 120 g, Alouatta at 10,000+ g, >80:1). The smallest known extinct cercopithecids were probably larger than Miopithecus, but the largest fossil Theropithecus has been estimated to have had a mass as high as 100 kg.

No previous work has looked closely at mass estimates for Old World monkeys, but one paper by Dunbar (1992) used the body masses of a variety of extinct papionin species provided by Fleagle (1988: 402) to evaluate their ecological adaptations. He argued from energetics that the mass estimated for Dinopithecus ingens (77 kg) was so high as to require that this species must have had a diet similar in some ways to that of Theropithecus. Dunbar recognized the arguments of Delson (1975; Szalay and Delson, 1979) that the dentition (especially the incisors) of *Dinopithecus* was of the *Papio* or Macaca type, and unlike Theropithecus, but only by applying a model derived from Theropithecus could Dinopithecus group sizes be estimated as high enough for survival. Dunbar further estimated that another South African species, Gorgopithecus major (using Fleagle's mass of 41 kg), would have been restricted to group sizes under 15 individuals. The estimated masses further struck ED as too high, especially in light of the resultant inference. Moreover, Fleagle (1988) gave no indication of the methods used to estimate mass. (It is noteworthy that the 1998 second edition of this work partly clarified some of this question and incorporated some of the results obtained below; other estimates remained as in 1988, and in our discussion we will refer to that earlier work.) Dunbar's analysis provided much of the original impetus for our collaborative investigation.

Another catalyst for this work was the series of papers through the 1980s that attempted to infer the body mass of *Oreopithecus bambolii*, previously considered by ED to be a divergent member of Cercopithecoidea. Schultz (1960) first estimated the mass of the male individual represented by the crushed 1958 skeleton as 40 kg or more. Aiello

(1981) used humeral length as a predictor of body mass in fossil anthropoids, obtaining 48.6 kg for Oreopithecus, although the humerus of that species was probably relatively elongated and that of the 1958 skeleton was badly squeezed and probably further lengthened by plastic deformation. Gingerich et al. (1982) obtained an estimate of about 15 kg, based on upper and lower first molar areas, while Conroy (1987) produced estimates of 17-18 kg from lower first molar area only, with slight variation due to different "grade' equations. Szalay and Langdon (1987) argued that the overall size of the 1958 skeleton was comparable to that of a living female orangutan, thus about 37 kg, while Sarmiento (1987) preferred 35 kg. Jungers (1987) reported a series of joint surface analyses and produced the most widely accepted value, 32 kg. This work implied that the teeth of Oreopithecus bambolii were probably quite small for its mass (microdonty), while its humerus might well have been long. Such inferences about the relative proportions of different anatomical regions can only be attempted when all available data about fossil species are evaluated together, in light of estimation equations derived from variables of the several regions.

In the present paper, therefore, we undertake a variety of mass-related analyses on a large dataset of cercopithecid cranial, dental, and postcranial measurements and masses. Regressions of body mass on different measurements in selected subsets of Old World monkeys produce a great many equations for mass prediction, and these are then evaluated, both within and across anatomical regions and taxa. A series of tests is undertaken to determine the accuracy and consistency of these estimates and to select the most reliable predictor variables. The "best" equations are then used to produce a range of estimates for extinct cercopithecid species, and these values are assessed for paleobiological implications. Such an approach is more complex but surely more reliable than the use of "point" predictions based on the use of single estimators (e.g., ln m1 area). Following the American Museum of Natural History publications guidelines, upper molars are indicated as M1-3, while lowers are denoted m1-3.

INSTITUTIONAL ABBREVIATIONS

AIUG	Anatomisches Institut, Universi-
	tät Göttingen, Germany
AIUZ	Anthropologisches Institut, Universität Zürich Switzerland
AMNH	American Museum of Natural
	History, Mammalogy, New
	York
ANSP	Academy of Natural Sciences,
	Philadelphia
BM(NH)	British Museum (Natural Histo-
	ry), London, Zoology (Mam-
BNILLS	Bombay Natural History Socie-
DIVIIS	ty. India
FDCG	Forestry Designing Centre of
	Guangxi, Nanning, China
Fleagle	Research collection of Dr. John
-	G. Fleagle, SUNY-Stony Brook
FMNH	Field Museum of Natural Histo-
	ry, Chicago, Mammals (F indi-
	cates field number)
FSM	Florida State Museum, Gaines-
Haddow	Haddow Collection Royal Col-
11auu0w	lege of Surgeons, London
IEBR	Institute of Ecology and Biolog-
	ical Resources, Hanoi, Vietnam
IRSN-B	Institut Royale des Sciences Na-
	turelle, Brussels
IZCAS	Institute of Zoology, Chinese
	Academy of Sciences, Beijing
Jolly	Research collection of Dr. Clif-
	sity
KIZ	Kunming Institute of Zoology.
	Academia Sinica, China
KNM-OM	National Museums of Kenya,
	Nairobi, Osteology
McGraw	Research collection of Dr. Scott
	McGraw, Dept. Anthropology,
	The Ohio State University,
107	Mansheld
MCZ	Museum of Comparative Zoolo-
	bridge Mass
MNHN-P	Muséum National d'Histoire
	Naturelle, Paris, Oiseaux et
	Mammifères
MRAC-T	Musée Royale de l'Afrique
	Centrale, Tervuren, Belgium
NMNH	National Museum of Natural
	Washington DC Vertebrate
	Zoology (Mammals)
PCM	Powell-Cotton Museum, Bir-
	chington, U.K.

SAF	Senckenbergische Anatomie,
	Frankfurt, Starck Collection.
Sarmiento	Research collection of Dr. Este-
	ban Sarmiento, American Muse-
	um of Natural History, Mam-
	malogy
SCIEA	South China Institute of Endan-
	gered Animals, Guangzhou
SICONBREC	Simian Conservation, Breeding
	and Research Center, Inc., Tan-
	ay, Luzon, Philippines
SIZ	Shaanxi Institute of Zoology,
	Xian, China
Susman	Research collection of Dr.
	Randall Susman, SUNY-Stony
	Brook
UHVZ	University of Hanoi, Vietnam,
	Zoology (also ZMVNU)
UT-A	University of Texas, Austin, An-
	thropology, Bramblett Collection
ZIUH	Zoologisches Institut, Universi-
	tät Hamburg, Germany
ZMNH	Zhejiang Museum of Natural
	History, Hangzhou, China
ZRC	Zoological Reference Collection,
	Department of Zoology, Nation-
	al University of Singapore
ZSI	Zoological Society of India,
	Calcutta

MATERIALS

The data for this study were derived from three inter-related datasets: postcranial dimensions, craniodental dimensions, and body masses.

POSTCRANIA

The postcranial data include six measurements selected for their relationship to the probable weight-bearing role of the element, comparability with previous studies, and availability in the authors' databases. For both humerus and femur, functional length (HL, head to capitulum; FL, proximal surface of head to medial condyle) and midshaft diameters (transverse and anteroposterior) were analyzed. Humeral midshaft diameters (HTR and HAP) were taken either at the measured midpoint of length or just distal to the distal end of the median (deltoid) crest or keel; these two points were very close, and the resulting values of HAP and HTR were effectively equivalent. For the femur, measurements (FTR and FAP) were taken either at the measured or estimated midpoint of length. These measurements are illustrated by Jolly (1972).

Three hundred three individuals were sampled for postcrania, 269 modern (201 with associated masses as recorded on museum labels) and 34 extinct. Of the modern group, 192 individuals were measured by WLJ (or his students), all with mass; 34 by NJ, 6 with mass; and 43 by ED (or his students), 3 with mass. All of the fossil specimens were measured by ED, except that values for one Olduvai individual were provided by M. G. Leakey, and those for several Kanjera and Olorgesailie specimens were taken from Jolly (1972). The detailed taxonomic distribution of this sample is presented in table 1. (The classification mostly follows Strasser and Delson, 1987, but Mandrillus and Lophocebus are recognized at genus rank.) When possible, specimens were analyzed at the subspecies level, in order to closely relate them to the most appropriate mass values. Most of the Cercopithecus and Macaca specimens, however, were identified to species. On the other hand, within Papio hamadryas, special care was taken to group only those populations that could be assigned reliable masses. Thus, not only were the main subspecies distinguished (see, e.g., Jolly, 1993), but within P. h. anubis, two subdivisions were recognized: the Ugandan and northern Kenyan populations, as well as those somewhat further west, have male masses about 20% greater than the peripheral populations in southern Kenya (previously known as P. anubis neumanni), western Ethiopia and West Africa (e.g., Ghana, previously P. a. choras). This approach makes sense methodologically, as our ultimate goal is to estimate the mean mass of fossil "populations" (or taxa), not individuals.

In brief, 16 colobine and 21 cercopithecine taxa (of whatever rank) are represented by specimens with associated body mass, while an additional eight colobine and four cercopithecine taxa lack masses. Four extinct colobines and 10 fossil cercopithecines are also included. Sex is estimated for the fossils either through association with sexed craniodental remains (see below), or when two sizes of bone are known for a given taxon.

	Wit	h mass	Wit	hout mass
Taxon	Males	Females	Males	Females
Colobus guereza occidentalis			1	1
Colobus guereza matschiei	5	10		
Colobus guereza dodingae	1			
Colobus guereza guereza	1			
Colobus polykomos polykomos		1		
Colobus angolensis palliatus	2	1		
Procolobus verus	4 (2 H)	1		
Procolobus badius oustaleti	. ()	-	2	
Procolobus badius ?tephrosceles	1		-	
Nasalis (Nasalis) larvatus	4	5	3	1
Nasalis (Simias) concolor		5	0	1
Progathrix (Progathrix) nemaeus	2		1	1
Pygathia (Rhinonithecus) roxellana	-		5	8
Pygain in (Rhinopithecus) hieti			8	5
Progathrix (Rhinopithecus) brelichi			3	5
Proshutis thomasi			1	1
r resuyus mumusi Prashutis rubicunda	3	2	L	1
Presbytis rubicunda	5	2		
Presbytis nosei Presbytis frontata	1	1		
Presbytis prohiata Presbytis melalophos Sciemensis	1	2		
Semponitheous entellus suben indet	2	3		n
Semnoplinecus entellus subsp. mdci.	1			2
Semnoplinecus entellus schistacea	1		1	
Semnopunecus entetus inersues			1	1
Semnoplinecus (Trachyplinecus) jonnii			1	1
Semnoplinecus (Trachyplinecus) obscura subsp.	F	F		1
Semnoplinecus (Trachyplinecus) obscura obscura	5	5		
Semnoplinecus (Trachyplinecus) cristata utima	0	o		
Semnopithecus (Trachypithecus) cristata cristata	1			
Semnopithecus (Irachypithecus) phayrei	1	1		
†Paracolobus chemeroni			1	
†Cercopithecoides? cf. williamsi				<i></i>
†Mesopithecus pentelicus			2 (1 H, 1 F)	5 (4 H, 1 F)
†Dolichopithecus ruscinensis	-		5 (2 H, 3 F)	2 (1 H, 1 F)
Allenopithecus nigroviridis	2			
Erythrocebus patas	-	1		
Cercopithecus aethiops pygerythrus	3	5		
Cercopithecus aethiops centralis	1	1		
Cercopithecus aethiops subsp. indet.			2	
Cercopithecus mitis	7	6		
Cercopithecus ascanius	5	1		
Cercopithecus neglectus	2	3		
Cercopithecus cephus	3	2		• 41 =
Macaca sylvanus sylvanus			3	2 (1 F)
†Macaca sylvanus cf. sylvanus Ain Mefta			1? (H)	
†Macaca sylvanus ?pliocena Zlaty Kun			1? (H)	
Macaca nemestrina nemestrina	1	4		
Macaca nemestrina leonina	1	2		
Macaca assamensis	3			
Macaca arctoides	2	1		
Macaca fascicularis	10	8		
Macaca mulatta	2			

 TABLE 1

 Taxa Forming the Postcranial Dataset: Sex, Availability of Associated Body Mass, and Number of Specimens

	Wit	h mass	Without mass		
Taxon	Males	Females	Males	Females	
Macaca fuscata			1		
†Paradolichopithecus arvernensis			2?? (1 H, 1 F)		
Cercocebus torquatus subsp. indet.				2	
Lophocebus albigena	4	2			
†Parapapio cf. jonesi Hadar			2?? (1 H, 1 F)		
Papio hamadryas hamadryas	4		1		
Papio hamadryas cynocephalus	2				
Papio hamadryas cynocephalus Darajani sample	12	10			
Papio hamadryas anubis	2				
Papio hamadryas anubis "neumanni"	2	5			
Papio hamadryas ursinus	2	2	1		
Mandrillus sphinx	1		2	1	
Theropithecus gelada		1	3	2 (1 F)	
<i>†Theropithecus</i> cf. <i>darti</i> Hadar			1? (H)	1? (H)	
†Theropithecus oswaldi oswaldi Kanjera			1 (H, cast), 1 (F: J)	3 (1 H, cast; 2F: J)	
†Theropithecus oswaldi oswaldi Olduvai FLK I			1? (H)	,	
†Theropithecus oswaldi leakeyi? Olduvai MCK II			1		
†Theropithecus oswaldi leakeyi Olorgesailie			1 (F: J)	2 (1 H; 1 F: J	

TABLE	1
Continu	ed

?, probable male or female; ??, possible male or female; H, humeral measurements only; F, femoral measurements only; J, measurements from Jolly (1972); †, extinct taxon/population.

CRANIODENTAL DATA

The original dental and cranial dataset includes eight measurements of the skull and 15 of the cheek teeth; additionally, one cranial and five dental areas were calculated. These variables were selected on the basis of previous use by other authors and, for the cranial set, relatively good correlations with mass based on the results of Dechow (1983) and Aiello and Wood (1994). The cranial measures used (with their definitions) are: NAIN (nasion-inion), GLIN (glabella-inion), NABA (nasion-basion), GLBA (glabella-basion), PORB (minimum diameter across the postorbital constriction), BIOR (maximum biorbital width, at the level of the frontozygomatic sutures), ORBH (maximum orbit height, away from the superomedial notch), and ORBW (maximum orbit width); the last two are taken within the orbit. These measurements are illustrated by Freedman (1957) and the landmarks defined by White (2000). An approximation of orbital area, ORBA, was calculated as the product of ORBH and ORBW.

Dental dimensions were taken on M1-2

and m1-3; the first and second molars are usually suggested to be the least variable teeth, while m3s are readily recognized as isolated elements. For each of the molars, two widths were taken, across the anterior (mesial) and posterior (distal) loph(id) near the cervix where width is greatest and generally unaffected by wear; these measures are abbreviated by the tooth identifier (e.g., M1, m3) and AW or PW, respectively. Length (L) is always the maximum mesiodistal diameter; it is reduced by wear as the cercopithecid molar slopes from the mesial and distal shelves toward the cervix, but these changes are probably not significant. Thus, the set of dental measurements are: M1AW, M1PW, M1L, M2AW, M2PW, M2L, m1AW, m1PW, m1L, m2AW, m2PW, m2L, m3AW, m3PW, and m3L. These measurements are illustrated by Freedman (1957). Approximations of molar areas were calculated as the product of L \times 0.5(AW+PW); this takes into account the bipartite morphology of the cercopithecid molar. We calculated M1AR, M2AR, m1AR, m2AR, and m3AR. Twelve hundred twentysix individuals were sampled for at least one

craniodental measurement, 473 modern and 753 fossil. Of the modern specimens, 79 "baboons" were measured by PCD (Dechow, 1980, 1983), 130 individuals of Papio hamadryas ursinus by William Eisenhart (see Eisenhart, 1974; original data deposited with ED), 75 colobines by NJ (Jablonski and Pan, 1995; only GLIN, PORB and BIOR were taken on the crania), and the remaining 189 individuals by ED (or his students). Eisenhart measured 192 fossils (all from South Africa, mainly Sterkfontein and Makapan, including Cercopithecoides, Parapapio, Papio, and Theropithecus). Measurements of five individuals of Theropithecus from Ahl al Oughlam were taken from Alemseged and Geraads (1998). ED measured the remaining 556 fossils, including a few casts of selected taxa.

In addition, several published sets of mean measurements on various "baboons" were included. Bramblett (1967) provided measures of a population (roughly 20 to 25 of each sex) of Papio hamadryas cynocephalus from the Darajani region of Kenya, part of which was also measured by WLJ for the postcranial dataset; the average male and female mass values of WLJ's subset were considered to be associated with Bramblett's craniodental measurements. Because our sample of Theropithecus gelada was small, we included mean measurements published by Eck and Jablonski (1987) on a few additional individuals. In order to include measurements on certain fossil monkeys, some mean craniodental values were used here also. Freedman (1957) listed dental dimensions for a sample of Papio hamadryas robinsoni from Swartkrans. Selected values for Theropithecus oswaldi leakeyi individuals from Olorgesailie and T. o. oswaldi from Kanjera were published by Jolly (1972), and composite sex-specific means were derived from this source, while M. G. Leakey (1993) published maximum (male) values for Olorgesailie as well as male means for this taxon from Olduvai and Kapthurin. Finally, Theropithecus brumpti sex-specific means from the Turkana Basin were derived from Eck and Jablonski (1987) and M. G. Leakey (1993).

In general, our measurements were taken with a Helios or DigiCal dial or digital caliper with needle points, although PCD's cranial measures were derived from Cartesian coordinate data taken with a diagraph. The detailed taxonomic distribution of this sample is presented in table 2. Taxa were generally separated at the subspecies level as discussed for the postcranial sample. Fossils were sexed on the basis of associated canines or lower third premolars when possible, or by overall size if sufficient "sexed" individuals of that taxon were known to distinguish between sexes. A sliding scale of certainty was applied (certain, probable, possible, unknown sex). For two taxa (Paracolobus from Turkana and Laetoli), sexable fossils were rare, and thus several of the largest or smallest individuals were categorized as possible males or females solely because they had the largest or smallest teeth in the sample, in order to provide a range of mass estimates.

After analysis of the fossil mass predictions, 136 fossils were removed from the sample based on distribution of sexed individuals. For example, if a population included four dental specimens (but no crania) sexed as female, then any dental specimens sexed less certainly as female, or of unknown sex, were removed (and not included in table 2) because they did not add more precise information. However, a possibly female (or even unsexed) cranial specimen would have been retained as it provided different information.

A total of eight colobine and 10 cercopithecine taxa are represented by individuals of known mass (and usually additional "massless" specimens as well), while 12 colobine and 14 cercopithecine taxa have no directly associated masses. Of the extinct samples, 24 are colobine, 59 cercopithecine and 3 victoriapithecine.

COMPILED MASS DATA

A careful survey was made of three types of sources for cercopithecid body masses in order to provide sample means for our craniodental dataset. Much of the result (table 4)is clearly ad hoc and incomplete, but this was nonetheless the most believable dataset that could readily be compiled for the taxa *under study here*. After our analysis was well under way, Smith and Jungers (1997) pub-

	With	n mass	v	vithout mass	
Taxon	Males	Females	Males	Females	Sex?
Colobus guereza occidentalis			2 CD, 3 D	2 CD, 5 D	
Procolobus verus			1 CD	1 CD	
Procolobus badius oustaleti			2 CD, 3 D	1 CD, 1 D	
Procolobus badius ?tephrosceles			2 D	1 D	
†Microcolobus tugenensis			1 D		
†Colobine sp. "A"			2 D		
[†] Colobine cf. sp. "A" Aramis			8 D	2 D	
†Colobus? flandrini					4 D
†Libypithecus markgrafi			1 CD		
†Rhinocolobus turkanaensis Omo & Hadar			1? CD, 4/1? D	2 CD, 2 D	
†Paracolobus chemeroni			1 CD		
†Paracolobus mutiwa			1/2?? (U) D	1? D	
†Paracolobus? sp. Laetoli			1/2?? (U) D	3/2? D	
<i>†Cercopithecoides williamsi</i> Makapan/Sterkfontein/Bolts			2 CD, 1 C, 7 D	2 CD, 5 D	
†Cercopithecoides williamsi Leba				2? D	
<i>†Cercopithecoides williamsi</i> Swartkrans Mbr?			1 D		
†Cercopithecoides cf. williamsi Kromdraaj B				1 CD. 3 D	
†Cercopithecoides? cf. williamsi Koobi Fora			1 CD	,	
†Cercopithecoides kimeui Koobi Fora				2? CD	
†Cercopithecoides kimeui Olduvai					1 CD
Nasalis (Nasalis) larvatus		1	1 CD. 9 C	1 CD. 4 C	1.02
Nasalis (Simias) concolor	3	3	2 C	2 C	
Pygathrix (Pygathrix) nemaeus	2	1	2 C	10	
Pyeathrix (Rhinopithecus) roxellana	-	-	8 CD. 2 D	14 CD 5 D	
†Pygathrix (Rhinopithecus) cf. roxellana Honan			002,20	1? CD	
<i>†Pygathrix (Rhinopithecus) lantianensis</i> Gongwangling			2 D	1. 02	
Pyeathrix (Rhinopithecus) bieti		1	7 CD 2 D	8 CD 1 D	
Pygathrix (Rhinopithecus) brelichi		•	2 CD	1 CD	
Pygathrix (Rhinopithecus) avunculus			2 CD	2 CD	
Presbytis thomasi			1 CD		
Presbytis potenziani				50	
Semnonithecus entellus schistacea (including S e ajar)	2	3	1 CD, 1 C, 4 D	50	
Semnonithecus entellus thersites	2	5			
Semnopithecus entellus subsp indet	2		1 CD	1010	
Semnopithecus (Trachynithecus) johnij				1 CD	
Semnopithecus (Trachypithecus) obscura obscura	3	3	I CD	TCD	
Semnopithecus (Trachypithecus) cristata ultima?	5	5	4 D	6 D	
Semnopithecus (Trachypithecus) pileata shortridaei				10	
+Semnonithecus? sivalensis			I CD, 4 D	I D	5 D
†?Semnopithecus sp. Yushe					
[†] Mesonithecus pentelicus Pikermi and most other locs			2 CD 1 C (av)	2 CD 1 C (av)	ID
Incommence penceucus internation most other rocs.			42 D	2 CD, 1 C (av), 25 D	
†Mesopithecus pentelicus Macedonia & Maragha			13 D	3 D	
TMesopithecus monspessulanus			4 D	2 D	
TDoucnopithecus ruscinensis Perpignan			6 D	1 CD (av), 9 D	
TDoucnopithecus? eohanuman Shamar				2 D	
mioplinecus talapoin				2 CD	
Lryinrocebus patas			1 C, 1 D		
Cercopunecus aethiops pygerythrus			6 D		1 D
Cercopunecus aethiops subsp. indet.			1 D		
Macaca sylvanus sylvanus			2 CD, 6 D	3 CD, 2 D	

 TABLE 2

 Taxa Forming the Craniodental Dataset: Sex, Body Part, Availability of Associated Body Mass, and Number of Specimens

	Contini	ied			
	Witl	n mass		Without mass	
Taxon	Males	Females	Males	Females	Sex?
+Macaca sylvanus ?pliocena various Europe			5 D		
†Macaca sylvanus ?pliocena 'Ubeidiya				1 D	
†Macaca sylvanus ?florentina			6 D	1 D	
†Macaca sylvanus ?prisca			2 D		
†Macaca majori			1 CD, 6 D	2 D	
†Macaca libyca				2 D	
†Macaca? sp. Menacer					11 D
Macaca nemestrina nemestrina				1 D	
Macaca nemestrina leonina			1 CD		
Macaca nigra			1 D	1 CD	
Macaca thibetana			3 CD, 1? D	1/1? CD, 2 D	
Macaca assamensis				1 D	
Macaca arctoides			1 D		
†Macaca anderssoni Mien Chih			1 CD		
†Macaca anderssoni ("robusta") Zhoukoudian			1? CD	3 D	
†Macaca palaeindica					2 D
Macaca fascicularis				1 D	
†Paradolichopithecus arvernensis Senèze				1 CD	
†Paradolichopithecus arvernensis Graunceanu			2 CD, 3 D	2 D	
†Paradolichopithecus cf. arvernensis Cova Bonica			1 D		
†Paradolichopithecus sushkini			1 CD, 1 D	1 CD	
†Procynocephalus wimani				2 D	
†Procynocephalus subhimalayanus			1? D	2 D	
†Procynocephalus cf. wimani Dongcun					2 D
†Procynocephalus? (or Macaca) sp. Yushe					2 D
Cercocebus torquatus subspecies indet.			1 CD, 2 D	2 D	
Lophocebus albigena			1 CD	1 D	
<i>†Cercocebus?</i> or <i>Parapapio jonesi</i> Makapan					3 D
†Cercocebus? or Parapapio jonesi Kromdraai A					2 D
<i>†Cercocebus?</i> or Parapapio jonesi Taung					1 D
†Parapapio jonesi Sterkfontein			9 D	19 D	
†Parapapio cf. jonesi Makapan			1 CD, 4 D	1 CD, 5 D	
†Parapapio cf. jonesi Hadar			1 CD	1 D	
†Parapapio broomi Makapan			3 CD, 2 C,	1 CD, 19 D	
			11 D		
†Parapapio broomi Sterkfontein			19 D	28 D	
†Parapapio broomi or whitei Bolts Farm Pit 23			1 CD		
†Parapapio whitei Makapan			2 CD, 5 D		
†Parapapio whitei Sterkfontein				2 D	
†Parapapio antiquus			1 CD	1 CD, 1 C, 3 D	
†Parapapio? ado Laetoli			4 D	9 D	
†Parapapio? ado Kanapoi			1 D		
†?Parapapio sp. Aramis				5 D	
Papio hamadryas hamadryas	8		2 CD	2 CD	
Papio hamadryas hamadryas/anubis hybrid	1				
Papio hamadryas kindae	2	1	7 CD	7 CD, 3 D	
Papio hamadryas cynocephalus	21	2	1 CD	2 CD	
Papio hamadryas cynocephalus Darajani sample	1 (av)	1 (av)			
Papio hamadryas cynocephalus/anubis hybrid	6				
Papio hamadryas anubis	5	1	1 CD	1 CD	
Papio hamadryas anubis "neumanni"	27	12	1 CD	1 D	
Papio hamadryas ursinus	3		2 CD, 70 D	1 CD, 63 D	

TABLE 2 Continued

	With mass		Without mass		
Taxon	Males	Females	Males	Females	Sex?
†Papio hamadryas robinsoni Sterkfontein & Bolt's Farm			3/1? D	3 CD,	
				11/1?/1?? D	
†Papio hamadryas robinsoni Swartkrans Mbr 1			1 D (av): F	1 D (av): F	
†Papio [?hama.] angusticeps Kromdraai A			2 CD	3 CD, 4 D	
†Papio izodi Taung			1/1?? CD,	2/1? CD,	
			2/1? C, 1 D	3 C, 3 D	
†Papio cf. izodi Sterkfontein				1 D	
<i>†Papio (Dinopithecus) ingens</i> Schurweburg/Swartkrans			1? C, 5 D	1? C, 6 D	
†Papio (Dinopithecus) cf. quadratirostris Leba			1?? C, 1 D	1? C, 3? D	
†Papio (Dinopithecus) cf. quadratirostris Omo			1 CD, 5 D	2 CD, 1 D	
Mandrillus sphinx	1		1 CD, 2 D	1 CD	
†Gorgopithecus major			1 CD, 2 D	1 CD, 2? D	
Theropithecus gelada	1	4	1 CD (av),	1 CD (av), 2 C	
			1 C, 2 D		
†Theropithecus darti Makapan			6 D	1 CD, 6 D	
†Theropithecus cf. darti Hadar			9 D	1 CD, 10 D	
†Theropithecus oswaldi oswaldi Kanjera			1 CD (cast)	1 CD, 3 D (cast, av)	
†Theropithecus oswaldi oswaldi Swartkrans			2 D	1 CD, 1 D	
†Theropithecus oswaldi oswaldi Koobi Fora			1CD (cast)	1 C	
†Theropithecus oswaldi oswaldi Olduvai Bed I				1 D: J	
†Theropithecus oswaldi leakeyi Tighenif			1/1?? D	14 D	
†Theropithecus oswaldi leakeyi Thomas Quarry 3			1 D		
†Theropithecus oswaldi leakeyi? Olduvai MCK II			1 D (cast)		
†Theropithecus oswaldi leakeyi Olduvai Masek & Kapthu	ırin		1 D (av)		
†Theropithecus oswaldi leakeyi Hopefield			2 D	2 C, 1 D	
†Theropithecus oswaldi leakeyi Olorgesailie			1 D (av),	1 D (av)	
			1 D (max)		
†Theropithecus oswaldi leakeyi Bodo			1 CD		
†Theropithecus oswaldi delsoni Mirzapur					1 D
†Theropithecus oswaldi delsoni? Cueva Victoria					1 D
†Theropithecus "atlanticus" Ain Jourdel					1 D
<i>†Theropithecus "atlanticus"</i> Ahl al Oughlam					5 D
†Theropithecus? baringensis Chemeron			1 CD, 1? D		
†Theropithecus brumpti Turkana Basin			2 CD (cast),	1 CD (av)	
			l (av)		
<i>†Theropithecus</i> sp. indet. Lothagam					1 D
†Victoriapithecus macinnesi Maboko			1 CD: BB		21 D
†Prohylobates tandyi Wadi Moghara				1 D	
†Prohylobates simonsi Gebel Zelten					1 D

TABLE 2
Continued

Specimens without associated mass are itemized by measurements taken (CD, cranial and dental; C, cranial only; D, dental only) and by certainty of sex (?, probable male or female; ??, possible male or female). Sex?, number of specimens of uncertain sex (all without associated mass); (U), large or small teeth tentatively sexed solely on size, as discussed in text (*Paracolobus* taxa only); (av) or (max), a set of "average" and "maximum" measurements for that sex and region (original data for *Mesopithecus* and *Dolichopithecus*; published values as detailed for other species); F, measurements from Freedman (1957); J, measurements from Jolly (1972); BB, data on *Victoriapithecus* cranium provided by B. Benefit; †, extinct taxon/population.

lished a compilation of sex-specific body masses for most modern primates, and additional mass data became available from published and unpublished sources, but they are not used in our estimation procedures nor included in table 4 below. All the individual mass values available to us are provided in appendix table I so that future workers may

	Mass (g)							
Taxon	Male (N)	Female (N)						
Colobus guereza matschiei	10462 (5)	8043 (10)						
Colobus guereza dodingae	10454 (1)							
Colobus guereza guereza	9750 (1)							
Colobus polykomos polykomos		6818 (1)						
Colobus angolensis palliatus	9660 (2)	9100 (1)						
Presbytis rubicunda	5682 (3)	6137 (2)						
Presbytis hosei		5568 (1)						
Presbytis frontata	5568 (1)							
Semnopithecus (Trachypithecus)								
phayrei	7045 (1)	7045 (1)						
Allenopithecus nigroviridis	5500 (2)							
Cercopithecus mitis	7976 (7)	3891 (6)						
Cercopithecus ascanius	5451 (4)	2478 (1)						
Cercopithecus neglectus	6895 (2)	4248 (3)						
Cercopithecus cephus	3800 (3)	2667 (3)						
Macaca fuscata	14475 (1)							
Macaca mulatta mulatta	6200 (1)							
Macaca mulatta villosa	12727 (1)							

TABLE 3 Mean Associated Mass for Taxa Studied Here (if no compiled mass given in table 4)

See note to table 4.

have access to the data we compiled. Updated taxon-mean masses (and ranges) by sex based upon all of these data are presented in appendix table II.

In addition to values for all specimens measured here with which masses were associated (see table 3), body masses were compiled from several other sets of museum records: a printed list of (almost) all cercopithecids with mass at the USNM (checked for probable juveniles with low masses, which were generally removed to be conservative), provided courtesy of Dr. Richard W. Thorington, Jr.; a partial listing of values for selected taxa at the BM(NH), courtesy of Dr. Peter Andrews and Haviva Goldman (who also measured many baboons); a list of specimens collected in East Africa by Dr. A. J. Haddow and now mainly in the Royal College of Surgeons (see references in Napier, 1985), courtesy of Dr. Terry Harrison; and values from a variety of museums provided courtesy of Dr. John F. Oates (colobines) and Dr. Elizabeth Strasser. Few cercopithecids have been carefully revised recently, but the work of J. Fooden on macaques is an exemplary exception. All of his published reviews were checked for lists of masses that generally included museum catalog numbers, and he provided several clarifications about individual specimens and species, as well as complete data on several species. The reviews of selected colobines by D. Brandon-Jones were treated likewise. Additional unpublished masses of various taxa were provided by Drs. Clifford J. Jolly and Jane Phillips-Conroy, Meave G. Leakey, Wolfgang Scheffrahn, Michael I. Siegel, and Mary Willis, mostly after our estimation equations were completed. The above are considered primary sources.

Secondary sources utilized included both regional and species compilations and original reports from field collectors of various types. Here, it was required that the author had actually seen and/or weighed the specimens involved, as far as could be inferred from the text. (Details are provided in appendix table I.) In all cases (and also for the museum catalog data), geographical source used to determine the correct was (sub)specific identification, following Napier (1981, 1985), as far as possible. No broad or tertiary compilations (e.g., Clutton-Brock and Harvey, 1977 [and related papers-see Smith and Jungers, 1997, for a critique]; or Fleagle, 1988) were used, as there is no way to tell if these sources duplicate each other or the preceding sources, or if they are accurate. A recent compilation of mammalian body mass data (Silva and Downing, 1995) is a case in point: Not only was their selection of cercopithecid values limited (missing several relevant sources in the very set of journals they examined), but often the same masses were repeated in the tabulations under different authors or combinations of authors, although even a cursory check showed that these were identical.

One species of some importance to our work, *Mandrillus sphinx*, is listed in table 4 with only roughly estimated male mean mass. This taxon is especially important because it appears to be the heaviest known extant cercopithecid. Only one acceptable value for a male specimen could be located, however, and thus a male mean is not provided. The history of the search for these data may be instructive. As discussed by Dechow (1983), Malbrant and Maclatchy (1949) provided apparently original values

1	5
	J

	Mass (g)				
Taxon	Male (N)	Female (N)			
Colobus guereza occidentalis	9022 (48)	7508 (46)			
Procolobus verus	4404 (30)	4023 (21)			
Procolobus badius oustaleti	12500 (1)	8250 (2)			
Procolobus badius tephrosceles	9520 (5)				
Procolobus badius-average (subspecies unknown)	8692 (19)	7171 (37)			
Nasalis (Nasalis) larvatus	19503 (22)	9767 (21)			
Nasalis (Simias) concolor	9167 (3)	6813 (3)			
Pygathrix nemaeus	10910 (2)	8064 (1)			
Pygathrix (Rhinopithecus) roxellana	18418 (6)	12300 (3)			
Pygathrix (Rhinopithecus) bieti	21500 (2)	12000 (2)			
Pygathrix (Rhinopithecus) brelichi	14500 (2)				
Presbytis thomasi	6780 (3)	6790 (4)			
Presbytis potenziani	6153 (7)	6420 (2)			
Semnopithecus (S.) entellus thersites	11438 (14)	6922 (11)			
Semnopithecus (S.) entellus schistacea (incl. S. e. ajax)	21184 (3)	15271 (3)			
Semnopithecus (S.) entellus—average (ssp. unknown)	17018	11516			
Semnopithecus (Trachypithecus) johnii	11724 (8)	11203 (3)			
Semnopithecus (Trachypithecus) obscura obscura	7958 (14)	7110 (9)			
Semnopithecus (Trachypithecus) obscura—average	8376	6852			
Semnopithecus (Trachypithecus) cristata ultima	6492 (16)	5699 (27)			
Semnopithecus (Trachypithecus) pileata shortridgei	13182 (2)	9545 (1)			
Cercopithecus aethiops pygerythrus group	5252 (22)	3533 (27)			
Cercopithecus aethiops—average (subsp. unknown)	5136	3604			
Miopithecus talapoin	1396 (9)	1135 (10)			
Erythrocebus patas	8817 (6)	4980 (5)			
Macaca sylvanus sylvanus (see text and table 8)					
Macaca nemestrina nemestrina	11227 (10)	6364 (17)			
Macaca nemestrina leonina	7783 (7)	4929 (7)			
Macaca nigra	7481 (4)	4690 (3)			
Macaca thibetana	17676 (34)	14100 (28)			
Macaca assamensis	11308 (12)	6851 (7)			
Macaca arctoides	11722 (9)	7805 (4)			
Macaca fascicularis	4938 (26)	3065 (22)			
Cercocebus torquatus var. subspp.	11019 (8)	6400 (3)			
Lophocebus albigena	8092 (25)	5557 (59)			
Papio hamadryas hamadryas	21768 (11)	11750 (1)			
Papio hamadryas kindae	16020 (5)	9830 (5)			
Papio hamadryas anubis/hamadryas hybrid	20000 (1)				
Papio hamadryas anubis/cynocephalus hybrid	22793 (6)				
Papio hamadryas cynocephalus	23470 (19)	12657 (13)			
Papio hamadryas cynocephalus Darajani sample	23312 (13)	12250 (10)			
Papio hamadryas anubis (large only)	32345 (10)	15839 (4)			
Papio hamadryas anubis ("neumanni" and other small)	23501 (31)	14458 (16)			
Papio hamadryas ursinus	29858 (35)	14856 (36)			
Mandrillus sphinx (see text and table 8)		12750 (4)			
Theropithecus gelada	18375 (2)	11920 (5)			

TABLE 4 Taxa Included in This Study with Compiled Mean Body Mass Data, as Used in Regression Model Development

Appendix table 2 presents an updated version of these figures, including mass values obtained during the course of this project, as documented in appendix table 1.

for males of 11.3, 13.2, 21, 24, 27, 28, 30, and 39 kg. At least the lowest four are probably from juveniles. Napier and Napier (1967) cited a male mass of 19.5 kg, but this has no original source and is probably also subadult, so it is not included here (although it was by Dechow). Secondary sources have further confused this situation: Jolly (1972: 74) cited the "mean" value from Malbrant and Maclatchy (1949) as 39 kg, which is in fact their maximum (Jolly [personal commun.] indicates that he intentionally used the highest available value given the possibility of continued growth in this species, but neglected to state this in his paper); Hill (1970) mentioned all of the Malbrant and Maclatchy (1949) values, but only listed the heaviest two in a footnote as they came from a different area: Strasser (1989) missed those two and thus arrived at a male mean "from Hill" of only 20.7 kg; Gautier-Hion (1975) cited a male mean (of two specimens) from Malbrant and Maclatchy (1949) as 25 kg-that number was presumably obtained from the original data by averaging just the largest and smallest published values. Napier (1981) reported a male value of 17.3 kg, but H. Goldman determined in London that this specimen was a partly dissected zoo animal. On the other hand, Goldman did locate records from the Powell-Cotton Museum of a male weighing 45 kg and a female 17 kg. Malbrant and Maclatchy gave female masses of 11, 11, and 12 kg; Smith and Jungers (1997) later listed two additional Powell-Cotton females at 10 and 12 kg. The large male specimen was located and measured for us by R. Wunderlich; at least one of the AMNH specimens studied here has postcranial (but not dental) dimensions greater than that of the 45 kg individual. Popp (1983) also reported male masses of 50 and 52 kg, for captive individuals. After our calculations had been completed, we obtained recent papers by Wickings and Dixon (1992a, 1992b) which provide data on individuals studied in semifree-ranging conditions (a large enclosure) in Gabon. They reported five adult male masses between 30 and 37 kg (not counting one individual lacking a limb) and three adult female masses of 12, 12, and 14 kg. All of this suggests that mandrills are probably the heaviest of all living cercopithecids, that noncaptive adult male masses may range from at least 28 to as much as 45 kg (if this is a correct mass and not perhaps a misprint for 35) and that sexual dimorphism in body mass may approach 3:1! Clearly, life-history parameters of wild mandrills are well worth further study.

Finally, Macaca sylvanus is especially interesting because a number of European Plio-Pleistocene populations have been suggested by ED to be subspecies of the living species, and therefore a number of modern specimens were measured for comparison. However, few museum specimens with mass are known (a situation confirmed in litt. by Dr. J. Fooden): Two males in the USNM are listed at 8.6 and 10 kg, while four females are tagged at 8.2, 9, 9.8, and 10 kg. The means (9.3 and 9.2 kg, respectively) appeared too close given the significant observed difference in skull (and postcranial) size. Thus, this species was treated as of unknown mass, as discussed above for mandrills. After our estimation equations had been calculated, however, Dr. W. Scheffrahn (AIUZ) generously provided a large series of body masses taken on wild M. sylvanus in Algeria; these are reported in appendix table I and used to test the predictions of our estimation equations. The means are 14.53 kg for males and 10.14 kg for females.

STATISTICAL METHODS

MASS ESTIMATION

We use bivariate ordinary least squares (OLS) regression to estimate body mass in fossil and extant cercopithecid samples, because prediction of a unique y-variable (taxon-mean body mass) from a given x-variable (skeletal or dental measurement) is the goal of this study. Additionally, we wish to be able to compare the results obtained here with those from previous studies that employed this method of estimation model construction (e.g., Gingerich et al., 1982; Conroy, 1987). We rely on OLS line fitting in order to facilitate direct contrasts and because OLS models were developed in order to predict one value (here, body mass) from another (skeletal dimension; see also Smith, 1994). We do not expect that body mass or skeletal dimensions are measured without error (an assumption of OLS models), but consider the error introduced from this source of variation to be randomly distributed and small relative to the total range of the data.

Natural logarithm-transformed data are used in the construction of linear estimation models. The resulting log-unit estimate must be detransformed in order to obtain mass estimates in grams. This transformation from arithmetic units (grams) to the natural logarithm and then back to grams introduces a systematic bias, and thus a correction factor must be applied to the detransformed estimate. Smith (1993) has shown that when correction factors are less than approximately 10%, several different correction factors (Quasi-Maximum Likelihood Estimator, Smearing Estimate, Ratio Estimate) consistently converge. As none of the equations preferred below have correction factors greater than 15%, and the majority are below 5%, we expect that our results would be substantially similar, no matter which of these methods of log-bias correction is employed. [If one compares the results of this study to those from previous analyses (e.g., Gingerich et al., 1982; Conroy, 1987), as we do below, it is important to recall that the application of a correction factor increases the previously published, uncorrected estimates; the actual corrections for the cited works are given by Smith, 1993.]

We use the Quasi-Maximum Likelihood Estimator (QMLE = exp [MSE/2], where MSE is the mean square error of the regression) as a log-bias correction factor applied to the estimate after transformation from logarithmic to arithmetic units (Sprugel, 1983; see also Dagosto and Terranova, 1992; Smith, 1993). Application of this correction factor always increases the mass estimated. and because detransformation characteristically underestimates the arithmetic value, it is reasonable to apply a correction that will increase the mass estimate. An assumption of correcting transformation bias with OMLE is that the residuals are normally distributed; heteroscedastic residual patterning will result in large values of the QMLE.

Most cercopithecid species (especially the larger-sized taxa) present a strong sexual dimorphism in body mass (see table 4) and also in most of the cranial and postcranial dimensions studied here. This is less true for the cheek tooth dimensions. (The highly dimorphic canine and lower third premolar measures are not included in this study.) Moreover, there are several fairly consistent patterns of difference between the two modern subfamilies in limb construction and molar morphology. For example, colobines have longer femora than cercopithecines of the same mass. Nearly all of the fossils studied here can be identified to subfamily, and the majority also to sex, so a four-way division of the modern (predictor) sample is warranted. But we also present and analyze results for each subfamily and for the whole sample undivided by sex, in order to deal with unsexed specimens and with victoriapithecine species that do not (of course) belong to either living subfamily. There are thus seven "subfamily/sex subsets" of the data.

Because the postcranial dataset is largely composed of individuals with associated mass, we have the unique opportunity to examine model performance in terms of both accuracy and consistency. A similar examination is possible for the craniodental sample, but with less control, due to the greater use of compiled masses. Accuracy (i.e., is the estimate correct?) is examined, in part, with a percent difference statistic (after Smith, 1985). Consistency (i.e., how the estimates cluster) is gauged by inspection of the standard error of the estimate. Both of these features of an estimation model are important to document, as a model producing consistent estimates need not produce accurate ones. It is obvious that accuracy can only be examined with associated-mass samples. We tested for these features of estimation models using sex-specific "taxon-mean" samples (at the population, subspecies, or species level).

CHOICE OF COMPARATIVE SAMPLES FOR ESTIMATING FOSSIL MASSES

As one main goal of this study is to reliably estimate the mean sex-specific body mass of cercopithecid fossil samples, it is most reasonable to use estimation models based on the best comparative data available. The *most suitable* dataset for establishing the relationship between body mass and skeletal measures is the associated-mass sample. It is only in this dataset that we can examine prediction accuracy. However, this sample does not contain all species of Old World monkey for which we have skeletal samples. As a result, the most complete dataset includes nonassociated masses and skeletal measures. Here we introduce unknown error by incorporating extra, nonassociated masses but we better sample the diversity of extant forms. Importantly, using the compiled estimates of mass as the target for the prediction model closely resembles the methods used, and assumptions made, in estimating fossil sample mass. Since the compiled mean masses include all masses in the known-mass sample as well as many museum catalog listings and well-documented published reports, it seems likely that these mass values are reasonable.

ESTIMATION MODEL CONSTRUCTION AND EVALUATION

Development and testing of models involved a two-step process. First, a set of preliminary models was constructed based on a portion of the available modern data for a given variable, and these models were tested using the remainder of the modern sample. For each subfamily/sex subset, the models were evaluated to determine which variables vield the most accurate and consistent estimates for associated-mass subsamples as detailed below. Then a second set of estimation equations was constructed, using the entire available dataset for all variables. In the further evaluations and analysis, only estimates derived from those "most accurate predictor" variables are utilized. The "sample mass" used in the final prediction models is composed of associated masses for those individuals possessing such values, averaged with compiled taxon/sex mean masses for individuals lacking associated mass. The resulting value may differ somewhat between postcranial and craniodental samples, depending upon differences between associated and compiled masses.

POSTCRANIAL SAMPLE

For each subfamily/sex subset, the associated-mass taxon-mean sample was divided into two subsamples (see table 5). The larger subsample of taxa was used to construct an estimation model which was then evaluated for accuracy and consistency using the "test" subsample held out of the construction of the model (following Smith, 1985).

CRANIODENTAL SAMPLE

Here, taxon and sex-specific compiled mean masses were used in the construction of the estimation models. Estimation performance was assessed using a "test" sample of individuals with associated body masses (taxa listed in table 5; these individuals were not included in estimation model construction). In this way we examined both the accuracy and consistency of the estimation models. Due to sample limitations, we are restricted to using GLIN, PORB, and BIOR among cranial variables for estimating mass within colobines.

For both the craniodental and postcranial data, we also examined the pattern of estimates derived from equations based on the entire sample (individuals both with and without associated mass), but divided post hoc by subfamily and sex. Sample mass (as described above) was employed here. Comparisons of the most inclusive models with the more restricted subfamily models are used to examine phylogenetic differences in patterns of association between body mass and skeletal or dental measures.

IDENTIFYING RELIABLE ESTIMATORS

For the most part, reliable estimators are identified by examining patterns of mass estimation in the test samples. The performance of estimation models is examined using several criteria. We rely primarily on mean prediction errors (MPE) to assess the accuracy of estimating mass with each measurement. Reliable estimator variables should yield low MPEs. MPE is calculated for each variable as the mean of the absolute values of prediction errors (PE) summed over all taxa, where

$$PE = \frac{\text{actual mass} - \text{estimated mass}}{\text{estimated mass}} \times 100$$

We further examined the performance of each variable by determining the proportion of taxa estimated to within 20% of their known mass. Variation in mass seasonally "

	Varia	ables
	Cranial, dental	Postcranial
Colobinae		
Colobus guereza matschiei		M, F
Procolobus verus		Μ
Nasalis (Nasalis) larvatus	F	M, F
Nasalis (Simias) concolor	M, F	
Pygathrix (Pygathrix) nemaeus	M, F	Μ
Pygathrix (Rhinopithecus) bieti	F	
Presbytis hosei		F
Semnopithecus entellus schistacea (incl. S. e. ajax)	M, F	
Semnopithecus entellus thersites	Μ	
Semnopithecus (Trachypithecus) obscura	M, F	M, F
Cercopithecinae		
Cercopithecus aethiops pygerythrus		F
Cercopithecus aethiops centralis		Μ
Cercopithecus mitis		Μ
Cercopithecus cephus		M , F
Macaca nemestrina leonina		F
Macaca fascicularis		M , F
Lophocebus albigena		M , F
Papio hamadryas hamadryas	Μ	
Papio hamadryas hamadryas/anubis hybrid	Μ	
Papio hamadryas kindae	M , F	
Papio hamadryas cynocephalus	M, F	M, F
Papio hamadryas cynocephalus Darajani sample		M, F
Papio hamadryas cynocephalus/anubis hybrid	Μ	
Papio hamadryas anubis	M, F	Μ
Papio hamadryas anubis "neumanii"	M, F	
Papio hamadryas ursinus	Μ	M , F
Theropithecus gelada	M, F	
Mandrillus sphinx	М	М

	TABLE 5
Test" Sample: Taxa Excluded from	Preliminary Model Construction and Used to
Examine Estimatio	n Accuracy and Consistency

M or F, sex of individuals removed to test sample.

and over the life span can be substantial, creating difficulty in ascribing great importance to a single value summarizing a taxon (e.g., a mean). The variation in known weights for several cercopithecid taxa examined here ranges from 5% to approximately 20% of the mean; additional data on large samples of Papio hamadryas hamadryas and P. h. anubis (courtesy of Drs. C. J. Jolly and Jane Phillips-Conroy) demonstrate that mass varies approximately $\pm 15\%$ around the mean in these taxa. As such, we expect a reliable estimator to be characterized by a large percentage of all taxa being estimated to within 20% of their actual masses. (It should be clear that the specific value

used to bound a range of estimates must be determined with respect to the group under study.) Finally, we examined the coefficient of determination (\mathbb{R}^2), because a reliable predictor variable should be significantly correlated with mass. We assume that a similar pattern of correlation exists between mass and the estimator variable among fossil populations as well.

Table 6 contains the set of estimator variables for each taxon/sex sample, ranked by MPE. In addition, the proportion of taxa estimated to within 20% of actual mass and the coefficient of determination are also listed. We use this ranking of variables in our estimates of the masses of extinct cercopithecids

									Colobin	ae					
All C	ercopit	hecida	e		All				Male				Femal	e	
	MPE	20%	R ²		MPE	20%	R ²		MPE	20%	R ²		MPE	20%	R ²
FTR	9.82	0.91	0.83	FTR	7.03	0.88	0.78	FTR	4.97	1.00	0.72	НАР	7.17	1.00	0.57
NABA	11.12	0.86	0.52	HL	10.53	0.75	0.74	HL	8.69	0.75	0.71	M2PW	8.04	0.83	0.78
HLEN	11.12	0.83	0.86	FAP	11.41	0.88	0.82	FAP	12.48	0.75	0.81	FAP	8.11	1.00	0.79
FAP	13.04	0.87	0.87	M1L	11.46	0.83	0.69	m3AR	12.85	0.60	0.79	M1PW	8.34	1.00	0.75
GLBA	13.25	0.79	0.53	HTR	11.51	0.88	0.84	M2AR	13.13	0.80	0.82	m3AW	8.92	1.00	0.68
NAIN	13.42	0.79	0.55	M1AR	12.14	0.91	0.69	M1PW	13.34	0.60	0.50	M2AW	8.97	0.83	0.78
m1L	14.24	0.76	0.70	HAP	12.69	0.75	0.78	M2PW	13.75	0.80	0.75	m2AW	9.57	0.83	0.79
HAP	14.49	0.83	0.81	m3PW	13.79	0.82	0.50	M1L	14.12	1.00	0.79	HL	9.59	1.00	0.67
m1AR	16.60	0.55	0.70	M2PW	14.39	0.64	0.68	FL	14.12	0.75	0.63	M1AR	9.60	0.83	0.79
m3AR	16.61	0.65	0.71	m1L	15.08	0.67	0.67	m2AW	14.37	0.80	0.53	m2AR	10.15	0.83	0.74
m2AR	16.64	0.55	0.65	m1AR	15.10	0.73	0.69	M1AR	14.58	0.80	0.72	FTR	10.17	0.75	0.94
m3AW	16.73	0.60	0.62	FL	15.24	0.75	0.71	m1AR	15.45	0.80	0.67	m1AR	10.83	0.83	0.78
m2AW	16.82	0.56	0.59	m3AR	16.07	0.55	0.68	HTR	15.52	0.75	0.85	M2AR	11.14	0.83	0.73
m3PW	17.06	0.60	0.71	m1AW	16.18	0.55	0.54	m3AW	15.59	0.80	0.56	m3PW	11.47	0.83	0.57
m2L	17.16	0.65	0.64	m3AW	16.26	0.64	0.53	m3PW	15.95	0.60	0.57	m1AW	11.59	0.83	0.76
M2AR	17.35	0.60	0.63	m2AW	16.33	0.67	0.79	M2L	15.98	0.80	0.87	M1AW	11.73	0.67	0.78
M1PW	17.40	0.70	0.69	m2L	16.42	0.77	0.68	m2AR	16.15	0.80	0.73	m2PW	12.53	0.67	0.79
m3L	17.91	0.65	0.73	M1PW	16.45	0.64	0.54	m3L	16.62	0.60	0.87	m3AR	13.67	0.83	0.73
M2PW	17.95	0.70	0.63	M2L	16.75	0.69	0.70	m1AW	17.06	0.80	0.39	HTR	15.07	0.75	0.68
M2AW	18.06	0.64	0.62	M2AW	17.16	0.67	0.64	m2L	17.09	0.65	0.78	MIL	15.73	0.57	0.72
MIAR	18.27	0.68	0.68	MIAW	18.05	0.55	0.59	HAP	17.35	0.50	0.78	mlL	16.00	0.57	0.70
MIL	18.29	0.50	0.66	m3L	18.35	0.62	0.75	M2AW	17.52	0.60	0.63	m3L	16.47	0.71	0.74
FL	18.79	0.70	0.70	m2PW	18.86	0.45	0.67	m1PW	19.35	0.60	0.54	FL	16.68	0.75	0.83
M2L	19.08	0.62	0.62	m1PW	19.91	0.64	0.66	PORB	<u>19.39</u>	<u>0.60</u>	<u>0.47</u>	m2L	16.97	0.60	0.68
m1AW	19.59	0.55	0.65	PORB	21.09	0.50	0.37	m2PW	20.47	0.60	0.58	M2L	18.50	0.29	0.63
HTR	20.03	0.61	0.76	M2AR	27.76	0.83	0.72	mlL	22.99	0.60	0.72	m1PW	19.14	0.67	0.83
M1AW	20.22	0.55	0.64	m2AR	27.82	0.67	0.69	MIAW	23.09	0.56	0.84	PORB	<u>23.61</u>	<u>0.43</u>	<u>0.39</u>
m1PW	20.97	0.45	0.71	GLIN	57.57	0.17	0.71	GLIN	36.52	0.60	0.78	BIOR	<u>31.56</u>	<u>0.57</u>	<u>0.02</u>
m2PW	21.49	0.50	0.69	BIOR	115.27	0.25	0.42	BIOR	<u>73.38</u>	<u>0.20</u>	<u>0.49</u>	GLIN	65.94	0.14	0.58
ORBW	21.61	0.55	0.41	GLBA	_	_	0.47	GLBA		_	0.54	GLBA	_	—	0.29
PORB	24.15	0.43	0.43	NAIN	_	—	0.54	NAIN		—	0.65	NAIN		—	0.49
ORBAR	28.80	0.45	0.32	NABA	—	_	0.42	NABA	—		0.50	NABA			0.26
GLIN	38.73	0.43	0.54	ORBW			0.33	ORBW	_	—	0.54	ORBW		—	0.14
ORBH	41.58	0.45	0.31	ORBH		_	0.28	ORBH	—		0.30	ORBH		—	0.26
BIOR	60.69	0.10	0.62	ORBAR		_	0.22	ORBAR	—	—	0.35	ORBAR			0.11

 TABLE 6

 Ranking of Estimator Variables in Preliminary Models, in Order of MPE as Assessed on Test Subsamples

Continued on facing page

as well as several extant taxa. In order to include variables from all three anatomical regions, we decided to use only the topranked third of variables from each in prediction calculations. Thus, 3 of 9 cranial variables and 6 of 20 dental variables were analyzed in more detail. Because postcranial variables have often been shown (or assumed) to produce "better" mass predictions (Hylander, 1985; Jungers, 1987, 1988; Ruff et al., 1989; Damuth and MacFadden, 1990; Dagosto and Terranova, 1992), we analyzed the top *two*-thirds, thus four of six. In fact, of our seven taxon/sex groups, three of the four top-ranked variables were postcranial in four groups (all cercopithecids, all cercopithecines, all colobines, and male colobines), while two were postcranial for colobine and cercopithecine females; in general, the remaining highest-ranked variables were dental, except in all cercopithecids where it was cranial. In male cercopithecines, however, the top two variables were cranial and the next six dental; only the third cranial variable

					Continu	ied						
					Cercopithe	cinae						
	All				Male				Female			
	MPE	20%	R ²		MPE	20%	R ²		MPE	20%	R ²	
FTR	9.35	0.80	0.85	NABA	10.00	0.78	0.47	HL	4.63	0.86	0.93	
HL	10.23	0.87	0.90	GLBA	10.03	0.89	0.58	FTR	6.11	1.00	0.86	
FAP	11.00	0.87	0.91	m1L	10.44	0.80	0.90	m2PW	6.15	1.00	0.87	
m1L	12.32	0.67	0.87	m2AW	11.82	0.89	0.82	M1AR	7.78	1.00	0.89	
HAP	13.70	0.87	0.85	M2AW	12.79	0.89	0.84	m3PW	8.22	1.00	0.91	
m1AR	14.68	0.78	0.85	M2L	12.93	0.89	0.87	<u>GLBA</u>	<u>9.91</u>	1.00	<u>0.43</u>	
M1AR	14.93	0.75	0.86	M2AR	13.17	0.80	0.88	HAP	10.18	0.71	0.84	
m3AW	15.86	0.56	0.85	m2AR	13.31	0.80	0.87	NABA	12.60	0.80	0.51	
M1L	15.91	0.63	0.83	MIAR	13.58	0.80	0.88	m3AR	13.07	0.75	0.91	
M1PW	16.43	0.67	0.86	HL	14.11	0.75	0.88	m3AW	13.37	0.75	0.91	
M1AW	17.10	0.56	0.84	m3L	14.91	0.78	0.84	<u>ORBW</u>	13.74	0.80	0.29	
FL	17.39	0.60	0.87	M2PW	15.06	0.80	0.83	m2AR	13.93	0.75	0.89	
HTR	18.15	0.67	0.79	M1PW	15.13	1.00	0.89	HTR	14.03	0.71	0.77	
m3AR	18.91	0.78	0.85	m3AW	15.84	0.80	0.82	m1AW	14.17	0.50	0.86	
M2PW	18.98	0.56	0.83	MIAW	15.97	0.60	0.86	m2L	14.64	0.80	0.89	
m3PW	19.05	0.44	0.86	m3AR	15.98	0.80	0.85	FAP	14.94	0.71	0.85	
m1PW	19.18	0.78	0.80	FAP	16.32	0.63	0.97	M1PW	15.52	0.75	0.89	
m2PW	19.98	0.56	0.84	M1L	16.35	0.80	0.85	m1PW	16.08	1.00	0.83	
m2L	20.05	0.62	0.84	m1AR	16.74	0.60	0.87	<u>ORBAR</u>	<u>16.82</u>	<u>0.80</u>	<u>0.16</u>	
m1AW	20.23	0.56	0.80	m2L	17.47	0.60	0.88	MIAW	17.68	0.75	0.88	
M2L	21.05	0.62	0.83	m2PW	18.36	0.60	0.82	FL	17.68	0.57	0.84	
ORBW	21.07	0.55	0.32	<u>ORBW</u>	<u>18.45</u>	<u>0.50</u>	<u>0.24</u>	MIL	18.16	0.67	0.88	
m3L	21.95	0.54	0.84	HAP	18.77	0.50	0.87	NAIN	<u>18.67</u>	<u>0.60</u>	<u>0.63</u>	
m2AW	23.21	0.62	0.82	FL	19.12	0.63	0.86	m1AR	18.79	0.75	0.89	
M2AW	23.71	0.60	0.63	m3PW	20.00	0.60	0.83	m3L	18.99	0.40	0.91	
PORB	28.31	0.45	0.45	FTR	20.57	0.38	0.81	m2AW	19.65	0.80	0.86	
GLBA	28.50	0.50	0.60	NAIN	20.76	0.56	0.80	PORB	21.02	0.80	0.56	
NABA	29.31	0.43	0.60	PORB	<u>20.89</u>	<u>0.33</u>	<u>0.18</u>	<u>GLIN</u>	<u>21.07</u>	<u>0.67</u>	<u>0.57</u>	
GLIN	29.71	0.50	0.69	HTR	20.92	0.63	0.73	M2L	21.52	0.60	0.89	
NAIN	32.63	0.36	0.73	ORBAR	22.18	0.33	0.19	mlL	22.93	0.75	0.90	
ORBH	33.72	0.36	0.31	m1AW	23.40	0.40	0.78	M2AR	27.51	0.50	0.89	
ORBAR	39.18	0.00	0.25	m1PW	23.72	0.40	0.84	<u>ORBH</u>	<u>28.74</u>	<u>0.60</u>	<u>0.36</u>	
M2AR	55.76	0.38	0.85	ORBH	25.87	0.33	0.12	M2AW	30.24	0.60	0.89	
m2AR	59.80	0.46	0.85	GLIN	36.93	0.30	0.76	M2PW	31.08	0.25	0.88	
BIOR	64.02	0.22	0.67	BIOR	47.24	0.20	0.14	BIOR	54.59	0.25	0.80	

TABLE 6

MPE, mean prediction error of estimate (value over 29% resulted in rejection of variable); 20%, frequency of estimated values within 20% of known (associated or compiled) mass. HLEN, HAP, HTR, FLEN, FAP, and FTR, humerus (H) or femur (F) length, anteroposterior midshaft diameter, and transverse midshaft diameter. Abbreviations for cranial and dental measurements are explained in the text.

Values in bold used in later analyses. Underlined values would have been used if the final-model equations were not rejected (see belowthese were replaced when possible). Insufficient data were available to permit the calculation of MPE or 20% values for the final six variables for all three colobine subsets, but the final-model equations for these variables were rejected in any case.

was ranked lower than five postcranial variables.

Using the most complete data, a set of "final" models was calculated, to be used in prediction of mass for fossil taxa. The full set of equation parameters is presented in table 7, with variables selected above as "best predictors" highlighted. Of the 245 equations we have calculated (35 variables over 7 taxon/sex subsets), a number have associated p-values greater than 0.05. Normally, a p-value of 0.05 corresponds to a 95% confidence level, but as the number of simultaneous tests or comparisons goes up, the effective confidence level drops sharply. Rice (1989) has suggested a modified Bon-

	All Cerco-		Colobinae		(Cercopithecina	e
	pithecidae	All	Male	Female	All	Male	Female
			Postcranial N	lodels			
Humerus length							
N	84	42	23	19	42	24	18
Slope	2.728	2.456	2.536	2.074	2.832	2.779	2.744
Y-Int	-4.689	-3.295	-3.666	-1.427	-5.237	-4.935	-4.844
R ²	0.880	0.774	0.813	0.654	0.925	0.910	0.921
SEE	0.215	0.217	0.222	0.205	0.208	0.219	0.194
MSE	0.038	0.039	0.040	0.035	0.036	0.039	0.032
OMLE	1.019	1.019	1.020	1.018	1.018	1.020	1.016
MPE	14.737	14.605	14.407	13.395	14.174	13.866	12.643
20%	0.750	0.714	0.739	0.737	0.738	0.708	0.778
Humerus AP							
Ν	84	42	23	19	42	24	18
Slope	2.195	2.160	2.163	2.191	2.246	2.142	2.197
Y-Int	3.903	4.064	4.053	3.998	3.706	4.013	3.744
R ²	0.832	0.783	0.788	0.692	0.877	0.844	0.896
SEE	0.259	0.212	0.237	0.192	0.274	0.298	0.225
MSE	0.053	0.037	0.045	0.031	0.059	0.068	0.041
OMLE	1.027	1.019	1.023	1.016	1.030	1.035	1.021
MPE	16.800	15.512	16.290	14.588	15.949	15.552	14.885
20%	0.643	0.786	0.783	0.789	0.619	0.625	0.556
Humerus TR							
Ν	84	42	23	19	42	24	18
Slope	2.573	2.439	2.425	2.598	2.708	2.771	2.546
Y-Int	2.958	3.361	3.385	3.009	2.549	2.409	2.900
R ²	0.783	0.851	0.859	0.782	0.795	0.759	0.755
SEE	0.299	0.173	0.190	0.159	0.366	0.383	0.366
MSE	0.069	0.025	0.030	0.022	0.098	0.105	0.097
QMLE	1.035	1.013	1.015	1.011	1.050	1.054	1.050
MPE	19.532	12.512	13.635	11.163	24.064	23.873	23.338
20%	0.631	0.786	0.783	0.789	0.571	0.583	0.611
Femur length							
N	81	40	23	_ 17	41	23	18
Slope	2.852	3.181	3.312	2.592	3.043	2.961	3.008
Y-Int	-5.855	-7.707	-8.379	-4.653	-6.729	-6.269	-6.588
R ²	0.790	0.704	0.700	0.597	0.883	0.856	0.880
SEE	0.297	0.256	0.289	0.211	0.266	0.291	0.244
MSE	0.068	0.052	0.065	0.037	0.056	0.065	0.048
QMLE	1.034	1.026	1.033	1.019	1.028	1.033	1.024
MPE	20.993	16.927	17.968	13.626	17.302	16.767	17.044
20%	0.556	0.625	0.609	0.647	0.585	0.565	0.667
Femur AP							
Ν	83	41	23	18	42	24	18
Slope	2.792	2.532	2.750	2.174	2.918	2.868	2.921
Y-Int	2.229	2.844	2.289	3.716	1.947	2.085	1.924
R ²	0.876	0.776	0.807	0.651	0.918	0.909	0.893
SEE	0.220	0.218	0.225	0.213	0.218	0.220	0.228
MSE	0.040	0.039	0.041	0.037	0.039	0.040	0.042
QMLE	1.020	1.020	1.021	1.019	1.020	1.020	1.021
MPE	15.417	15.784	14.215	16.165	13.458	11.140	15.734
20%	0.711	0.707	0.739	0.667	0.738	0.750	0.667

 TABLE 7

 Model Parameters for the Final Estimation Models

	TABLE 7 Continued										
			Colobinae		Cercopithecinae						
	pithecidae	All	Male	Female	All	Male	Female				
Femur TR											
N	83	41	23	18	42	24	18				
Slope	2.694	2.481	2.469	2.338	2.785	2.774	2.770				
Y-Int	2.464	2.984	3.038	3.294	2.248	2.279	2.276				
R2	0.875	0.819	0.788	0.862	0.897	0.848	0.923				
SEE	0.221	0.194	0.237	0.129	0.247	0.294	0.190				
MSE	0.040	0.032	0.045	0.015	0.049	0.067	0.031				
QMLE	1.020	1.016	1.023	1.007	1.025	1.034	1.015				
MPE	14.753	13.550	16.139	9.525	14.167	16.602	11.271				
20%	0.711	0.756	0.739	0.944	0.690	0.583	0.833				
			Dental Mo	dels							
m1AW											
N	64	33	17	16	31	17	14				
Slope	2.089	2.678	2.682	2.349	2.455	2.151	2.444				
Y-Int	5.592	4.798	4.899	5.219	4.731	5.445	4.583				
R ²	0.643	0.589	0.482	0.776	0.811	0.773	0.863				
SEE	0.363	0.271	0.312	0.169	0.336	0.296	0.311				
p-Value	0.000	0.000	0.002	0.000	0.000	0.000	0.000				
MSE	0.132	0.074	0.097	0.028	0.113	0.088	0.097				
QMLE	1.068	1.038	1.050	1.014	1.058	1.045	1.050				
MPE	26.676	20.240	22.740	12.760	24.413	21.466	16.760				
20%	0.453	0.576	0.353	0.875	0.548	0.412	0.643				
m1PW											
N	64	33	17	16	31	17	14				
Slope	2.175	2.833	2.904	2.431	2.353	2.134	2.286				
Y-Int	5.366	4.395	4.360	4.972	4.878	5.443	4.821				
R ²	0.700	0.669	0.579	0.810	0.812	0.820	0.839				
SEE	0.333	0.244	0.281	0.155	0.336	0.264	0.338				
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
MSE	0.111	0.059	0.079	0.024	0.113	0.070	0.114				
QMLE	1.057	1.030	1.040	1.012	1.058	1.036	1.059				
MPE	24.513	19.658	20.404	13.703	24.686	18.833	21.548				
20%	0.484	0.545	0.529	0.813	0.419	0.588	0.714				
mlL											
N	65	33	17	16	32	17	15				
Slope	2.455	2.965	3.157	2.437	2.940	2.743	2.840				
Y-Int	4.325	3.540	3.261	4.440	3.118	3.659	3.185				
R ²	0.713	0.694	0.690	0.739	0.891	0.913	0.905				
SEE	0.323	0.234	0.241	0.182	0.251	0.184	0.252				
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000				
MSE	0.104	0.055	0.058	0.033	0.063	0.034	0.064				
QMLE	1.053	1.028	1.029	1.017	1.032	1.017	1.033				
MPE	23.908	19.026	19.371	13.609	19.187	13.436	18.593				
20%	0.569	0.606	0.529	0.750	0.563	0.706	0.600				
m1AR											
N	64	33	17	16	31	17	14				
Slope	1.168	1.531	1.629	1.276	1.346	1.243	1.297				
Y-Int	4.841	3.719	3.449	4.528	3.948	4.496	3.974				
R ²	0.708	0.709	0.668	0.806	0.864	0.878	0.889				
SEE	0.328	0.228	0.249	0.157	0.285	0.218	0.280				

	TABLE 7 Continued											
	All Cerco-			(Cercopithecina	e						
	pithecidae	All	Male	Female	All	Male	Female					
m1AR (continued	d)											
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MSE	0.108	0.052	0.062	0.025	0.081	0.047	0.078					
QMLE	1.055	1.026	1.031	1.013	1.041	1.024	1.040					
MPE	41.158	72.488	29.651	82.436	20.851	15.834	18.005					
20%	0.469	0.545	0.588	0.688	0.452	0.647	0.643					
m2AW												
N	68	33	17	16	35	19	16					
Slope	1.838	2.442	2.578	2.060	2.562	2.398	2.429					
Y-Int	5.694	4.832	4.677	5.408	3.987	4.484	4.074					
R ²	0.596	0.662	0.579	0.809	0.823	0.825	0.868					
SEE	0.383	0.246	0.281	0.156	0.313	0.252	0.290					
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MSE	0.147	0.061	0.079	0.024	0.098	0.063	0.084					
QMLE	1.076	1.031	1.040	1.012	1.050	1.032	1.043					
MPE	27.202	19.459	20.690	12.185	24.376	17.072	18.943					
20%	0.412	0.667	0.471	0.813	0.457	0.632	0.688					
m2PW												
N	65	33	17	16	32	17	15					
Slope	2.141	2.694	2.683	2.355	2.549	2.433	2.410					
Y-Int	5.128	4.308	4.413	4.823	4.112	4.483	4.235					
R ²	0.677	0.679	0.600	0.793	0.842	0.820	0.880					
SEE	0.343	0.240	0.274	0.162	0.302	0.264	0.283					
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MSE	0.118	0.057	0.075	0.026	0.091	0.070	0.080					
OMLE	1.061	1.029	1.038	1.013	1.047	1.036	1.041					
MPE	26.358	19.423	22.068	13.381	23.729	19.403	18.970					
20%	0.446	0.545	0.412	0.750	0.500	0.647	0.733					
m2L												
N	68	33	17	16	35	19	16					
Slope	1.890	2.432	2.858	1.873	2.448	2.315	2.321					
Y-Int	5.236	4.368	3.614	5.355	3.781	4.251	3.868					
R ²	0.655	0.694	0.771	0.720	0.851	0.898	0.891					
SEE	0.354	0.234	0.207	0.189	0.288	0.192	0.263					
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MSE	0.125	0.055	0.043	0.036	0.083	0.037	0.069					
OMLE	1.064	1.028	1.022	1.018	1.042	1.019	1.035					
MPE	25,798	20.291	17.296	15.028	21.920	13.377	16.839					
20%	0.441	0.455	0.706	0.813	0.600	0.684	0.688					
m2AR												
Ν	65	33	17	16	32	17	15					
Slope	0.982	1.313	1.452	1.062	1.254	1.172	1.204					
Y-Int	5.270	4.225	3.785	5.063	3.891	4.395	3.931					
R ²	0.648	0.719	0.724	0.790	0.852	0.867	0.888					
SEE	0.358	0.224	0.227	0.163	0.292	0.227	0.273					
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000					
MSE	0.128	0.050	0.052	0.027	0.086	0.051	0.075					
OMLE	1.066	1.025	1.026	1.014	1.044	1.026	1.038					
MPE	37.636	52.819	26.626	56.696	22.146	17.351	18.399					
20%	0.431	0.485	0.706	0.750	0.531	0.647	0.733					

			Continu	ed			
	All Cerco-		Colobinae	<u>.</u>		Cercopithecina	e
	pithecidae	All	Male	Female	All	Male	Female
m3AW							
Ν	59	30	16	14	29	17	12
Slope	1.600	2.213	2.308	1.957	2.106	2.052	2.039
Y-Int	6.149	5.224	5.170	5.552	4.883	5.103	4.871
R ²	0.629	0.601	0.615	0.776	0.848	0.817	0.910
SEE	0.352	0.257	0.277	0.149	0.283	0.266	0.251
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MSE	0.124	0.066	0.077	0.022	0.080	0.071	0.063
QMLE	1.064	1.034	1.039	1.011	1.041	1.036	1.032
MPE	26.383	19.249	20.701	11.788	21.860	18.453	19.640
20%	0.441	0.667	0.688	0.857	0.483	0.647	0.750
m3PW							
N	59	30	16	14	29	17	12
Slope	1.779	2.309	2.421	1.951	2.026	2.000	1.943
Y-Int	5.925	5.131	5.037	5.641	5.279	5.430	5.301
R ²	0.714	0.608	0.625	0.711	0.860	0.826	0.919
SEE	0.309	0.254	0.274	0.170	0.271	0.260	0.239
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MSE	0.096	0.065	0.075	0.029	0.074	0.067	0.057
OMLE	1.049	1.033	1.038	1.015	1.038	1.034	1 029
MPE	23.856	20.056	21.432	14.032	21,930	17 202	17 995
20%	0.508	0.600	0.750	0.714	0.517	0.647	0.583
m3L							
N	62	30	16	14	32	19	13
Slope	1 570	2 205	2 4 1 9	1 740	1 774	1 734	1 716
Y-Int	5 640	4 395	4 021	5 293	4 994	5 228	1.710
R2	0 729	0 740	0.822	0.763	0.837	0.855	4.939
SEE	0.300	0.207	0.189	0.153	0.285	0.333	0.903
n-Value	0.000	0.000	0.000	0.000	0.000	0.229	0.231
MSF	0.000	0.000	0.000	0.000	0.000	0.000	0.000
OMLE	1.046	1 022	1.018	1.012	0.081	1.026	0.003
MPE	21.696	17 226	12 420	11.280	1.041	14.002	1.032
20%	0.581	0.733	0.688	0.857	0.531	0 737	18.297
m3AR					0.001	0.757	0.015
N	50	30	16	14	20	17	10
Slone	0.835	1 190	1 272	0.084	29	17	12
Y-Int	5 743	1.190	1.272	5 192	0.900	0.941	0.938
D2	0.743	4.407	4.204	3.183	4.980	5.213	4.946
SEE	0.715	0.722	0.777	0.804	0.854	0.840	0.916
n Value	0.310	0.214	0.211	0.139	0.277	0.249	0.243
p- value	0.000	0.000	0.000	0.000	0.000	0.000	0.000
OME	0.090	0.046	0.045	0.019	0.077	0.062	0.059
QNILE	1.049	1.023	1.023	1.010	1.039	1.031	1.030
MPE 20%	31.738 0.525	45.409	23.886	50.655	21.689	16.847	18.603
2070	0.525	0.000	0.025	0.714	0.483	0.647	0.667
MIAW		. .					
N	64	34	18	16	30	16	14
Slope	2.122	2.723	2.842	2.392	2.791	2.583	2.744
Y-Int	5.108	4.187	4.057	4.695	3.510	4.092	3.439
R ²	0.629	0.614	0.541	0.808	0.851	0.878	0.881
SEE	0.364	0.269	0.327	0.152	0.294	0.224	0.284

TABLE 7 Continued

TABLE 7 Continued										
	All Cerco-		Colobinae		(Cercopithecina	e			
	pithecidae	All	Male	Female	All	Male	Female			
M1AW (continue	ed)									
p-Value	0.000	0.000	0.001	0.000	0.000	0.000	0.000			
MSE	0.133	0.072	0.107	0.023	0.086	0.050	0.081			
QMLE	1.069	1.037	1.055	1.012	1.044	1.025	1.041			
MPE	26.179	21.235	25.753	11.217	21.291	15.551	19.424			
20%	0.484	0.559	0.500	0.875	0.500	0.625	0.500			
MIPW										
N	63	34	18	16	29	16	13			
Slope	2.290	2.668	2.719	2.453	2.737	2.739	2.536			
Y-Int	4.904	4.378	4.396	4.646	3.825	3.963	4.040			
R ²	0.688	0.583	0.532	0.790	0.870	0.910	0.896			
SEE	0.336	0.280	0.331	0.159	0.279	0.193	0.274			
p-Value	0.000	0.000	0.001	0.000	0.000	0.000	0.000			
MSE	0.113	0.078	0.109	0.025	0.078	0.037	0.075			
QMLE	1.058	1.040	1.056	1.013	1.040	1.019	1.038			
MPE	24.745	21.859	24.385	11.558	19.964	14.288	17.351			
20%	0.508	0.588	0.556	0.813	0.517	0.813	0.692			
M1L										
N	64	34	18	16	30	16	14			
Slope	2.099	2.860	3.212	2.288	2.667	2.537	2.565			
Y-Int	5.040	3.788	3.220	4.752	3.616	4.035	3.669			
R ²	0.665	0.729	0.806	0.746	0.858	0.887	0.880			
SEE	0.346	0.226	0.213	0.175	0.287	0.216	0.285			
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
MSE	0.120	0.051	0.045	0.030	0.082	0.047	0.081			
QMLE	1.062	1.026	1.023	1.015	1.042	1.024	1.041			
MPE	25.668	17.821	17.188	13.795	21.532	16.385	16.423			
20%	0.484	0.588	0.722	0.750	0.500	0.688	0.786			
M1AR										
N	63	34	18	16	29	16	13			
Slope	1.109	1.523	1.670	1.270	1.381	1.321	1.318			
Y-Int	4.893	3.540	3.088	4.369	3.546	3.935	3.638			
R ²	0.680	0.723	0.739	0.827	0.873	0.907	0.892			
SEE	0.341	0.228	0.247	0.144	0.276	0.196	0.279			
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
MSE	0.116	0.052	0.061	0.021	0.076	0.038	0.078			
QMLE	1.060	1.026	1.031	1.011	1.039	1.019	1.040			
MPE	31.735	35.384	25.757	35.224	19.683	15.028	16.836			
20%	0.413	0.588	0.611	0.688	0.517	0.750	0.692			
M2AW										
N	67	34	18	16	33	18	15			
Slope	1.921	2.337	2.520	1.993	2.776	2.604	2.673			
Y-Int	5.248	4.632	4.366	5.195	3.133	3.668	3.182			
R ²	0.622	0.670	0.640	0.827	0.846	0.870	0.883			
SEE	0.368	0.249	0.290	0.144	0.292	0.223	0.273			
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000			
MSE	0.135	0.062	0.084	0.021	0.085	0.050	0.075			
QMLE	1.070	1.031	1.043	1.011	1.043	1.025	1.038			
MPE	25.955	20.404	22.657	11.276	22.894	15.704	19.849			
20%	0.448	0.588	0.389	0.813	0.515	0.667	0.667			

TABLE 7 Continued									
	All Cerco-		Cercopithecinae						
	pithecidae	All	Male	Female	All	Male	Female		
M2PW									
N	64	34	18	16	30	16	14		
Slope	2.016	2.533	2.932	2.054	2.776	2.629	2.675		
Y-Int	5.202	4.420	3.778	5,199	3.355	3.815	3.406		
R ²	0.626	0.706	0.759	0.820	0.839	0.840	0.878		
SEE	0.366	0.235	0.237	0.147	0.305	0.257	0.287		
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
MSE	0.134	0.055	0.056	0.022	0.093	0.066	0.082		
OMLE	1.069	1.028	1 028	1 011	1 048	1 034	1 042		
MPE	26.182	18 864	17 696	12 366	24 017	17 295	22 613		
20%	0.484	0 588	0 722	0.813	0.400	0.688	0.643		
20 // MOI	0.101	0.500	0.722	0.015	0.400	0.000	0.045		
N	67	24	10	16	22	10	15		
Slope	1 720	2 202	2 027	1 729	2 421	10	13		
Slope V.Int	5 580	2.393	2.921	1.738	2.431	2.313	2.329		
1-mit D2	5.560	4.409	5.505	5.048	3.700	4.197	3.791		
K-	0.025	0.705	0.842	0.040	0.849	0.901	0.893		
SEE n Value	0.300	0.230	0.192	0.206	0.289	0.195	0.261		
p-value	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
MJE	0.134	0.056	0.037	0.042	0.083	0.038	0.068		
QMLE	1.069	1.028	1.019	1.021	1.042	1.019	1.035		
MPE	20.784	20.571	16.038	10.080	21.668	13.155	15.244		
20%	0.433	0.471	0.667	0.688	0.576	0.722	0.733		
M2AR									
N	64	34	18	16	30	16	14		
Slope	0.936	1.279	1.483	1.004	1.301	1.237	1.256		
Y-Int	5.347	4.213	3.514	5.172	3.489	3.933	3.509		
R ²	0.63	0.735	0.804	0.779	0.856	0.894	0.892		
SEE	0.37	0.223	0.214	0.163	0.288	0.209	0.27		
p-Value	0.000	0.000	0.000	0.000	0.000	0.000	0.000		
MSE	0.13	0.05	0.05	0.03	0.08	0.04	0.07		
QMLE	1.07	1.03	1.02	1.01	1.04	1.02	1.04		
MPE	46.355	87.162	40.709	87.322	22.121	14.796	18.225		
20%	0.406	0.471	0.611	0.625	0.533	0.750	0.786		
			Cranial Mo	dels					
BIOR									
N	54	27	15	12	27	13	14		
Slope	2.862	1.852			3.550		3.581		
Y-Int	-2.654	1.564			-5.580		-5.736		
R2	0.529	0.338			0.637		0.777		
SEE	0.370	0.302			0.415		0.346		
p-Value	0.000	0.001			0.000		0.000		
MSE	0.137	0.091			0.172		0.120		
QMLE	1.071	1.047			1.090		1.062		
MPE	27.345	24.304			27.512		23.386		
20%	0.426	0.519			0.481		0.429		
GLBA									
N	44	18	9	9	26	14	12		
Slope	2.620				3.975	4.439			
Y-Int	-1.779				-7.736	-9.814			
R ²	0.61				0.701	0.644			

TABLE 7 Continued										
	All Cerco-		Colobinae			Cercopithecina	e			
	pithecidae	All	Male	Female	All	Male	Female			
GLBA (continued)										
SEE	0.292				0.274	0.296				
p-Value	0.000				0.000	0.001				
MSE	0.085				0.075	0.087				
OMLE	1.043				1.038	1.044				
MPE	20.532				17.3	17.244				
20%	0.636				0.769	0.714				
GUN										
N	55	27	15	12	28	15	13			
Slone	2757	2 196	3 107	2 706	1 804	6 540	15			
V Int	-3.018	-4 811	J.172 	-2.763	-12 956	-20 597				
1-mu D2	- 5.018	4.011	0.704	2.703	0.758	0.812				
N- SEE	0.040	0.770	0.794	0.740	0.750	0.312				
SEE n Value	0.209	0.175	0.109	0.130	0.242	0.210				
p-value	0.000	0.000	0.000	0.000	0.000	0.000				
MSE	0.072	0.031	0.030	0.019	0.039	0.044				
QMLE	1.037	1.016	1.018	1.010	1.030	1.022				
MPE	19.049	13.869	14.247	9.778	16./26	13.753				
20%	0.618	0.815	0.733	0.917	0.571	0.733				
NABA										
Ν	47	18	9	9	29	15	14			
Slope	2.911				4.151	4.713	4.780			
Y-Int	-2.953				-8.351	-10.848	-10.971			
R ²	0.598				0.684	0.568	0.593			
SEE	0.301				0.289	0.318	0.268			
p-Value	0.000				0.000	0.001	0.001			
MSE	0.090				0.084	0.101	0.072			
QMLE	1.046				1.043	1.052	1.037			
MPE	20.436				18.027	17.001	19.341			
20%	0.617				0.759	0.733	0.786			
NAIN										
N	44	18	9	9	26	14	12			
Slone	2.924	3 466	-		4.816	5.778				
V-Int	-3.819	-6.081			-12.607	-17.072				
P2	0.629	0.536			0.791	0.829				
SEE	0.283	0.230			0 229	0.205				
n Value	0.000	0.001			0.000	0.000				
p- value MSE	0.000	0.001			0.053	0.042				
OMLE	1 0/1	1.027			1 027	1 021				
MDE	20 614	18 670			16.067	13 427				
MPE 2007	20.014	0.611			0.692	0714				
20%	0.371	0.011			0.072	0.771				
ORBH		~.		10	27	10	1.4			
N	48	21	11	10	2 4 2 0	15	14			
Slope	3.480				3.420					
Y-Int	-1.558				-1.302					
R ²	0.397				0.406					
SEE	0.460				0.531					
p-Value	0.000				0.000					
MSE	0.212				0.282					
QMLE	1.112				1.151					
MPE	34.25				34.454					
20%	0.438				0.407					

	Continued									
	All Cerco-		Colobinae		(Cercopithecina	e			
	pithecidae	All	Male	Female	All	Male	Female			
ORBW										
Ν	41	18	9	9	23	12	11			
Slope	2.729				3.037					
Y-Int	0.534				-0.512					
R ²	0.478				0.431					
SEE	0.327				0.370					
p-Value	0.000				0.001					
MSE	0.107				0.137					
QMLE	1.055				1.071					
MPE	25.799				28.176					
20%	0.390				0.435					
ORBAR										
N	41	18	9	9	23	12	11			
Slope	0.003									
Y-Int	7.844									
R ²	0.416									
SEE	0.346									
p-Value	0.000									
MSE	0.120									
QMLE	1.062									
MPE	375.559									
20%	0.000									
PORB										
N	54	27	15	12	27	13	14			
Slope	3.022	2.375			3.555		3.474			
Y-Int	-2.336	0.187			-4.467		-4.310			
R ²	0.501	0.384			0.560		0.641			
SEE	0.381	0.291			0.457		0.439			
p-Value	0.000	0.000			0.000		0.001			
MSE	0.145	0.085			0.209		0.192			
QMLE	1.075	1.043			1.110		1.101			
MPE	29.202	22.624			36.270		32.616			
20%	0.463	0.481			0.333		0.429			

TABLE 7

Models derived from entire sample, including test subsamples. Values in **bold** are used to estimate mass in fossils; remaining values are ranked too low in preliminary test analysis (reported in table 6) to be used for fossil mass estimation; empty cells are those regressions whose p-value was higher than 0.001, the modified Bonferroni equivalent for a 0.05 alpha level (see text).

Y-Int, y-intercept; SEE, standard error of the estimate; p-Value, probability associated with regression; MSE, mean square error; QMLE, quasi-maximum likelihood estimator correction factor for exponentiation; MPE, mean prediction error of estimate; 20%, frequency of estimated values within 20% of known (associated or compiled) mass. AP, anteroposterior midshaft diameter; TR, transverse midshaft diameter. Abbreviations for cranial and dental measurements are explained in the text.

ferroni approach to rejecting elements at a more stringent level than 0.05, but not as stringent as the "pure" Bonferroni correction of p/N; in the latter situation, with 245 tests and a desired p-value of 0.05, the effective rejection level would be 0.0002. Inspection of table 7 revealed that 33 equations have p-values greater than 0.001, which closely corresponds to the corrected confidence level for that number of cases (for N = 31, p = 0.0016); these equations with p-values greater than or equal to 0.002 are rejected, and only their Ns are reported in table 7.

The ranking procedure we employed resulted in the inclusion of some cranial variables with MPE values up to 29% (a value over 30% led to immediate rejection) and

			maryzeu m Det			
	Mea	n mass	Postc	rania	Cra	niodental
Taxon	Male	Female	Mass	No mass	Mass	No mass
Colobus guereza occidentalis	9	7.5		1 M, 1 F		5 M, 7 F
Colobus guereza matschiei	10	8	5 M, 10 F			
Procolobus verus	4	4	4 M, 1 F			1 M, 1 F
Procolobus badius oustaleti	13	8.5		2 M, 0 F		
Nasalis (Nasalis) larvatus	20	10	4 M, 5 F	3 M, 1 F		
Pygathrix (Rhinopithecus) bieti	22	12		8 M, 5 F		
Semnopithecus entellus schistacea	22	15	1 M, 0 F		2 M, 3 F	
Semnopithecus (T.) obscura obscura	8	7	5 M, 5 F		3 M, 3 F	
Semnopithecus (T.) cristata ultima	6.5	5.5	6 M, 6 F			4 M, 6 F
Cercopithecus aethiops pygerythrus	5.5	3.5	3 M, 5 F			6 M, 0 F
Macaca sylvanus sylvanus	(15)	(10)		3 M, 2 F		6 M, 5 F
Macaca nemestrina nemestrina	11.5	6.5	1 M, 4 F			0 M, 1 F
Macaca nemestrina leonina	8	5	1 M, 2 F			1 M, 0 F
Macaca arctoides	12	8	2 M, 1 F			1 M, 0 F
Macaca fascicularis	5	3	10 M, 8 F			0 M, 1 F
Lophocebus albigena	8	5.5	4 M, 2 F			1 M, 1 F
Papio hamadryas cynocephalus Darajani sample	23	12	12 M, 10 F		1 M (av), 1 F (av)	
Papio hamadryas ursinus	30	15	2 M, 2 F	1 M, 0 F	3 M, 0 F	72 M, 64 F (mainly teeth)
Mandrillus sphinx	(35)	(13)	1 M	2 M, 1 F	1 M	3 M, 1 F
Theropithecus gelada	18	12	0 M, 1 F	3 M, 2 F	1 M, 4 F	4 M (1 av), 3 F (1 av)

TABLE 8 Modern Taxa Analyzed in Detail

All mass values are expressed in kg, rounded to the nearest kg (or half-kg for values under 12 kg). Mean mass, estimate used in model development (values in parentheses were not used in model development, but provide test of model here). Postcrania, number of included male (M) and female (F) specimens with or without associated mass. Craniodental, number of included male and female specimens with or without associated mass. When there was no associated mass, sample average mass was used instead; "av" notations indicate that average values from the literature were used.

As discussed in the section on Estimation Model Construction and Evaluation, mean masses such as these are themselves estimates. There may well be important differences between values for postcranial and craniodental subsamples and between values for individuals with associated mass and these means.

rankings as low as 28th out of 35 within certain taxon-sex groups. For example, in the all-cercopithecine group, two cranial variables had MPEs above 28% and ranked 27th and 28th. Only two cranial variables could be utilized for the female cercopithecine group, only one for all-colobines and none for sexed colobines, due to rejection of regressions for overly high p- or MPE values. This lack of acceptable cranial variables reduces the impact of the estimation analysis, but it could not have been determined in advance. Future extension of this study with additional variables (such as facial lengths) and modern taxa might improve the results.

EVALUATION OF ESTIMATOR VARIABLES

COMPARING ESTIMATOR PERFORMANCE BETWEEN ANATOMICAL REGIONS

In order to assess the performance of these models, we chose a subsample of 20 taxa (listed in table 8 with their sample sizes and masses) in which to examine predictions from the final model. These taxa were selected to span the range of body sizes in each subfamily and because many of their sample mean masses were associated values. As noted above, two of these taxa, *Macaca sylvanus* and *Mandrillus sphinx*, were not included in the construction of any estimation models. Thus the predictions for these species closely resemble the case for fossils. Mass values are presented as rounded kg (or half-kg under 12), the level of precision used for the fossils below.

Table 9 presents the mean, minimum, and maximum of the estimates of mass in those 20 taxa for each of the three anatomical regions as calculated from the sex-specific subfamily models. For example, if six models were calculated for dental variables in male cercopithecines, the average of those estimates was tabulated as the mean, and the largest and smallest estimates called the maximum and minimum, respectively. In those cases where no valid estimate could be calculated from the by-sex model, the combined-sex subfamily (or even full-family) model was used and is so noted. In addition, in line with the concept that an estimate within 20% of the "true" value is a desirable goal, values 20% above and below the estimates are compared to the compiled sample mean mass (presented in the leftmost column).

Of 95 total cases (population by sex by body region), 66 estimates were clearly within 20% of the compiled mass; in two other cases, estimates were produced for male African colobines using both family and subfamily models, and one was within but the other beyond the 20% Rubicon. Without being overly precise, about 70% of the estimates were thus within 20% of the target values.

There was no clear pattern of "errors" in our data in terms of subfamily, sex, and body region. Errors ranged from 73% below the compiled mass (Nasalis larvatus male cranial measures based on the subfamily regression; in fact, its estimate from the family regression was next worst, at 58% below) to 50% above (Macaca fascicularis female dental variables); these are, in fact, the largest colobine and the smallest cercopithecine in the sample. Although not all large and small taxa were thus affected, at least some of the error is probably due to populations being at the extremes of the studied distribution. Roughly half the errors were positive and half negative. Eight occurred in both the postcranial and dental datasets, and most of these involved cercopithecines (especially males)

that are more common among the taxa examined. In the cranial dataset, there were 13 errors, mainly among the colobines (and mostly in males, especially of the largest taxa), reflecting the poor predictive ability of these variables as discussed above.

Despite these errors, a success rate of 70% of estimation within 20% appears quite acceptable for this approach. In terms of using these equations to estimate mass in fossils, it is clear that postcranial and dental estimates are to be trusted somewhat more than those derived from cranial measures when considering larger colobines (of which there are many in the fossil sample), but otherwise it is not easy to choose a preferred region. Thus, the range of mean estimates can provide a first approach to an estimation range, while a closer estimate might be obtained from the 20% range around the grand mean.

We can examine the results more closely for the two taxa not included in the original regressions, Macaca sylvanus and Mandrillus sphinx. For the former, compiled mass is 15 kg in males and 10 in females. The male estimates range from 12 to 16 kg, averaging 13; female estimates range from 8 to 11.5, averaging 9.5. In mandrills, compiled mass is 35 kg in males and 13 in females. The male estimates range from 26 to 39 kg, averaging 34; female estimates range from 9.5 to 15, averaging 13. As a result of testing a case like this, where we can examine both accuracy and consistency, the prognosis for mass estimation in "true" unknowns (fossils) is decidedly encouraging.

COMPARISON OF ESTIMATION ACCURACY WITH PREVIOUS STUDIES

In order to evaluate the performance of the equations developed here relative to previous work, we calculate estimates of body mass using prediction equations reported in several sources, including Gingerich et al. (1982), Conroy (1987), and Dechow (1983). Additionally, we compare our methods and results with the methods presented in Hens et al., 1998 (see also Konigsberg et al., 1998). Unfortunately, few other authors have provided alternative models for cercopithecid body mass estimation with which comparisons can be made. The equations included as an ap-

		Postc	ranium	Dentition		Cranium	
	Compiled mass	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%
Colobus guereza occ	cidentalis						
Male	9						
Mean		9.5		11.5		11.5F	
Min		8.5	7.5	11	9.5	10F	9.5F
Max		10.5	11.5	13	13.5	13F	13.5F
Mean*						10.5S	
Female	7.5						
Mean		8.5		8.5		11F	
Min		7.5	6.5	7.5	6.5	9F	8.5F
Mean*						10S	
Max		9	10.5	9	10.5	12F	13.5F
Colobus guereza ma	tschiei						
Male	10.5						
Mean		10.5					
Min		9	8.5				
Max		12	12.5				
Female	8						
Mean		8.5					
Min		7.5	6.5				
Max		10	10.5				
Procolobus verus							
Male	45						
Mean	1.5	4 5		4.5			
Min		4	3.5	4	3.5		
Max		5	5.5	5	5.5		
Female	35	U		-			
Mean	0.0	4 5		5			
Min		3.5	3.5	4.5	4.5		
Max		5.5	5.5	5	6.5		
Procolobus badius o	ustaleti						
Male	12	0		11		12F	
Mean		75	75	0.5	85	11 5F	10F
Min		1.5	10.5	9.5 14	13.5	12F	14F
Max *		10	10.5	14	15.5	8.58	•••
Mican*	95					012	
Maan	0.5			85		9.5F	
Min				8	6.5	9F	7.5F
Max				9.5	10.5	10F	11.5F
Mean*				2.0		8.5S	
N							
Nasalis (Nasalis) iai	10						
Maie	19	20		13		12F	
Min		19	16	12	10	11.5F	10F
Max		21	24	14	16	13F	14F
Mean*		-1	- *	- •		115	
Female	05						
Mean	7.5	11		9		9F	
Min		05	85	85	7.5	8.5F	7.5F
May		9.5 12	13.5	9	10.5	9.5F	10.5F
IVIAN Maan*		14	10.0	-		105	
Ivicali -						-	

TABLE 9 Mass Prediction Evaluation for Sample of Modern Taxa Treated as Fossils

			Continue	ed			
		Postci	ranium	Den	tition	Cra	nium
	Compiled mass	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%
Pygathrix (Rhinog	oithecus) bieti						
Male	22						
Mean		16		19		14S	
Min		13	13	18	15		11
Max		18	19	21	23		17
Female	13						
Mean		11		12		14S	
Min		10.5	8.5	11.5	10		11
Max		11.5	13.5	13	14		17
Semnonithecus en	tellus schistacea						
Mole Mole	20						
Mean	20	20		25		155	
Min		20	16	10	20	135	12
Max		10	10	19	20		12
Eamala	15	22	24	21	30		10
Moon	15			15		158	
Min				15	10	155	10
IVIIII Mor				15	12		12
IVIAX				10	18		18
Semnopithecus (T	rachypithecus) obso	cura					
Male	7						
Mean		7		8.5		9 S	
Min		6	5.5	7	6.5		7.5
Max		7.5	8.5	10.5	10.5		10.5
Female	6.5						
Mean		7		7		9 S	
Min		6.5	5.5	6.5	5.5		7.5
Max		7	8.5	7	8.5		10.5
Semnopithecus (T	rachypithecus) cris	tata ultima					
Male	6.5						
Mean						7 \$	
Mean		7				6 5F	
Min		6.5	5.5			6.5F	5.5F
Max		8	8.5			7F	7.5F
Female	5.5					·	
Mean		6				6.5F	
Min		5.5	4 5			6.5F	5 5F
Max		6.5	7.5			7F	7.5F
Mean*						7.5S	1.5
Carconithecus aet	hions pugaruthrus						
Male	5 5						
Mean	5.5	6		55			
Min		55	45	5.5	15		
Max		6	 75	55	4.J 65		
Female	35	U U	1.5	5.5	0.5		
Mean	5.5	4		3			
Min		35	35	3	25		
Max		5.5	45	35	2.5		
			-T.J	J.J			

TABLE 9

Continued									
		Postci	ranium	Dentition		Cranium			
	Compiled mass	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%		
Macaca sylvanus	sylvanus				· · · · · · · · · · · · · · · · · · ·				
Male	15								
Mean		16		12		12			
Min		11.5	13	11.5	10	9.5	10		
Max		20	19	13	14	15	14		
Female	10								
Mean		11.5		8		9			
Min		6.5	9.5	6.5	6.5	8	7.5		
Max		16	13.5	9.5	9.5	10	10.5		
Macaca nemestri	na nemestrina								
Male	9								
Mean		12							
Min		9.5	10						
Max		14	14						
Female	6.5								
Mean		6.5				9			
Min		6	5.5			7	7.5		
Max		8	7.5			11.5	10.5		
Macaca nemestri	na leonina								
Male	8								
Mean	0	11		11		14			
Min		9	85	10.5	85	11	11		
Max		13	13.5	11	13.5	16	17		
Female	65	15	15.5		15.5	10	.,		
Mean	0.5	6							
Min		55	45						
May		7	7.5						
141ux		,	1.5						
Macaca arctolaes	11.5								
Male	11.5	0.5		12					
Mean		9.5	75	12	10				
Min		0	1.5	11.5	10				
Max	(10.5	11.5	15	14				
remaie	0								
Min	9	75							
Min	11.5	10.5							
Iviax		10.5							
Macaca fascicula	ris								
Male	5								
Mean		5.5							
Min		5	4.5						
Max	2	0	0.3						
Female	3	2.5							
Mean		3.5	25	6	4.5				
Min)) 5	2.3	6	4.3				
мах		3.3	4.5	U	1.5				
Lophocebus albig	ena								
Male	8			0.7		<u> </u>			
Mean		12		9.5		8			
Min		10.5	10	8	7.5	7.5	6.5		
Max		16	14	11	11.5	8.5	9.5		

TABLE 9
	TABLE 9 Continued						
		Postcranium		Dentition		Cranium	
	Compiled mass	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%	Calculated mass	Calc. mass ± 20%
Lophocebus albiger	a (continued)						
Female	5.5						
Mean		6.5				8	
Min		5.5	5.5				6.5
Max		7.5	7.5				9.5
Papio hamadryas c	ynocephalus Da	rajani					
Male	23						
Mean		25		25		19	
Min		22	20	24	20		15
Max		27	30	27	30		23
Female	13						
Mean		12		15		13	
Min		11	10	14	12	11	10
Max		13	14	15	18	15	16
Papio hamadryas u	rsinus						
Male	31						
Mean		26		29		30	
Min		23	21	28	23	28	24
Max		30	31	31	35	32	36
Female	15						
Mean		15		17		19	
Min		13	12	16	14	17	15
Max		17	18	17	20	21	23
Papio (Mandrillus)	sphinx						
Male	35						
Mean		39		26		36	
Min		29	31	25	21	27	29
Max		47	47	29	31	52	43
Female	13						
Mean		9.5		15		14	
Min		6.5	7.5	12	12	13	11
Max		12	11.5	16	18	16	17
Theropithecus gelad	la						
Male	20						
Mean		16		23		21	
Min		14	13	19	18	18	17
Max		19	19	27	28	23	25
Female	12						
Mean		11				10.5	
Min		9	8.5			7	8.5
Max		12	13.5			14	12.5

All mass values are expressed in kg, rounded to the nearest kg (or half-kg for values under 12 kg). For Calculated mass, Mean = mean of values calculated from highest ranking variables for the model used; Min = lowest value; Max = highest value. For Calc. mass \pm 20%, Min = 80% of Mean; Max = 120% of Mean.

All values are calculated from sex-specific subfamily models unless noted by superscript letters as follows: S = combined-sex subfamily model; F = combined-sex family model. **Bold** indicates that the $\pm 20\%$ range does not include the compiled "true" value. For some taxa, means (designated Mean*) from an additional model are reported for the Cranium dataset. The S model is preferred to the F model, when possible (as discussed in the text), but often only a single estimate was available from the S model.

pendix in Damuth and MacFadden (1990), for example, contain no data for cercopithecids. Leakey (1993) used measures of femoral head size (following Ruff, 1988) taken on a sample of individual *Papio hamadryas cynocephalus* to estimate mass in fossil *Theropithecus* (see below). However, it must be noted that this (unpublished) equation would be especially limited in its application to a taxon other than the *one* from which it was derived.

In order to compare our equations with those of Gingerich et al. and Conroy, we use our data for the first lower molar, and construct an area estimate by multiplying the length of the tooth by the greatest width, following their methods. (Note that our own area estimate incorporates two width measurements and as such is not strictly comparable.) We examine performance among taxa with compiled mass. Our main criterion for evaluating prediction performance is the Mean Prediction Error (MPE). We use Gingerich et al.'s model including all primates (Galago to Gorilla) and Conroy's "monkey" grade equation. MPE values are compared between studies at several taxonomic levels (table 10).

The MPEs for the most inclusive models (all cercopithecids) are quite similar, in spite of the relatively large differences in sample size, taxonomic coverage, and body weight provenance among the studies. Gingerich et al. examined 21 Old World monkey taxa (16 cercopithecines/5 colobines), Conroy 22 (16/ 6), with most taken from Gingerich's previous study. Conroy restricted the bulk of his study to males, calculating a separate anthropoid female prediction equation (which is not further considered here). The range of MPEs is similar in Conroy and the current analysis; however, the magnitudes are smaller in the present study (21-32 vs. 12-24). MPEs derived from application of Gingerich et al.'s model results in the most variable, and largest, MPE values.

Conroy's study is similar to the present analysis in basic methodological outline, but he used a gradistic approach to grouping primate taxa (prosimians, monkeys, apes, etc.). Although he did not provide the data for analyses of covariance based on these groups, he did note that differences in slope

Based on Lower First Molar Area ^a							
	Gingerich et al.	Conroy	This study				
All cercopithecids	27	26	24				
Colobines							
All	29	21	18				
Males	40	28	19				
Females	18	b	12				
Cercopithecines							
All	25	32	21				
Males	20	26	16				
Females	32	b	18				

TABLE 10 Mean Prediction Errors (MPE) for Mass Estimates Based on Lower First Molar Area^a

Equations published in Gingerich et al. (1982) and Conroy (1987) were used with extant taxon mean dental and body mass values from the current study. We correct for log-bias by applying the quasi-maximum likelihood estimator (QMLE) to all predictions (as calculated by Smith, 1993, for Gingerich et al. and for Conroy).

^a Here, area = length \times maximum width, as in previous studies.

^b No estimation routines were performed for females based on Conroy's equations as his data are restricted to males.

were not significant between groups. He did not, however, report the results of analyses of elevation. Our analysis (see scaling section below) similarly finds few differences in slope values. On the other hand, statistically significant differences in elevation were found to be pervasive in the dentition. This pattern of association between dental dimensions and weight contributes to the variation in prediction accuracy.

It is instructive to note that the correlation coefficients of the models used in the preceding contrast are high (0.93 for Conroy, 0.97 for Gingerich et al.), but performance variation (as judged by MPE) is quite variable. We strongly agree with Conroy (1987: 121) that these results "... should be viewed as a cautionary note to those who uncritically use high correlation coefficients [or coefficients of determination] to justify their predictive equations." Perhaps more interesting findings are that the application of estimation models from the data in the present study results in smaller MPEs, and that the correlation coefficient of m1 area and weight is (only) 0.84 (based on our area estimate that incorporates both anterior and posterior width).

Additionally, it is important to recall that first lower molar area is by no means consistently one of the most reliable dental variables in the present study. It is the second "best" dental estimator for all cercopithecids and all cercopithecines, and the sixth best for all colobines, but is never highly ranked for sex-specific models. In most cases, therefore, we have better confidence in estimation routines that employ other independent variables. The above contrast was undertaken merely to examine the performance of two widely cited estimation models when used to "predict" known (associated) mass in cercopithecids.

As opposed to the single-variable models of Gingerich et al. (1982) and Conroy (1987), Dechow (1983) evaluated a variety of single cranial and dental variables, as well as multivariable constructions to estimate mass in "baboons": populations of Papio, Mandrillus, and Theropithecus. Dechow tested these estimates for "accuracy" through simple comparison with the original mean masses used to develop the regressions. He found that the most accurate estimators were those based on factor scores derived from principal component analyses of multiple raw measures, but among the individual cranial variables, glabella-basion (GLBA) and glabella-inion (GLIN) were almost as accurate. In fact, we selected these variables to study in part on the basis of Dechow's results. Most individual dental measures were poor predictors of mass. We examined three of Dechow's variables to see how they would behave in our much broader sample: GLBA, GLIN, and m2L. From our modern populations, we selected 17 colobine male and 14 colobine female taxa, and 19 cercopithecine taxa of each sex. Not all taxa were represented by both sexes, and few had all three variables. Recall that Dechow's equations were not sex-specific and were derived from analysis of cercopithecines with mass between 10 and 35 kg.

Only one colobine taxon of each sex had its mass estimated within 20% by Dechow's GLIN equation; the GLBA equation estimated mass "correctly" in four male and one female colobines; and no colobine's mass was accurately estimated by the m2L equation. Of the cercopithecines, the mass of two (of six possible) males and two (of five) females was estimated within 20% by the GLIN and GLBA equations (the same taxa for females, different for males). Six male and six female cercopithecine taxa had their mass estimated within 20% by the m2L equation. (Two female taxa lacked the variable.) Most of the accurate dental estimates were on larger taxa, but several were not, and none of the accurate cranial estimates were on large-bodied taxa. Clearly, these equations are not as broadly useful as those developed in our analysis, and they do not even perform well on the large cercopithecines from which they were developed. This comparison confirms our view that regressions should not be too readily applied to taxa different from those used in their construction.

Recently, Konigsberg et al., 1998 (see also Hens et al., 1998) have developed a routine for estimating a global size variable (e.g., body mass, body length) from some local size variable (e.g., femur length). They used five different models (Inverse, Classical, RMA, MA, and Ratio; the program is available at http://konig.la.utk.edu/5reg.html). These workers have established some patterns resulting from the use of these various approaches to estimation. Of particular interest here is the discussion of estimating size in taxa either larger or smaller than those found in the comparative sample. Konigsberg and colleagues stress that if the assumption is made that unknown taxa share the same size distribution and scaling as the comparative sample, then the inverse "calibration" (body size on organ size) is the minimum variance unbiased estimator. On the other hand, if we extrapolate to larger or smaller sizes, and assume the same scaling, then we should use the classical calibration (organ size on body size). Note that if allometries are expected to differ between the comparative and target samples, then there is no a priori basis for choosing an optimal estimator.

Given this, we are interested in comparing the results of classical calibration to our estimates (the inverse calibration in their terms) for the largest fossil taxa. We wish to know if the difference is large enough to affect our interpretations of biology. We expect that estimates will be larger when calculated with classical calibration.

We selected some of our largest taxa for this exercise as it is these taxa that are surely outside the range of the modern data. We report below, in the section on fossil estimates, the results of the classical model in estimating the mass of five male Theropithecus postcranial samples. All estimates derived from these models are indeed larger than the estimates resulting from the models used in the main part of this study. As expected, the estimates for certain taxa are nearly twice the mass of our "inverse" estimates. We did not apply a correction factor to account for logdetransformation bias; this would increase each estimate by approximately 2-5% judged from the magnitudes of QMLE. It is worth noting, however, that when one incorporates the \pm 20% interval of each estimate, the differences are less striking, and ranges of estimates resulting from the two methods usually overlap. The most important conclusion resulting from this exercise is that the largest taxa are estimated with a large amount of "error", and this should be recognized when the mass estimates of these taxa are used in any paleobiological application.

SCALING OF PREDICTOR VARIABLES

It has been demonstrated that estimates of body mass can be strongly influenced by the existence of functional and/or phylogenetic subsets in the sample used for model construction (e.g., Conroy, 1987; Damuth and MacFadden, 1990; Dagosto and Terranova, 1992). As such, the discovery of scaling differences between groups is an important step in the identification of reliable estimator variables. One approach to the elucidation of group effects is to examine the scaling patterns of all estimator variables relative to body mass in the comparative sample. This examination can also help to better understand the meaning of variation in estimates from different reference samples (see also Gingerich et al., 1982) or different anatomical regions. The current sample provides valuable insight into the scaling of cranial, dental, and postcranial measures with mass in cercopithecid primates, as the sample is largely composed of individuals with associated body masses. Recognizing the need to characterize the relationships between mass and estimator variables, we provide sex-specific scaling equations for each cranial, dental, and postcranial variable in the two subfamilies under study (table 11).

We examine adult interspecific scaling patterns of several skeletal and dental dimensions relative to body mass. We have two goals in the scaling analyses: (1) to demonstrate the relationships between mass and skeletal or dental dimensions in the present sample (and to compare the patterns with previously published descriptions of scaling in cercopithecids); and (2) to use scaling relationships to assist in evaluating estimates of mass in fossil taxa, especially when estimates based on different regions of the skeleton result in widely divergent estimates.

Ordinary Least Squares (Model I) regression was used in the estimation routines because the goal was prediction of a unique y (body mass estimate), given an x (skeletal or dental measurement). For the present set of analyses, we examine bivariate Reduced Major Axis (Model II) regression of the natural logarithm of taxon-mean body mass and a skeletal or dental measure. Our goal is to explore functional relationships of dental and skeletal measures with mass (Rayner, 1985). In addition to determining the scaling patterns of cranial, dental, and postcranial dimensions with size (mass), we are interested in examining the relationship between scaling and mass estimation.

The sample includes all of the taxa used in the generation of prediction models, and scaling patterns are examined within the same taxonomic groups (all cercopithecids, all colobines, colobine males, colobine females, etc.). Of the cranial measures, only GLIN, NABA, and PORB are examined at the lowest taxonomic level (by sex and subfamily), as linear regression is not always significant for the other measures.

For each of six subsamples we calculate slope estimates and their 95% confidence intervals. Slope estimates are compared among the various datasets as well as to theoretical expectations of geometric scaling. Further, we evaluate the effect of a potential masssurrogate's scaling (isometry or allometry)

	All Carao		Colobinae			Cercopithecinae	
	pithecidae	All	Male	Female	All	Male	Female
Humerus length							
N	84	42	23	19	42	24	18
r	0.938	0.880	0.902	0.808	0.958	0.954	0 945
Slone	0.344	0.358	0.356	0.300	0.328	0.332	0.374
05% CI for clope	0.222/0.269	0.330	0.330	0.350	0.320	0.352	0.324
V Int	1.024	1 797	1 902	1.515	0.303/0.334	0.304/0.371	0.276/0.393
95% CI for Y-Int	1.924	1.787	0.962/2.373	0 139/2 259	-0.338	-0.377	-1.082/-0.103
	1.70//2.110	1.105/2.247	0.7042.515	0.13972.239	0.77070.514	0.752 0.507	1.002 0.105
N	83	42	23	10	42	24	19
	0.012		0 000	0.922	0.036	0.019	0.047
l Slong	0.912	0.885	0.000	0.832	0.930	0.918	0.947
	0.410	0.410	0.411	0.380	0.417	0.429	0.431
95% CI for slope	0.389/0.442	0.332/0.476	0.341/0.493	0.312/0.476	0.389/0.447	0.388/0.4/9	0.395/0.524
Y-Int	-1.418	-1.396	-1.397	-1.136	-1.395	-1.523	-1.492
95% CI for Y-Int	-1.659/-1.178	-1.993/-0.878	-2.162/-0.782	-2.012/0.540	-1.673/-1.13	-1.992/-1.12	-2.261/-1.18
Humerus TR							
N	84	42	23	19	42	24	18
r	0.898	0.902	0.927	0.884	0.910	0.871	0.869
Slope	0.350	0.378	0.382	0.340	0.337	0.315	0.341
95% CI for slope	0.323/0.372	0.336/0.437	0.343/0.461	0.279/0.431	0.308/0.360	0.284/0.358	0.281/0.436
Y-Int	-0.801	-1.068	-1.117	-0.759	-0.647	0.441	-0.690
95% CI for Y-Int	-1.007/-0.563	-1.621/-0.727	-1.843/-0.763	-1.588/-0.223	-0.857/-0.380	-0.846/-0.143	-1.486/-0.200
Femur length							
N	81	40	23	17	41	23	18
r	0.889	0.839	0.836	0.773	0.940	0.925	0.938
Slope	0.312	0.264	0.252	0.298	0.309	0.312	0.312
95% CI for slope	0.281/0.345	0.219/0.312	0.185/0.312	0.203/0.425	0.285/0.341	0.285/0.365	0.291/0.387
Y-Int	2.405	2.882	2.985	2.575	2.389	2.351	2.369
95% CI for Y-Int	2.121/2.651	2.451/3.293	2.438/3.616	1.459/3.423	2.108/2.603	1.888/2.615	1.737/2.565
Femur AP							
N	83	41	23	18	42	24	18
r	0.936	0.881	0.898	0.807	0.958	0.954	0.945
Slope	0.335	0.348	0 327	0 371	0.328	0.332	0.324
95% CI for slope	0.317/0.357	0 316/0 395	0 292/0 385	0 304/0 491	0 303/0 354	0 304/0 371	0.524
Y-Int	-0.590	-0.697	-0.492	-0.914	-0 538	-0 577	-0.406
95% CI for Y-Int	-0.790/-0.427	-1.121/-0.412	-1.026/-0.173	-1.986/-0.334	-0.770/0.314	-0.932/-0.309	-1.082/-0.103
Femur TR							
N	83	41	23	18	42	24	18
R	0.935	0.905	0.888	0 929	0947	0 021	0.061
Slope	0 347	0.365	0.359	0.307	0.340	0.321	0.301
95% CI for slope	0 325/0 372	0 321/0 422	0 309/0 442	0 313/0 475	0.340	0.332	0.347
Y-Int	-0.697	0.521/0.422	-0.912	0.515/0.475	0.510/0.507	0.290/0.383	0.300/0.398
95% CI for Y-Int	-0.913/-0.501	-1.366/-0.465	-1.543/-0.350	-1.818/-0.375	-0.876/-0.419	-1.036/-0.203	-0.099
mlAW				1010, 0.070	0.070 0.119	1.050/ 0.205	1.127 0.554
N	50	20	14		20		
	0.700	20	14	14	30	1/	13
1	0.799	0.736	0.631	0.853	0.900	0.881	0.926
Stope	0.380	0.246	0.213	0.339	0.367	0.410	0.384
95% CI for slope	0.328/0.438	0.181/0.283	0.108/0.309	0.250/0.373	0.299/0.425	0.327/0.530	0.258/0.435
I-INT 95% CI for V Int	-1.760	-0.623	-0.334	-1.442	-1.550	-2.005	-1.645
	2.5191-1.283	0.900/-0.025	-1.202/0.039	-1./30/-0.066	-2.094/-0.916	-3.154/-1.19	-2.117/-0.475
miPW N	-	••					
IN	58	28	14	14	30	17	13
r	0.834	0.791	0.720	0.862	0.901	0.908	0.914
Slope	0.382	0.254	0.223	0.339	0.383	0.425	0.406
95% CI for slope	0.325/0.442	0.191/0.289	0.117/0.338	0.253/0.368	0.319/0.451	0.309/0.544	0.311/0.518
Y-Int	-1.743	-0.639	-0.365	-1.391	-1.683	-2.139	-1.824
95% CI for Y-Int	-2.299/-1.237	-0.965/-0.065	-1.458/0.623	-1.651/-0.622	-2.332/-1.08	-3.229/-1.45	-2.856/-0.944

TABLE 11 Reduced Major Axis Regression Equations Detailing the Association Between Skeletal or Dental Dimensions (y) and Body Mass (x)

			Contin	ued					
	All Cerco-		Colobinae			Cercopithecinae			
	pithecidae	All	Male	Female	All	Male	Female		
mlL									
N	59	28	14	14	30	17	13		
r	0.841	0.818	0.846	0.841	0.944	0.957	0.950		
Slope	0.342	0.250	0.219	0.346	0.321	0.349	0.339		
95% CI for slope	0.296/0.386	0.194/0.298	0.133/0.302	0.269/0.446	0.281/0.355	0.319/0.396	0.257/0.386		
Y-Int	-1.152	-0.402	-0.129	-1.244	-0.884	-1.185	-0.996		
95% CI for Y-Int	-1.566/-0.740	-0.833/0.112	-0.905/0.665	-2.151/-0.563	-1.210/-0.497	-1.635/-0.884	-1.444/-0.253		
mlAR									
N	58	28	14	14	30	17	13		
r	0.839	0.845	0.823	900	0.928	0.936	0.941		
Slope	0.714	0.481	0.407	0.661	0.689	0.754	0.736		
95% CI for slope	0.618/0.808	0.361/0.555	0.228/0.587	0.522/0.734	0.579/0.780	0.657/0.897	0.542/0.871		
Y-Int	-2.829	-0.858	-0.199	-2.450	-2.439	-3.140	-2.740		
95% CI for Y-Int	-3.731/-1.967	-1.533/0.236	-1.873/1.459	-3.118/-1.21	-3.302/-1.40	-4.482/-2.20	-3.998/-0.988		
m2AW									
N	60	28	14	14	32	17	15		
r	0.758	0.791	0.734	0.878	0.904	0.904	0.927		
Slone	0 411	0 296	0.240	0.420	0.355	0.379	0.383		
95% CI for slope	0 355/0 490	0 215/0 336	0 130/0 354	0 309/0 494	0 304/0 410	0.310/0.468	0.295/0.474		
V Int	-1 865	-0.942	-0.436	-2 040	-1 231	-1 511	-1 423		
95% CI for Y-Int	-2.616/-1.350	-1.308/-0.209	-1.513/0.572	-2.726/-1.04	-1.757/-0.736	-2.380/-0.811	-2.272/-0.598		
m2PW									
N	59	28	14	14	31	17	14		
r	0.822	0.816	0.763	0.868	0.916	0.906	0.933		
Slone	0.379	0.269	0 244	0 350	0 359	0.373	0.391		
950 CI for clope	0.377	0.209	0 129/0 355	0 243/0 418	0 313/0 411	0 318/0 455	0 326/0 490		
V Int	-1 576	-0.664	-0.446	-1 371	-1 307	-1 481	-1 544		
95% CI for Y-Int	-2.111/-1.128	-1.069/-0.084	-1.476/0.617	-2.013/-0.435	1.798/-0.874	-2.283/-0.938	-2.442/-0.961		
m2I									
N	60	28	14	14	32	17	15		
	0.800	0 807	0.879	0.811	0.920	0.947	0.941		
I Slama	0.000	0.307	0.072	0.459	0.379	0.410	0.409		
Stope	0.425	0.323	0.200	0.459	0.377	0.410	0.402		
95% CI for slope	0.367/0.501	0.240/0.385	0.175/0.582	0.545/0.019	1 269	0.37170.401	0.520/0.494		
Y-int	-1./8/	-1.008	-0.018	-2.185	-1.208	-1.023 -2.306/-1.24	-7.256/-0.651		
95% CI 101 1-111	-2.5017-1.282	-1.558/-0.278	1.505/0.579	5.005/ 1.15	1.7017 0.770	2.500 1.21	2.250 0.051		
m2AR	<i>(</i>)			14	22	17	15		
N	60	28	14	14	32	17	0.972		
r	0.764	0.835	0.860	0.863	0.835	0.819	0.873		
Slope	0.732	0.600	0.539	0.815	0.670	0.651	0.771		
95% CI for slope	0.625/0.870	0.455/0.693	0.297/0.745	0.585/1.017	0.536/0.777	0.490/0.825	0.603/0.967		
Y-Int	-2.766	-1.741	-1.227	-3.628	-2.025	-1.954	-2.799		
95% CI for Y-Int	-4.047/-1.790	-2.587/-0.436	-3.169/1.009	-5.54/-1.60	-3.013/-0.797	-3.593/-0.473	-4.601/-1.293		
m3AW									
N	53	25	13	12	28	17	11		
r	0.788	0.723	0.752	0.818	0.919	0.904	0.951		
Slope	0.491	0.299	0.274	0.441	0.437	0.441	0.472		
95% CI for slope	0.423/0.581	0.204/0.348	0.134/0.381	0.253/0.549	0.386/0.509	0.353/0.539	0.409/0.635		
Y-Int	-2.589	-0.954	-0.760	-2.203	-1.968	-2.048	-2.218		
95% CI for Y-Int	-3.446/-1.976	-1.409/-0.094	-1.764/0.533	-3.181/-0.513	-2.648/-1.47	-3.011/-1.17	-3.746/-1.668		
m3PW									
N	53	25	13	12	28	17	11		
r	0.841	0.709	0.745	0.737	0.926	0.910	0.956		
Slope	0.472	0.301	0.278	0.438	0.458	0.455	0.497		
95% CI for slope	0.417/0.538	0.206/0.369	0.147/0.374	0.210/0.596	0.406/0.529	0.379/0.538	0.438/0.684		
Y-Int	-2.483	-1.008	-0.817	-2.215	-2.270	-2.290	-2.562		
95% CI for Y-Int	-3.112/-1.993	-1.630/-0.138	-1.703/0.386	-3.653/-0.154	-2.941/-1.78	-3.086/-1.52	-4.292/-2.057		

TABLE 11

			Contin	ued			
<u></u>	All Cerco-		Colobinae			Cercopithecinae	
	pithecidae	All	Male	Female	All	Male	Female
m3L							
N	54	25	13	12	29	17	12
r	0.848	0.826	0.901	0.839	0.913	0.924	0.947
Slope	0.536	0.362	0.334	0.527	0.516	0.530	0.555
95% CI for slope	0 476/0 615	0 287/0 415	0 250/0 399	0 358/0 739	0 447/0 613	0 450/0 628	0 382/0 754
Y-Int	-2 649	-1 151	-0.930	-2 605	-2 373	-2 751	-2 622
95% CI for Y-Int	-3.388/-2.099	-1.906/-0.457	-1.530/-0.145	-4.507/-1.06	-3.277/-1.70	-3.507/-1.76	-4.466/-0.985
m3AR							
N	53	25	13	12	28	17	11
r	0 842	0816	0.870	0.847	0.023	0.018	0.054
Slope	1 003	0.636	0.590	0.077	0.955	0.976	1 027
95% CI for slope	0 884/1 152	0.470/0.767	0.365/0.746	0.562/1.312	0.825/1 125	0.27/0	0.810/1.381
V Int	-5.054	-1 901	-1 520	4 402	0.023/1.123	4 711	4 005
95% CI for Y-Int	-6.442/-3.97	-3.089/-0.388	-2.966/0.528	-7.943/-1.17	-6.01/-3.16	-6.51/-3.18	-4.905
MIAW							
N	58	29	15	14	20	16	13
r	0 795	0762	0 722	0 868	0 022	0.029	1.5
Slone	0.755	0.762	0.722	0.808	0.922	0.936	0.934
95% CI for clone	0.306	0.200	0.230	0.331	0.329	0.304	0.343
V Int	-1 477	0.194/0.293	0.145/0.514	1.250/0.390	0.270/0.378	0.303/0.422	0.225/0.414
95% CI for Y-Int	-1.477 -1.960/-1.011	-0.339	-1.098/0.495	-1.350 -1.704/-0.344	-0.992	-1.350	-1.059
MIPW							1.10012.107
N	57	20	15	14	20	16	12
- -	0.921	0 727	0.702	0.942	20	10	12
1 Slone	0.851	0.727	0.702	0.043	0.932	0.934	0.943
95% CI for clone	0.301	0.279	0.273	0.347	0.340	0.349	0.370
V Int	0.510/0.596	0.2220.323	0.186/0.304	0.23770.409	0.273/0.377	0.303/0.385	0.247/0.426
1-IIII 05% CI for V Int	-1.455	-0.739	0.740	-1.341	-1.101	-1.293	-1.424
95% CI 101 1-111	-1.794/-1.025	-1.138/-0.238	-1.010/0.035	-1.900/-0.535	-1.514/-0.521	-1./33/-0.839	-1.869/-0.225
MIL							
N	58	29	15	14	29	16	13
г	0.817	0.834	0.886	0.837	0.926	0.944	0.937
Slope	0.386	0.286	0.270	0.372	0.347	0.372	0.370
95% CI for slope	0.332/0.440	0.226/0.337	0.180/0.335	0.280/0.487	0.289/0.388	0.328/0.438	0.250/0.415
Y-Int	-1.562	-0.738	-0.622	-1.487	-1.098	-1.379	-1.244
95% CI for Y-Int	-2.079/-1.067	-1.189/-0.199	-1.209/0.204	-2.542/-0.674	-1.482/-0.548	-1.993/-0.945	-1.654/-0.142
MIAR							
N	58	29	15	14	29	16	13
r	0.826	0.835	0.858	0.887	0.927	0.954	0.910
Slope	0.731	0.514	0.477	0.682	0.676	0.723	0.703
95% CI for slope	0.635/0.823	0.397/0.580	0.285/0.583	0.504/0.772	0.565/0.755	0.633/0.832	0.462/0.808
Y-Int	-2.834	-1.020	-0.728	-2.485	-2.143	-2.650	-2.310
95% CI for Y-Int	-3.719/-1.954	-1.617/-027	-1.678/1.045	-3.316/-0.905	-2.897/-1.80	-3.691/-1.75	-3.245/-0.100
M2AW							
Ν	59	29	15	14	30	16	14
r	0.776	0.794	0.787	0.878	0.916	0.933	0 036
Slope	0.400	0 326	0 294	0.445	0.331	0.355	0.350
95% CI for slope	0.345/0.476	0 246/0 376	0 172/0 386	0 313/0 556	0.281/0.288	0.333	0.332
Y-Int	-1.614	-1.049	-0.780	-2 088	0.854	-1 170	-0.000
95% CI for Y-Int	-2.327/-1.100	-1.503/-0.341	-1.648/0.327	-3.123/-0.922	-1.390/-0.373	-1.712/-0.524	-1.986/-0.198
M2PW							
N	58	29	15	14	20	16	12
r	0 790	0.820	0 863	0 870	0.014	0017	15
Slope	0 388	0 307	0.005	0.370	0.714	0.71/	0.933
95% CI for slope	0.330/0.454	0 243/0 362	0 166/0 339	0.751	0.330	0.349	0.330
Y-Int	-1 570	-0.936	-0.680	-2 026	-0.021	-1 154	0.27//0.438
95% CI for Y-Int	-2.200/-1.047	-1.431/-0.360	-1.253/0 333	-3.376/-1.11	-1413/-0516	-1.130	-1.103
				J.J. O. 1.11	1.71.0 0.010	1./10/ - 0.0//	2.UJ7(TU, 1/2

TABLE 11

			Contin	ued					
	All Cerco-		Colobinae			Cercopithecinae			
	pithecidae	All	Male	Female	All	Male	Female		
M2L									
N	59	29	15	14	30	16	14		
r	0.780	0.824	0.928	0.760	0.918	0.949	0.942		
Slope	0.449	0.328	0.288	0.459	0.380	0.407	0.407		
95% CI for slope	0.384/0.531	0.263/0.384	0.216/0.356	0.324/0.648	0.318/0.432	0.377/0.479	0.293/0.486		
Y-Int	-2.022	-1.052	-0.709	-2.199	-1.250	-1.577	-1.426		
95% CI for Y-Int	-2.797/-1.427	-1.573/-0.459	-1.327/-0.050	-3.938/-1.01	-1.748/-0.665	-2.255/-1.27	-2.171/-0.366		
M2AR									
Ν	59	29	15	14	30	16	14		
r	0.757	0.846	0.904	0.851	0.841	0.840	0.893		
Slope	0.752	0.620	0.554	0.856	0.644	0.625	0.740		
95% CI for slope	0.642/0.906	0.485/0.710	0.354/0.699	0.589/1.136	0.509/0.752	0.472/0.780	0.556/0.935		
Y-Int	-2.823	-1.825	-1.263	-3.884	-1.628	-1.569	-2.347		
95% CI for Y-Int	-4.246/-1.814	-2.649/-0.605	-2.612/0.577	-6.492/-1.54	-2.606/-0.375	-2.994/-0.141	-4.183/-0.657		
BIOR									
N	48	21	12	9	26	13	13		
r	0.765	0.621	0.669	ns	0.800	ns	0.881		
Slope	0.231	0.250	0.220		0.225		0.249		
95% CI for slope	0.169/0.266	0.154/0.356	0.132/0.395		0.141/0.261		0.086/0.286		
Y-Int	2.044	1.867	2.148		2.105		1.884		
95% CI for Y-Int	1.720/2.638	0.881/2.774	0.492/2.989		1.783/2.913		1.572/3.377		
GLBA									
N	41	18	9	9	23	12	11		
r	0.762	0.684	0.732	ns	0.832	0.804	0.753		
Slone	0.290	0.270	0.238		0.211	0.183	0.180		
95% CI for slope	0.250/0.355	0.188/0.392	0.142/0.448		0.182/0.252	0.120/0.251	0.123/0.302		
Y-Int	1 464	1.671	1.963		2.337	2.627	2.599		
95% CI for Y-Int	0.924/1.924	0.560/2.422	0.072/5.536		1.924/2.630	1.934/3.261	1.453/3.118		
GUN									
N	47	22	12	10	25	13	12		
r.	0.760	0.851	0.881	0.776	0.862	0.899	0.764		
Slone	0.282	0.258	0.252	0 341	0 179	0.138	0.217		
95% CI for slope	0 240/0 328	0 203/0 303	0 174/0 305	0 188/0 456	0 154/0 213	0.114/0.194	0.160/0.398		
V-Int	1 859	2 021	2 066	1 279	2.891	3.291	2.530		
95% CI for Y-Int	1.421/2.259	1.611/2.530	1.559/2.780	0.247/2.658	2.564/3.142	2.722/3.540	0.819/3.046		
NARA									
N	44	18	9	9	26	13	13		
к г	0.758	0.647	0.705	ns	0.821	0 758	0 760		
l Slone	0.758	0.047	0.705	115	0.201	0.163	0.160		
05% CI for clone	0.207	0 194/0 395	0 127/0 418		0 177/0 236	0.097/0.225	0 112/0 248		
V Int	1 73/	1 671	2 022		2 395	2 787	2 749		
95% CI for Y-Int	1.320/2.122	0.535/2.353	0.322/6.149		2.055/2.637	2.142/3.432	1.912/3.181		
NADI									
N	41	18	9	9	23	12	11		
	0 773	0.732	0.804	0.697	0.879	0.907	0 774		
Slone	0.769	0.752	0.187	0.300	0 184	0.157	0.207		
05% CI for slope	0.200	0 155/0 267	0 149/0 364	0 165/0 497	0 167/0 215	0 121/0 212	0 143/0 374		
V-Int	1 020	2 466	2 675	1 669	2,841	3,110	2.620		
95% CI for Y-Int	1.571/2.363	1.971/2.984	0.161/2.998	-0.077/5.805	2.540/3.067	2.554/3.465	1.051/3.191		
OPBH									
N	47	21	11	10	26	13	13		
r .	0.678	0 528	0.55	ne	0.635	ns	0.705		
1 Slone	0.020	0.176	0 1 8 3	115	0 187		0.205		
05% CI for close	0.102	0 118/0 242	0 101/0 319		0.130/0.250		0.130/0.276		
V-Int	1 421	1 490	1 413		1.379		1.239		
05% CI for V Int	1 207/1 742	0 890/1 994	0 158/4 942		0.751/1.931		0.578/6.706		
25.0 CI 101 1-IIII	1.4/111.173	0.070/1.774	0.10017.274						

TABLE 11

TABLE 11

Continued								
	All Cerco- Colobinae				Cercopithecinae			
pithecidae		All Male		Female	All	Male	Female	
ORBW								
Ν	40	18	9	9	22	12	10	
r	0.687	0.571	0.733	ns	0.653	0.598	ns	
Slope	0.252	0.190	0.168		0.216	0.198		
95% CI for slope	0.214/0.299	0.129/0.289	0.086/0.337		0.170/0.280	0.115/0.279		
Y-Int	0.879	1.418	1.598		1.246	1.423		
95% CI for Y-Int	0.434/1.234	0.516/1.953	0.095/2.340		0.618/1.693	0.572/4.868		
ORBAR								
Ν	40	18	9	9	22	12	10	
r	0.637	0.475	ns	ns	0.591	ns	ns	
Slope	0.401	0.322			0.385			
95% CI for slope	0.329/0.468	0.165/0.479			0.301/0.505			
Y-Int	2.606	3.306			2.785			
95% CI for Y-Int	2.0/3.28	1.887/4.691			1.584/3.597			
PORB								
N	48	22	12	10	26	13	13	
r	0.700	0.598	0.681	0.602	0.744	0.544	0.788	
Slope	0.233	0.260	0.247	0.395	0.210	0.220	0.229	
95% CI for slope	0.200/0.294	0.192/0.344	0.161/0.405	0.155/0.638	0.183/0.277	0.132/0.375	0.166/0.453	
Y-Int	1.683	1.399	1.489	0.210	1.931	1.805	1.776	
95% CI for Y-Int	1.098/1.998	0.631/2.019	-0.009/2.284	-1.975/2.370	1.271/2.196	0.225/2.720	-0.349/2.284	

We report \mathbb{R}^2 (coefficient of determination = percent variation explained) in the estmation equations (table 7) but report r (Pearson correlation coefficient) here. The 95% confidence intervals (95% CI) for slope and y-intercept (Y-Int) are based on a bootstrap routine. AP, anteroposterior mid-shaft diameter; TR, transverse midshaft diameter; ns, regression not significant. Abbreviations for cranial and dental measurements are explained in the text.

on estimation accuracy. Similarly, the elevations of scaling equations are important to compare, as transpositions are not only of functional importance, but can help in assessing the performance of body mass estimator variables. Our test for significant transpositions is performed at the weighted mean of the sample, which excludes the problem of testing for elevation differences in datasparse regions such as at the y-intercept. Ninety-five percent confidence intervals of both the slope and y-intercept are based on an unpublished routine using 3,000 bootstrapped estimates, and are accomplished with a program written and provided by Dr. T. M. Cole.

POSTCRANIAL SCALING

Correlations between mass and postcranial dimensions range between 0.77 and 0.99 (table 11). No significant slope differences exist between subfamilies (sexes combined). However, elevations of the subfamily data scatters of humeral diameters and femoral length differ (fig. 1, esp. B and C). Slope and elevation estimates do not differ between sexes within subfamilies (table 12). Differences in elevation are evident, and significant, in same-sex contrasts between subfamilies for humeral diameters (but not length) and femur length (but not diameters).

Femoral length and diameters are isometric with mass in all subsets, except for the negative allometry of male colobine femur length. Humeral length is isometric with mass, as is cercopithecine humeral transverse diameter. Colobine humeral transverse diameter and all humeral anteroposterior diameters are positively allometric. Length-diameter scaling of both long bones is negatively allometric. Geometric similarity predicts a slope of 1.0, but in these data the exponents range from 0.78 to 0.87 (table 13).

Overall, geometric similarity characterizes humeral and femoral dimensions relative to body mass (0.33 cannot be excluded as a slope estimate). Positively allometric shape changes are found in colobine femur length and humeral transverse diameter as well as cercopithecid humeral anteroposterior diam-

Fig. 1. Scaling of postcranial dimensions with body mass in extant Cercopithecidae. Open circles are colobines, solid diamonds are cercopithecines. 95% confidence ellipses are superimposed on each subfamily scatter. Sexes are combined in the plot, but not in the scaling analysis. See tables 11–13 for scaling equations and contrasts. Log_{10} (taxon-mean mass by sex, in g) plotted against log_{10} (taxon-mean value of variable, in mm): (A) humerus length (HL); (B) femur length (FL); (C) humerus anteroposterior diameter (HAP); (D) femur anteroposterior diameter (FAP).

eter, while negative allometry characterizes length-diameter scaling in both the humerus and femur. The combination of these relationships is exemplified in the short, thick humeri and femora of the largest (extant) cercopithecids.

Colobines have longer hindlimbs than cercopithecines at a common mass. This has been reported previously (e.g., Jungers, 1985) and has been linked to the different locomotor repertoires of the two subfamilies: colobines engage in more frequent leaping behaviors than do cercopithecines. The increase in length of the femur results in an absolutely longer time for acceleration of the mass of the body at takeoff and, as importantly, an increase in the time available to decelerate at landing.

This subfamily difference in femoral length is considerably less pronounced in

	Sexes	combined	I	Males	Females	
	Slope	Elevation	Slope	Elevation	Slope	Elevation
Humerus length	ns	ns	ns	ns	ns	ns
Humerus AP	ns	ns	ns	ns	ns	0.004
Humerus TR	ns	0.00002	ns	ns	ns	0.004
Femur length	ns	0.00001	ns	0.003	ns	0.003
Femur AP	ns	ns	ns	ns	ns	ns
Femur TR	ns	ns	ns	ns	ns	ns
M1AW	ns	0.00001	ns	0.00006	ns	0.00013
M1PW	ns	0.00001	ns	0.00009	ns	0.00118
MIL	ns	0.00001	ns	0.00001	ns	0.00000
M1Area	ns	0.00001	ns	0.00006	ns	0.00013
M2AW	ns	0.00001	ns	0.00001	ns	0.00000
M2PW	ns	0.00001	ns	0.00001	ns	0.00000
M2L	ns	0.00001	0.013		0.018	
M2Area	ns	0.00001	ns	0.0015	ns	0.00000
m1AW	0.013		0.014	_	0.023	
m1PW	0.006		0.008	<u></u>	0.014	
m1L	ns	0.00001	0.010		ns	0.00003
mlArea	0.006	_	0.003	—	ns	0.00000
m2AW	ns	0.00001	ns	0.00001	ns	0.00000
m2PW	ns	0.00001	ns	0.00006	ns	0.00000
m2L	ns	0.00001	ns	0.00000	ns	0.00000
m2Area	ns	0.00001	ns	0.0045	ns	0.00000
m3AW	ns	0.00001	ns	0.00002	ns	0.00000
m3PW	ns	0.00311		0.0014	ns	0.0074
m3L	ns	0.00001	0.008	_	ns	0.00000
m3Area	0.006	—	0.004		ns	0.00000
BIOR	ns	ns	ns	ns	ns	ns
GLBA	ns	0.00006	ns	0.0034	ns	ns
GLIN	ns	0.00001	0.005		ns	0.00191
NABA	ns	0.00020	ns	0.0005	ns	ns
NAIN	ns	0.00001	ns	ns	ns	ns
ORBH	ns	ns	ns	ns	ns	ns
ORBW	ns	ns	ns	ns	ns	ns
ORBArea	ns	ns	ns	ns	ns	ns
PORB	ns	ns	ns	ns	ns	ns

TABLE 12 Analysis of Covariance (ANCOVA) Results of Tests for Slope and Elevation Differences Based on Reduced Major Axis Regression: Colobinae vs. Cercopithecinae

AP, anteroposterior midshaft diameter; TR, transverse midshaft diameter. Abbreviations for cranial and dental measurements are explained in the text.

All probabilities <0.05 are given; those >0.05 are listed as ns (not significant). See table 11 for equations and figs. 1-3 for graphical depictions of the data.

taxa of large body mass (fig. 1A). Indeed, negative allometry of femoral length on mass characterizes male colobines (table 11). This pattern indicates that the largest of the (male) colobines are structurally similar to the cercopithecines. Because many of the colobine

fossils are in the size range of the largest extant taxa, it is important to note this allometry and to expect that the femoral proportions of these taxa will converge on those of cercopithecines (assuming that scaling patterns are the same in extinct and extant taxa).

Length-Diameter Scaling in Cercopithecidae						
	Length* Mass	Diameter* Mass	Diameter	Length* Diameter		
Humerus	0.34	0.42	ар	0.79		
		0.35	tr	0.87		
Femur	0.31	0.34	ap	0.80		
		0.35	tr	0.78		

TABLE 13

An assumption that this structural similarity implies behavioral similarity is intriguing and may add to indications derived from joint morphology that some of the large fossil colobines were terrestrial.

Cercopithecines have relatively robust humeral shafts, especially in the transverse dimension. Diameter measurements were taken at the inferiormost extent of the deltoid tuberosity in an attempt to monitor shape features of the shaft at a point where development of muscle attachments is minimal. Inasmuch as this goal was attained, it seems reasonable to hypothesize functional differences in the forelimb based on the shape differences uncovered here.

Assuming that the external dimensions are tracking mechanically sensitive aspects of diaphyseal structure, it is possible that cercopithecines load their forelimbs in substantially different ways than do colobines. The more circular cross section of the colobine humerus is equally resistant to bending loads in all planes, whereas that of cercopithecines appears to have enhanced rigidity and strength in accommodating loads restricted to the mediolateral plane. It is likely that the threedimensional arboreal environment of colobines is associated with forelimb loading in a variety of planes. Conversely, the more terrestrial cercopithecines are well suited to resist mediolateral loading of the proximal forelimb. This may be associated with loading differences related to weight-bearing terrestrial locomotion, and perhaps with differences in manual dexterity between the subfamilies. Stabilization of the elbow during reaching and grabbing of small (food) objects may reasonably result in mediolateral loading of the humerus (as a result of the actions of, for example, brachioradialis).

It would be necessary to examine the dis-

tribution of cortical bone within a cross section of the diaphysis to further evaluate the differences in external shape. Jungers et al. (1998) have examined the cross-sectional morphology of cercopithecid limb long bones. Their findings are similar to ours. They attribute differences in limb structure between subfamilies to substrate compliance variation in an arboreal (colobine) or terrestrial (cercopithecine) milieu. At present, it is difficult to test if substrate compliance, forelimb manipulation, or some yet unidentified aspect of the biological role of the cercopithecid forelimb is responsible for the scaling patterns uncovered here.

Cercopithecid length-diameter relationships are similar to those demonstrated in a broad interspecific mammalian sample (Biewener, 1982), but the negative allometry in the current sample is more marked. Negative allometry of humeral and femoral length to diameter in anthropoids has been contrasted with the positive allometry found in "prosimians" (Terranova, 1995).

DENTAL SCALING

Correlations between dental measures and body mass range from 0.63 to 0.96. This range is slightly greater than that for the postcranial measures.

As in the postcranium, the majority of scaling differences in dental measures are found between subfamilies (sexes combined, table 12). These differences are primarily in elevation: In general, colobines are transposed below cercopithecines (fig. 2).

As opposed to the pattern seen in the postcranium, sexual dimorphism underlies many of the higher-level scaling differences. Differences between sexes within and between subfamilies are abundant. The vast majority of these differences obtain as a result of the pattern of male colobine dental scaling. Although not always different from female colobines (in widths, but not lengths), male colobine lower molar scaling differs from cercopithecines in either slope, elevation, or both (fig. 2A). This pattern is less clear in the upper teeth.

As with the postcrania, most molar measures scale isometrically with mass. Correlations are generally high and similar to

Fig. 2. Scaling of dental dimensions with body mass in extant Cercopithecidae. Conventions as in figure 1. (A) m1 length (m1L); (B) m1 area (m1AR); (C) M1 length (M1L); (D) M1 area (M1AR).

those found between postcranial dimensions and mass. Cercopithecine mandibular second and third molar length and third molar widths and area are positively allometric. Most mandibular and maxillary first molar dimensions are negatively allometric in male colobines. On the other hand, mandibular third molar length, width, and area are positively allometric with mass in all cercopithecids and in all lower categories. It is likely that the reduction of m3 hypoconulids in *Miopithecus* and *Presbytis* is relevant to this pattern.

The major differences in scaling between

the two subfamilies are transpositions. Colobines tend to have smaller molar teeth at every position than do comparably sized cercopithecines. On the one hand, this might be expected, given the relatively large digestive tract (and thus "extra" mass) in colobines (see further discussion below, p. 86). But on the other hand, we might be surprised at a pattern of smaller teeth in folivores, given the quantity of low-quality foodstuffs those teeth have to process. This problem deserves further study, as does the idiosyncratic scaling of male colobines at most positions compared to all other groups.

Fig. 3. Scaling of cranial dimensions with body mass in extant Cercopithecidae. Conventions as in figure 1. (A) nasion-inion length (NAIN); (B) minimum postorbital constriction diameter (PORB); (C) orbit width (ORBW); (D) orbit height (ORBH).

CRANIAL SCALING

Correlations between length measures of the skull (NAIN, GLIN, NABA, GLBA) and body mass range between 0.51 and 0.91 (table 11). In general, the association between mass and cranial dimensions is poorly estimated with linear regression. Indeed, the data for female colobine GLBA and NABA are not correlated significantly (p < 0.05); thus, no scaling equations were calculated. For all other subsets of the data, and for all groups combined, differences in y-intercept are apparent (fig. 3) and significant (p < 0.0002). Correlations between measurements of upper face width and orbital shape (PORB, BIOR, ORBW, ORBH, ORBAR) with mass range between 0.33 and 0.89. Correlations are significant in all groups only for PORB; for all other variables at least two and up to four correlations within sex-by-subfamily samples are not significant, and no scaling equations were calculated. No differences in scaling are apparent among groups in PORB.

Facial and orbital measures exhibit negative allometry with mass (figs. 3 C–D). However, correlations are quite low, and linear equations explain little of the total variation in the data (table 11). No scaling differences were found between groups, but this result should be seen as provisional. More data are needed to fully demonstrate scaling patterns.

Neurocranial lengths have higher correlations with mass than do the facial and orbital measures. Cercopithecine lengths tend to be negatively allometric with mass, whereas colobine lengths are isometric. At a common body mass, cercopithecines have longer neurocrania than colobines. Reminiscent of the femoral-length scaling, at large sizes the two subfamilies appear to converge: Differences in cranial dimensions (lengths) are less distinct in larger taxa. Functional implications of the scaling patterns reported here are difficult to derive, as the rostral portion of the skull has not been included in our dataset. Much previous work (e.g., Ravosa, 1990, 1991) has focused on differences in the splanchnocranium, as well as how the splanchno- and neuro-cranium are hafted onto one another. We are unable to evaluate any of these patterns with the present data.

IMPLICATIONS FOR ESTIMATING BODY MASS

In addition to deriving mass estimates for fossil taxa, estimation models are needed for a variety of comparative studies. Most osteology collections of primates (and other mammals) do not record the mass of the specimens. Therefore, skeletal or dental surrogates of size must be constructed. Since there are no associated masses, it is impossible to examine the performance (in terms of accuracy) of any given measure. Several suggestions have been made to help address the problem. For example, it has been suggested that size surrogates should be not only highly correlated, but also isometric with mass (e.g., Smith, 1985).

In the present sample the majority of skeletal and dental measures are indeed isometric with mass; however, a great deal of estimation performance variation (as judged by MPE) is evident. In the known-mass sample, where estimation accuracy can be established, there is a consistent pattern of subfamilies being characterized by isometric slopes, but significantly different y-intercepts. These transpositions indicate that at a common body mass, one group has relatively "more" of the skeletal feature (e.g., femur length).

When comparing the performance of two estimation models where the slope estimates are similar (and independent of the exact value of the point estimate), differences in the y-intercept will result in a consistent pattern of estimation errors for taxa that are improperly assigned, or when the groups are lumped. For example, using a cercopithecine model to estimate the mass of a colobine based on femur length or transverse humeral midshaft diameter will result in an underestimate of the actual mass.

Correlation coefficients are also somewhat variable with respect to accuracy. Although all measures that result in MPEs below 15% are generally characterized by correlations above 0.90, it is not necessarily the case that the highest correlation is always associated with the lowest MPE. Certainly, the correlation between mass and any potential estimator must be sufficiently high to attain statistical significance, but it is not straightforward to suggest that a correlation of 0.98 indicates a better estimator than one of 0.90.

It is not sufficiently convincing to select a size surrogate based on only the slope value, the correlation coefficient, or any single parameter of the linear regression. This is especially the case when scaling variation exists in the measurement of interest and the phylogenetic (or functional) affiliation of the taxon to be estimated is equivocal. The variation in scaling patterns in part underlies the finding that lower taxonomic prediction models tend to return estimates with low Mean Prediction Errors (see also Conroy, 1987; Dagosto and Terranova, 1992).

In this paper we employ a method of estimation model selection that is based primarily on MPE of taxa that are not included in the development of the model. This is a rigorous test of accuracy but is not possible in samples where associated masses are unknown and sample size is small. Although models selected on this basis tend to be those that are characterized by high correlations, isometric slopes and low standard errors of the estimate, it is unclear how any single parameter describing the regression can be used to select a good estimator variable. It will be important to continue to document the accuracy and variation of selected dental and skeletal mass surrogates based on examinations of known mass samples.

The most specific suggestion that will apply to any study employing estimated mass is that the required precision of the analysis needs to be explicitly considered. A determination of taxon mass within 30% requires a far less precise model than does an evaluation of encephalization quotients or a reconstruction of dietary ecology based on notions of size-related phenomena. Moreover, it should be expected that the level of error in the estimates would be at least as high as that in the dataset used to construct the estimation model. *Caveat emptor*!

ESTIMATED MASS IN FOSSIL CERCOPITHECID TAXA

The ultimate goal of this exercise has been to produce a set of mass estimates for a large variety of extinct Old World monkey taxa. The full range of values obtained is presented in tables 14-17. Each estimate is accompanied by the 20% range, which we believe should include the actual average mass of the taxon-sex sample in most if not all cases. In many cases, there are differences between estimates from the several body regions and/or reasons (explained in the text) why the final or "consensus" estimate would differ from those in the table. These consensus estimates are not presented in the tables in order to emphasize that they are best understood in light of the relevant text discussion. The relationship between estimated mass and selected variables is illustrated in figures 4, 6, 10, and 13 (and also 19, in the discussion). The taxon-mean estimated (consensus) masses are plotted against taxon-mean measurements in a log₁₀-log₁₀ format, which simplifies conversion to unlogged values.

It is neither possible nor necessary to discuss each of these estimates extensively, but in the following sections we will consider a selection of them in greater detail. We concentrate on: (a) taxa with estimates from all three body regions or from two with differing values; (b) taxa whose mass has previously been estimated very differently from our results; and (c) taxa at the extreme ends of the body mass range. The data on which these estimates are based are presented in appendix tables 3-6.

In this discussion, references will not be provided for all taxa, in order to avoid duplication. Szalay and Delson (1979) surveyed all fossil cercopithecids known at that time, and Delson (1994) recently reviewed all fossil colobines. Specific citations will only be provided for populations not discussed in those publications, or if additional data or mass estimates were provided. As noted earlier, Fleagle (1988, 1998) tabulated body mass estimates for a number of extinct species, but these were not separated by sex, so it is not clear if he was estimating an average of male and female mass for those species in which both sexes are known. Moreover, no indication was provided of the precise methods whereby the estimates were derived. In several cases, we will refer to these estimates in the discussion that follows. Similarly, we have applied the equations derived from the "classical" model (following Konisgberg et al., 1998, as above) to selected fossil postcrania, and we report the range of estimates.

COLOBINAE

AFRICA

The smallest known fossil colobine is Late Miocene Microcolobus from Ngeringerowa, dated to about 9 Ma (million years ago) by Hill (1995). If, as ED suggests, the unique mandible was possibly from a male individual, its estimated mass would be 5 kg, slightly larger than the 4.4 kg mean for Procolobus verus, but smaller than all other living colobines (see fig. 4). This estimate would fit with the general size of the mandible, somewhat larger than that of P. verus. On the other hand, Benefit and Pickford (1986) argued that this fossil was probably female. In that case, a mass of 8 kg would place it in the range of living African Procolobus badius and various Colobus species. Fleagle (1988) suggested a mass of 4 kg without reference to sex.

A partial colobine skeleton from Leadu, near Hadar, is the best-preserved individual

Fig. 4. Estimated mass in extinct cercopithecids compared to m3 anterior width, males only. Circles are colobines, triangles are cercopithecines. 95% confidence ellipses for extant members of each subfamily are provided to indicate the modern range; the colobine ellipse is the smaller. Underlined symbols indicate position of selected extant taxa. Taxon-mean value of estimated (consensus) mass (log₁₀, in g) plotted against taxon-mean value (log₁₀, in mm) of m3AW. Taxon identifications as follows: CA, Colobinae sp. indet. "species A", Hadar and Leadu; CK, Cercopithecoides kimeui; DI, Papio (Dinopithecus) ingens; DQ, Papio (Dinopithecus) quadratirostris, Omo; DR, Dolichopithecus ruscinensis; MA, Macaca sylvanus; MC, Microcolobus tugenensis; ME, ?Macaca sp. indet., Menacer; MM, Mesopithecus monspessulanus; MP, Mesopithecus pentelicus; ms, Mandrillus sphinx; NL, Nasalis larvatus; PA, Paradolichopithecus arvernensis; PC, Paracolobus chemeroni; PK, Parapapio sp. indet., Kanapoi; PM, Paracolobus mutiwa; PW, Parapapio whitei; RT, Rhinocolobus turkanaensis, Turkana and Hadar; T1, Theropithecus oswaldi cf. oswaldi, Olduvai Bed I; T2, Theropithecus oswaldi cf. leakeyi, Olduvai Upper Bed II; TD, Theropithecus darti, Hadar; TV, Theropithecus oswaldi leakeyi Olduvai Masek (lower Ndutu?) and Kapthurin; TX, Theropithecus oswaldi leakeyi, Olorgesailie maximum; VM, Victoriapithecus macinnesi (Benefit mean).

of the as-yet unnamed taxon informally known as species A. A mandible and some other fragments from the main Hadar sequence have been referred to this taxon, and teeth of comparable size are known from the Turkana Basin and Laetoli, resulting in an estimated time range from 3.6–2 Ma. The 21 kg dental estimate from Leadu and Hadar fits with a size somewhat larger than living African colobines and, in fact, is larger than any extant Asian form as well. Unfortunately, no postcranial element is complete enough to provide a mass estimate using our variables. Colobine dentitions from Aramis (4.4 Ma) currently being analyzed by ED and S. Frost appear comparable to species A, but slightly smaller than the younger samples, which agrees with the size estimate obtained here (see table 14).

Late Miocene *Libypithecus* is comparable in size and cranial conformation to living *Procolobus*. Both the upper dentition and the cranium (based on family equations given the poor performance of colobine by-sex or mixed-sex cranial equations) yield estimates averaging 12 kg, close to the mass of male

_	Postci	anium	Dent	tition	Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
			Africa			
Microcolobus tugenensis ?Male	Ngeringero	wa				
Mean	8.0 ^a		5.0			
Min	8.0 ^a	6.5ª	4.5	4.5		
Max	8.5ª	9.5ª	5.5	6.5		
Colobine sp. "A" Hada Male	r/Leadu					
Mean			21.0			
Min			18.0	17.0		
Max			28.0	25.0		
Colobinae cf. sp. "A" A Male	Aramis					
Mean			18.0			
Min			15.0	14.0		
Max			20.0	22.0		
Female						
Mean			9.0			
Min			7.0	7.5		
Max			12.0	10.5		
Colobus? flandrini Mer	nacer					
Sex unknown	lucer					
Mean			21.0S			
Min			18.0	17.0		
Max			26.0 đ	25.0 ð		
Libypithecus markgrafi	Wadi Natrun					
Male						
Mean			12.0		12.0F	_
Min			10.0	10.0	10.5F	10.0F
Max			15.0	14.0	15.0F	14.0F
Mean*					10.0S	
Rhinocolobus turkanaens Male	is Turkana d	k Hadar				
Mean			31.0		20.0F	
Min			23.0	25.0	17.0F	16.0F
Max			39.0	37.0	23.0F	24.0F
Mean*					13.0S	
Female						
Mean			17.0		23.0F	
Min			15.0	14.0	19.0F	18.0F
Max			22.0	20.0	27.0F	28.0F
Mean*					13.0S	
Paracolobus chemeroni	Chemeron JN	/190				
Maie	20.0		16 0		10.0	
Mean	39.0	21.0	40.0	27.0	19.0	15.0
Min	27.0	31.0	32.0	37.0		15.0
Max	56.0	47.0	55.0	55.0		23.0

TABLE 14 Fossil Colobine Mass Estimates

			Continued				
	Postci	anium	Den	tition	Cranium		
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	
Paracolobus mutiwa	Turkana						
?Male							
Mean			54.0				
?Male ^b							
Mean			51.0				
Min			29.0	41.0			
Max			66.0	61.0			
?Female							
Mean			27.0				
Min			24.0	22.0			
Max			29.0	32.0			
Paracolobus? sp. La ?Male ^b	etoli						
Mean			34.0				
Min			28.0	27.0			
Max			41.0	41.0			
?Female ^c							
Mean			17.0				
Min			15.0	14.0			
Max			19.0	20.0			
Cercopithecoides willi Male	<i>amsi</i> Makapan	Sterkfontein/Bolt'	s Farm				
Mean			23.0		18 OF		
Min			20.0	18.0	17.0F	14 OF	
Max			27.0	28.0	21.0F	22 OF	
Mean*			27.0	20.0	17.0S	22.0	
Female					17.0-		
Mean			16.0		14 OF		
Min			15.0	13.0	14.0F	11 OF	
Max			18.0	19.0	14.0F	17.0 ⁻	
Mean*			10.0	17.0	13.08	17.0-	
Cercopithecoides willi ?Female	amsi Leba						
Mean			16.0				
Min			15.0	13.0			
Max			16.0	19.0			
Cercopithecoides willia Male	<i>amsi</i> Swartkran	s, Mbr unknown					
Mean			23.0				
Min			20.0	18.0			
Max			25.0	28.0			
<i>Cercopithecoides</i> cf. <i>w</i> Female	<i>illiamsi</i> Kromd	raai					
Mean			23.0		14.05		
Min			23.0	19.0	14.03	11.0	
Max			20.0	10.0		11.0	
Max			27.0	28.0		17.0	

TABLE	14
Continu	ed

	Postcranium		Dentition		Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
Cercopithecoides? cf	. williamsi Kool	oi Fora				
?Male						
Mean	27.0S		25.0			
Min	20.0S	22.0S	22.0	20.0		
Max	34.0S	32.0S	33.0	30.0		
Mean*	21.0 8					
Cercopithecoides kim Male	<i>eui</i> Koobi Fora					
Mean			51.0			
Min			35.0	41.0		
Max			62.0	61.0		
Female						
Mean			25.0		20.0F	
Min			23.0	20.0	19.0F	16.0F
Max			27.0	30.0	23.0F	24.0F
Cercopithecoides kim Sex unknown	<i>eui</i> Olduvai					
Mean			40.0S		21.0	
Min			26.0 [°]	32.0 [°]	15.0S	18.0S
Max			47.0 ੈ	48.0 ð	27.0F	24.0F
			Asia			
Pygathrix (Kninopiin ?Eemale	ecus) roxellana?	Honan				
Pygainrix (Rhinopith ?Female Mean	ecus) roxellana?	Honan	16.0		12.0S	
Pygainrix (Rhinopith ?Female Mean Min	ecus) roxellana'?	Honan	16.0 15.0	13.0	12.0S	10.0
Pygainrix (Kninopith ?Female Mean Min Max	ecus) roxellana?	Honan	16.0 15.0 18.0	13.0 19.0	12.0\$	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male	ecus) roxellana? ecus) lantianensis	Honan Gongwangling	16.0 15.0 18.0	13.0 19.0	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean	ecus) roxellana? ecus) lantianensis	Honan Gongwangling	16.0 15.0 18.0 31.0	13.0 19.0	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min	ecus) roxellana? ecus) lantianensis	Honan Gongwangling	16.0 15.0 18.0 31.0 30.0	13.0 19.0 25.0	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max	ecus) roxellana? ecus) lantianensis	Honan Gongwangling	16.0 15.0 18.0 31.0 30.0 33.0	13.0 19.0 25.0 37.0	12.0S	10.0 14.0
Pygainrix (Kninopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown	ecus) roxellana? ecus) lantianensis lensis Hasnot/De	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0	13.0 19.0 25.0 37.0	12.0S	10.0 14.0
Pygainrix (Kninopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0S	13.0 19.0 25.0 37.0	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min	ecus) roxellana? ecus) lantianensis lensis Hasnot/De	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0 ^S 7.5 [°]	13.0 19.0 25.0 37.0 6.5 ²	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max	ecus) roxellana? ecus) lantianensis eensis Hasnot/De	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 % 9.0 ð	13.0 19.0 25.0 37.0 6.5 [♀] 9.5 [♂]	12.0 ^S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do Yushe Mahui	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 ⁹ 9.0 ³	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do Yushe Mahui	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0\$ 7.5 ♀ 9.0 ♂	13.0 19.0 25.0 37.0 6.5 [♀] 9.5 [♂]	12.0 ^{\$}	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean Min	ecus) roxellana? ecus) lantianensis eensis Hasnot/De Yushe Mahui	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 % 9.0 ð 22.0S 18.0 %	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂	12.0 ^{\$}	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean Min Maa	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do Yushe Mahui	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 ⁹ 9.0 ³ 22.0S 18.0 ⁹ 28.0 ³	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂ 18.0 ♀ 26.0 ♂	12.0 ^{\$}	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean Min Max	ecus) roxellana? ecus) lantianensis ensis Hasnot/De Yushe Mahui	Honan Gongwangling omeli	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 % 9.0 ð 22.0S 18.0 % 28.0 ð	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂ 18.0 ♀ 26.0 ♂	12.0 ^{\$}	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean Min Max Mean Min Max	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do Yushe Mahui icus Pikermi	Honan Gongwangling omeli Eu	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 % 9.0 ð 22.0S 18.0 % 28.0 ð	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂ 18.0 ♀ 26.0 ♂	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean Min Max Mean Min Max Mean Min Max	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do Yushe Mahui Scus Pikermi 11.0	Honan Gongwangling omeli Eu	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 % 9.0 ð 22.0S 18.0 % 28.0 ð	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂ 18.0 ♀ 26.0 ♂	12.0S	10.0 14.0
Pygainrix (Rhinopith ?Female Mean Min Max Pygathrix (Rhinopith Male Mean Min Max ?Semnopithecus sival Sex unknown Mean Min Max ?Semnopithecus sp. Sex unknown Mean Min Max Mean Min Max	ecus) roxellana? ecus) lantianensis lensis Hasnot/Do Yushe Mahui Scus Pikermi 11.0 8.5	Honan Gongwangling omeli Eu	16.0 15.0 18.0 31.0 30.0 33.0 8.0S 7.5 % 9.0 ð 22.0S 18.0 % 28.0 ð irope (and Asia) 14.0 13.0	13.0 19.0 25.0 37.0 6.5 ♀ 9.5 ♂ 18.0 ♀ 26.0 ♂	12.0S	10.0 14.0

TABLE 14
Continued

			Cominuea		the feet for the second s	
	Postcranium		Dentition		Cranium	
	Estimated	Est. mass	Estimated	Est. mass	Estimated	Est. mass
	mass	± 20%	mass	± 20%	mass	± 20%
Mesopithecus pentelicus Female	Pikermi	(continued)				
Mean	8.0		10.5		7.5F	
Min	7.0	6.5	9.5	8.5	7.0F	6.5F
Max	9.5	9.5	11.0	12.5	8.0F	9.5F
Mesopithecus pentelicus	Macedon	ia				
Male						
Mean			13.0			
Min			9.5	10.0		
Max			15.0	16.0		
Female						
Mean			10.5			
Min			10.0	8.5		
Max			11.5	12.5		
Mesopithecus monspessu	<i>ılanus</i> Var	ious				
Male						
Mean			10.5			
Min			10.0	8.5		
Max			11.5	12.5		
Female						
Mean			7.5			
Min			7.5	6.5		
Max			7.5	9.5		
Dolichopithecus rusciner	nsis Perpig	gnan				
Male						
Mean	22.0		28.0			
Min	14.0	18.0	27.0	22.0		
Max	26.0	26.0	30.0	34.0		
Female						
Mean	14.0		17.0		13.0S	
Min	10.5	11.0	15.0	14.0		10.0
Max	20.0	17.0	18.0	20.0		16.0
Dolichopithecus? eohanu	<i>uman</i> Shar	nar				
Female						
Mean			21.0			
Min			18.0	17.0		
Max			23.0	25.0		

TABLE 14
Continued

For each population, mass estimates expressed in kg, rounded to the nearest kg (or half-kg for values under 12 kg), are provided for one to three body regions, as possible. A question mark preceding sex denotes uncertainty about the sex of the specimen(s) evaluated. For Estimated mass, Mean = mean of several estimates; Min = lowest estimate; Max = highest estimate. For Est. mass \pm 20%, Min = 80% of Mean; Max = 120% of Mean. For some taxa, means (designated Mean*) from an additional equation are reported.

All values are estimated from sex-specific subfamily equations unless noted by superscript characters as follows: S = combined-sex subfamily equations; F = combined-sex family equations; δ (or \mathfrak{P}) = male (or female) equation(s) for relevant subfamily; av, average of minimum and maximum values given, whatever their source.

^a If female.

^b Probable male specimens plus largest isolated teeth (see text).

^c Probable female specimens plus smallest isolated teeth.

P. badius oustaleti. Fleagle (1988) suggested a lower value of 8.4 kg.

Three large colobine genera are known from the Pliocene of eastern Africa. Rhinocolobus was probably the most arboreally adapted, but the only humeri are too fragmentary to provide mass estimates with our variable set. Male dentitions (including large but unsexed teeth) yield a mass estimate of ca. 31 kg, while a reasonably well-preserved cranium yields only 20 kg (even less, based on the subfamily equation, for PORB). Female dentitions suggest 17 kg, which results in a reasonable degree of dimorphism. The only female skull is laterally crushed, which probably led to an overestimate of some dimensions, in turn yielding a mass prediction of 23 kg, larger than both the male skull and the female teeth. The dental estimates are preferred. Fleagle (1988) estimated 21 kg, presumably the average of both sexes.

Paracolobus is known from three species, of which the oldest is smallest and the youngest largest. The best known is P. chemeroni, dating to ca. 3.2 Ma and represented by a partial male skeleton lacking the neurocranium (see cover and fig. 5). There is excellent agreement between the dental and postcranial mass estimates for this individual, resulting in a consensus estimate of 43 kg. As opposed to the apparently smallish teeth of some modern large colobines, this species is surely not microdont: The teeth yield a slightly greater mass estimate than do the long bones. One could argue that the postcranial value should be accepted in preference to the dental (resulting in an assessment of macrodonty), but it seems more reasonable to assume both regions are equally accurate, given the closeness of the predictions. The only high-ranking cranial variable that can be measured is PORB, which yields a mass estimate from the colobine mixed-sex equation of 19 kg, clearly far too low. Perhaps the poor performance of PORB in large colobines is due to allometric relationships among mass and the relative size of brain and temporal musculature. BIOR yields a family-equation prediction of 45 kg, but that equation had an extremely high MPE on the test sample (table 6). Fleagle's (1988) estimate was 35 kg.

Looking more closely at the OLS postcra-

nial estimates (see fig. 6), femoral length predicts a mass of only 27 kg, while femoral transverse diameter predicts 56 kg (femoral anteroposterior diameter yields 39 kg and humeral length 34 kg, both low but reasonable as within the 20% range of 34 to 52 kg). In all taxon-sex groups, FTR predicts the highest mass, between 50 and 60 kg; FAP, on the other hand, yields values between 38 and 43 kg. But the scaling review above found that both these dimensions normally scale isometrically with mass, and in most colobines they are nearly equal. In Paracolobus, however, FTR is ca. 21, while FAP is 23 mm, indicating differential stressing as in humeri. Although humeral diameters were not used to determine mass estimates here, the equations again yield very different values across all three taxon-sex groups, but are tightly internally consistent: HAP 28-29 kg, HTR 48-50 kg. Humeral length, which scaled isometrically in the modern sample, produced low mass estimates of 32-36 kg here, but not as low as the negatively allometric FL (25-27 kg).

P. mutiwa, mainly represented by dental remains, is known from younger sediments in the Turkana Basin. A single large mandible with m3 from the Shungura Formation leads to an estimate of 54 kg, while combining partial jaws and larger isolated teeth suggests a male mass of 51 (or 52 as a consensus) and a female mass of 27 kg, thus a roughly 2:1 dimorphism. This compares to Nasalis larvatus and the largest Papio varieties, but at far greater body size. Incompletely published material from West Turkana includes a male snout and partial skeleton, in which the face is larger than that of P. chemeroni, but the humerus is shorter. From Laetoli, ca. 3.6 Ma, comes a sample of dental remains referred to Paracolobus sp. indet. Again combining the few sexed teeth with the largest and smallest specimens (allocated as male and female, respectively), we obtain mass estimates of 34 and 17 kg, presenting the same dimorphism pattern as in P. mutiwa, here at overall size close to that of the largest Papio h. anubis. Postcrania of both samples would be of great interest for comparison to the Chemeron skeleton.

The third of the large African Pliocene colobines is *Cercopithecoides*, known mainly from South African sites that also yield australopiths. C. williamsi is represented by numerous cranial and dental specimens, but as yet no reliably identified postcrania. Combining these values yields a consensus of 21 kg for males and 15 kg for females. The size and dimorphism level is most comparable to those of the largest modern colobines, Semnopithecus entellus of the schistacea group. More fragmentary remains of a male palate from an uncertain horizon at Swartkrans (the type of C. "molletti") and a female mandible from Leba exactly match the larger combined samples from Makapan, Sterkfontein Mbr. 4. and Bolt's Farm. A female face from Kromdraai B, representing a population that Delson has previously termed a "large variant", was estimated from its teeth at 23 kg, equivalent to the dental estimates for the "typical" males; a lower prediction based on BIOR from an all-colobine equation is rejected.

Two sizes of "Cercopithecoides" have also been reported from East Africa by Leakey (1982, 1987). The smaller form was referred to C. williamsi and appears to have approximately the same mass as the southern taxon, but details of its dento-facial morphology (as well as its highly terrestrial habitus) led Delson (1994) to question its specific allocation. Humeral length yields an estimate of ca. 21 kg from all three relevant equations (male colobines, all colobines, all cercopithecids; see fig. 7). Humeral transverse diameter yields a higher estimate of ca. 33 kg from all three equations (although it is high-ranked only for all colobines). The HTR value may reflect its terrestrial adaptation (as in cercopithecines). Combining these values with the dental estimates, we arrive at a consensus mean mass of 25 kg.

The larger Turkana species, C. kimeui, yielded estimates of 51 kg for male teeth and 25 for female (with a slightly lower value for a cranium from family-wide equations). These numbers are almost identical to those obtained for *Paracolobus mutiwa*, which has not been reported from Koobi Fora sediments. The two species are readily differentiated based on both cranial and dental morphology. A presumed male neurocranium with upper teeth from Olduvai Gorge (the holotype of C. kimeui) yields dental estimates of 47 kg (range 39–55 kg) if male, 27 kg if female, and 40 kg from mixed-sex regressions. An estimate of 27 kg from NAIN (family-wide equation) is probably not reliable. The implication is of a probably smaller population than known from Koobi Fora. No limb bones have yet been identified. Fleagle (1988) noted in text (p. 407) that *C. williamsi* (*sensu lato*) might have had a mass of ca. 15 kg, but listed a mass of 33 kg in his table 14.3; the latter may have been a *lapsus* for *C. kimeui*, but given that sex was ignored, it is hard to be certain. There was no change in the 1998 edition.

EURASIA

Fossil colobines from Asia are less frequent, but three taxa are worth noting. The earliest Asian colobines have had a checkered taxonomic history, but it now seems best to refer them to a broadly construed genus Semnopithecus.? S. sivalensis from the Late Miocene of Pakistan (ca. 7-5.5 Ma) is known from a small sample of upper and lower teeth not allocated to sex. Estimates average 8 kg (depending on the by-sex or mixed-sex model used), in the range of S. (Trachypithecus) obscura. A larger colobine is known from the roughly contemporaneous (6-5.5 Ma) Mahui Formation of the Yushe Basin, China; the single m3 yields a rough estimate of 22 kg, comparable to the males of Semnopithecus entellus schistacea, the largest living species group of that genus. Pygathrix (Rhinopithecus) lantianensis is an Early Pleistocene Chinese species that was originally misidentified as a macaque ("Megamacaca"; see Jablonski and Gu, 1991). Male teeth yield an estimate of 31 kg, about 50% larger than males of Pygathrix (R.) bieti, the largest species. On the other hand, it must be recalled that the two known mass "values" for P. (R.) bieti are 13 kg for a juvenile and an anecdotal estimate of "more than 30" for an adult male, while the largest mass for P. (R.) roxellana is 26.5 kg (Jablonski and Pan, 1995).

The extinct colobines of Europe are better known, with some species being represented by all parts of the body. *Mesopithecus pentelicus* is known by hundreds of specimens, probably representing dozens of individuals

Fig. 5. Anterior view of male left humerus (A, B, C, D) and femur of: *Mandrillus sphinx* (A and E); *Paradolichopithecus arvernensis* (B, C, F: two humeral fragments and femoral shaft [posterior view]; B and F photographically reversed); and *Paracolobus chemeroni* (D and G).

from the Late Miocene (ca. 8.5 Ma) of Pikermi, near Athens (see Zapfe, 1991; Szalay and Delson, 1979). There is remarkable agreement among estimates from the three body regions, with 13 kg as the best consensus mass for males, and 9 kg for females. Given that cranial remains are often crushed and that the few estimates are based on either subfamily or family-wide equations, this agreement represents additional significant

Fig. 5. (Continued).

support for the approach utilized here (see fig. 8).

Another sample of *M. pentelicus* is known from northern Greece, Bulgaria, and (ex-Yugoslavian) Macedonia; the name *M. delsoni* has been proposed for specimens from the first of these areas, but Delson (1994; in Andrews et al., 1996) has rejected the supposed species distinctions. Although this sample was claimed to be larger in size than the Pikermi population, mass estimates are nearly identical. These estimates are in the range of

Fig. 6. Estimated mass in extinct cercopithecids compared to long bone lengths. Conventions as in figure 4. Taxon-mean mass $(\log_{10}, \text{ in g})$ plotted against taxon-mean value $(\log_{10}, \text{ in mm})$ of: (A) humerus length (HL); (B) femur length (FL). Here the ellipses are only for extant males, and fossils are male unless otherwise noted. Taxon identifications as follows: CX, ?*Cercopithecoides* cf. williamsi; DR, Dolichopithecus ruscinensis; MP, Mesopithecus pentelicus, sex indicated by symbol; PA, Paradolichopithecus arvernensis; PC, Paracolobus chemeroni; T1, Theropithecus oswaldi cf. oswaldi, Olduvai Bed I; T2, Theropithecus oswaldi cf. leakeyi, Olduvai Upper Bed II skeleton.

Fig. 7. Anterior view of male left humerus (A, B and C) and femur of: *Papio hamadryas ursinus* (A and D), *?Cercopithecoides* cf. *williamsi* from Koobi Fora (B and E, casts), *Dolichopithecus ruscinensis* (C and F, casts).

such taxa as the mid-sized subspecies of Semnopithecus entellus and S. (Trachypithecus) pileata shortridgei, which also have similar dimorphism levels. M. pentelicus has been compared to S. entellus by several authors in terms of its locomotor adaptation as well (e.g., see Delson, 1994).

M. monspessulanus is a mainly Pliocene (5-3 Ma) species known from France through Romania. In addition to being smaller, it has been suggested to be less terrestrial than its congener. Dental estimates are about 70–75% of the dental values for *M. pentelicus*, but 80–83% of the consensus values. On that basis, consensus "guesstimates" for *M.*

monspessulanus might be 10 and 7 kg, for males and females, respectively.

On the other hand, *Dolichopithecus ruscinensis* is a larger and more terrestrial species with an even wider range (Spain to Ukraine), contemporaneous and often sympatric with *M. monspessulanus*. Dental estimates for males average 28 kg, while postcranial values average 22 (or 25 if the very low value of 14 kg based on femur length is excluded). A consensus mass of 26 kg seems most reasonable (see fig. 7). Female dental and postcranial values average about 15 kg, surprisingly close to the single cranial estimate of 13 (based on the subfamily mixed-

Fig. 8. Anterior view of left humerus (A, B and C) and femur of: *Procolobus badius temmincki* female (A and D); and *Mesopithecus pentelicus* female (B and E, casts) and male (C and F) (humeri photographically reversed).

sex equation for PORB). This mass is greater than that for any living colobine, approaching the values for the largest *Papio* baboons (at least for females), with slightly lower dimorphism. Fleagle (1988) suggested a range of 15–20 kg, but whether for both sexes together or their average, is not known.

The taxon termed *Parapresbytis eohanuman*, from the later Pliocene of Mongolia and Siberia, has been referred to *Dolichopithecus* (perhaps as a subgenus) by Delson (1994). Its mass of 21 kg for a female is slightly larger than that known for *D. ruscinensis* or any living cercopithecid.

CERCOPITHECINAE

Eurasia

The majority of extinct cercopithecines in Eurasia have been referred to *Macaca*, which first appears in the Late Miocene of northern Africa. A series of populations is known in Europe (and rarely in North Africa) from the Early Pliocene through the late Middle or early Late Pleistocene, almost all of which have been considered to be temporal subspecies of the extant *M. sylvanus*. Mass estimates for these are comparable to those of the modern taxon. *M. majori* is a smaller

	Postci	anium	Dentition		Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
Macaca sylvanus ci ?Male	f. sylvanus Ain M	efta				
Mean	12.0					
Min	11.5	10.0				
Max	13.0	14.0				
Macaca sylvanus ? Male	pliocena Various s	sites, Europe				
Mean	13.08?		14.0			
Min		10.0	14.0	11.0		
Max		16.0	16.0	17.0		
Macaca sylvanus ?	oliocena 'Ubeidiy	a				
Mean			75			
Min			60	65		
Max			9.0	9.5		
Macaca sylvanus ?f Male	<i>lorentina</i> Valdarn	0				
Mean			13.0			
Min			12.0	10.0		
Max			13.0	16.0		
Female			1010	10.0		
Mean			10.5			
Min			9.0	85		
Max			12.0	12.5		
Macaca sylvanus ?p Male	orisca Various Eu	rope				
Mean			12.0			
Min			9.0	10.0		
Max			16.0	14.0		
Macaca majori Ca Male	apo Figari					
Mean			9.5		6.5S	
Min			9.5	7.5	5.5S	5.5S
Max			10.5	11.5	7.0S	7.5S
Female						
Mean			6.0			
Min			5.5	4.5		
Max			6.5	7.5		
Macaca libyca Wa Female	adi Natrun					
Mean			10.0S			
Min			9.5 ²	8.5 ^ç		
Max			10.0 ి	12.5 8		
Macaca? sp. Mena Sex unknown	acer					
Mean			8.5S			
Min			7.0 ¥	6.5 ^ç		
Max			10.0 ð	10.5 8		

 TABLE 15

 North African and Eurasian Fossil Cercopithecine Mass Estimates

	Continued						
	Postcranium		Dentition		Cranium		
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	
Macaca anderssoni	Mien Chih						
Male							
Mean			14.0		10.5S		
Min			12.0	11.0		8.5	
Max			17.0	17.0		12.5	
Macaca anderssoni ('	<i>'robusta</i> ") Zhou	ıkoudian					
?Male							
Mean			17.0		11.0		
Min			14.0	14.0	10.5	8.5	
Max			20.0	20.0	11.5	13.5	
Female							
Mean			10.5				
Min			10.0	85			
Max			11.5	12.5			
Macaca palaeindica Sex unknown	Upper Siwaliks						
Mean			13.0				
Min			10.5	10.0			
Max			13.0	16.0			
Paradolichopithecus	arvernensis Ser	lèze					
Female							
Mean			19.0		15.0		
Min			17.0	15.0	10.5	12.0	
Max			20.0	23.0	20.0	18.0	
Paradolichopithecus	arvernensis Gra	unceanu					
?Male							
Mean	34.0						
Min	20.0	27.0					
Man	29.0	41.0					
Mala	56.0	41.0					
Male			21.0		33.0		
Mean			20.0	25.0	24.0	26.0	
Min			29.0	23.0	24.0	20.0	
Max			33.0	37.0	39.0	40.0	
Female							
Mean			19.0				
Min			17.0	15.0			
Max			23.0	23.0			
Paradolichopithecus	<i>sushkini</i> Kuruk						
Male			26.0		27.05		
Mean			36.0		27.05	22 0	
Min			24.0	29.0		22.0	
Max			44.0	43.0		32.0	
Female			-				
Mean			35.0S	_	14.0		
Min			31.0S	28.0S	12.0	12.0	
Max			39.0S	42.0S	18.0	18.0	
Mean*			29.0 [°]				

TABLE 15

	Postcr	anium	Dentition		Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
Paradolichopithecus sp.	Cova Bonica	1		· · · · · · · · · · · · · · · · · · ·		
Male						
Mean			22.0			
Min			19.0	18.0		
Max			25.0	26.0		
Procynocephalus wiman	i Honan					
Female						
Mean			18.0			
Min			16.0	14.0		
Max			20.0	22.0		
Procynocephalus subhim	<i>alayanus</i> Pir	njor				
?Male	-	-				
Mean			13.0			
Min			11.5	10.0		
Max			14.0	16.0		
Female						
Mean			24.0			
Min			23.0	19.0		
Max			26.0	29.0		
Procynocephalus? sp.	Dongcun					
Sex unknown						
Mean			26.0S			
Min			22.0 ^ç	21.0°		
Max			28.0F	31.0F		
Procynocephalus? sp.	Yushe					
Sex unknown						
Mean			25.0S			
Min			21.0S	20.0S		
Max			31.0S	30.0S		

TABLE 15 Continued

See notes for table 14.

form known on Sardinia, which has been termed a "dwarf macaque", but is only about 15% smaller dentally than *M. sylvanus*. A consensus mass for the male of about 8.5 kg and a female value of about 6 kg is significantly less than those of the living species (see table 15).

The best-preserved Asian material is the sample from the later Middle Pleistocene *Homo erectus* site of Zhoukoudian. Here *Macaca anderssoni* (or *M. robusta*) is estimated at 17 kg for a male, 10.5 kg for a female. The male is in the range of the living *M. thibetana*, which Delson (1980) thought might be morphologically similar, but the female is much smaller; the dimorphism ratio is close to that seen in *M. assamensis*, however, which is probably the closest relative of *M. thibetana*.

Of greater interest than *Macaca* are the two larger Eurasian cercopithecines that may be its descendants: western *Paradolichopithecus* and eastern *Procynocephalus*. The taxonomic distinction between these two is still not clear, but preliminary analysis of female muzzle shape reveals some differences that suggest that they are better retained as separate genera at this time. The holotype of *Paradolichopithecus arvernensis* is a female skull from Senèze (France), dated ca. 2–1.6 Ma. Given the tendency for PORB to underestimate mass, a consensus estimate of 18 kg

Fig. 9. Left lateral views of crania of *Papio hamadryas ursinus* [(A) female, (B) male] and *Para-dolichopithecus arvernensis* [(C) female, (D) reconstructed male]. B and C photographically reversed. Note that the male crania are similar in size (especially of neurocranium), but the female fossil is rather larger than the extant female. This results in apparently low cranial sexual size dimorphism in *Para-dolichopithecus* if the French female and Romanian male specimens indeed represent the same population. The modern compiled mean masses are 30 and 15 kg, while the fossils were estimated at 33 and 18 kg, for slightly lower mass dimorphism.

is suggested. Fleagle's (1988) estimate of 23 kg probably referred to this individual.

A large sample from Graunceanu (Romania), dated ca. 2 Ma, includes a reconstructed adult male skull and two good partial crania (as well as parts of two others), two juvenile male mandibles, a juvenile female maxilla, and an adult female muzzle, as well as unsexed limb elements. The female teeth closely match those from France and in fact produce almost exactly the same mass estimate and range, although the m2 is larger. The male crania and teeth agree extremely well with a consensus mass of 32 kg. What is most fascinating is that the actual size of the Senèze female cranium is only slightly smaller than the Graunceanu male, a surprising lack of cranial dimorphism in a species the size of the largest living Papio varieties (see fig. 9). The mass estimate of 34 kg from humeral and femoral diaphyses (and estimated humeral length) is based on male equations-the female and mixed-sex equations yielded similar values, which suggest the bones are from males (see figs. 5 and 10). This number is essentially identical to those obtained from the crania and teeth, suggesting a final consensus of ca. 33 kg. In turn, this yields a mass dimorphism comparable to those of middle-sized Papio hamadryas subspecies, although the male mass is closest to those of the largest subspecies and the female mass higher than in any living cercopithecid taxon.

Paradolichopithecus sushkini from Kuruksay (Tajikistan, also ca. 2 Ma) is broadly comparable in size and in mass dimorphism, although the actual estimates are more variable. The male teeth produce a mass prediction of 36 kg, while the fragmentary face allows only a subfamily-equation estimate based on PORB (identical to that from the male equation); 35-36 kg is probably reasonable. Only upper teeth are known for the female cranium, which results in a single value of 29 kg from a female equation and higher values from the subfamily mixed-sex models. The cranium itself yielded estimates quite close to those for the Senèze skull. The large range means that a good estimate is not possible, but the population may have been somewhat larger than its western congeners. A smaller-sized population is known from Early Pliocene sites in Spain and France, with a juvenile male mandible estimated at 22 kg.

Specimens of *Procynocephalus* are even more fragmentary and scattered. The holotype female snout of *P. wimani* from deposits in Honan, thought to date roughly 1 Ma, yields an estimate of 18 kg. Postcrania perhaps referable to this taxon from Loc. 12 at Zhoukoudian (Teilhard, 1938) could not be located in Beijing and were probably lost with the "Sinanthropus" fossils in 1941. Two other sets of large cercopithecine teeth from China are tentatively referred to this genus, from the earlier Pliocene of Yushe and the later Pliocene of Dongcun (Nei Mongol/ Inner Mongolia); both average around 25–26 kg, using mainly subfamily models. *P. subhimalayanus* from the Indian Siwalik Pinjor horizon is represented by a female maxilla and mandible that yield a 24 kg mass estimate. A large mandible with heavily worn teeth from the same deposits was originally named "*Cynocephalus falconeri*", but referred to *P. subhimalayanus* by Szalay and Delson (1979). The estimate of 13 kg may indicate that a different taxon is involved (as for Jolly, 1967) or may just be a reflection of the extremely worn teeth.

Africa

Taxa other than *Theropithecus*: The earliest well-known cercopithecines in Africa are assigned to the genus *Parapapio*, which appears broadly macaquelike in its adaptations and (conservative) facial morphology. Three species have been distinguished at Sterkfontein and Makapan (between 3 and 2.6 Ma; see Freedman, 1957; Freedman and Stenhouse, 1972) on the basis of relative tooth size. With the recovery of more complete crania, some of those distinctions have been questioned. Our estimates here appear to support the Freedman system.

P. jonesi at both sites was of similar mass, perhaps 17 kg for males and 12–13 kg for females. Specimens from Hadar (ca. 3-2.9 Ma) have been referred to this species and are of comparable size from dental estimates on heavily worn teeth-the Hadar male cranium is badly crushed and estimates may not be meaningful. On the other hand, a partial femur and humerus from the same restricted locality as the two skulls yield minimum values for diameters, which in turn produce variable mass estimates averaging ca. 25 kg. (Those from the lower-ranked transverse diameters are ca. 23 and 28 kg.) This may imply that the dental estimates are also too low. Perhaps the Hadar male had a mass of at least 20 kg (see table 16).

P. broomi from Sterkfontein and Makapan is slightly larger, with males around 21 kg and females ca. 15 kg. *P. whitei* is rarer but still larger, perhaps 26 kg for males (there are several good crania from Makapan) and 19

Fig. 10. Estimated mass in extinct cercopithecids compared to humerus anteroposterior diameter: (A) females; (B) males. Conventions as in figure 4. Taxon identifications as follows: CX, ?Cercopithecoides cf. williamsi; DR, Dolichopithecus ruscinensis; MP, Mesopithecus pentelicus, sex indicated by symbol; PA, Paradolichopithecus arvernensis; PC, Paracolobus chemeroni; TD, Theropithecus darti, Hadar; TK, Theropithecus oswaldi oswaldi, Kanjera; T1, Theropithecus oswaldi cf. oswaldi, Olduvai Bed I; T2, Theropithecus oswaldi cf. leakeyi, Olduvai Upper Bed II skeleton.

	Postcranium		Dentition		Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
Cercocebus? or Para	apapio jonesi Ma	kapan				
Sex unknown						
Mean			15.0S			
Min			9.5 ^ç	12.0 9		
Max			17.0 ð	18.08		
Cercocebus? or Para	apapio jonesi Kro	omdraai A				
Sex unknown						
Mean			13.05			
Min			11.5 ¥	10.0 ¥		
Max			15.0 ⁸	16.0 ⁸		
Cercocebus? or Para Sex unknown	<i>apapio jonesi</i> Tau	ng				
Mean			10.0S			
Min			8.5 ^ç	8.5 ^ç		
Max			10.5 ්	12.5 °		
Parapapio jonesi S Male	Sterkfontein					
Mean			17.0			
Min			14.0	14.0		
Max			19.0	20.0		
Female			17.0	20.0		
Mean			11.5			
Min			11.0	95		
Max			12.0	13.5		
Parapapio cf. jonesi Male	Makapan					
Mean			17.0		16.0	
Min			15.0	14.0	14.0	13.0
Max			21.0	20.0	14.0	10.0
Female			21.0	20.0	17.0	19.0
Mean			12.0		15.05	
Min			12.0	10.0	13.05	12.05
Mov			10.5	14.0	13.05	12.05
Mean*			15.0	14.0	14.0	16.05
Parapapio cf. jonesi	Hadar				1.10	
Male	24.0		16.0			
Mean	24.0	10.0	16.0		10.5	
Min	17.0	19.0	10.5	13.0	8.5	8.5
Max	30.0	29.0	19.0	19.0	13.0	12.5
Female						
Mean			13.0			
Min			12.0	10.0		
Max			15.0	16.0		
Parapapio broomi Male	Makapan					
Mean			20.0		18.0S	
Min			17.0	16.0	16.0S	14.0S
Max			23.0	24.0	19.0S	22.0S

 TABLE 16

 Other African Fossil Cercopithecine Mass Estimates

	Continued						
	Postc	ranium	Dentition		Cranium		
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	
Parapapio broomi	Makapan (conti	inued)					
Female							
Mean			15.0		14.0S	_	
Min			14.0	12.0	13.0S	11.05	
Max			16.0	18.0	15.0S	17.0S	
Mean*					13.0		
Parapapio broomi Male	Sterkfontein						
Mean			22.0				
Min			18.0	18.0			
Max			26.0	26.0			
Female							
Mean			15.0				
Min			14.0	12.0			
Max			16.0	18.0			
Parapapio broomi oi Male	<i>whitei</i> Bolt's F	arm					
Mean			24.0		22.0		
Min			22.0	19.0	18.0	18.0	
Max			27.0	29.0	27.0	26.0	
Parapapio whitei N	/lakapan						
Mean			25.0		28.0		
Min			22.0	20.0	20.0	22.0	
Max			30.0	30.0	43.0	34.0	
Parapapio whitei S	terkfontein						
Mean			19.0				
Min			16.0	15.0			
Max			21.0	23.0			
Parapapio antiquus	Taung						
Male			19.0		10.5		
Mean			18.0	14.0	10.5	95	
Min			17.0	14.0	10.0	0.J 12.5	
Max			20.0	22.0	12.0	12.5	
Female			15.05		14.0		
Mean			15.03	12.05	14.0	11.0	
Min			14.05	12.03	12.0	11.0	
Max Maan*			16.03	18.03	16.0	17.0	
			15.0				
Male	etoil		.				
Mean			21.0				
Min			19.0	17.0			
Max			25.0	25.0			
Female			12.0				
Mean			12.0	10.0			
Min		2	11.0	10.0			
Max			13.0	14.0			

TABLE 16
	Postcr	anium	Dent	Dentition		Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	
?Parapapio sp. K	anapoi						
Male							
Mean			11.5				
Min			10.0S	9.5S			
Max			16.0S	13.58			
?Parapapio sp. A Female	ramis						
Mean			8.0				
Min			8.0	6.5			
Max			8.0	9.5			
Papio hamadryas ro Male	obinsoni Sterkfon	tein and Bolt's Far	m				
Mean			28.0				
Min			21.0	22.0			
Max			31.0	34.0			
Female							
Mean			19.0		15.0		
Min			17.0	15.0		12.0	
Max			22.0	23.0		18.0	
Papio hamadryas re	obinsoni Swartkra	ns Mbr 1					
Male							
Mean			30.0				
Min			30.0	24.0			
Max			31.0	36.0			
Female							
Mean			16.0				
Min			15.0	13.0			
Max			17.0	19.0			
Papio angusticeps Male	Kromdraai and Co	oper's					
Mean			21.0		16.0		
Min			21.0	17.0	16.0	13.0	
Max			22.0	25.0	17.0	19.0	
Female							
Mean			18.0		9.5		
Min			14.0	14.0	9.0	7.5	
Max			20.0	22.0	10.0	11.5	
<i>apio izodi</i> Taung ^A Male	÷						
Mean			22.0		13.0		
Min			20.0	17.0	13.0	10.0	
Max			24.0	25.0	13.0	16.0	
Female					-0.0	10.0	
Mean			17.0		11.5		
Min			13.0	14.0	9.0	95	
Max			21.0	20.0	14.0	13.5	

TARIE 16	
IADLE IU	
Continued	
Commueu	

Continued								
	Postcr	anium	Dent	Dentition		Cranium		
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%		
Papio cf. izodi Ste	rkfontein							
Female								
Mean			21.0S					
Min			20.0S	17.0S				
Max			21.0S	25.0S				
Papio (Dinopithecus	s) quadratirostris	Omo						
Male								
Mean			37.0		43.0			
Min			34.0	30.0		34.0		
Max			39.0	44.0		52.0		
Female								
Mean			20.0		14.0S			
Min			19.0	16.0	13.0S	11.0S		
Max			22.0	24.0	15.08	17.0S		
Papio (Dinopithecu. Male	s) cf. quadratirostr	is Leba						
Mean			44.0					
Min			40.0	35.0				
Max			48.0	53.0				
Female			1010	0010				
Mean			21.0					
Min			18.0	17.0				
Max			25.0	25.0				
Papio (Dinopithecu.	s) ingens Swartki	ans and Schurweb	urg					
Maan			46.0		40.0			
Min			40.0	37.0	40.0	32.0		
Max			40.0	55.0	43.0	32.0 48.0		
Iviax Ferrele			57.0	55.0	45.0	40.0		
remaie			25.05		11.0			
Mean			33.05	20.95	80	85		
Min			27.05	28.05	12.0	12.5		
Max			37.03 20.0Ee	42.03	15.0	15.5		
Gorgopithecus majo	or Kromdraai and	Cooper's	29.010					
Male								
Mean			37.0	•• -				
Min			34.0	30.0				
Max			39.0	44.0				
Female								
Mean			30.05					
Min			28.0S	24.0S				
Max			32.08	36.08				
Theropithecus darti	Makapan							
Maie			24.0					
Mean			34.0	27.0				
Min			31.0	27.0				
Max			35.0	41.0				

TABLE 16
Continued

	Postcr	anium	Dent	tition	Crai	nium
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
Theropithecus darti	Makapan (cont	inued)				
Female						
Mean			23.0		21.0	
Min			21.0	18.0	18.0	17.0
Max			24.0	28.0	23.0	25.0
Theropithecus cf. dart Male	i Hadar					
Mean	26.0		25.0			
Min		21.0	24.0	20.0		
Max		31.0	27.0	30.0		
Female						
Mean	15.0		17.0		12.0	
Min	12.0	12.0	15.0	14.0	9.0	10.0
Max	19.0	18.0	17.0	20.0	15.0	14.0
Theropithecus oswald	<i>i oswaldi</i> Kanje	era				
Mean	34.0		48.0		53.0	
Min	33.0	27.0	42.0	38.0		42.0
Max	35.0	41.0	54.0	58.0		64.0
Female						
Mean	16.0		23.0		19.0	
Min	13.0	13.0	20.0	18.0	11.5	15.0
Max	19.0	19.0	26.0	28.0	27.0	23.0
Theropithecus oswald	<i>i oswaldi</i> Swart	krans Mbr 1				
Male						
Mean			42.0			
Min			35.0	34.0		
Max			54.0	50.0		
Female						
Mean			26.0		22.0	
Min			25.0	21.0	14.0	18.0
Max			27.0	31.0	27.0	26.0
Theropithecus oswaldi	i <i>oswaldi</i> Koob	i Fora				
Male						
Mean			36.0		72.0	
Min			25.0	29.0	58.0	58.0
Max			49.0	43.0	91.0	86.0
Female					,	00.0
Mean					26.0	
Min					23.0	21.0
Max					28.0	31.0
Theropithecus oswaldi ?Male	oswaldi? Oldu	ivai FLK I				
Mean	48.0					
Min	39.0	38.0				
Max	56.0	58.0				
Theronithecus oswaldi	oswaldi? Oldu	vai DK I				
Female	osmular: Oldu					
Mean			30.0			
Min			28.0	24.0		
			/	/4		

TABLE 16 Continued

TABLE 16 Continued								
	Postcr	anium	Dentition		Cranium			
]	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%		
Theropithecus oswaldi lea Male	keyi? Oldu	vai MCK II						
Mean	64.0		55.0					
Min	36.0	51.0	48.0	44.0				
Max	91.0	77.0	61.0	66.0				
Theropithecus oswaldi lea Male	keyi Olduv	ai Masek and Kap	thurin					
Mean			58.0					
Min			55.0	46.0				
Max			63.0	70.0				
Theropithecus oswaldi lea ?Male	<i>keyi</i> Tigher	if (Ternifine)						
Mean			53.0					
Min			42.0	42.0				
Max			60.0	64.0				
Theropithecus oswaldi lea Male	<i>keyi</i> Thoma	as Quarry						
Mean			50.0					
Min			48.0	40.0				
Max			52.0	60.0				
Theropithecus oswaldi lea Male	<i>keyi</i> Hopef	ield						
Mean			50.0					
Min			48.0	40.0				
Max			53.0	60.0				
Female								
Mean			37.0					
Min			32.0	30.0				
Max			40.0	44.0				
Theropithecus oswaldi lea Male	<i>keyi</i> Olorgo	esailie						
Mean	95.0		74.0					
Min	61.0	76.0	66.0	59.0				
Max	128.0	114.0	84.0	89.0				
Female								
Mean	40.0		37.0					
Min	39.0	32.0	37.0	30.0				
Max	40.0	48.0	38.0	44.0				
Theropithecus oswaldi lec Male	akeyi Bodo							
Mean			59.0		77.0			
Min			58.0	47.0	73.0	62.0		
Max			60.0	72.0	81.0	92.0		
Theropithecus oswaldi de Sex unknown (male?)	<i>lsoni</i> Mirza	pur						
Mean			53.0av					
Min			42.0 ^ç	42.0 ^ç				
Max			72.0 ð	64.0 ð				

	Postc	ranium	Dent	tition	Cranium	
	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%
Theropithecus oswaldi	delsoni? Cue	va Victoria				
Sex unknown (male	?)					
Mean			44.0av	_		
Min			38.0 ^o	35.0 ^o		
Max			50.0♂	53.0 ð		
Theropithecus "atlantic Sex unknown	cus" Ahl al Ou	ıghlam				
Mean			29.0S			
Min			24.0S	23.0S		
Max			31.08	35.08		
?Theropithecus (Omop Male	ithecus) baringe	ensis Chemeron J	M90			
Mean			23.0		29.0	
Min			20.0	18.0	23.0	23.0
Max			28.0	28.0	33.0	35.0
Theropithecus (Omopie Male	thecus) brumpti	Shungura craniu	m		22.0	
Min					30.0	
Max					28.0	24.0
IVIAX					31.0	36.0
Theropithecus (Omopia Male	thecus) brumpti	West Turkana cra	anium			
Mean					60.0	
Min					47.0	48.0
Max					82.0	72.0
Theropithecus (Omopie Male	thecus) brumpti	Turkana Basin m	ean			
Mean			36.0			
Min			34.0	29.0		
Max			39.0	43.0		
Female						
Mean			24.0		17.0S	
Min			23.0	19.0	16.0S	14.0S
Max			26.0	29.0	18.0S	20.0S
Mean*					13.0	
Theropithecus sp. indet Sex unknown	. Lothagam					
Min			23.0 ^ç			
Max			32.0 ð			

TA	BL	E	16
Co	nti	nu	ed

See notes for table 14.

kg for females. A male cranium from Bolt's Farm (significantly younger at ca. 2.3-2 Ma) is intermediate in both size and morphology. Several East African samples are older than those from the south. *P. ado* from Laetoli may be close in size to *P. broomi*, while earlier samples from Kanapoi (4.2-4 Ma) and

Aramis (ca. 4.4 Ma) are smaller; it is not yet certain if the latter two might represent the same species.

Parapapio is often thought of as a small animal, but most species had masses in the range of living *Papio*. Their level of sexual dimorphism appears to have been significantly less than that of living cercopithecines of comparable mass. A simple male:female ratio falls mostly between 1.3 and 1.4, while baboons with male mass between 15 and 26 kg have dimorphism ratios of 1.6–1.8. On the other hand, *Macaca thibetana* males have a mass about 18 kg, but females only 14 kg (ratio 1.25), more like the situation in some *Parapapio* species; other macaques have higher dimorphism. *Parapapio ado* has a ratio of 1.75, with masses for both sexes close to those of the mid-sized *Papio* varieties.

Fossil Papio are less widespread than Parapapio, with the greatest variety again from South Africa. Freedman (1957 et seq.) described P. robinsoni from Swartkrans as a distinct species but, especially in light of the inclusion of all modern populations within a single species, Szalay and Delson (1979) argued that the extinct form should also be considered a subspecies of P. hamadryas. It differs from such extant varieties as the chacma, anubis, and yellow baboons in ways analogous to their differences from each other. Small samples of P. h. robinsoni from Sterkfontein and Bolt's Farm yield dental estimates of 28 kg for males and 19 for females; the latter might be reduced to 18 in light of the lower cranial estimate, but as seen above most dental estimates for female Papio are already low. Estimates based on Freedman's (1957) larger samples from Swartkrans are essentially the same, yielding a consensus taxon estimate of 29 kg for males and 18 kg for females. These values are in the range of the largest extant males, although the female is larger than in any modern forms; in turn, the dimorphism level is slightly lower than that of any extant Papio hamadryas variety, but not so low as to question its inclusion in the living species.

This identification, as has been noted elsewhere, makes *Papio hamadryas* at ca. 2.6 Ma one of the longest-lived primate (or mammalian) species as recognized from well-preserved morphology (compared, for example, to the less certain referral of latest Miocene to Pleistocene populations of European macaques to *M. sylvanus*). For example, of about 110 species or lineages with a first appearance datum (FAD) after 4 Ma discussed by Vrba (1995), only eight appear to have originated before 2 Ma and have not yet become extinct. (One other went extinct late in the Middle Pleistocene.) Of these eight, two are lineages and two cf. referrals to living species; four appear to be as clear as *P. h. robinsoni* in registering the presence of a living species in the African Pliocene (with FADs between 2.9 and 2.3 Ma). By comparison, of the 15 suid species with comparable FADs discussed by White (1995), not one with a FAD over 1 Ma is still extant.

Two smaller forms of Papio have also been recognized in the South African Plio-Pleistocene. P. "angusticeps" is known from several sites in the 2-1.5 Ma range (?Swartkrans, Cooper's, Kromdraai), sometimes alongside P. h. robinsoni. Its morphology is comparable to that of the smaller living varieties of Papio, and it may also belong to the extant species, although this suggestion has not yet been analyzed in detail (see Delson, 1989). A combined dental sample from Kromdraai and Cooper's yields a male mass of 21 kg and a female mass of 18 kg, with cranial models suggesting somewhat lower values. The similarity of the male and female mass values is unexpected, given a typical cranial size dimorphism, and there may be a sampling problem involved. Cranial estimates are lower, and a guesstimate of 15 kg is perhaps better for the female.

The second small species is Papio izodi, known almost uniquely from Taung. As discussed by Delson (1989), specimens of P. izodi differ from those of the extant P. h. kindae and P. "angusticeps" in having larger teeth and orbits in a similar-sized skull. This suggests both macrodonty and a different morphological Bauplan, in turn implying that P. izodi is a truly distinct species. Male individuals yield dental mass estimates ca. 22 kg, with females at 17 kg, while crania suggest lower values; a single female from Sterkfontein yielded a higher estimate from subfamily models. Given the possible macrodonty and the common pattern of low cranial estimates, consensus masses might be 20 kg for males and 15 kg for females. This is about the same size as P. "angusticeps" with slightly low dimorphism, most comparable among cercopithecines to the similar-sized Macaca thibetana. The long-overdue detailed analysis of Papio izodi may clarify this situation.

At the other end of the African Plio-Pleistocene cercopithecine size range is a group of populations included in Dinopithecus, recognized as a subgenus of Papio, following Delson (1984). Specimens from the Ethiopian Omo Shungura and Usno deposits (dated ca. 3.4-2.5 Ma) have been allocated to P. (D.) quadratirostris, and others from Leba (Angola, estimated ca. 3-2 Ma) have been referred to that species (see Delson and Dean, 1993, contra Eck and Jablonski, 1987; and Jablonski, 1994). The Ethiopian sample yields male mass ca. 40 kg and female ca. 18 kg, while the less extensive Angolan sample is estimated to have been a bit larger. These are larger mean values than those of any living monkeys, and the dimorphism index of ca 2.3 is only slightly higher than that found in large living baboons.

P. (D.) ingens from Swartkrans and the minor locality of Schurweburg is known mostly from male craniodental elements that yield compatible estimates centering on 43 kg. Recall that it was Fleagle's (1988) estimate of 77 kg for this population that we cited above as an impetus for this project. The value of 43 kg, however, is lower than that estimated for the visually much smaller Leba maxilla, and the low estimates for the Swartkrans population are derived from heavily worn (and thus perhaps size-reduced) teeth. Emphasizing the values derived from less-worn teeth yields a mean mass for Swartkrans males of 50 kg. A partial female cranium is even harder to interpret. It is clearly larger than that of any living monkey, but cranial models yield low estimates. Only one maxillary dental model was high ranked. and subfamily models tended to estimate too high in the extant sample. If we again choose to emphasize the single model derived from sexed data, female mass would be 29 kg, but this could still be too great, given the macrodont nature of modern large female baboons and the resulting low dimorphism index of 1.7.

The last non-*Theropithecus* extinct monkey is *Gorgopithecus major*, known by a small sample from Kromdraai and perhaps one maxilla from Swartkrans. This taxon, like large extant *Papio*, presents strongly excavated facial fossae, on the mandibular corpus and the maxilla, especially in males. By contrast, P. (D.) ingens and its relatives appear to lack such fossae. Like the latter species. G. major is known from several male individuals (one good cranium is too fragmentary to allow cranial estimates), but only a single female maxilla, so that subfamily dental models had to be utilized. Freedman (1957) and later authors noted that there is low dental size dimorphism, which is reflected here in the closeness of the dental mass estimates. The value of 37 kg for males is reasonable, but the female value is questionable on several counts, and we do not recommend its ready acceptance, though we cannot yet suggest an alternative. Fleagle's (1988) estimate of 41 kg, which was questioned at the outset of this project, was apparently reasonable, if indeed it was derived from male teeth.

Taxa of the Theropithecus clade: There is some disagreement about the phylogenetic structure of this distinctive group of living and extinct cercopithecine species. Eck and Jablonski (1984, 1987; Jablonski, 1993, 1994) have argued for three effectively equidistant subclades: the extant T. gelada; the extinct T. darti-oswaldi lineage; and the extinct T. baringensis-brumpti lineage, including what they termed T. quadratirostris. Delson (1993) and Delson and Dean (1993) countered that there are only two main subclades, arguing that the first two are sisterclades, with the T. baringensis-brumpti lineage distinct at the subgeneric level, as T. (Omopithecus); others have thought that baringensis should not be linked to Theropithecus at all. An alternative phylogenetic interpretation of this taxon not previously considered is that it represents the ancestral morphotype for the whole genus, rather than only for the subgenus T. (Omopithecus). Pending further study, Delson's (1993) hypothesis is accepted here.

T. darti from Hadar and Makapan (ca. 3.4-2.9 Ma) is the oldest well-represented species of this genus. It is recognized here as a distinct species following Eck (1993), Delson (1993), and Jablonski (1993), despite the arguments of Leakey (1993) that it be considered a temporal subspecies of its sisterspecies and probable descendant *T. oswaldi*. The Makapan population is estimated to have a male mass of 34 kg and female perhaps 22

kg, given the close agreement of cranial and dental models. The older and smaller-sized Hadar sample yields a male dental estimate of 25 kg, and 26 kg for a large but unsexed partial humerus. Female estimates from all three body regions agree well, especially given that the low cranial estimate is from PORB, which tends to yield low values. A consensus mass of 15 kg seems reasonable. The two populations thus have closely comparable dimorphism ratios around 1.6, as does the still smaller extant T. gelada. Jolly (1972) had previously estimated the Makapan male mass at 33 kg from a dental model. Krentz (1993, using methods derived from Jolly, 1972 and Aiello, 1981) obtained estimates of ca. 15 kg for male and ca. 9.5 kg for female T. darti from Hadar. Using the classical calibration model for Hadar males, we obtained a mass range of 30-39 kg.

Later Pliocene and Pleistocene populations of the same lineage are here placed in the species T. oswaldi, with at least three recognized temporo-geographic subspecies. T. oswaldi first appears in Member D of the Omo Shungura Fm., dated at ca. 2.4 Ma. Specimens belonging to this lineage dating between 2.9 and 2.4 Ma are rare to nonexistent (assuming that no Makapan specimens fall into that range). No Theropithecus has vet been recognized at Sterkfontein or Taung, and only T. brumpti is present at that time in the Turkana Basin. Unpublished specimens dating ca. 2.5 Ma from the Middle Awash Valley appear to be T. oswaldi, but none are clearly in the 2.9-2.5 Ma range.

T. o. oswaldi is well represented at such localities as Kanjera (Kenya, the type site, dated ca. 1.2 Ma after Behrensmeyer et al., 1995), Swartkrans Members 1-3 (South Africa, dated ca. 1.9-1.6 Ma), Olduvai Bed I (Tanzania, dated 1.85-1.8 Ma), and in the Turkana Basin especially at Koobi Fora after 2.1 Ma. The upper limit of T. o. oswaldi in the Turkana Basin is unclear because of the lack of a sharp distinction between this subspecies and its successor T. o. leakeyi (see below). Leakey (1993) includes all Turkana Basin and Olduvai Lower Bed II specimens in T. o. oswaldi, but there is some gradation in size and cranial morphology toward T. o. leakeyi in the geologically younger individuals.

The male estimates for Kanjera agree well at ca. 50 kg for dental and cranial models (the latter only from NAIN, which seems to yield overly elevated mass values in largesized taxa), but the AP measures on both humerus and femur yield far lower values of ca. 34 kg. A mass of 42 kg would seem a possible consensus estimate, especially if considered as the midpoint of a range. Female values agree better for all three regions, with an apparent average mass ca. 20 kg. However, the cranial estimate is pulled down by PORB, and the postcranial by humeral length, so the dental values might be better. On the other hand, the dental estimates are derived from measurements in Jolly (1972), which are uniformly high compared to those taken by ED on casts of the same specimens; for example, the Jolly value for m3AW yields a mass of 24 kg, while ED's measure leads to a mass of only 21 kg. A round 20 kg is accepted tentatively as a consensus mass. There is thus a dimorphism ratio of 2.1 (or higher, if the data are not "adjusted"). Three other authors have estimated mass for this population, using rather different methodology. Jolly (1972) estimated males at 35 kg and females at 21 kg from humeral and femoral diameters comparable to those we are using. His postcranial estimate matches ours for the male, but as noted, we consider that value too low; his female postcranial estimate is higher than ours and close to our consensus mass. Krentz (1993) obtained ca. 19 kg for females. Martin (1993) applied Dechow's (1983) equations from P3-M3 length to obtain estimates of ca. 60 kg for the male and ca. 28 kg for the female (averaging his OLS and major axis regression values). Both of these are quite high by comparison to the values we obtained. For males, we obtained a mass range of 36-42 kg using classical calibration.

The Swartkrans population is one of those most similar to Kanjera morphologically (Delson, 1993), and the mass values are also close. Here the estimation is easier, as the data are poorer: males at 42 kg dentally, females at least 24, perhaps 25 kg as a consensus. Two isolated specimens from Olduvai Bed I described by Jolly (1972) probably also represent *T. o. oswaldi*. A single, nearly complete, probably male humerus yields a mass estimate of 48 kg, while a partial female mandible yields 30 kg. Another isolated specimen is the well-preserved female cranium from Peninj (Tanzania, dated ca. $1.5 \pm$ 0.2 Ma) discussed by Martin (1993). Martin estimated its mass with Dechow's (1983) P3– M3 equation at ca. 35 kg. This equation estimated values for the Kanjera crania well above those derived from our craniodental equations, suggesting that a value closer to 30 kg might be more reasonable for this large individual. It is unfortunate that Ndessokia's description of this specimen presented at the *Theropithecus* Conference was never published.

The specimens from Koobi Fora are sampled over a long interval of time. They yield a reasonable cranial female mass of 26 kg, but a single male (cast) skull dating ca. 2 Ma produces widely divergent estimates. The large dental range centers on 36 kg, while the even wider cranial range averages 72 kg. ED suggests reducing that, given the inflated estimates typical of NAIN at large size. Even with that adjustment, neither the 20% ranges nor the actual maxima and minima overlap! On the other hand, as discussed above, Leakey (1993) provided unsexed mass estimates from femoral head diameters (using a single large sample of Papio h. cynocephalus as the reference) of 27 to 37 kg for Koobi Fora. These are averages at four time horizons (total range 18–39 kg), which increase steadily with decreasing age. The largest estimate from the Upper Burgi horizon (equivalent to the large skull just mentioned) is 36 kg. Krentz (1993) published estimates of 43 kg for males and ca. 25 kg for females, with no indication of horizon. The dental and postcranial estimates are thus far lower than those from the cranium, but that cranium is much larger than the one from Kanjera, estimated here at 42 kg. It would seem that a male mass of 50 kg is a reasonable estimate for the average of this probably nonhomogeneous population.

Mass values rise significantly when considering the younger populations allocated to T. o. leakeyi. Males of two North African Middle Pleistocene populations (Tighenif or Ternifine and Thomas Quarry) are estimated at ca. 50 kg, as are males from the roughly contemporaneous South African site of

Fig. 11. (A) Left humerus, posterior view and (B) femur, anterior view: *Theropithecus oswaldi* cf. *leakeyi*, Olduvai Gorge Upper Bed II, courtesy F. Szalay.

Hopefield; females from the latter are estimated at 37 kg, for a low level of dimorphism. A partial male skeleton (fig. 11) with associated muzzle from Olduvai Upper Bed II (site MCK) provides numerous individual mass estimates, which agree reasonably well at ca. 60 kg (especially if extrema are rejected). Two of the largest mandibles of *T. oswaldi* are a new specimen from Kapthurin and the holotype of *T. "jonathoni*" (Leakey, 1993). The latter's horizon was originally described as upper Bed IV, but Hay (1976) redefined it as the Lower Ndutu Beds; Leakey (1993) discussed it as from the older Masek Beds, but that may have been a lapsus. Mean measurements of these two jaws in Leakey (1993) also yield estimates close to 60 kg. Jolly (1972) estimated the mass of the Olduvai (lower) Bed IV holotype of this taxon at ca. 66 kg using a dental model, and we obtained 62 kg using his measures. Leakey and Leakey (1973, fig. 3) indicate that this specimen is larger in tooth area than any from Olorgesailie, but this appears to be due to the unworn elongate m2, as the m1 is even smaller than that of the Olduvai Bed II specimen.

The largest-sized sample of dental specimens of any Theropithecus come from Olorgesailie, Kenya (ca. 0.9-0.7 Ma), where there are also partial limb bones but no wellpreserved crania. Models based on AP diameters of both humerus and femur yield an average male mass estimate of 95 kg, but the two estimates differ widely. Jolly (1972) estimated a mass of 63 kg for these elements. Male teeth provide a mean estimate of 75 kg, but the largest isolated teeth yield values up to 95 kg. A consensus estimate of 85 kg is reasonable, but a wide range around that is likely. For females, dental and postcranial estimates are closer and with a narrow range, averaging ca. 39 kg. The resulting dimorphism index of just over 2.0 is acceptable. Krentz (1993) obtained postcranial estimates of ca. 60 kg for males and 38 kg for females. Fleagle (1988) listed 96 kg for T. oswaldi, which presumably referred to this population. We obtained a mass range of 80-160 kg using classical calibration on partial postcranial elements.

The largest known cranium of *Theropithecus* is a specimen collected in the 1970s at Bodo (Ethiopia, ca. 0.6 Ma), but not previously published (fig. 12). A consensus estimate of 68 kg for a male appears reasonable. The teeth are smaller than those from Olorgesailie, implying that a male cranium from the latter site would have been significantly larger. It should be noted that only GLBA and NABA estimates were averaged to obtain the cranial value; the NAIN model yielded a mass of 317 kg, probably due to a combination of the extensive temporonuchal projection at inion and the apparent inflation of mass estimates at large size (strong positive allometry) for this variable (see fig. 13). This model also produced excessively high mass estimates for other large *Theropithecus* crania not reported here.

Although *Theropithecus* is essentially an African genus, two specimens have been reported from Eurasian localities. *T. o. delsoni* from Mirzapur (Early Pleistocene of India; see Delson, 1993) is known by an unsexed maxilla, while an isolated lower molar was reported from Cueva Victoria (Early Pleistocene of Spain; Gibert et al., 1995). In both cases, estimates were derived from male, female, and mixed-sex subfamily models to obtain a range of values. The result suggests a mass in the 45–50 kg range, implying that males of the Eurasian variety (varieties?) were of comparable size to their contemporaries in Africa.

Alemseged and Geraads (1998) have recently described a sample of mostly isolated teeth from Ahl al Oughlam, Morocco, dated ca. 2.5 Ma. They argued that this population could best be interpreted as a distinct species, T. atlanticus, whose holotype is an isolated lower molar from the slightly younger site of Ain Jourdel (Algeria; see Delson, 1993). ED is not convinced of this species distinction: Most of the diagnostic characters proposed by Alemseged and Geraads (1998) do not appear to be unique, and the supposedly short upper canine appears to be more worn than they thought. This may represent a population transitional between T. darti and T. oswaldi that also shows some distinctions due to geographic isolation. Unsexed teeth from Ahl al Oughlam yield mass estimates averaging 29 kg. The Ain Jourdel tooth was identified as an m1 by Delson (1993), in which case its mass estimate would be in the 40-50 kg range. But based on its size compared to the similar Ahl al Oughlam teeth, it may well be a small m2, which would produce a more reasonable mass estimate ca. 23 kg.

The other major extinct lineage, that leading to *T. brumpti*, is the most debated within the genus.? *T. baringensis* is only definitively known from locality JM 90 of the Chemeron Fm. (Kenya, ca. 3.2 Ma) by the holotype male skull (lacking the posterior neurocranium) and a second mandible. A consensus estimate of mass is ca. 26 kg.

T. brumpti itself is known around the Tur-

Fig. 12. Left lateral view of male cranium of Theropithecus oswaldi leakeyi, Bodo, Ethiopia.

kana Basin, from ca. 3.4–2.0 Ma. The two best-preserved male crania derive from the Omo Shungura Fm. (Submember C-6) and the West Turkana Nachukui Fm. (Upper Lomekwi Member), both dated ca. 2.7 Ma. Despite their similarities in general morphology (Eck and Jablonski, 1987; Leakey, 1993), the latter is slightly larger than the former. Mass estimates differ greatly: The Shungura male's mass is estimated at only half that of the West Turkana specimen (see fig. 13). This surprising result emphasizes the positively allometric nature of these cranial variables. The dental measurements averaged over all Turkana Basin specimens yield a male mass of 36 kg, which may be the best general estimate. Fleagle (1988) listed a mass estimate of 50 kg, presumably for an average male, but without details. The female cranial estimates (based mainly on subfamily models) suggest that the dental mean of 24 kg might be reduced to 21 kg in a consensus. Values for this species are so variable, that a closer approach is difficult, but it appears that sexual dimorphism is relatively low in any case. Krentz (1993) obtained postcranial estimates of ca. 43 kg for males and 25 kg for females.

The oldest known *Theropithecus* specimen is a single tooth (probably an m2; see Delson, 1993) from the Kalochoro Member of the Nachukui Fm. at Lothagam (previously Lothagam 3), dated ca. 3.7-3.5 Ma (Leakey et al., 1996). Its estimated mass depends upon the sex allocation, but the range falls closest to that of Makapan *T. darti*, larger than might be expected for an ancient population of the genus.

Fig. 13. Estimated mass in extinct cercopithecids compared to nasion-inion (neurocranial length), males only. Conventions as in figure 4. Taxon identifications as follows: CW, Cercopithecoides williamsi, South Africa; DQ, Papio (Dinopithecus) quadratirostris, Omo; LM, Libypithecus markgrafi; MA, Macaca sylvanus; MP, Mesopithecus pentelicus; MS, Mandrillus sphinx; NL, Nasalis larvatus; PA, Paradolichopithecus arvernensis; PF, Parapapio sp. indet., Kanapoi; PJ, Parapapio cf. jonesi, Hadar; PW, Parapapio whitei; TB, Theropithecus oswaldi leakeyi, Bodo (note that the mass estimate for this single cranium is based on other cranial variables: NAIN predicted a mass of over 300 kg [ca. 5.5 on the log₁₀ scale], as discussed in the text). TR, Theropithecus brumpti, Shungura cranium; TW, Theropithecus brumpti, West Turkana cranium; VM, Victoriapithecus macinnesi.

VICTORIAPITHECINAE

The two earliest recognized genera of Old World monkeys are set off in this basal subfamily (or family, according to Benefit, 1993). Only family models have been used to estimate mass from the dentition of these taxa, in order not to violate the systematicstatistical basis of their construction. Both species of North African Prohylobates (dated ca. 17-15 Ma) are known only by worn and often fragmentary lower dentition. P. tandyi females suggest a mass of 7 kg, while the unsexed jaw of P. simonsi yields a mass estimate of 20 kg. It is most likely that this reflects a male value, for otherwise the species would have been huge, with males in the 30-40 kg range. Fleagle's (1988) estimates of 7 and 25 kg, respectively, are quite close to ours. Napier (1985, using the all-primate m2 length regression calculated by Kay and Simons, 1980) estimated the mass of *P. simonsi* at 19 kg. In his original description of *P. simonsi*, Delson (1979) indicated that no younger African cercopithecid had teeth as large until mid-Pliocene *Rhinocolobus* or *Paracolobus*. Our mass estimates for the seemingly smaller-toothed Late Miocene Menacer colobine and also the Early Pliocene Colobinae "species A", however, are 21 kg, which agrees with the scaling result discussed above that, at a given body size, colobine teeth are smaller than those of cercopithecines (see table 17).

Victoriapithecus macinnesi is by far the best known of the early cercopithecids, due especially to the recent analyses by Benefit

	Postcranium		Dentition		Cranium		
-	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	Estimated mass	Est. mass ± 20%	
Prohylobates tandyi Wa	adi Moghara						
Female			_				
Mean			7.0F				
Min			5.5F	5.5F			
Max			9.0F	8.5F			
Prohylobates simonsi G	ebel Zelten						
Sex unknown							
Mean			20.0F				
Min			17.0F	16.0F			
Max			26.0F	24.0F			
Victoriapithecus macinne	si Maboko						
Sex unknown							
Mean			8.5F				
Min			6.5F	6.5F			
Max			10.5F	10.5F			
Male							
Mean					6.0F		
Min					5.5F	4.5F	
Max					7.0F	7.5F	

TABLE 17 Victoriapithecine Mass Estimates

See notes for table 14.

and colleagues. This species from Maboko (Kenya, ca. 15 Ma) is now known by hundreds of teeth, numerous (mostly unpublished) postcranial elements and one beautifully preserved cranium (Benefit and Mc-Crossin, 1997). The unsexed teeth yield a mass of 8.5 kg, in the range of smaller blackand-white colobus (C. polykomos or C. guereza occidentalis or matschiei) if dimorphism was low, or perhaps Macaca assamensis or Semnopithecus entellus thersites at a higher dimorphism level. This species mean value is high compared to the estimate of 3.5–5 kg that Harrison (1989) published for generally fragmentary postcranial elements on the basis of rough size comparisons (similarity to species of Cercopithecus). Fleagle (1988) published a mass of 7 kg for this species, but whether from dental or postcranial remains is not certain.

Benefit and McCrossin (1997) suggested that the teeth looked large compared to the size of the cranium they were describing, which might imply a strong degree of macrodonty for the species. The cranial estimates (NAIN higher, GLBA and NABA lower) are fairly close and average 6 kg, between the dental and (Harrison's) postcranial values (see fig. 13). Ignoring the latter, and assuming low sexual dimorphism, a consensus species mean mass might be close to 7 kg. This type of problem is expected for a taxon that lies outside the two subfamilies from which the estimation models were derived. The question of macrodonty requires a more detailed treatment of additional data.

The phyletic position of Victoriapithecus is under some discussion, but one suggestion that has been mooted is that it might already be near the base of the cercopithecine clade. rather than a basal stock for the family. Given that the cranium can be sexed as male, we applied the two subfamily male models to it in order to see what information this might provide. If it were a colobine skull, it would suggest a species mass of ca. 6.5 kg (each of the three models yielding value ca. 0.5 kg higher than the family models). But if treated as a cercopithecine, all three models produced similar, far lower estimates, ca. 2.5 kg! This appears to make sense, as the cercopithecine estimation line is transposed below

that of colobines for several cranial variables (see fig. 3A).

DISCUSSION

The process of estimating body mass for fossil taxa is fraught with difficulties, many of which can be traced directly to inconsistencies of the estimates. An extended discussion of the relevant problems in estimation approach and application can be found in Smith (1996) and responses therein. From a review of this work and other recent contributions (e.g., Smith, 1993; Aiello and Wood, 1994; Rafferty et al., 1995; Konigsberg et al., 1998), it appears that the process of estimation has received greater scrutiny than has the application of estimates. In what follows, we briefly discuss some unresolved problems in both approach and application, focusing on the primate literature, and then we look at several aspects of our own data in more detail.

SOME THEORETICAL AND METHODOLOGICAL QUESTIONS

SELECTION OF VARIABLES

At present it is difficult, based on a priori reasoning, to determine which measurements are best used to estimate mass. However, in this study we find (from our known-mass test sample) that postcranial measures perform slightly better than dental measures, which are in turn better than cranial-based estimates. This is similar to the regional differences found in other primate groups (prosimians: Dagosto and Terranova, 1992; catarrhines: Rafferty et al., 1995; see also Aiello and Wood, 1994).

It is clear from these and other studies that cranial and dental features found to perform well in one group should not be assumed to perform similarly in others. For example, orbital dimensions preferred by Aiello and Wood, 1994 (primarily for pragmatic reasons related to the availability of fossil material) do not perform at all well when examined in cercopithecids (see above). In their study of mass estimation in fossil hominins, several measures of the orbit are identified as the best perfoming cranial estimators in selected anthropoids (using a *Callithrix*-to-*Gorilla* range) and hominoids (Hylobates-to-Gorilla), with estimation performance gauged by the standard error of the estimate. Their data are composed of measurements representing 4 New World monkey taxa, 13 taxa of Old World monkeys, and 6 hominoids; sex-specific species mean masses were taken from Harvey et al. (1987). The many problems associated with literature-based means are discussed above and in Smith and Jungers (1997). Moreover, the use of a range of taxa dominated by one very small and one very large form often results in a regression line anchored by those endpoints and less sensitive to the influence of all intermediate data. Finally, while we strongly advocate the empirical approach to estimator identification, we emphasize that reliable comparative data, with respect to the nature of the taxon mass values and to the choice of a proper reference group, is of fundamental importance. A sufficient test of estimator efficacy can only be based on known-mass samples, as it is impossible to examine accuracy in any other way.

It is possible that orbital measures do not perform well in our study of Old World monkeys (see figs. 3C-D, and 14), a group that dominates the Aiello and Wood comparative sample, for any of several reasons. For example, differences in scaling pattern across phylogenetic or functional subgroups of anthropoids may be at work here. Schultz (1940) and Ross (1995) have indicated that eve volume and orbital volume scale with slight negative allometry among anthropoid primates. The negative allometry in itself will not affect the predictive power of this variable, and the scaling patterns within lower taxonomic groups are not necessarily the same as that for all anthropoids. We do not accept that just noting the correlation between orbital volume and mass, as Kappelman (1996) did when recalculating data from Schultz (1940) to obtain an r value of 0.964, is sufficient reason to expect that the variable will prove to be a robust surrogate for mass. It is not straightforward to identify predictors in this way; rather, such a selection should be based on both exploratory and confirmatory analyses. Noting a high and significant correlation between a potential surrogate and mass is the first step; a proper test of the

Fig. 14. Estimated mass in extinct cercopithecids compared to orbit width, females only. Conventions as in figure 4. Taxon identifications as follows: CC, Cercopithecoides cf. williamsi (large), Kromdraai B; CK, Cercopithecoides kimeui, Koobi Fora; CW, Cercopithecoides williamsi, Makapan and Sterkfontein; DQ, Papio (Dinopithecus) quadratirostris, Omo; MA, Macaca sylvanus; MP, Mesopithecus pentelicus; MS, Mandrillus sphinx; NL, Nasalis larvatus; PA, Paradolichopithecus arvernensis; PI, Papio izodi, Taung; PN, Papio angusticeps, Coopers; RT, Rhinocolobus turkanaensis, Turkana and Hadar; TD, Theropithecus darti, Hadar; TM, Theropithecus darti, Makapan; TR, Theropithecus brumpti, Turkana.

efficacy of the variable in an independent sample (as in the sample of taxa held out from the development of prediction equations above) or some other means of confirmation must follow.

Recall that there was no clear relationship between the value of a correlation (that is, among those that are significant and high) and prediction accuracy in the test sample examined above. Indeed, even enhanced accuracy in orbital-area measurement (Kappelman, 1996) does not ameliorate this situation. Kappelman indeed found that the area of the orbital aperture was highly correlated (r = 0.987) with literature-derived species mean mass in cercopithecoids and hominoids. However, no tests were presented for evaluating *accuracy* in that study: Different regions (femoral head vs. orbital measures) were compared based only on their *consistency* relative to masses from the literature (e.g. Fleagle, 1988).

From our analyses we can suggest that humeral and femoral dimensions may well be more broadly applicable than dental or cranial dimensions (see the section on interregional comparisons below). It is vitally important, however, to demonstrate the relationships between mass and the potential surrogate variables for the particular sample under investigation. Empirical verification of potential surrogates must be a part of any estimation routine. Estimates that are constructed without a test on a known-mass sample (as above, and following the suggestions of Smith, 1985) should be viewed with extreme caution.

The performance of any variable is contin-

gent on the nature of the comparative sample. The choice of this sample is perhaps most deserving of close scrutiny. For the present work we were able to restrict our estimation models to the subfamily (by sex) level. This level of organization reflects the broad ecological and structural variation within the cercopithecids.

One such structural difference between cercopithecines and colobines relates to their diets, broadly frugivorous vs. folivorous. Colobines thus require digestive tract modifications that enhance the efficiency of their digestion (see, e.g., Fleagle, 1998). As a part of these special adaptations it is possible that these folivorous monkeys maintain a greater percentage of their body weight in their digestive tracts than their cercopithecine cousins. In order to directly assess the variation in mass composition between the two groups, and thereby examine the functional anatomy of mass distribution, we require additional data on the body and organ mass of Old World monkeys.

Kuhn (1964) and Jones (1970) briefly reported on stomach contents and mass in several cercopithecid taxa. These incomplete data indicate that approximately 8-12% of body mass is contained in the digestive tract of colobines, while cercopithecine tracts represent a similar or perhaps slightly smaller percentage of total mass. We require further data to offer a reasoned contrast of mean mass in these groups. Recall that several scaling differences were found above between the two subfamilies. These differences, which we tried to explain as resulting from functional (locomotor) or dietary adaptation, might instead reflect a more basic biological difference between the subfamilies relating to "excess" mass in the colobine gut. It is important to keep this possible difference in the biology of mass in mind when developing mass estimates or examining the functional anatomy of the skeleton.

SELECTION OF MODELS

We employed OLS regression for estimation purposes. Comparisons between regression of mass on surrogate variable and surrogate variable on mass are important to undertake, especially if it is reasonable to ex-

pect that the fossil groups are lighter or heavier than the comparative sample. It appears that model selection is an important step in the estimation process, and we advocate the application of several model types to ensure that results are not model dependent. Konigsberg has provided an efficient means of applying several models simultaneously (see above). As is clear from the above analyses, taxa at the extreme ends of the modern distribution are particularly problematic. In the future, and especially for large and small taxa, we consider reporting estimates based on at least two models to be useful, or even necessary, if extrapolating beyond the comparative sample.

THE FORM OF THE ANSWER

A main feature of Smith's 1996 paper is an admonition that confidence or prediction intervals must be incorporated in the use of estimates. In the present study we devised an interval around the point estimate with respect to the extent of mass variation in living Old World monkeys. A rule of thumb first advocated by Dagosto and Terranova (1992) is to include a range of 20% around a mass estimate. This range, as opposed to an equation-derived confidence interval, can be altered to accommodate the amount of mass variation within the comparative sample. For example, if one is interested in estimating mass in taxa that fluctuate seasonally in mass (e.g., estivators or hibernators), then a larger percentage range should be employed. Certainly, the reporting of a mass estimate to the tenth of a gram (or even kilogram) is biologically and statistically inappropriate. Available databases of modern population masses are variable in depth and reliability. Even ours and that of Smith and Jungers (1997) are inadequate for numerous taxa, and few have ever been published. We expect this situation to steadily improve, for example, if workers such as Colyn (1994) would publish the full details of data that are now merely summarized.

It is implicit in the construction and reporting of the range that: (1) the true value is expected to lie within the range, and (2) derived calculations based on the estimates should also be based on a range. This view of the form of an answer to a mass estimation question requires that we focus more clearly on the types of questions that can be evaluated using a mass estimate. Broad comparisons are easily accomplished, while detailed comparative biomechanical or ecological hypotheses that require the use of a single value for mass must realistically be riddled with caveats.

INTERREGIONAL ESTIMATION COMPARISONS

We have compared the performance of the three anatomical regions in a sample of modern, known-mass taxa above (and see table 9). It was not straightforward to choose any one region as most accurate or consistent since the majority of taxa were estimated to within 20% of known mass by variables from each of the three regions. One general tendency (by no means universal or even consistent) is for estimates to be high in light taxa (mass under 10 kg) but low in heavier taxa (mass greater than 10 kg).

Among living colobine males, estimates derived from dental variables are usually higher than those from postcranial measures. Cranial estimators are poorly behaved, with no valid equations for subfamily by sex and only one for all colobines; the latter usually yields a low estimate, while the equations based on all cercopithecids provide high estimates. In general, the postcranial equations provide the most accurate estimates. In smaller taxa, estimates are usually high, while they are low in some of the larger taxa, but not in *Semnopithecus entellus*, where the median estimate is most accurate. The pattern is broadly similar for female colobines, with the postcranial and dental estimates close to each other, but lower than those from the cranium (family equations), except in Nasalis, where the cranial estimate is low. All estimates tend to be high compared to the "true" compiled mass, although the available estimates for *Semnopithecus* are highly accurate.

Turning to male cercopithecines, postcranial estimates are generally higher than those from the dentition, although the situation is reversed in *Theropithecus*; cranial estimates are variable compared to the others. In general the "true" mass lies between the postcranial and dental estimates and toward the low end of the range, even in some larger taxa. Among females, the postcranial estimates are higher than those derived from dental variables in smaller taxa, but this is reversed in the "baboons." Cranial estimates are higher than postcranial, except in *Macaca* sylvanus. The postcranial estimates appear most accurate, but there is much overlap among the regions.

Among the extinct colobines, estimates derived from dental variables are almost uniformly the highest, often showing some overlap with either postcranial or cranial estimates when available for the same sample. Preservational problems in *Rhinocolobus* are discussed above. The pattern of dental estimates being higher than cranial estimates is also common among cercopithecines, but there are many exceptions. Postcranial estimates, especially for males, are almost always higher than dental estimates, either with slight overlap (Paradolichopithecus, Theropithecus cf. darti, Olorgesailie Theropithecus oswaldi) or significant overlap (Parapapio cf. jonesi, Olduvai Theropithecus oswaldi). But in a few cases (Hadar female and all Kanjera Theropithecus), the subequal cranial and dental estimates were larger than those derived from the postcrania. Excluding cases where cranial and dental estimates were nearly identical, those from cranial variables were larger than those of dental origin in males of Papio (Dinopithecus) quadratirostris, Theropithecus oswaldi from Koobi Fora and Bodo,? T. baringensis and T. brumpti (although in the latter, different individuals may be involved). It must be recalled that our equations are based on a theoretical model of estimating mass for a sample, not an individual, and thus some stochastic variability is to be expected when single fossils are involved.

PALEOBIOLOGICAL APPLICATIONS OF OUR ESTIMATES

Here we use the mass estimates in this study to examine patterns of sexual dimorphism, size change through time, and energetics in cercopithecid taxa. In addition, this compilation of mass estimates will most likely be used by future researchers interested in a variety of functional, ecological, or systematic questions. We strongly suggest that these applications be made with a complete understanding that a single value for a taxon is, at best, misleading. Derived variables, such as EQ, cannot be taken seriously unless they are constructed as ranges.

SEX DIMORPHISM

Values of sexual dimorphism in mass (M/ F ratio) were calculated where possible. Many large taxa showed dimorphism in the 2:1 range, as might be expected from values for modern Papio subspecies, and the general tendency of large modern forms to show strong dimorphism. At least two of the larger colobines, however (Dolichopithecus ruscinensis and especially Cercopithecoides williamsi), had somewhat lower levels of mass dimorphism. A similar pattern of low dimorphism compared to modern species of equivalent male mass is even more common among the cercopithecines. In fact, only Papio (Dinopithecus) quadratirostris, Olorgesailie Theropithecus and? Pararapio ado have dimorphism values similar to living forms of equal (male) mass.

EVOLUTION OF CERCOPITHECID MASS THROUGH TIME

For each main group of cercopithecids, mean masses by sex (with a 20% range) were plotted against time for interesting fossil samples plus a selection of modern taxa to provide a baseline. In a few cases, fossil taxa were known from multiple site units and thus over a long time span; these are indicated by repeating the mean and range bar at the oldest and youngest time level (and at the mean). In general, the pattern observed is that of a relatively small-sized early member of the group, with both small and larger taxa at younger horizons.

For the Colobinae, this pattern is clearly observed (fig. 15). *Micropithecus tugenensis* and *Mesopithecus pentelicus* (points P and O) are comparable in mass to the smaller end of the modern range, but after ca. 4.5 Ma, several taxa (or lineages) appear at larger sizes. The three *Paracolobus* taxa (points K, I, and F) suggest a steady increase in body size through the Pliocene. Delson (1975, 1994) has suggested that European Pliocene Mesopithecus monspessulanus and Dolichopithecus ruscinensis (here points J and L) may represent descendants of M. pentelicus that underwent character displacement in both size and terrestriality; the offset in mass is reflected here. The well-known high diversity of Afrian Pliocene colobines in general is also seen in these plots.

European and North African papionins (fig. 16) are relatively rare, but they demonstrate long-term consistency of size in the taxa associated with the living M. sylvanus. The two temporal samples of male Paradolichopithecus (points E and G) project back to an early Pliocene form like M. s. prisca (point F).

The papionins of sub-Saharan Africa (other than Theropithecus) are more numerous, and again show a pattern of younger taxa with greater size diversity (fig. 17). The majority of points (I-O) represent samples of Parapapio, mainly from South Africa, documenting a moderate size range in the mid-Pliocene. The near identity of size in Parapapio antiquus and Papio izodi from Taung (points E and F) has been noted by Delson (1989) as making allocation of less complete specimens difficult. The long-ranging subspecies P. h. robinsoni of the modern species Papio hamadryas (points A and G) is comparable in mass to the larger living populations. The largest samples plotted here are placed in Papio (Dinopithecus). The Angolan population (H) appears slightly larger than the contemporaneous and long-ranging one from Omo (D), either of which might conceivably be ancestral to the "giant" Swartkrans sample (B).

The plot of *Theropithecus* samples (fig. 18) is perhaps the most interesting. Jolly (1972) was among the first to notice that the molars of this genus tended to increase in size concordantly with age. Delson (1983) plotted m3 anterior width (m3AW) against time for numerous individual specimens, revealing a similar trend. However, both Jolly and Delson indicated that the Kanjera sample was small in tooth size, but widely thought to be young (though Delson was aware of alternative age suggestions). Eck (1987, 1993) further discussed this question using sample means and considering Kanjera of

Plot of mass through time for Colobinae: (A) females; (B) males. Double line (=) on age Fig. 15. axis indicates change of scale. Boxes indicate sample means, bars indicate 20% range about the mean. Modern taxa: 1) Procolobus verus; 2) Colobus guereza occidentalis; 3) Nasalis larvatus; 4) Pygathrix (Rhinopithecus) roxellana; 5) Semnopithecus entellus schistacea (sensu stricto). Extinct taxa: (A) Cercopithecoides kimeui (Olduvai Bed II); (B) Rhinocolobus turkanaensis (Turkana Basin; specimens range in age between ca. 1.5 and 3.3 Ma, so the data are plotted three times to indicate this range); (C) Cercopithecoides? williamsi, "large variant" (Kromdraai); (D) ?Cercopithecoides cf. williamsi (Koobi Fora); (E) Cercopithecoides kimeui (Koobi Fora); (F) Paracolobus mutiwa (Turkana Basin; specimens range in age between ca. 2.0 and 2.5 Ma, so the data are plotted three times to indicate this range); (G) Cercopithecoides williamsi (Makapansgat and Sterkfontein Member 4; specimens range in age between ca. 2.6 and 3.0 Ma, so the data are plotted three times to indicate this range); (H) Colobinae indet. "species A" (Hadar and Leadu); (I) Paracolobus chemeroni (Chemeron loc. JM 90); (J) Mesopithecus monspessulanus (Pliocene localities; specimens range in age between ca. 3.5 and 4.3 Ma, so the data are plotted three times to indicate this range); (K) Paracolobus sp. (Laetoli); (L) Dolichopithecus ruscinensis (Perpignan); (M) Colobinae indet. cf. "species A" (Aramis); (N) Libypithecus markgrafi (Wadi Natrun); (O) Mesopithecus pentelicus (Pikermi); (P) Microcolobus tugenensis (Ngeringerowa).

comparable age to Swartkrans, while Leakey (1993) also commented on size change through time. Delson and Hoffstetter (1993) briefly noted the greater size of Olorgesailie teeth compared to those from Hopefield and

Tighenif, and the even smaller (but younger) Thomas Quarry jaw.

The discussion above has documented ages for over a dozen samples of *T*. (*Theropithecus*), and the plots indicate a somewhat

Fig. 16. Plot of mass through time for European and North African Cercopithecinae: (A) females; (B) males. Boxes indicate sample means, bars indicate 20% range about the mean. Modern taxa: 1) *Macaca sylvanus sylvanus*. Extinct taxa: (A) *Macaca sylvanus pliocena* (Pleistocene localities; specimens range in age between ca. 0.4 and 1.4 Ma, so the data are plotted three times to indicate this range); (B) *Macaca sylvanus florentina* (Valdarno); (C) *Paradolichopithecus arvernensis* (Graunceanu and Senèze); (D) *Macaca majori* (Capo Figari); (E) *Paradolichopithecus* sp. (Cova Bonica); (F) *Macaca sylvanus prisca* (Montpellier); (G) *Macaca libyca* (Wadi Natrun).

different pattern. Following some size increase within *T. darti* and on to early members of *T. o. oswaldi*, most samples (points A, B, D, G, I, J, and K) of that species (including some placed here in *T. o. leakeyi*) demonstrate near stasis in male mass from 2 to 0.4 Ma. Females are less well represented, but they are perhaps even more consistent through time. On the other hand, male samples from Olorgesailie and upper levels at Olduvai (points E, F, and H) suggest a separate trend, with increasing size from 1.5 to 0.7 Ma. Surprisingly, the single very large male cranium from Bodo (point C, 0.6 Ma) is intermediate in size between these two groups. It is not clear whether there is actually more than one phyletic lineage involved here (which might have implications for taxonomy) or just greater variability in size in the younger samples. Perhaps further analysis of samples from the Middle Aawsh and various Kenyan localities (S. Frost, dissertation in preparation) may clarify this question (but see also the next section).

Fig. 17. Plot of mass through time for African Papionini other than *Theropithecus*: (A) females; (B) males. Double line (=) on age axis indicates change of scale. Boxes indicate sample means, bars 20% range about the mean. Modern taxa: (1) *Cercocebus torquatus atys*; (2) *Papio hamadryas kindae*; (3) *Papio hamadryas hamadryas*; (4) *Papio hamadryas cynocephalus*; (5) *Papio hamadryas ursinus*; (6) *Papio hamadryas anubis* ("larger"); (7) *Mandrillus sphinx*. Extinct taxa: (A) *Papio hamadryas robinsoni* (Swartkrans Member 1); (B) *Papio (Dinopithecus) ingens* (Swartkrans Member 1); (C) *Gorgopithecus major* (Kromdraai); (D) *Papio (Dinopithecus) quadratirostris* (Omo Shungura and Usno; specimens range in age between ca. 2.0 and 3.4 Ma, so the data are plotted three times to indicate this range); (E) *Parapapio antiquus* (Taung); (F) *Papio izodi* (Taung); (G) *Papio hamadryas robinsoni* (Sterkfontein Member 4 and Bolt's Farm); (H) *Papio (Dinopithecus) quadratirostris* (Leba); (I) *Parapapio jonesi* (Sterkfontein Member 4); (L) *Parapapio cf. jonesi* (Hadar); (M) *Parapapio jonesi* (Makapansgat); (N) *Parapapio broomi* (Makapansgat); (O) *Parapapio whitei* (Makapansgat); (P) *?Parapapio ado* (Laetoli); (Q) *?Parapapio sp. indet.* (Kanapoi); (R) *?Parapapio sp. indet.* (Aramis).

In order to permit examination of the full range of cercopithecid mass evolution, a selection of the populations discussed above were plotted together with those of victoriapithecines (fig. 19). The persistence of lowmass taxa (at the left edge of the plot) from 17 Ma onward is clearly documented. This pattern is one of several that have been used to illustrate aspects of "Cope's Rule" (cf. Jablonski, 1996; Alroy, 1998). The large size of the early, presumably male *Prohylobates simonsi* (point AC) discussed above is also readily observed. Around 2 Ma, there were large taxa in all three African groups: *Paracolobus mutiwa* (point I), *Papio* (*Dinopithecus*) *ingens* (point E), and *Theropithecus oswaldi* (point F), but only the last of these either persisted or continued to increase in size.

Fig. 18. Plot of mass through time for African Theropithecus: (A) females; (B) males. Boxes indicate sample means, bars 20% range about the mean. Modern taxa: (1) Theropithecus gelada. Extinct taxa: (A) Theropithecus oswaldi leakeyi (Thomas Quarry); (B) T. o. leakeyi (Hopefield); (C) T. o. leakeyi (Bodo); (D) T. o. leakeyi (Tighenif); (E) T. o. leakeyi (Olorgesailie); (F) T. o. leakeyi (Olduvai Bed IV); (G) T. o. oswaldi (Kanjera); (H) T. o. oswaldi (Olduvai Upper Bed II and Peninj); (I) T. o. oswaldi (Swartkrans Member 1); (J) T. o. oswaldi (Olduvai Bed I); (K) T. o. oswaldi (Koobi Fora Upper Burgi Member); (L) T. darti (Makapansgat); (M) T. cf. darti (Hadar).

EXTINCT CERCOPITHECID MASS AND ENER-GETICS

At the start of this study, it was noted that part of the impetus to undertake it came from Dunbar's (1992) analysis of energetics in African Plio-Pleistocene "baboons." Basing his study on mass data from Fleagle (1988), Dunbar determined that *Dinopithecus ingens* was so large (77 kg) that it "must have" had a *Theropithecus*-like diet in order to have sustained large enough group sizes for survival in its local environment. He realized that its incisors were large, unlike those of *Theropithecus* species, and thus suggested a diet concentrating on plant underground storage organs. But he thought that the ecological factors controlling densities of such foodstuffs would be similar to those relevant to grasses, and thus postulated a geladalike rather than baboonlike pattern from which to model group size.

In addition to mass estimates for fossils, Dunbar accepted the results of several good analyses of paleoenvironment for the sites yielding them. He also assumed that a major climate change occurred around 2.5 Ma, with a great decrease in rainfall in Ethiopia for example, and he estimated additional climate parameters from other works he cited. It is beyond the scope of this study to recalculate all of the population sizes involved, but a few notes are possible.

The most important factor, of course, is the mass estimate itself. Dunbar recognized that this was at the heart of his analysis, but assumed that Fleagle (1988) was providing an average (mixed-sex) value for any species listed. We have noted above that there was no way to tell whether that was true, and in these cases Fleagle probably was estimating male mass only. Our estimate of average mass for Papio (Dinopithecus) ingens is close to 40 kg, while for Gorgopithecus it might be closer to 30-33 kg. (Recall that the female was poorly estimated.) Thus, Dunbar's group size estimate for the latter could better be applied to the former. Fifteen individuals still seems very low for a large, presumably terrestrial baboon, but it is marginally acceptable until other parameters can be recalculated. It is further interesting to note that Paradolichopithecus and Procynocephalus probably had average masses of ca. 26 kg. Given that they ranged as far north as 45°, this may have been a limit on their possible body size.

Dunbar extended his analysis to extinct Theropithecus populations in 1993. There, he derived mass estimates for Makapan T. darti and Olorgesailie T. oswaldi from Jolly (1972) and some extrapolation, resulting in average masses of 27.5 and 55 kg, respectively. Our average mass estimates for these samples would be 28 and 62 kg. Dunbar (1993) extensively discussed the restrictions on group (and body) size implied by these calculations. He suggested that the known sizes might well have been near the limit for large theropiths. (It is surprising that he did not return to the problems raised in his 1992 paper.) Given that decreases in temperature, or the availability of fresh water, would lead to reduction in group size, he noted that the East African sites yielding these fossils were mainly near bodies of water, as had Jolly (1972) before him.

But two other factors also affect group size for these animals: latitude and altitude. Recall that the other late and moderately large populations of *T. o. leakeyi* are from Hopefield (33°S) and Tighenif (35.5°N), with average mass ca. 43 kg; these sites are also located close to sea level. Here, perhaps, is the answer to the question asked above: Why were they smaller than their East African penecontemporaries? It may have been because they were living in environments that were marginal for large Theropithecus. And the intermediate mass of the Middle Awash population at Bodo might relate in turn to its low altitude and slightly more northerly latitude. This implies that the two-lineage model proposed above for T. o. leakeyi is unnecessary: The general pattern of size increase with time was merely curtailed at higher latitudes. Finally, it is worth investigating if environmental change over the past 3 Myr might also be at the root of this most characteristic phenomenon of Theropithecus evolution.

SUMMARY

In this work, we wished to estimate the mass of fossil cercopithecids based on predictor variables selected from the long bones, dentition, and skull. In addition, we studied the scaling of the variables with mass in extant taxa both as a guide to selection of estimators for the fossils and to better understand the biology of the group.

Data were gathered (almost entirely by the authors) on 35 variables from the postcranium (lengths and diameters of humerus and femur), dentition (lengths, anterior and posterior widths, and calculated areas of five molars), and cranium (six lengths and widths plus three measures of the orbit) in about 1500 individual cercopithecids (roughly half extant and half fossil). The extant sample includes 32 colobine and 33 cercopithecine taxa (distinguished at the specific to infrasubspecific level), usually with both sexes represented for each. Over 200 of the extant specimens had associated known mass, but an additional 1900+ individual mass values were compiled from primary and secondary sources to develop sex-specific taxon-mean values.

Bivariate relationships between each of the 35 variables and mass were determined (using Ordinary Least Squares regression) in a subset of taxa to obtain prediction equations. These were then tested on a smaller subset of taxa that had not been included in the pre-

Fig. 19. Plot of mass through time for selected Cercopithecidae: (A) females; (B) males. Double line (=) on age axis indicates change of scale. Boxes indicate sample means, bars 20% range about the mean. Modern taxa: (1) Miopithecus talapoin; (2) Cercopithecus ascanius schmidti; (3) Procolobus verus; (4) Colobus guereza occidentalis; (5) Cercocebus torquatus atys; (6) Papio hamadryas kindae; (7) Nasalis larvatus; (8) Semnopithecus entellus schistacea (sensu stricto). (9) Mandrillus sphinx. Extinct taxa: (A) Theropithecus oswaldi leakeyi (Hopefield); (B) T. o. leakeyi (Olorgesailie); (C) Macaca sylvanus pliocena (European Pleistocene localities); (D) Theropithecus oswaldi oswaldi (Kanjera); (E) Papio (Dinopithecus) ingens (Swartkrans Member 1); (F) Theropithecus oswaldi oswaldi (Swartkrans Member 1); (G) Paradolichopithecus arvernensis (Graunceanu and Senèze); (H) Papio izodi (Taung); (I) Paracolobus mutiwa (Turkana Basin); (J) Rhinocolobus turkanaensis (Turkana Basin); (K) Cercopithecoides williamsi (Makapansgat and Sterkfontein Member 4; (L) Parapapio broomi (Sterkfontein Member 4); (M) Papio (Dinopithecus) quadratirostris (Omo Shungura and Usno); (N) Parapapio cf. jonesi (Hadar); (O) T. darti (Makapansgat); (P) Parapapio whitei (Makapansgat); (Q) T. cf. darti (Hadar); (R) Paracolobus chemeroni (Chemeron loc. JM 90); (S) Paracolobus sp. (Laetoli); (T)

vious step, in order to determine prediction accuracy, as judged by Mean Prediction Error. Each set of equations was separately calculated for seven taxon/sex samples: all cercopithecids, all colobines (or cercopithecines) and sex-specific subfamily groupings. The prediction equations were then recalculated on the total sample, so that the bestperforming equations (four postcranial, six dental, and three cranial) for each of the seven taxon/sex samples could be utilized to estimate mass in fossil taxa. These "final" equations were tested on a subset of 20 extant taxa, where about 70% of the "predictions" fell within 20% of the compiled mass, the level of accuracy selected here as a target. Postcranial and dental variables vielded somewhat more accurate estimates than did cranial variables. For two extant taxa that had not been included in the equation development, because we only obtained their compiled mass values later in the project, estimates were extremely close to the known value and well within the 20% range.

The scaling of these variables with mass was examined in extant taxa using reduced major axis regression. Transposition of one subfamily relative to the other was the pervasive finding of the scaling analyses, and especially in the dentition and postcranium. These patterns are discussed with respect to general aspects of size and function. Additionally, the implications of scaling for mass estimation are explored.

We compared our results on modern taxa with previous estimation studies using a "wider net" to include either all primates or all "monkeys" in developing dentition-based prediction equations. The previous studies are generally less accurate than ours.

There are several method-related topics that can be summarized as a result of the preceding analyses. Assumptions made when applying an estimation model to a fossil taxon require the recognition of several sources of error. Estimation "errors" arise as a result of biological and statistical processes. Biological variation in mass occurs at both the individual and population levels. Variation in estimation performance can also be related to the choice of statistical treatment of the data.

The ability to determine prediction accuracy is restricted to samples composed of specimens with associated mass. We suggest, however, that carefully screened unassociated taxon means (our compiled mass) can be used without introducing a large amount of error. Similarly, extant taxa that are little-known represent excellent test cases for prediction accuracy, assuming, of course, that the appropriate data become available for a reasonable assessment of estimation performance. Lacking this, it is extremely important for validation of prediction performance in a test subsample of taxa (as above; see also Smith, 1985).

It is important to recognize the fact that individuals in natural populations vary in mass as a result of various processes and conditions (e.g., growth, sex, social status, season). One should not expect an estimation routine to yield more precise estimates than the underlying data upon which the estimation models are developed. The range of values in the comparative sample can be a guide to the range of estimates that should be expected from the estimation model. It is clear that a range of predicted values is more biologically informative (and statistically realistic) than a point estimate. From our data (and following Dagosto and Terranova, 1992), we determined that a range of $\pm 20\%$ around the mean reasonably reflects population variation in Cercopithecidae.

It is troubling, on either theoretical or empirical grounds, to base the selection of a "good" predictor on any single descriptor of an equation (slope, intercept, correlation coefficient, mean square error, etc.). Although the choice of the estimator may be strongly

←

Mesopithecus monspessulanus (Pliocene localities); (U) Dolichopithecus ruscinensis (Perpignan); (V) ?Parapapio sp. indet. (Kanapoi); (W) Colobinae indet. cf. "species A" (Aramis); (X) ?Parapapio sp. indet. (Aramis); (Y) Libypithecus markgrafi (Wadi Natrun); (Z) Mesopithecus pentelicus (Pikermi); (AA) Microcolobus tugenensis (Ngeringerowa); (AB) Victoriapithecus macinnesi (Maboko); (AC) Prohylobates simonsi (Gebel Zelten); (AD) Prohylobates tandyi (Wadi Moghara). affected by the nature of the specimens under study, it is not straightforward to use just any preserved anatomy in estimation. Even when some region has been demonstrated to be reliably related to mass in one group, it does not follow that this region will be of use in all groups. Of course, controlling phylogenetic "noise" by restricting the groups under study will ameliorate this situation to a large extent. However, there are numerous documented differences between closely related primate groups, such as the subfamily differences in Old World monkeys (see also Jungers et al., 1998) or the pervasive differences among apes (e.g., Hens et al., 1998), so as to argue against wide-scale and taxonomically independent use of individual predictor variables.

A reasonable approach, given this situation, is to expect an "answer" to be in the form of a range (and not a single estimated value). It seems advisable to bound estimates with respect to the nature of the data used and life history features of the group under study. Here, we used 20% as a range, as it reflects the precision of the comparative data (based on both statistical and biological considerations).

Estimation routines, while becoming far more rigorous, must still be examined closely prior to wholesale acceptance of estimations. We have far to go in conceptualizing the problem of estimation: For example, it is far from clear how we may use theory, or a priori expectations, to select surrogate variables (but see Konigsberg et al., 1998). At present, empirical testing of estimation performance is our best option for identifying reliable predictors.

The highest-ranked equations were finally applied to 25 colobine, 64 cercopithecine and 3 victoriapithecine fossil taxa, using postcranial, dental, and cranial specimens from both sexes as far as possible. Comparisons were made to estimates by other authors for the same taxa. Estimates derived from the "classical calibration" approach of Konigsberg et al. (1998) were also calculated for five samples of *Theropithecus*, in order to test their suggestion that such predictions would be higher and thus more realistic for samples lying well beyond the range of the modern baseline. In such large-sized samples, the results were indeed higher (and generally less consistent) than estimates obtained from the approach we have developed here.

In several cases, elements representing two or all three body regions were available for the same population, and in most of these the predictions were quite similar across regions. As suggested previously, males of the largest population studied (Theropithecus from Olorgesailie, Kenya) may have averaged 85 kg, with some postcrania and the largest isolated teeth indicating a mass of 95 kg (or, absurdly, up to 160 kg, using classical calibration!). Other taxa, such as Papio (Dinopithecus) from Swartkrans (South Africa) were estimated here at far lower mass than predicted by other workers. The recently discovered male cranium of Victoriapithecus macinnesi (from Maboko, Kenya) yielded a mass estimate of 6 kg, in between values derived from the dentition and postcranium.

Papio hamadryas robinsoni from South Africa, as discussed previously, appears to date back to ca. 2.6 Ma, making it one of the longest-lived mammalian species still extant. Few living African bovids or suids, for example, have as long a range.

In the discussion, we considered how best to select variables for study in mass estimation analyses. For example, we are surprised at the successful use of orbital diameters and area by Aiello and Wood (1994) and Kappelman (1996), as these variables performed poorly in our sample. We also examined subfamily differences in digestive tract contribution to body mass, in case this factor might be related to the scaling differences discussed earlier. We emphasized the reporting of mass estimates as ranges rather than as single numbers.

Comparing estimates from the three body regions examined, it seems that postcranial estimates are usually most accurate among modern colobine males, while in females, the dental and postcranial estimates are close. Postcranial and dental estimates tend to bracket the "true" mass among living cercopithecines. In the fossils, dental estimates are usually higher than cranial, with postcranial generally higher than dental in cercopithecines, but lower in colobines.

Three aspects of cercopithecid paleobiology were examined in light of the mass estimates. Most extinct cercopithecines show a lower level of dimorphism than do modern taxa of equivalent male mass, probably because the females are being estimated too low. Cercopithecid mass change through time was graphed for colobines, macaques and Paradolichopithecus, African papionins, and Theropithecus, as well as for a selection of these samples together. Usually, a small early member of each clade is followed by a wider range of masses in younger time intervals. This pattern compares to recent studies of "Cope's Law." The Theropithecus plot agreed with previous assessments in revealing a gradual increase of size through time, but at the young end, the Olorgesailie (Kenva) sample is significantly larger than the two nearly contemporaneous populations from Hopefield (South Africa) or Tighenif (Algeria), with Bodo (Ethiopia) being intermedi-

ate. Might this indicate a lineage split in

these late forms? In two analyses of large extinct cercopithecine energetics, Dunbar evaluated the effect of mass and ecological parameters on group size, with "too small" size effectively indicating extinction. Assuming that Dinopithecus ingens had an average (mixed-sex) mass of 77 kg, Dunbar (1992) suggested that it could only have survived if it had a diet ecologically comparable to Theropithecus. Given our average mass estimate of only 40 kg, such a suggestion is unnecessary. The large Eurasian cercopithecines would be expected to have lower masses, as they are found as far north as 45°. Dunbar (1993) examined extinct Theropithecus populations in the same way, suggesting that it was unlikely that any attained masses much higher than the 62 kg average found here for Olorgesailie. But we noted that the populations from Hopefield and Tighenif had lower average mass (ca. 43 kg), suggesting that this lower mass might be related to the higher latitude and lower altitude of these sites. We further questioned whether the general pattern of gradual size increase with time across the whole genus might also be related to energetics.

ACKNOWLEDGMENTS

This paper would not have been possible without the generosity of many colleagues

who provided data, especially mass values for many cercopithecid taxa. We thank Drs. Peter Andrews, Brenda Benefit, Marina Cords, Jack Fooden, Terry Harrison, Clifford J. Jolly, Meave G. Leakey, Scott Mc-Graw, John F. Oates, Jane Phillips-Conroy, Esteban Sarmiento, Wolfgang Scheffrahn, Michael I. Siegel, Elizabeth Strasser, Richard W. Thorington, Jr., and Mary Willis for such data. Drs. Tim Cole and Lyle Konigsberg provided custom statistical computer routines, whose use we acknowledge gratefully. We also thank innumerable curators of the mammalogy and paleontology collections who provided us access to the specimens in their care. Haviva Goldman, Jocelyn Jungers, Paula Lee, Caitlin M. Schrein, Adria Twine, Roshna Wunderlich, Patricia Iorfino and Brian Stewart, among other student assistants, aided with collection and compilation of the data, for which we are most grateful. We especially appreciate the advice of Dr. Leslie F. Marcus on statistical analysis, Dr. Jack Fooden on taxonomic matters, Stephen R. Frost on organization and style, and Lorraine Meeker and Chester Tarka regarding clarity of line illustrations (as well as for their incomparable production of the photographic figures). The plots were prepared with Systat 5 and Statistica 5. Computer hardware and software was purchased with the NYCEP Training Grants (NSF DIR 9113609 and BIR 9602234), which also supported CJT while a postdoctoral fellow at CUNY and EJS during his graduate career. Bridget Thomas designed the cover; Drs. Clifford J. Jolly and Leslie F. Marcus reviewed the final draft of this monograph and made useful suggestions for revision, as did Drs. Eugene S. Gaffney, Guy G. Musser and Meng Jin of the AMNH Publications Committee, and Brenda Jones of the Publications Office: we thank them all. Finally, we are grateful to Dr. Enid Schildkrout, Chair of Anthropology at AMNH, who approved the manuscript for publication in the Anthropological Papers, and to Dr. Roberta M. Delson of that department, who graciously permitted the senior author to devote all too much time to the completion of this study during its nearly seven-year gestation period.

REFERENCES

Aiello, L.

- 1981. The allometry of primate body proportions. Symp. Zool. Soc. London. 48: 331–358.
- Aiello, L., and B. A. Wood
- 1994. Cranial variables as predictors of hominine body mass. Am. J. Phys. Anthropol. 95: 409-426.
- Alemseged, Z., and D. Geraads
 - 1998. Theropithecus atlanticus (Thomas, 1884) (Primates, Cercopithecidae) from the late Pliocene of Ahl al Oughlam, Casablanca, Morocco. J. Hum. Evol. 34: 609-621.
- Alroy, J.
 - 1998. Cope's rule and the dynamics of body mass evolution in North American fossil mammals. Science 280: 731–734.
- Andrews, P., T. Harrison, E. Delson, L. Martin, and R. L. Bernor
 - 1996. Systematics and biochronology of European and southwest Asian Miocene catarrhines. *In* Raymond L. Bernor, Volker Fahlbusch, and Hans W. Mittmann (eds.). Evolution of western Eurasian Late Neogene mammal faunas: 168–207. New York: Columbia Univ. Press.
- Banks, E.
 - 1931. A popular account of the mammals of Borneo. J. Malay. Branch R. Asiatic Soc. 9: 1–139.
- Barrett, L., and S. P. Henzi
- 1997. An inter-population comparison of body weight in chacma baboons. S. Afr. J. Sci. 93: 436-438.
- Bauchot, R., and H. Stephan
 - 1969. Encephalisation et niveau evolutif ches les simiens. Mammalia 33: 225–275.
- Behrensmeyer, A. K., R. Potts, T. Plummer, L. Tauxe, and N. Opdyke
 - 1995. The Pleistocene locality of Kanjera, Western Kenya: stratigraphy, chronology and palaeoenvironments. J. Hum. Evol. 29: 247–274.
- Benefit, B. R.
 - 1993. The permanent dentition and phylogenetic position of *Victoriapithecus* from Maboko Island, Kenya. J. Hum. Evol. 25: 83–172.
- Benefit, B. R., and M. L. McCrossin
- 1997. Earliest known Old World monkey skull. Nature 388: 368–371.

Benefit, B. R., and M. Pickford

1986. Miocene fossil cercopithecoids from Kenya. Am. J. Phys. Anthropol. 69: 441-464. Biewener, A. A.

- 1982. Bone strength in small mammals and bipedal birds: Do safety factors change with body size? J. Exp. Biol. 98: 298– 301.
- Booth, A. H.
 - 1957. Observations on the Natural History of the olive colobus monkey, Procolobus verus (van Beneden). Proc. Zool. Soc. London. 129: 421–430.
- Bramblett, C. A.
 - 1967. The skeleton of the Darajani baboon. Ph.D. diss., Univ. California, Berkeley.
 - 1969. Non-metric skeletal age changes in the Darajani baboon. Am. J. Phys. Anthropol. 30: 161–170.
- Brandon-Jones, D.
 - 1995. A revision of the Asian pied leaf monkeys (Mammalia: Cercopithecidae: Superspecies Semnopithecus auratus), with a description of a new subspecies. Raffles Bull. Zool. 43: 3-43.

Bulger, J., and W. Hamilton III

- 1987. Rank and density correlates of inclusive fitness measures in a natural chacma baboon (*Papio ursinus*) troop. Int. J. Primatol. 8: 635–650.
- Byrne, R. W., A. Whiten, and S. P. Henzi
- 1989. Social relationships of mountain baboons: leadership and affiliation in a non-female-bonded monkey. Am. J. Primatol. 18: 191–207.
- Calder, W. A.
 - 1984. Size, function and life history. Cambridge: Cambridge Univ. Press.
- Clutton-Brock, T. H., and P. Harvey
- 1977. Primate ecology and social organization. J. Zool. (Lond.) 183: 1–39.
- Colyn, M.
 - 1994. Données pondérales sur les primates Cercopithecidae d'Afrique Centrale (Bassin du Zaïre/Congo). Mammalia 58: 483-487.
- Compère, J.
 - 1971. Morphologie externe du telencephale de *Papio cynocephalus kindae*. Mammalia 35: 471–500.
- Conroy, G. C.
 - 1987. Problems of body-weight estimation in fossil primates. Int. J. Primatol. 8: 115–135.
 - 1990. Primate evolution. New York: W. W. Norton.
- Dagosto, M., and C. J. Terranova
 - 1992. Estimating the body size of Eocene primates: a comparison of results from dental and postcranial variables. Int. J. Primatol. 15: 307–344.

Damuth, J., and B. J. Macfadden (eds.).

- 1990. Body size in mammalian paleobiology: estimation and biological implications. Cambridge: Cambridge Univ. Press.
- Dechow, P. C.
 - 1980. Functional morphology of the craniofacial skeleton of baboons. Ph.D. diss., Univ. Chicago.
 - 1983. Estimation of body weights from craniometric variables in baboons. Am. J. Phys. Anthropol. 60: 113–123.
- Delson, E.
 - 1975. Evolutionary history of the Cercopithecidae. Contrib. Primatol. 5: 167–217.
 - 1979. *Prohylobates* (Primates) from the Early Miocene of Libya: a new species and its implications for cercopithecid origins. Geobios 12: 725–733.
 - 1980. Fossil macaques, phyletic relationships and a scenario of deployment. In D. E. Lindburg (ed.), The macaques: studies in ecology, behavior and evolution: 10– 30. New York: Van Nostrand.
 - 1983. Evolutionary tempos in catarrhine primates. In J. Chaline (ed.), Modalités, rhythmes et mécanismes de l'evolution biologique: gradualisme phyletique ou equilibres ponctués?: 101–106. Paris: Edition du C.N.R.S.
 - 1984. Cercopithecid biochronology of the African Plio-Pleistocene: correlation among eastern and southern hominidbearing localities. Cour. Forschungs-Inst. Senckenb. 69: 199–218.
 - 1989. Chronology of South African australopith site units. In F. E. Grine (ed.), Evolutionary history of the "robust" australopithecines: 317–324. New York: Aldine-de Gruyter.
 - 1993. Theropithecus specimens from Africa and India and the taxonomy of the species. In N. Jablonski (ed.), Theropithecus: rise and fall of a primate genus: 157-189. Cambridge: Cambridge Univ. Press.
 - 1994. Evolutionary history of the colobine monkeys in palaeoenvironmental perspective. In G. Davies and J. F. Oates (eds.), Colobine monkeys: their ecology, behaviour and evolution: 11-43. Ibid.

Delson, E., and D. Dean

1993. Are P. baringensis R. Leakey, 1969, and P. quadratirostris Iwamoto, 1982, species of Papio or Theropithecus? In N. Jablonski (ed.), Theropithecus: rise and fall of a primate genus: 125–156. Cambridge: Cambridge Univ. Press. Delson, E. and R. Hoffstetter

1993. Theropithecus from Ternifine, Algeria. In N. Jablonski (ed.), Theropithecus: rise and fall of a primate genus: 191– 208. Cambridge: Cambridge Univ. Press.

Dunbar, R. I. M.

- 1992. Behavioural ecology of the extinct papionines. J. Hum. Evol. 22: 407–422.
- 1993. Socioecology of the extinct theropiths: a modelling approach. In N. Jablonski (ed.), Theropithecus: rise and fall of a primate genus: 465–486. Cambridge: Cambridge Univ. Press.

Eck, G. G.

- 1987. Theropithecus oswaldi from the Shungura Formation, Lower Omo Basin, southwestern Ethiopia. In Cahiers de paléontologie. Travaux de paléontologie est-africaine. Les faunes Plio-Pléistocènes de la Vallée de l'Omo (Éthiopie). 3, Cercopithecidae de la Formation de Shungura:123-140. Paris: Éditions du C.N.R.S.
- 1993. Theropithecus darti from the Hadar Formation, Ethiopia. In N. Jablonski (ed.), Theropithecus: rise and fall of a primate genus: 15–83. Cambridge: Cambridge Univ. Press.
- Eck, G. G., and N. Jablonski
 - 1984. A reassessment of the taxonomic status and phyletic relationships of *Papio baringensis* and *Papio quadratirostris* (Primates: Cercopithecidae). Am. J. Phys. Anthropol. 65: 109–134.
 - 1987. The skull of *Theropithecus brumpti* compared with those of other species of the genus *Theropithecus*. In Cahiers de paléontologie. Travaux de paléontologie est-africaine. Les faunes Plio-Pléistocènes de la Vallée de l'Omo (Éthiopie). 3, Cercopithecidae de la Formation de Shungura:11-122. Paris: Éditions du C.N.R.S.
- Eisenhart, W. L.
 - 1974. The fossil cercopithecoids of Makapansgat and Sterkfontein. B.A. thesis, Harvard Coll., Cambridge MA.
- Eley, R. M., S. C. Strum, G. Muchemi, and G. D. F. Reid
 - 1989. Nutrition, body condition, activity patterns, and parasitism of free-ranging troops of olive baboons (*Papio anubis*) in Kenya. Am. J. Primatol. 18: 209– 219.

Fleagle, J. G.

1978. Locomotion, posture, and habitat utilization in two sympatric, Malaysian leaf-monkeys (*Presbytis obscura* and *Presbytis melalophos*). In G. G. Montgomery (ed.), Ecology of arboreal folivores: 243–251. Washington DC: Smithsonian Institution Press.

- 1985. Size and adaptation in primates. In W. L. Jungers (ed.), Size and scaling in primate biology: 1–19. New York: Plenum.
- 1986. The fossil record of early catarrhine evolution. In B. A. Wood, L. Martin, and P. Andrews (ed.), Major topics in primate and human evolution: 130– 149. Cambridge: Cambridge Univ. Press.
- 1988. Primate adaptation and evolution. San Diego, CA: Academic Press.
- 1998. Primate adaptation and evolution, 2nd ed. Ibid.
- Fooden, J.
 - 1971. Male external genitalia and systematic relationships of the Japanese macaque (*Macaca fuscata* Blyth, 1875). Primates 12: 305-311.
 - 1975. Taxonomy and evolution of longtail and pigtail macaques (Primates: Cercopithecidae). Fieldiana Zool. 67: 1– 169.
 - 1981. Taxonomy and evolution of the *sinica* group of macaques: 2. species and subspecies accounts of the Indian bonnet macaque, *Macaca radiata*. Ibid. 9: 1–52.
 - 1982. Taxonomy and evolution of the *sinica* group of macaques: 3. Species and subspecies accounts of *Macaca assamensis*. Ibid. 10: 1–52.
 - 1983. Taxonomy and evolution of the *sinica* group of macaques: 4. Species account of *Macaca thibetana*. Ibid. 17: 1–20.
 - 1990. The bear macaque, Macaca arctoides: a systematic review. J. Hum. Evol. 19: 607-686.

- 1957. The fossil Cercopithecoidea of South Africa. Ann. Transvaal Mus. 23: 121– 257.
- Freedman, L., and N. S. Stenhouse
- 1972. The Parapapio species of Sterkfontein, Transvaal, South Africa. Palaeontol. Africana 14: 93-111.
- Galat-Luong, A., G. Galt, J.-P. Durand, and X. Pourrut
 - 1996. Sexual weight dimorphism and social organization in green and patas monkeys in Senegal (abstract). Folia Primatol. 67: 92–93.

Gautier-Hion, A.

- 1975. Dimorphisme sexuel et organisation sociale chez les cercopithecinés forestiers africains. Mammalia 39: 365–374.
- Gest, T. R., and M. I. Siegel
 - 1983. The relationship between organ weight and body weights, facial dimensions, and dental dimensions in a population of olive baboons (*Papio cynocephalus anubis*). Am. J. Phys. Anthropol. 61: 189–196.
- Gibert, J., F. Ribot, L. Gibert, M. G. Leakey, A. Arribas, and B. Martinez
 - 1995. Presence of the cercopithecid genus *Theropithecus* in Cueva Victoria (Murcia, Spain). J. Hum. Evol. 28: 487–493.
- Gingerich, P. D., B. H. Smith, and K. Rosenberg
- 1982. Allometric scaling in the dentition of primates and prediction of body weight from tooth size in fossils. Am. J. Phys. Anthropol. 58: 81–100.
- Harrison, T.
 - 1989. New postcranial remains of Victoriapithecus from the middle Miocene of Kenya. J. Hum. Evol. 18: 3–54.
- Hartman, C. G.
 - 1938. Some observations on the bonnet macaque. J. Mammal. 19: 468–474.
- Harvey, P. H., R. D. Martin, and P. H. Clutton-Brock
 - 1987. Life histories in comparative perspective. In B. B. Smuts, D. L. Cheney, R. M. Seyfarth, R. W. Wrangham, and T. T. Struhsaker (eds.), Primate societies: 181-196. Chicago: Univ. Chicago Press.
- Hay, R. L.
 - 1976. Geology of the Olduvai Gorge. Berkeley: Univ. California Press.
- Hazama, N.
 - 1964. Weighing wild Japanese monkeys in Arashiyama. Primates 5: 81–104.
- Hens, S. M., L. W. Konigsberg, and W. L. Jungers
 1998. Estimation of African ape body length from femur length. J. Hum. Evol. 34: 401-411.

Hill, A.

1995. Faunal and environmental change in the Neogene of East Africa: evidence from the Tugen Hills sequence, Baringo District, Kenya. In E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle (eds.), Paleoclimate and evolution, with emphasis on human origins:178–193. New Haven, CT: Yale Univ. Press.

Freedman, L.

- 1970. Primates: comparative anatomy and taxonomy. VIII. Cynopithecinae: Papio, Mandrillus, Theropithecus. Edinburgh: The Univ. Press.
- Hurov, J.
- 1987. Terrestrial locomotion and back anatomy in vervets (*Cercopithecus aethiops*) and patas monkeys (*Erythrocebus patas*). Am. J. Primatol. 13: 297–311.
- Hylander, W. L.
- 1985. Mandibular function and biomechanical stress and scaling. Am. Zool. 25: 315-330.
- Jablonski, D.
- 1996. Body size and macroevolution. In D. Jablonski, D. H. Erwin, and J. H. Lipps (eds.), Evolutionary paleobiology: 256–289. Chicago: Univ. Chicago Press.
- Jablonski, N. G.
 - 1993. The phylogeny of Theropithecus. In N. Jablonski (ed.), *Theropithecus*: rise and fall of a primate genus: 209–224. Cambridge: Cambridge Univ. Press.
 - 1994. New fossil cercopithecid remains from the Humpata Plateau, Southern Angola. Am. J. Phys. Anthropol. 94: 435–464.
- Jablonski, N. G., and Y. Gu
 - 1991. A reassessment of *Megamacaca lantianensis*, a large monkey from the Pleistocene of north-central China. J. Hum. Evol. 20: 51–66.
- Jablonski, N. G., and R. Pan
- 1995. Sexual dimorphism in the snub-nosed langurs (Colobinae: *Rhinopithecus*). Am. J. Phys. Anthropol. 96: 251–272.
- Jolly, C. J.
 - 1967. The evolution of the baboons. In H. Vagtborg (ed.), The baboon in medical research 2: 23–50. Austin: Univ. Texas Press.
 - 1972. The classification and natural history of *Theropithecus* (Simopithecus) (Andrews, 1916), baboons of the African Plio-Pleistocene. Bull. Br. Mus. (Nat. Hist.) Geol. 22: 1–123.
 - 1993. Species, subspecies, and baboon systematics. In W. H. Kimbel and L. B. Martin (eds.), Species, species concepts, and primate evolution:67–107. New York: Plenum Press.
- Jones, C.
 - 1970. Stomach contents and gastro-intestinal relationships of monkeys collected in

Rio Muni, West Africa. Mammalia 34: 107–117.

- Jungers, W. L.
 - 1985. Body size and scaling of limb proportions in primates. In W. L. Jungers (ed.), Size and scaling in primate biology:345-381. New York: Plenum Press.
 - 1987. Body size and morphometric affinities of the appendicular skeleton in *Oreopithecus bambolii*. J. Hum. Evol. 16: 445–456.
 - Relative joint size and hominoid locomotor adaptations with implications for the evolution of hominid bipedalism. Ibid. 17: 247–265.
- Jungers, W. L., D. B. Burr, and M. S. Cole
 - 1998. Body size and scaling of long bone geometry, bone strength and positional behavior in cercopithecoid primates. *In* E. Strasser, J. G. Fleagle, A. L. Rosenberger, and H. M. McHenry (eds.), Primate locomotion: recent advances:309–331. New York: Plenum Press.
- Kappelman, J.
 - 1996. The evolution of body mass and relative brain size in fossil hominids. J. Hum. Evol. 30: 243–276.
- Kay, R. F.
 - 1975. The functional adaptations of primate molar teeth. Am. J. Phys. Anthropol. 43: 195–216.
- Kay, R. F., and E. L. Simons
 - 1980. The ecology of Oligocene African Anthropoidea. Int. J. Primatol. 1: 21-37.
- Kirkpatrick, R. C.
 - 1998. Ecology and behavior in snub-nosed and douc langurs. *In* N. G. Jablonski (ed.), The natural history of the doucs and snub-nosed monkeys:155–190. Singapore: World Scientific Publishing.
- Konigsberg, L. W., S. M. Hens, L. M. Jantz, and W. L. Jungers
 - 1998. Stature estimation and calibration: Bayesian and maximum likelihood perspectives in physical anthropology. Yearb. Phys. Anthropol. 41: 65–92.

Krentz, H. B.

1993. Postcranial anatomy of extant and extinct species of Theropithecus. In N. Jablonski (ed.) Theropithecus: rise and fall of a primate genus: 383–422. Cambridge: Cambridge Univ. Press.

Kuhn H.-J.

1964. Zur Kentniss des Bau and Funktion des Magens der Schlankaffen (Colobinae). Folia Primatol. 2: 193–221.

Hill, W. C. O.

- 1982. Extinct large colobines from the Plio-Pleistocene of Africa. Am. J. Phys. Anthropol. 58: 153–172.
- 1987. Colobinae (Mammalia, Primates) from the Omo Valley, Ethiopia. In Cahiers de paléontologie Travaux de paléontologie est-africaine. Les faunes Plio-Pléistocènes de la Vallée de l'Omo (Éthiopie). 3, Cercopithecidae de la Formation de Shungura:147–169. Paris: Éditions du C.N.R.S.
- 1993. Evolution of *Theropithecus* in the Turkana Basin. *In* N. Jablonski (ed.), *Theropithecus*: rise and fall of a primate genus: 85–123. Cambridge: Cambridge Univ. Press.
- Leakey, M. G., and R. E. F. Leakey
 - 1973. Further evidence of Simopithecus (Mammalia, Primates) from Olduvai and Olorgesailie. Fossils Vertebr Af. 3: 101–120.
- Leakey, M. G., C. S. Feibel, R. L. Bernor, J. M. Harris, T. E. Cerling, K. M. Stewart, G. W. Storrs, A. Walker, L. Werdelin, and A. J. Winkler
 - 1996. Lothagam: a record of faunal change in the Late Miocene of East Africa. J. Vertebr. Paleontol. 16: 556–570.

- 1926. Weights and measurements of the Nilgiri langur (*Pithecus johnii*). J. Bombay Nat. Hist. Soc. 31: 223.
- Li, Z., and X. Ma
 - 1980. A revision of the white headed langur. Acta Zootaxonomica Sin. 5: 440–442.
- Ma, S., Y. Wang, and F. E. Poirier
- 1989. Taxonomy and distribution of the Francois' langur (*Presbytis francoisi*). Primates 30: 233–240.

Malbrant, R., and A. Maclatchy

- 1949. Faune de l'equateur africain français, Tome II, Mammifères. (Encyclopédie Biologique). Paris: Lechavalier.
- Martin, R. D.
 - 1993. Allometric aspects of skull morphology in *Theropithecus*. In N. Jablonski (ed.), *Theropithecus*: rise and fall of a primate genus: 273–298. Cambridge: Cambridge Univ. Press.
- McConnell, E. E., P. A. Basson, V. De Vos, B. J. Myers, and R. E. Kuntz
 - 1974. A survey of diseases among 100 freeranging baboons (*Papio ursinus*) from the Kruger National Park. Onderstepoort J. Vet. Res. 41: 97–168.

- McGill, Jr., H. C., J. P. Strong, R. L. Holman, and N. T. Werthessen
 - 1960. Arterial lesions in the Kenya baboon. Circ. Res. 8: 670–679.
- Napier, J. R., and P. H. Napier
- 1967. A handbook of living primates. London: Academic Press.
- Napier, P. H.
 - 1981. Catalogue of primates in the British Museum (Natural History) and elsewhere in the British Isles. P. II: Family Cercopithecidae, Subfamily Cercopithecinae. London: British Museum (Natural History).
 - 1985. Ibid. P. III: Family Cercopithecidae, Subfamily Colobinae. London: British Museum (Natural History).
- Oates, J. F., G. H. Whitesides, A. G. Davies, P. G. Waterman, S. M. Green, G. L. Dasilva, and S. Mole
 - 1990. Determinants of variation in tropical forest primate biomass: new evidence from West Africa. Ecology 71: 328-343.
- Oboussier, H., and G. A. von Maydell

1959. Zur kenntnis des indischen goldlangurs. Z. Morphol. Ökol. Tiere 48: 102–114.

- Peters, R. H.
 - 1983. The ecological implications of body size. Cambridge: Cambridge Univ. Press.
- Phillips, W. A. A.
 - 1935. Manual of the mammals of Ceylon. Colombo, Ceylon: Colombo Museum.
- Pocock, R. I.
 - 1928. The langurs, or leaf monkeys, of British India. J. Bombay Nat. Hist. Soc. 32: 472–504, 660–677.
 - 1934. The monkeys of the genera Pithecus (or Presbytis) and Pygathrix found to the east of the Bay of Bengal. Proc. Zool. Soc. Lond. 1934: 895–1961.
 - 1939. The fauna of British India including Ceylon and Burma. Mammalia. P. I. Primates and Chiroptera (in part). London: Taylor and Francis.

Popp, J.

- 1983. Ecological determinism in the life histories of baboons. Primates 24: 198– 210.
- Rafferty, K. L., A. Walker, C. B. Ruff, M. D. Rose, and P. J. Andrews
 - 1995. Postcranial estimates of body weight in Proconsul, with a note on a distal tibia of Proconsul nyanzae from Napak, Uganda. Am. J. Phys. Anthropol. 97: 391-402.

Leakey, M. G.

Leigh, C.

- Ravosa, M. J.
 - 1990. A functional assessment of subfamily variation in maxillomandibular morphology among Old World monkeys. Am. J. Phys. Anthropol. 82: 199–212.
 - 1991. The ontogeny of cranial sexual dimorphism in two Old World monkeys: *Macaca fascicularis* (Cercopithecinae) and *Nasalis larvatus* (Colobinae). Int. J. Primatol. 12: 403–426.
- Rayner, J. M. V.
- 1985. Linear relations in biomechanics: the statistics of scaling functions. J. Zool. 206: 415-439.
- Rice, W. R.
 - 1989. Analyzing tables of statistical tests. Evolution 43: 223–225.
- Rodman, P.
 - 1991. Structural differentiation of microhabitats of sympatric Macaca fascicularis and M. nemestrina in East Kalimantan, Indonesia. Int. J. Primatol. 12: 357– 375.

- 1995. Allometric and functional influences on primate orbit orientation and the origins of the Anthropoidea. J. Hum. Evol. 29: 201–227.
- Ruff, C. B.
 - 1988. Hindlimb articular surface allometry in Hominoidea and *Macaca*, with comparisons to diaphyseal scaling. J. Hum. Evol. 17: 687–714.
- Ruff, C. B., A. Walker, and M. F. Teaford
 - 1989. Body mass, sexual dimorphism and femoral proportions of *Proconsul* from Rusinga and Mfangano Islands, Kenya. J. Hum. Evol. 18: 515–536.
- Sarmiento, E.
 - 1987. The phylogenetic position of *Oreopi*thecus and its significance in the origin of the Hominoidea. Am. Mus. Novitates 2881: 44 pp.
- Schmidt-Nielsen, K.
 - 1984. Scaling. Why is animal size so important? Cambridge: Cambridge Univ. Press.
- Schultz, A. H.
 - 1940. The size of the orbit and the eye in primates. Am. J. Phys. Anthropol. 26: 389–408.
 - 1960. Einige Beobachtungen und Masse am Skelett von Oreopithecus im vergleich mit anderem catarrhinen Primaten. Z. Morphol. Anthropol. 50: 136–149.
- Silva, M., and J. A. Downing
- 1995. CRC handbook of mammalian body masses. Boca Raton, FL: CRC Press.

Skinner, J. D., and H. N. Smithers

- 1990. The mammals of the Southern African subregion. Pretoria: Univ. Pretoria Press.
- Smith, R. J.
 - 1985. The present as a key to the past: body weight of Miocene hominoids as a test of allometric methods for paleontological influence. *In* W. L. Jungers (ed.), Size and scaling in primate biology: 437-448. New York: Plenum Press.
 - 1993. Bias in equations used to estimate fossil primate body mass. J. Hum. Evol. 25: 31-41.
 - 1994. Regression models for prediction equations. Ibid. 26: 239–244.
 - 1996. Biology and body size in human evolution: statistical inference misapplied. Curr. Anthropol. 37: 451–481.
- Smith, R. J., and W. L. Jungers
- 1997. Body mass in comparative primatology. J. Hum. Evol. 32: 523–559.
- Snow, C. C., and T. Vice
 - 1965. Organ weight allometry and sexual dimorphism in the olive baboon, *Papio anubis*. In H. Vagtborg (ed.), The baboon in medical research: 151–165. Austin: Univ. Texas Press.
- Sprugel, D. G.
 - 1983. Correcting for bias in log-transformed allometric equations. Ecology 64: 209–210.
- Strasser, E.
 - 1989. Form, function and allometry in the cercopithecid foot. Ph.D. diss., City Univ. New York.
- Strasser, E., and E. Delson
 - 1987. Cladistic analysis of cercopithecid relationships. J. Hum. Evol. 16: 81–99.
- Swindler, D. R.
 - 1976. The dentition of living primates. New York: Academic Press.
- Szalay, F. S., and E. Delson
 - 1979. Evolutionary history of the primates. New York: Academic Press.
- Szalay, F. S., and J. Langdon
 - 1987. The foot of Oreopithecus bambolii: an evolutionary assessment. J. Hum. Evol. 15: 585–621.
- Teilhard de Chardin, P.
 - 1938. The fossils from locality 12 of Choukoutien. Paleontol. Sinica n. ser. 114: 2-46.
- Terranova, C. J.
 - 1995. The scaling of long bone cross-sectional properties with body weight in strepsirhine primates and other mammals.

Ross, C. F.

Am. J. Phys. Anthropol., Suppl. 20: 209–210.

Vrba, E. S.

1995. The fossil record of African antelopes (Mammalia, Bovidae) in relation to human evolution and paleoclimate. In E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle (eds.), Paleoclimate and evolution, with emphasis on human origins: 385–424. New Haven, CT: Yale Univ. Press.

- 1995. African omnivores: global climatic change and Plio-Pleistocene hominids and suids. In E. S. Vrba, G. H. Denton, T. C. Partridge, and L. H. Burckle (eds.), Paleoclimate and evolution, with emphasis on human origins:369–384. New Haven CT: Yale Univ. Press.
- 2000. Human osteology, ed. 2. San Diego, CA: Academic Press.

Wickings, E. J., and A. F. Dixon

- 1992a. Development from birth to sexual maturity in a semi-free-ranging colony of mandrills (*Mandrillus sphinx*) in Gabon. J. Reprod. Fertil. 95: 129–138.
- 1992b. Testicular function, secondary sexual development, and social status in male mandrills (*Mandrillus sphinx*). Physiol. Behav. 52: 909–916.

Willis, M. S.

1995. Dental variation in Asian colobines. Ph.D. diss., Washington Univ., St. Louis, MO.

Zapfe, H.

1991. Mesopithecus pentelicus Wagner aus dem Turolien von Pikermi bei Athen, odontologie und osteologie. Neue Denkschr. Naturhist. Mus. Wien 5: 203.

Zhao, Q.

1994. Seasonal changes in body weight of *Macaca thibetana* at Mt. Emei, China. Am. J. Primatol. 32: 223–226.

White, T. D.

APPENDIX TABLE 1

Individual Cercopithecid Body Mass Values

The specimens are listed within subfamily alphabetically by genus, species, subspecies, and infrasubspecific group, if any, separated by sex; within taxon and sex, the specimens are listed in order of increasing mass. A blank subspecies column indicates a monotypic species. A question mark (?) following subspecies indicates that we have assigned that specimen to an infraspecific taxon on the basis of locality information but still have some doubts. The "Specimen reference" column includes the source institution (or individual) and specimen identification (catalog) number if known. Otherwise, reference information (a boldface number) for a publication or personal communication is provided, with some additional locating information from the reference (see list at end of table). If the institution can be reasonably well determined from published information, it is provided in parentheses. If the reference includes only a range of data, this table includes the maximum (max) or minimum (min) from the range; in some cases only one end of such a range is indicated, if catalog information is known for the other end. Mass is always provided in grams; when the original value was given in pounds, that number appears as well (conversion: $g = 1000 \times 1b/2.2046$).

		4			Mass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb	
Colobus	angolensis	angolensis	9 ; min of 5	F	6400		
Colobus	angolensis	angolensis	9; max of 5	F	9150		
Colobus	angolensis	angolensis	9; min of 8	М	7600		
Colobus	angolensis	angolensis	9; max of 8	М	12600		
Colobus	angolensis	palliatus	NMNH 452617	F	9100		
Colobus	angolensis	palliatus	NMNH 452615	Μ	8730		
Colobus	angolensis	palliatus	NMNH 452618	М	8990		
Colobus	angolensis	palliatus	NMNH 452616	М	10590		
Colobus	guereza	dodingae	PCM Sudan-1	М	10433	23	
Colobus	guereza	gallarum	MNHN-P 1972.352	F	6100		
Colobus	guereza	gallarum	MNHN-P 1972.350	F	8000		
Colobus	guereza	gallarum	MNHN-P 1972.353	F	8700		
Colobus	guereza	gallarum	MNHN-P 1972.348	Μ	9400		
Colobus	guereza	guereza	MNHN-P 1969.380	F	8200		
Colobus	guereza	guereza	MNHN-P 1969.379	F	9400		
Colobus	guereza	guereza	MNHN-P 1969.389	F	10100		
Colobus	guereza	guereza	STA AM 66	М	9750		
Colobus	guereza	guereza	MNHN-P 1969.382	М	10000		
Colobus	guereza	guereza	PCM 1964.2178	М	10886	24	
Colobus	guereza	guereza	MNHN-P 1969.386	M	12400		
Colobus	guereza	guereza	MNHN-P 1969.378	Μ	13800		
Colobus	guereza	guereza	MNHN-P 1969.384	М	14400		
Colobus	guereza	kikuyuensis	NMNH 452641	F	9030		
Colobus	guereza	kikuyuensis	PCM 1972.134	М	7100		
Colobus	guereza	kikuyuensis?	KNM OM 3007	М	11025		
Colobus	guereza	kikuyuensis	NMNH 452619	М	11417		
Colobus	guereza	matschiei	NMNH 452642	F	6420		
Colobus	guereza	matschiei	PCM 1972.147	F	6500		
Colobus	guereza	matschiei	NMNH 452639	F	6810		
Colobus	guereza	matschiei	PCM 1972.148	F	7000		
Colobus	guereza	matschiei	PCM 1972.150	F	7005		
Colobus	guereza	matschiei	NMNH 452624	F	7355		
Colobus	guereza	matschiei	NMNH 452636	F	7480		
Colobus	guereza	matschiei	PCM 1972.138	F	7670		
Colobus	guereza	matschiei	PCM 277	F	7730		
Colobus	guereza	matschiei	PCM 355	F	7730		
Colobus	guereza	matschiei	NMNH 452631	F	7966		
Colobus	guereza	matschiei	PCM 221	F	8180		
Colobus	guereza	matschiei	PCM 435	F	8180		
Colobus	guereza	matschiei	NMNH 452632	F	8220		
Colobus	guereza	matschiei?	KNM OM 3012	F	8400		

			Continuea			
			M	lass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Colobus	guereza	matschiei	NMNH 452634	F	9565	
Colobus	guereza	matschiei?	KNM OM 3015	F	9700	
Colobus	guereza	matschiei	PCM 1972.140	F	10230	
Colobus	guereza	matschiei	PCM 1972.144	М	8000	
Colobus	guereza	matschiei	PCM 278	М	8180	
Colobus	guereza	matschiei	NMNH 452637	М	8230	
Colobus	guereza	matschiei	PCM 1972.141	М	8900	
Colobus	guereza	matschiei	NMNH 452643	М	9030	
Colobus	guereza	matschiei?	KNM OM 7385	М	9100	
Colobus	guereza	matschiei	NMNH 452628	М	9230	
Colobus	guereza	matschiei	PCM 434	м	9320	
Colobus	guereza	matschiei?	KNM OM 3008	М	9520	
Colobus	guereza	matschiei	PCM 279	м	9540	
Colobus	guereza	matschiei	NMNH 452625	м	9900	
Colobus	guereza	matschiei	NMNH 452623	M	9920	
Colobus	guereza	matschiei?	KNM OM 3010	м	9930	
Colobus	guereza	matschiei	NMNH 452629	м	10180	
Colobus	guereza	matschiei?	KNM OM 3014	м	10270	
Colobus	guereza	matschiei	NMNH 452638	м	10670	
Colobus	guereza	matschiei	PCM 1972 145	M	10900	
Colobus	guereza	matschiei	PCM 356	M	11140	
Colobus	guereza	matschiei	NMNH 452635	M	11410	
Colobus	guereza	matschiei	PCM 1972 139	M	11790	
Colobus	guereza	occidentalis	Haddow UP 114	F	5443	12
Colobus	guereza	occidentalis	Haddow UP 29	F	5443	12
Colobus	guereza	occidentalis	Haddow UP 86	F	5443	12
Colobus	guereza	occidentalis	Haddow UP 114	F	5443	12
Colobus	guereza	occidentalis	BM(NH) 1928 9 8 1	F	5443	12
Colobus	guereza	occidentalis	Haddow P 170	F	5783	12 75
Colobus	quereza	occidentalis	~ Haddow P 139	F	5897	13
Colobus	guereza	occidentalis	Haddow IIP 112	F	5897	13
Colobus	guereza	occidentalis	Haddow UP 112	F	6350	14
Colobus	guereza	occidentalis	Haddow P 180	F	6350	14
Colobus	guereza	occidentalis	Haddow P 221	F	6350	14
Colobus	guereza	occidentalis	Haddow IID 31	F	6350	14
Colobus	guereza	occidentalis	PCM 273	F	6350	14
Colobus	guereza	occidentalis	Haddow UP 00	F	6804	15
Colobus	guereza	occidentalis	Haddow D1 33	F	6804	15
Colobus	guereza	occidentalis	Haddow P 228	F	6804	15
Colobus	guereza	occidentalis	Haddow LID 80	F	6804	15
Colobus	guereza	occidentalis	Haddow UP 111	F	6804	15
Colobus	guereza	occidentalis	NIMNIH 452623	F	6807	15
Colobus	guereza	occidentalis	Haddow UD 140	F	7258	16
Colobus	guereza	occidentalis	Haddow D 60	F	7258	16
Colobus	guereza	occidentalis	Haddow P 07	F	7258	16
Colobus	guereza	occidentalis	DCM 270	F	7258	16
Colobus	guereza	occidentalis	FCWI 279 Haddow D 167	F	7230	17
Colobus	guereza	occidentalis	Haddow P 167	I' F	7711	17
Colobus	guereza	occidentalis	Haddow I'202	F	7711	17
Colobus	guereza	occidentalia	Haddow Dr 0J	I. E	7711	17
Colobus	guereza		Haddow P 2/4	г Б	7711	17
Colobus	guereza	occidentalis	Haddow UD 67	Г	7711	17
Colodus	guereza		Haddow UP 0/	Г	7711	17
Colobus	guereza	occiaentalis	Haddow UP 103	Г	//11	17

APPENDIX TABLE 1 Continued
				Mass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Colobus	guereza	occidentalis	BM(NH) 1928.9.8.4	F	7711	17
Colobus	guereza	occidentalis	Haddow P 313	F	8165	18
Colobus	guereza	occidentalis	Haddow UP 96	F	8165	18
Colobus	guereza	occidentalis	Haddow UP 102	F	8165	18
Colobus	guereza	occidentalis	PCM 248	F	8165	18
Colobus	guereza	occidentalis	BM(NH) 1928.9.8.3	F	8165	18
Colobus	guereza	occidentalis	BM(NH) 1951.533	F	8165	18
Colobus	guereza	occidentalis	Haddow P 264	F	8618	19
Colobus	guereza	occidentalis	BM(NH) 1928.9.8.2	F	8618	19
Colobus	guereza	occidentalis	Haddow P 181	F	9072	20
Colobus	guereza	occidentalis	Haddow P 268	F	9072	20
Colobus	guereza	occidentalis	Haddow UP 56	F	9072	20
Colobus	guereza	occidentalis	BM(NH) 1930.8.1.10	F	9072	20
Colobus	guereza	occidentalis	Haddow P 276	F	9526	21
Colobus	guereza	occidentalis	Haddow P 266	F	10433	23
Colobus	guereza	occidentalis	Haddow UP 55	F	10886	24
Colobus	guereza	occidentalis	Haddow P 176	- M	6804	15
Colobus	guereza	occidentalis	Haddow P 156	M	7711	17
Colobus	guereza	occidentalis	Haddow P 241	M	7711	17
Tolobus Tolobus	guereza	occidentalis	Haddow P A 5	M	7711	17
Colobus	guereza	occidentalis	Haddow UP 88	M	7711	17
Colobus	guereza	occidentalis	Haddow UP 92	M	7711	17
Colobus	guereza	occidentalis	Haddow UP 106	M	7711	17
Colobus	quereza	occidentalis	Haddow P 265	M	8165	19
Colobus	guereza	occidentalis	Haddow P 205	M	8165	10
Colobus Colobus	guereza	occidentalis	Haddow P 299	M	0105	10
Colobus	guereza	occidentalis	Haddow UD 25	M	0105	10
-olobus Tolobus	guereza	occidentalis	Haddow UP 55	IVI M	010J 0165	10
Colodus Talabas	guereza	occiaentalis	Haddow UP 59	M	8105	18
LOLODUS	guereza	occiaentalis	Haddow UP 148	M	8105	18
Lolodus Delekse	guereza	occiaentalis	Haddow P 212	M	8018	19
Lolobus	guereza	occidentalis	Haddow P 307	M	8618	19
Colobus	guereza	occidentalis	Haddow P 310	M	8618	19
<i>Colobus</i>	guereza	occidentalis	Haddow UP 28	M	8618	19
Colobus	guereza	occidentalis	BM(NH) 1926.11.18.2	M	8618	19
Colobus	guereza	occidentalis	Haddow P 161	M	8845	19.
Colobus	guereza	occidentalis	Haddow P 172	М	9072	20
Colobus	guereza	occidentalis	Haddow P 209	M	9072	20
Colobus	guereza	occidentalis	Haddow P 217	M	9072	20
Colobus	guereza	occidentalis	Haddow P 311	М	9072	20
Colobus	guereza	occidentalis	Haddow UP 30	M	9072	20
Colobus	guereza	occidentalis	Haddow UP 107	М	9072	20
Colobus	guereza	occidentalis	Haddow UP 110	М	9072	20
Colobus	guereza	occidentalis	Haddow P 205	М	9072	20
Colobus	guereza	occidentalis	BM(NH) 1972.151	М	9300	
Colobus	guereza	occidentalis	Haddow P 218	М	9526	21
Colobus	guereza	occidentalis	Haddow P 289	М	9526	21
Colobus	guereza	occidentalis	Haddow UP 82	М	9526	21
Colobus	guereza	occidentalis	Haddow P 249	М	9526	21
Colobus	guereza	occidentalis	Haddow P 279	М	9526	21
Colobus	guereza	occidentalis	Haddow UP 94	М	9526	21
Colobus	guereza	occidentalis	Haddow P 148	М	9979	22
Colobus	guereza	occidentalis	Haddow P 280	М	9979	22
Colobus	guereza	occidentalis	Haddow UP 97	м	9979	22

				- Maria da Calendaria		
				Mass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Colobus	guereza	occidentalis	BM(NH) 1972.152	М	10000	
Colobus	guereza	occidentalis	Haddow P 186	М	10433	23
Colobus	guereza	occidentalis	Haddow P 275	М	10433	23
Colobus	guereza	occidentalis	Haddow P 292	М	10433	23
Colobus	guereza	occidentalis	Haddow P 337	М	10433	23
Colobus	guereza	occidentalis	PCM 246	М	10433	23
Colobus	guereza	occidentalis	NMNH 452622	М	10650	
Colobus	guereza	occidentalis	Haddow P 220	М	10886	24
Colobus	guereza	occidentalis	Haddow P 267	М	11340	25
Colobus	polykomos	dollmani	BM(NH) 1956.343	F	6100	
Colobus	polykomos	dollmani	BM(NH) 1956.344	F	8500	
Colobus	polykomos	dollmani	BM(NH) 1955.379	м	9100	
Colobus	polykomos	dollmani	BM(NH) 1956.342	м	10000	
Colobus	polykomos	nolvkomos	NMNH 481789	F	6200	
Colobus	polykomos	polykomos	AIUG 1641	F	6600	
Colobus	nolvkomos	polykomos	BM(NH) 1956 346	F	6700	
Colobus	polykomos	polykomos	NMNH 481788	F	6800	
Colobus	polykomos	polykomos	NMNH 477321	F	6804	15
Colobus	polykomos	polykomos	NMNH 477320	F	7258	16
Colobus	polykomos	polykomos	37: Tiwai killed	F	7200	10
Colobus	polykomos	potykomos	NIANILI 491795	F	8000	
Colobus	polykomos	polykomos	AUG 1753	F	8000	
Colobus	polykomos	polykomos	AUC 1774	F	8000	
Colobus	polykomos	polykomos	AIUG 17/4	Г	8000	
Colodus	polykomos	polykomos	AIUG 1850	г Г	8200	
Colobus	polykomos	polykomos	McGraw 94-11	F	8900	
Colobus	polykomos	polykomos	AIUG 1667	F	9000	
Colobus	polykomos	polykomos	37; Tiwai killed	F	9000	
Colobus	polykomos	polykomos	AIUG F 2530	F	9700	
Colobus	polykomos	polykomos	AIUG 1851	F	10000	
Colobus	polykomos	polykomos	AIUG B 1651	M	8000	
Colobus	polykomos	polykomos	AIUG 1629	M	9800	
Colobus	polykomos	polykomos	NMNH 481784	M	10000	
Colobus	polykomos	polykomos	37; Tiwai killed	M	10100	
Colobus	polykomos	polykomos	BM(NH) 1956.345	M	10100	
Colobus	polykomos	polykomos	NMNH 481791	М	10400	
Colobus	polykomos	polykomos	NMNH 481790	М	11400	
Colobus	polykomos	polykomos	AIUG 1639	М	11700	
Colobus	polykomos	vellerosus	BM(NH) 1956.347	F	6200	
Colobus	polykomos	vellerosus	MRAC-T 23733	F	6600	
Colobus	polykomos	vellerosus	BM(NH) 1956.352	F	7000	
Colobus	polykomos	vellerosus	BM(NH) 1956.361	F	7000	
Colobus	polykomos	vellerosus	BM(NH) 1956.355	F	7500	
Colobus	polykomos	vellerosus	BM(NH) 1956.356	М	8000	
Colobus	polykomos	vellerosus	BM(NH) 1956.358	М	8400	
Colobus	polykomos	vellerosus	BM(NH) 1956.349	М	9100	
Colobus	satanas		PCM, none listed	F	5000	
Colobus	satanas		32 , p. 30; 1	F	6000	
Colobus	satanas		27 ; 3	F	6010	
Colobus	satanas		27; 1	F	6500	
Colobus	satanas		27 ; 2	F	8600	
Colobus	satanas		32 , p. 30; 3	F	10000	
Colobus	satanas		PCM, none listed	М	9000	
Colobus	satanas		32 ; 2	М	11000	
· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			

a	a 1			M	Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Procolobus	badius	badius	USNM 481792	F	5000	
Procolobus	badius	badius	USNM 481798	F	5000	
Procolobus	badius	badius	AIUG 1916	F	5750	
Procolobus	badius	badius	BM(NH) 1956.374	F	6100	
Procolobus	badius	badius	BM(NH) 1956.364	F	6200	
Procolobus	badius	badius	AIUG 1914	F	6750	
Procolobus	badius	badius	AIUG 1938	F	6900	
Procolobus	badius	badius	AIUG 1755	F	7000	
Procolobus	badius	badius	AIUG 1939	F	7000	
Procolobus	badius	badius	BM(NH) 1956.365	F	7200	
Procolobus	badius	badius	McGraw 94-22	F	7200	
Procolobus	badius	badius	AIUG 1663	F	7250	
Procolobus	badius	badius	AIUG 1906	F	7250	
Procolobus	badius	badius	AIUG 1798	F	7300	
Procolobus	badius	badius	NMNH 477324	F	7400	
Procolobus	badius	badius	AIUG 1634	F	7400	
Procolobus	badius	badius	AIUG 1905	F	7400	
Procolobus	badius	badius	AIUG 1817	F	7800	
Procolobus	badius	badius	AIUG 1769	F	8000	
Procolobus	badius	badius	NMNH 477326	F	8200	
Procolobus	badius	badius	NMNH 481793	F	8200	
Procolobus	badius	badius	AIUG 1635	F	8200	
Procolobus	badius	badius	AUG 1794	F	8500	
Procolobus	badius	badius	AUG 1915	F	8500	
Procolobus	badius	badius	AUG 1900	F	8500	
Procolobus	badius	badius	AUG 1990	F	8700	
Procolobus	badius	badius	AIUG 1982	Г Е	8700	
Procolobus	badius	badius	AUC 1029	г Е	8700	
Procolobus	badius	badius	AUG 1730	г Б	8/00	
-TOCOLODUS Duese labor	baaius Ladius	baalus hadina	AUG 1730	г Г	8900	
Procolobus	baalus	baalus	AIUG 1729	F	9000	
rocolobus	baalus	baalus	AIUG 1/31	F	9100	
rocolobus	baalus	baalus	AIUG 1929	F	9100	
rocolobus	badius	badius	NMNH 481796	F	9400	
rocolobus	badius	badius	AIUG 1913	F	9500	
rocolobus	badius	badius	AIUG 1947	F	9500	
Procolobus	badius	badius	AIUG 1947	F	9500	
Procolobus	badius	badius	AIUG 1771	F	9950	
Procolobus	badius	badius	AIUG 1770	М	6400	
Procolobus	badius	badius	NMNH 481794	М	7000	
Procolobus	badius	badius	AIUG 1670	М	7500	
Procolobus	badius	badius	AIUG 1754	Μ	7700	
Procolobus	badius	badius	AIUG 1681	Μ	7900	
Procolobus	badius	badius	NMNH 481797	М	8000	
Procolobus	badius	badius	AIUG 1671	М	8000	
Procolobus	badius	badius	NMNH 477325	М	8200	
Procolobus	badius	badius	AIUG 1672	М	8500	
Procolobus	badius	badius	AIUG 1889	М	8700	
Procolobus	badius	badius	McGraw 94-15	М	8700	
Procolobus	badius	badius	NMNH 481795	M	8800	
rocolobus	badius	badius	AIUG 1680	М	9250	
rocolobus	badius	badius	AIUG 1881	M	9400	
rocolobus	badius	badius	McGraw 94-13	M	9500	
					2200	

	<u></u>					-
a	a .	.			M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Procolobus	badius	badius	AIUG 1883	М	9600	
Procolobus	badius	kirki	35 , p. 32; min of 3	F	5100	
Procolobus	badius	kirkii	USNM 452646	F	5110	
Procolobus	badius	kirki	35 , p. 32; mid of 3	F	5200	
Procolobus	badius	kirki	35 , p. 32; max of 3	F	6100	
Procolobus	badius	kirki	35 , p. 32; 1 of 1	М	5800	
Procolobus	badius	langi	9 ; min of 2	F	4400	
Procolobus	badius	langi	9 ; max of 2	F	6650	
Procolobus	badius	langi	9 ; 1 of 2	М	7650	
Procolobus	badius	langi	9 ; 2 of 2	М	7650	
Procolobus	badius	oustaleti	9 ; min of 2	F	7600	
Procolobus	badius	oustaleti	USNM 537781	F	7700	
Procolobus	badius	oustaleti	USNM 537782	F	7750	
Procolobus	badius	oustaleti	9 ; max of 2	F	8900	
Procolobus	badius	oustaleti	IRSN-B 21231	М	12000	
Procolobus	badius	oustaleti	MRAC-T 28595	М	12100	
Procolobus	badius	oustaleti	9 ; 1 of 1	М	12500	
Procolobus	badius	parmientierorum	9 ; min of 6	F	5550	
Procolobus	badius	parmientierorum	9 ; max of 6	F	8950	
Procolobus	badius	parmientierorum	9 ; 1 of 1	М	9200	
Procolobus	badius	preussi	PCM 259	F	7259	
Procolobus	badius	rufomitratus	MRAC-T 28580	F	6000	
Procolobus	badius	rufomitratus	MRAC-T 25586	F	6000	
Procolobus	badius	rufomitratus	MRAC-T 28576	F	7000	
Procolobus	badius	rufomitratus	MRAC-T 28763	F	7500	
Procolobus	badius	rufomitratus	MRAC-T 28577	F	8000	
Procolobus	badius	rufomitratus	MRAC-T 28760	F	8000	
Procolobus	badius	rufomitratus	MRAC-T 28762	F	8000	
Procolobus	badius	rufomitratus	MRAC-T 28759	М	9000	
Procolobus	badius	rufomitratus	MRAC-T 28587	М	10000	
Procolobus	badius	rufomitratus	MRAC-T 28761	М	10000	
Procolobus	badius	tephrosceles	KNM OM 3017	F	6728	
Procolobus	badius	tephrosceles	BM(NH) 1972.133	М	7940	
Procolobus	badius	tephrosceles	NMNH 452664	М	8850	
Procolobus	badius	tephrosceles	Sarmiento, unnumbered	М	8900	
Procolobus	badius	tephrosceles	PCM 1971.2064	М	9400	
Procolobus	badius	tephrosceles	PCM 1971.2065	М	10500	
Procolobus	badius	tephrosceles	PCM 1930.8.1.4	М	10886	24
Procolobus	badius	waldroni	BM(NH) 1956.371	F	5500	
Procolobus	badius	waldroni	BM(NH) 1956.373	F	6000	
Procolobus	badius	waldroni	BM(NH) 1956.374	М	6300	
Procolobus	badius	waldroni	USNM 477323	М	6500	
Procolobus	verus		4; min of 5	F	2900	
Procolobus	verus		AIUG 1682	F	3550	
Procolobus	verus		NMNH 477327	F	3629	8
Procolobus	verus		AIUG 1922	F	4000	
Procolobus	verus		37; Tiwai killed	F	4000	
Procolobus	verus		4; max of 5	F	4100	
Procolobus	verus		NMNH 481800	F	4200	
Procolobus	verus		AIUG 2570	F	4200	
Procolobus	verus		AIUG 1788	F	4400	
Procolobus	verus		AIUG 1799	F	4700	
Procolobus	verus		AIUG 1661	F	4750	

Genus Species Subspecies Specimen reference Sex g II Procolobus verus AIUG 1684 F 5000 Procolobus verus AIUG 1777 F 5400 Procolobus verus AIUG 1870 M 3300 Procolobus verus AIUG 1870 M 3950 Procolobus verus NMNH 477329 M 4200 Procolobus verus NIMH 481802 M 4300 Procolobus verus 37, Tiwai killed M 4300 Procolobus verus 37, Tiwai killed M 4000 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1703 M 4600 Procolobus verus AIUG 1733 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus						Mass	
Procolobus verus AIUG 1684 F 5000 Procolobus verus AIUG 1777 F 5400 Procolobus verus 41, min of 7 M 3300 Procolobus verus AIUG 1870 M 3950 Procolobus verus NIMH 477329 M 4200 Procolobus verus NIMH 477329 M 4200 Procolobus verus NIMH 481802 M 4300 Procolobus verus 37, Tiwai killed M 4400 Procolobus verus NIMH 481801 M 4400 Procolobus verus AIUG 1566 M 4500 Procolobus verus AIUG 1703 M 4536 10 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1921 M 4750 Procolobus verus AI	Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Procelobus verus AIUG 1777 F 5400 Procolobus verus 4; min of 7 M 3300 Procolobus verus NMNH 477329 M 4200 Procolobus verus NMNH 477329 M 4200 Procolobus verus NMNH 481802 M 4300 Procolobus verus 37; Tiwai killed M 4300 Procolobus verus 4; max of 7 M 4400 Procolobus verus 4; max of 7 M 4400 Procolobus verus NMNH 481801 M 4400 Procolobus verus NMNH 47731 M 4556 10 Procolobus verus AIUG 1703 M 4600 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1748 M 4700 Procolobus verus AIUG 1738 M	Procolobus	verus		AIUG 1684	F	5000	
Procolobus verus 4; min of 7 M 3300 Procolobus verus AIUG 1870 M 3950 Procolobus verus NMNH 477329 M 4200 Procolobus verus AIUG 1926 M 4200 Procolobus verus NMNH 477329 M 4300 Procolobus verus NMNH 477320 M 4400 Procolobus verus 37; Tiwai killed M 4300 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1901 M 4530 Procolobus verus AIUG 1703 M 4600 Procolobus verus AIUG 1756 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1948 M 600 Procolobus verus AIUG 1946 <td< td=""><td>Procolobus</td><td>verus</td><td></td><td>AIUG 1777</td><td>F</td><td>5400</td><td></td></td<>	Procolobus	verus		AIUG 1777	F	5400	
Procolobus verus NIUG 1870 M 3950 Procolobus verus NIMNH 477329 M 4200 Procolobus verus NIMNH 481802 M 4300 Procolobus verus 37; Tiwai killed M 4300 Procolobus verus 37; Tiwai killed M 4400 Procolobus verus 4; max of 7 M 4400 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1866 M 4500 Procolobus verus AIUG 1703 M 4500 Procolobus verus AIUG 1703 M 4600 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1748 M 4700 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1748	Procolobus	verus		4 ; min of 7	Μ	3300	
Procolobus verus NMNH 477329 M 4200 Procolobus verus AIUG 1926 M 4200 Procolobus verus NMNH 481802 M 4300 Procolobus verus 37, Tiwai Killed M 4300 Procolobus verus 4; max of 7 M 4400 Procolobus verus NMNH 481801 M 4400 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1901 M 4536 10 Procolobus verus AIUG 1763 M 4600 Procolobus verus AIUG 1756 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1748 M 4800 Procolobus verus AIUG 1748 M 500 Procolobus <tdverus< td=""> AIUG 17</tdverus<>	Procolobus	verus		AIUG 1870	М	3950	
Procolobus verus AIUG 1926 M 4200 Procolobus verus NMNH 481802 M 4300 Procolobus verus 37, Tiwai killed M 4300 Procolobus verus 37, Tiwai killed M 4300 Procolobus verus NMNH 481801 M 4400 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1731 M 4566 10 Procolobus verus AIUG 1733 M 4600 100 Procolobus verus AIUG 1738 M 4700 100 100 Procolobus verus AIUG 1738 M 4700 100	Procolobus	verus		NMNH 477329	М	4200	
Procolobus verus NNNH 481802 M 4300 Procolobus verus 37; Tiwai killed M 4300 Procolobus verus 4; max of 7 M 4400 Procolobus verus NMNH 481801 M 4400 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1701 M 4500 Procolobus verus AIUG 1703 M 4600 Procolobus verus 37; Tiwai killed M 4600 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1933 M 4800 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1748 M 4800 Procolobus verus AIUG 1633	Procolobus	verus		AIUG 1926	М	4200	
Procolobus verus 37; Tiwai killed M 4300 Procolobus verus MMNH 481801 M 4400 Procolobus verus MMNH 481801 M 4400 Procolobus verus MIUG 1856 M 4500 Procolobus verus MIUG 1856 M 4500 Procolobus verus MIUG 1703 M 4536 10 Procolobus verus AIUG 1703 M 4500 Procolobus verus AIUG 1756 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1931 M 4750 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1921 M 4800 Procolobus verus AIUG 1946 M 500 Procolobus verus AIUG 1946 M 500 Procolobus verus AIUG 1883 </td <td>Procolobus</td> <td>verus</td> <td></td> <td>NMNH 481802</td> <td>М</td> <td>4300</td> <td></td>	Procolobus	verus		NMNH 481802	М	4300	
Procolobus verus 4; max of 7 M 4400 Procolobus verus NMNH 481801 M 4400 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1901 M 4500 Procolobus verus AIUG 1901 M 4500 Procolobus verus AIUG 1703 M 4600 Procolobus verus AIUG 1756 M 4700 Procolobus verus AIUG 1786 M 4700 Procolobus verus AIUG 1788 M 4700 Procolobus verus AIUG 1893 M 4700 Procolobus verus AIUG 1893 M 4700 Procolobus verus AIUG 1748 M 4800 Procolobus verus AIUG 1633 M 510 Procolobus verus AIUG 1633 M 510 Procolobus verus AIUG 1683 M	Procolobus	verus		37; Tiwai killed	М	4300	
Procolobus verus NMNH 481801 M 4400 Procolobus verus AIUG 1856 M 4500 Procolobus verus AIUG 1901 M 4500 Procolobus verus AIUG 1703 M 4500 Procolobus verus AIUG 1703 M 4600 Procolobus verus AIUG 1736 M 4600 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1921 M 4800 Procolobus verus AIUG 1921 M 4800 Procolobus verus AIUG 1936 M 500 Procolobus verus AIUG 1946 M 500 Procolobus verus AIUG 1946 M	Procolobus	verus		4; max of 7	Μ	4400	
Procolobus verus AIUG 1856 M 4500 Procolobus verus MIUG 1901 M 4500 Procolobus verus MINH 47731 M 4536 10 Procolobus verus MIUG 1703 M 4600 Procolobus verus 37, Tiwai killed M 4600 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1938 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1748 M 4800 Procolobus verus MIUG 1730 M 900 Procolobus verus MIUG 1730 M 500 Procolobus verus AIUG 1833 M 5150 Procolobus verus MCG 237340 F 8165 18 Nasalis larvatus	Procolobus	verus		NMNH 481801	М	4400	
ProcolobusverusAIUG 1901M4500ProcolobusverusNMNH 477311M453610ProcolobusverusAIUG 1703M4600Procolobusverus37, Tiwai killedM4600ProcolobusverusAIUG 1756M4700ProcolobusverusAIUG 1738M4700ProcolobusverusAIUG 1738M4700ProcolobusverusAIUG 1933M4700ProcolobusverusAIUG 1911M4750ProcolobusverusAIUG 1748M4800ProcolobusverusAIUG 2593 (or 2543?)M4900ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1884M5500ProcolobusverusAIUG 1884M5500ProcolobusverusMCI 1884M5500ProcolobusverusMCI 1884M5500ProcolobusverusMCZ 41556F793817.NasalislarvatusMCZ 37340F816518NasalislarvatusMCZ 37340F816518Nasalis <tdlarvatus< td="">MCZ 37340F816518NasalislarvatusMCZ 37340F816518NasalislarvatusMCZ 37340F816518NasalislarvatusMCZ 37340F816518Nasalis<td< td=""><td>Procolobus</td><td>verus</td><td></td><td>AIUG 1856</td><td>М</td><td>4500</td><td></td></td<></tdlarvatus<>	Procolobus	verus		AIUG 1856	М	4500	
ProcolobusverusNMNH 477331M453610ProcolobusverusAIUG 1703M4600Procolobusverus37; Tiwai killedM4600ProcolobusverusAIUG 1756M4700ProcolobusverusAIUG 1738M4700ProcolobusverusAIUG 1893M4700ProcolobusverusAIUG 1911M4750ProcolobusverusAIUG 1921M4750ProcolobusverusAIUG 2593 (or 2543?)M900ProcolobusverusNNH4 477330M5000ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusMCZ 37340F8165NasalislarvatusMCZ 37340F8165NasalislarvatusMCZ 37343F8845Nasalis <tdlarvatus< td="">MCZ 41554F9185NasalislarvatusMCZ 37338F9752NasalislarvatusMCZ 37339F997922NasalislarvatusMCZ 37339F952221Nasalis<tdlarvatus< td="">MCZ 37339F9979<td>Procolobus</td><td>verus</td><td></td><td>AIUG 1901</td><td>М</td><td>4500</td><td></td></tdlarvatus<></tdlarvatus<>	Procolobus	verus		AIUG 1901	М	4500	
ProcolobusverusAIUG 1703M4600Procolobusverus37; Tiwai killedM4600ProcolobusverusAIUG 1736M4700ProcolobusverusAIUG 1738M4700ProcolobusverusAIUG 1893M4700ProcolobusverusAIUG 1911M4750ProcolobusverusAIUG 1921M4750ProcolobusverusAIUG 1921M4900ProcolobusverusAIUG 2593 (or 2543?)M4900ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1884M5500ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusMCZ 37340F8165NasalislarvatusMCZ 37340F8165Nasalis <tdlarvatus< td="">MCZ 37340F8165Nasalis<tdlarvatus< td="">MCZ 37343F8845Nasalis<tdlarvatus< td="">MCZ 37343F8845Nasalis<tdlarvatus< td="">MCZ 37333F9752Nasalis<tdlarvatus< td="">MCZ 3738F9752Nasalis<tdlarvatus< td="">MCZ 3738F9752Nasalis<tdlarvatus< td="">MCZ 3738F9752Nasalis<tdlarvatus< td="">MCZ 3738F9752Nasalis<tdlarvatus< td="">MCZ 3738F9752Nasalis<tdlarvatus< td="">MC</tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<>	Procolobus	verus		NMNH 477331	М	4536	10
Procolobus verus 37; Tiwai killed M 4600 Procolobus verus AIUG 1756 M 4700 Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1893 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1921 M 4700 Procolobus verus AIUG 293 (or 2543?) M 4800 Procolobus verus AIUG 1748 M 4800 Procolobus verus AIUG 1683 M 5000 Procolobus verus AIUG 1683 M 5500 Procolobus verus AIUG 1884 M 5700 Procolobus verus AIUG 1884 M 5700 Procolobus verus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus<	Procolobus	verus		AIUG 1703	М	4600	
ProcolobusverusAlUG 1756M4700ProcolobusverusAIUG 1738M4700ProcolobusverusAIUG 1893M4700ProcolobusverusAIUG 1911M4750ProcolobusverusAIUG 1921M4750ProcolobusverusAIUG 1748M4800ProcolobusverusAIUG 1748M4800ProcolobusverusAIUG 1748M4900ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1844M5500ProcolobusverusAIUG 1844M5700ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusAIUG 1884M5700ProcolobusverusMCZ 37326F8165NasalislarvatusMCZ 37340F8165Nasalis <tdlarvatus< td="">MCZ 37342F8165Nasalis<tdlarvatus< td="">MCZ 37343F884519Nasalis<tdlarvatus< td="">MCZ 37343F884519Nasalis<tdlarvatus< td="">MCZ 37339F975221Nasalis<tdlarvatus< td="">MCZ 37339F975221Nasalis<tdlarvatus< td="">MCZ 37339F975221Nasalis<tdlarvatus< td="">MCZ 37339F975221Nasalis<tdlarvatus< td="">MCZ 37339F97</tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<></tdlarvatus<>	Procolobus	verus		37: Tiwai killed	М	4600	
Procolobus verus AIUG 1738 M 4700 Procolobus verus AIUG 1893 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1748 M 4800 Procolobus verus AIUG 2593 (or 2543?) M 4900 Procolobus verus NMNH 477300 M 5000 Procolobus verus AIUG 1683 M 5150 Procolobus verus AIUG 1844 M 5000 Procolobus verus AIUG 1884 M 5700 Procolobus verus AIUG 1884 M 5700 Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis	Procolobus	verus		AIUG 1756	М	4700	
Procolobus verus AIUG 1893 M 4700 Procolobus verus AIUG 1911 M 4750 Procolobus verus AIUG 1921 M 4750 Procolobus verus AIUG 1748 M 4800 Procolobus verus AIUG 2593 (or 2543?) M 4900 Procolobus verus AIUG 1683 M 5150 Procolobus verus AIUG 1884 M 5000 Procolobus verus AIUG 1884 M 5000 Procolobus verus AIUG 1884 M 5700 Procolobus verus AIUG 1884 M 5700 Procolobus verus MCI 1884 M 5700 Procolobus verus MCI 1884 M 5700 Procolobus verus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus	Procolobus	verus		AIUG 1738	М	4700	
ProcolobusverusAIUG 1911M4750ProcolobusverusAIUG 1921M4750ProcolobusverusAIUG 1748M4800ProcolobusverusAIUG 2593 (or 2543?)M4900ProcolobusverusNMNH 477330M5000ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1946M5500ProcolobusverusAIUG 1844M5700ProcolobusverusAIUG 1844M5700ProcolobusverusAIUG 1844M5700ProcolobusverusAIUG 1844M5700ProcolobusverusAIUG 1844M5700NasalislarvatusNMNH 142222F7258NasalislarvatusMCZ 37326F8165NasalislarvatusMCZ 37340F8165NasalislarvatusMCZ 37342F8165NasalislarvatusMCZ 37343F8845NasalislarvatusMCZ 37343F8845NasalislarvatusMCZ 41556F907220NasalislarvatusMCZ 37339F975221.NasalislarvatusMCZ 37339F975221.NasalislarvatusMCZ 37339F975221.NasalislarvatusMCZ 37339F97922Nasalis <tdlarvatus< td="">MCZ 41560<td< td=""><td>Procolobus</td><td>verus</td><td></td><td>AIUG 1893</td><td>M</td><td>4700</td><td></td></td<></tdlarvatus<>	Procolobus	verus		AIUG 1893	M	4700	
ProcolobusverusAIUG 1921M4750ProcolobusverusAIUG 1748M4800ProcolobusverusAIUG 2593 (or 2543?)M4900ProcolobusverusNMNH 477300M5000ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1946M5500ProcolobusverusMcGraw 94-7M5500ProcolobusverusMCGraw 94-7M5500ProcolobusverusMCGraw 94-7M5500ProcolobusverusMCGraw 94-7M5500ProcolobusverusMCGraw 94-7M5500NasalislarvatusMCZ 37326F8165NasalislarvatusMCZ 37340F8165NasalislarvatusMCZ 37340F8165NasalislarvatusMCZ 37342F8165NasalislarvatusMCZ 37343F845NasalislarvatusMCZ 41562F907220NasalislarvatusMCZ 37338F975221NasalislarvatusMCZ 37339F997922NasalislarvatusMCZ 37339F997922NasalislarvatusMCZ 3133F907220NasalislarvatusMCZ 37339F997922NasalislarvatusMCZ 37339F997922Nasalislarvatu	Procolobus	verus		AIUG 1911	M	4750	
ProcolobusverusAIUG 1748M4800ProcolobusverusAIUG 2593 (or 2543?)M4900ProcolobusverusNMNH 477330M5000ProcolobusverusAIUG 1683M5150ProcolobusverusAIUG 1683M5500ProcolobusverusMcGraw 94-7M5500ProcolobusverusAIUG 1884M5700ProcolobusverusMCGraw 94-7M5500ProcolobusverusMCG 1884M5700NasalislarvatusMCZ 41556F793817.NasalislarvatusMCZ 37326F816518NasalislarvatusMCZ 37340F816518NasalislarvatusMCZ 37342F816518NasalislarvatusMCZ 37343F845519.NasalislarvatusMCZ 41554F884519.NasalislarvatusMCZ 41562F907220NasalislarvatusMCZ 41562F918520.NasalislarvatusMCZ 37338F952621NasalislarvatusMCZ 3739F997922NasalislarvatusMCZ 41560F907220NasalislarvatusMCZ 3738F952621NasalislarvatusMCZ 3738F952621NasalislarvatusMCZ 3738 <td>Procolobus</td> <td>verus</td> <td></td> <td>AIUG 1921</td> <td>M</td> <td>4750</td> <td></td>	Procolobus	verus		AIUG 1921	M	4750	
Procolobus verus AIUG 2593 (or 2543?) M 4900 Procolobus verus NMNH 477330 M 5000 Procolobus verus AIUG 1683 M 5150 Procolobus verus AIUG 1683 M 5500 Procolobus verus AIUG 1884 M 5500 Procolobus verus MUG 1884 M 5700 Procolobus verus MUG 1884 M 5700 Procolobus verus MUG 1884 M 5700 Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8618 19 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8618	Procolobus	verus		AIUG 1748	М	4800	
Procolobus verus NMNH 477330 M 5000 Procolobus verus AIUG 1683 M 5150 Procolobus verus AIUG 1946 M 5500 Procolobus verus McGraw 94-7 M 5500 Procolobus verus AIUG 1884 M 5700 Nasalis larvatus NMNH 42222 F 7258 16 Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8072 20 Nasalis larvatus MCZ 41552 F 9185 20 Nasalis larvatus MCZ 37338 <td>Procolobus</td> <td>verus</td> <td></td> <td>AIUG 2593 (or 2543?)</td> <td>M</td> <td>4900</td> <td></td>	Procolobus	verus		AIUG 2593 (or 2543?)	M	4900	
Procolobus verus AIUG 1683 M 5150 Procolobus verus AIUG 1946 M 5500 Procolobus verus McGraw 94-7 M 5500 Procolobus verus AIUG 1884 M 5700 Nasalis larvatus NMNH 142222 F 7258 16 Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus </td <td>Procolobus</td> <td>verus</td> <td></td> <td>NMNH 477330</td> <td>M</td> <td>5000</td> <td></td>	Procolobus	verus		NMNH 477330	M	5000	
Procolobus verus AIUG 1946 M 5500 Procolobus verus McGraw 94-7 M 5500 Procolobus verus AIUG 1884 M 5700 Nasalis larvatus NMNH 142222 F 7258 16 Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8618 19 Nasalis larvatus MCZ 41554 F 8618 19 Nasalis larvatus MCZ 41554 F 8845 19 Nasalis larvatus MCZ 41552 F 9072 20 Nasalis larvatus MCZ 41562 F 9152 20 Nasalis larvatus MCZ 37338 F 9752 21 Nasalis <	Procolobus	verus		AIUG 1683	M	5150	
Procolobus verus McGraw 94-7 M 5500 Procolobus verus AIUG 1884 M 5700 Nasalis larvatus NMNH 142222 F 7258 16 Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8618 19 Nasalis larvatus MCZ 37343 F 8845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus I, p. 136; 12 F 9185 20. Nasalis larvatus MCZ 37338 F 9752 21.	Procolobus	verus		AIUG 1946	M	5500	
Procolobus verus AIUG 1884 M 5700 Nasalis larvatus NMNH 142222 F 7258 16 Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8618 19 Nasalis larvatus MCZ 37343 F 8845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus MCZ 41562 F 9185 20. Nasalis larvatus MCZ 41562 F 9526 21. Nasalis larvatus MCZ 37338 F 9752 21.	Procolobus	verus		McGraw 94-7	M	5500	
Nasalis larvatus NMNH 142222 F 7258 16 Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37342 F 8618 19 Nasalis larvatus MCZ 37343 F 8845 19. Nasalis larvatus MCZ 37343 F 8845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus 1, p. 136; 12 F 9185 20. Nasalis larvatus NMNH 145325 F 9526 21. Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus MCZ 37339 F 9979	Procolobus	verus		AIUG 1884	M	5700	
Nasalis larvatus MCZ 41556 F 7938 17. Nasalis larvatus MCZ 41556 F 8165 18 Nasalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41552 F 9072 20 Nasalis larvatus MCZ 41552 F 9185 20. Nasalis larvatus NNHH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 37339 F 9979 2	Nasalis	larvatus		NMNH 142222	F	7258	16
Masalis larvatus MCZ 37326 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8845 19 Nasalis larvatus MCZ 41552 F 9072 20 Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus MCZ 41552 F 9185 20 Nasalis larvatus NNHH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22 <td>Nasalis</td> <td>larvatus</td> <td></td> <td>MCZ 41556</td> <td>F</td> <td>7938</td> <td>17.5</td>	Nasalis	larvatus		MCZ 41556	F	7938	17.5
Masalis larvatus MCZ 37340 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8845 19 Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus MCZ 41562 F 9172 20 Nasalis larvatus MCZ 41562 F 9185 20 Nasalis larvatus NNHH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22 <td>Nasalis</td> <td>larvatus</td> <td></td> <td>MCZ 37326</td> <td>F</td> <td>8165</td> <td>18</td>	Nasalis	larvatus		MCZ 37326	F	8165	18
Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37342 F 8165 18 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8845 19 Nasalis larvatus MCZ 41554 F 8845 19 Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus MCZ 41562 F 9185 20 Nasalis larvatus NMNH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22 Nasalis larvatus MCZ 41560 F 10206 22 Nasalis larvatus MCZ 41560 F 10206 22<	Nasalis	larvatus		MCZ 37340	F	8165	18
Nasalis larvatus NMNH 151817 F 8618 19 Nasalis larvatus MCZ 37343 F 8815 19 Nasalis larvatus MCZ 37343 F 8845 19 Nasalis larvatus MCZ 41554 F 8845 19 Nasalis larvatus MCZ 41562 F 9072 20 Nasalis larvatus MCZ 41562 F 9185 20 Nasalis larvatus NMNH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus Jarvatus FMNH 85918 F <td>Nasalis</td> <td>larvatus</td> <td></td> <td>MCZ 37342</td> <td>F</td> <td>8165</td> <td>18</td>	Nasalis	larvatus		MCZ 37342	F	8165	18
Nasalis Iarvatus MCZ 37343 F 8845 19. Nasalis Iarvatus MCZ 41554 F 8845 19. Nasalis Iarvatus MCZ 41554 F 8845 19. Nasalis Iarvatus MCZ 41562 F 9072 20. Nasalis Iarvatus NCZ 41562 F 9185 20. Nasalis Iarvatus NMNH 145325 F 9526 21. Nasalis Iarvatus MCZ 37338 F 9752 21. Nasalis Iarvatus MCZ 37339 F 9979 22. Nasalis Iarvatus NCZ 37339 F 9979 22. Nasalis Iarvatus 1, p. 136; 14 F 9979 22. Nasalis Iarvatus MCZ 41560 F 10206 22. Nasalis Iarvatus 1, p. 136; 13 F 10433 23. Nasalis Iarvatus FMNH 85918 F 10500	Nasalis	larvatus		NMNH 151817	F	8618	19
Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41554 F 8845 19. Nasalis larvatus MCZ 41562 F 9072 20. Nasalis larvatus 1, p. 136; 12 F 9185 20. Nasalis larvatus NMNH 145325 F 9526 21. Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus MCZ 37339 F 9979 22. Nasalis larvatus 1, p. 136; 14 F 9979 22. Nasalis larvatus 1, p. 136; 14 F 9979 22. Nasalis larvatus MCZ 41560 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23. Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		MC7. 37343	F	8845	19.5
Nasalis larvatus MCZ 41552 F 9072 20 Nasalis larvatus 1, p. 136; 12 F 9185 20. Nasalis larvatus NMNH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus 1, p. 136; 10 F 9752 21. Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		MCZ 41554	F	8845	19.5
Nasalis larvatus 1, p. 136; 12 F 9185 20 Nasalis larvatus 1, p. 136; 12 F 9185 20 Nasalis larvatus NMNH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21 Nasalis larvatus 1, p. 136; 10 F 9752 21 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22 Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		MCZ 41557	F	9072	20
Nasalis I avaits I, p. 156, 12 I 9165 20. Nasalis larvatus NMNH 145325 F 9526 21 Nasalis larvatus MCZ 37338 F 9752 21. Nasalis larvatus 1, p. 136; 10 F 9752 21. Nasalis larvatus MCZ 37339 F 9979 22. Nasalis larvatus 1, p. 136; 14 F 9979 22. Nasalis larvatus MCZ 41560 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23. Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		1 p 136: 12	F	0185	20 25
Nasalis Iarvatus MCZ 37338 F 9752 21 Nasalis larvatus MCZ 37338 F 9752 21 Nasalis larvatus 1, p. 136; 10 F 9752 21 Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22 Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		NMNH 145325	F	9526	20.25
Nasalis Invatus INCL 37330 F 9752 21. Nasalis larvatus 1, p. 136; 10 F 9752 21. Nasalis larvatus MCZ 37339 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus 1, p. 136; 13 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		MC7 37338	F	0752	21 5
Nasalis I arvatus N (P, 156, 10) I (P, 152, 12) I (P, 153, 12) <thi (p,="" 12)<="" 153,="" th=""> <thi (p,="" 12)<="" 153,="" th=""></thi></thi>	Nasalis	larvatus		1 p 136:10	F	9752	21.5
Nasalis Invatus INCL 5155 F 9979 22 Nasalis larvatus 1, p. 136; 14 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23. Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		MC7 37330	F	0070	21.5
Nasalis Iarvatus I, p. 130, 14 F 9979 22 Nasalis larvatus MCZ 41560 F 10206 22. Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		1 p 136:14	F	0070	22
Nasalis Invatus MC2 41500 F 10200 22. Nasalis larvatus 1, p. 136; 13 F 10433 23 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		MC7 41560	F	10206	22
Nasalis larvatus 1, p. 156, 15 F 10455 25 Nasalis larvatus FMNH 85918 F 10500	Nasalis	larvatus		1 p 126: 12	г Б	10200	22.5
	Nasalis	larvatus		I, p. 150, 15 EMNH 85018	г Б	10455	23
Nasalis Jarvatus MC7 37341 E 10660 23	Nasalis	larvatus		MC7 37341	F	10500	22.5
Nasalis larvatus MCZ 27221 E 10000 23.	Nasalis	larvatus		MC7 37321	г г	10000	23.3 24
Tragentis MC2 57551 F 10880 24	Nasalis	larvatus		MC7 27227	г Б	10000	24
Nasalis larvatus MCZ 31351 F 10880 24	Nasalis	larvatus		MCZ 37337 MCZ 41555	г г	11240	24
Nasalis larvatus MCZ 41550 F 11340 25	Nasalis	larvatus		MCZ 41550	г г	11240	25
Trasolis larvatus MC2 41337 F 11340 23	Nasalis	larvatus		MC7 27244	г 5	11704	23
Travanis in Fains MICE 37,344 F 11/94 20	Nasalis	larvatus		1 n 126.2	Г	11/94	20
Magnifie Important Figure EVANUE (2020) M 12008 29.	Nasalis	larvatus		I, P. 130, 3 Emnil 69693		13200	27.23

				Mass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Nasalis	larvatus		MCZ 37325	М	14062	31
Nasalis	larvatus		FMNH 68682	М	16145	
Nasalis	larvatus		NMNH 142214	М	17237	38
Nasalis	larvatus		1, p. 136; 4	М	17237	38
Nasalis	larvatus		MCZ 37328	М	19278	42.5
Nasalis	larvatus		MCZ 37328	М	19278	42.5
Nasalis	larvatus		1. p. 136; 2	М	19391	42.75
Nasalis	larvatus		1. p. 136; 6	М	19958	44
Nasalis	larvatus		NMNH 142215	M	19958	44
Nasalis	larvatus		FMNH 85919	М	20000	
Nasalis	larvatus		NMNH 142219	M	20412	45
Nasalis	larvatus		MC7 37327	M	20412	45
Nasalis	larvatus		MC7 37329	M	20412	45
Nasalis	lamatus		MCZ 37330	M	20412	45
Nasalis	lamatus		MCZ 41557	M	20412	45
Nasalis	lanvatus		1 n 136: 7	M	20412	45
Nasalis Nasalis	lamentus		1, p. 130, 7	M	20412	45
Nasalis			MC7 41563	M	20800	40
Nasalis	larvatus		MCZ 41303	M	20800	40
Nasalis	larvatus		1, p. 136; 1	M	20800	40
Nasalis	larvatus		I, p. 130; 8	M	20800	40
Nasalis	larvatus		NMNH 142220	M	21773	40
Nasalis	larvatus		I, p. 130; 9	M	21775	40
Nasalis	larvatus		ex-MCZ, ⁴ Field No. 366	M	23134	51
Nasalis	larvatus		NMNH 142217	M	23387	52
Nasalis	larvatus		MCZ 41561	M	23587	52
Nasalis	larvatus		1 , p. 136; 6	M	23587	52
Nasalis (Simias)	concolor		NMNH 121661	F	6237	13.75
Nasalis (Simias)	concolor		NMNH 121658	F	7031	15.5
Nasalis (Simias)	concolor		NMNH 121901	F	7144	15.75
Nasalis (Simias)	concolor		BM(NH) 1904.5.4.2	F	7144	15.75
Nasalis (Simias)	concolor		NMNH 121660	М	8618	19
Nasalis (Simias)	concolor		NMNH 121663	М	8845	19.5
Nasalis (Simias)	concolor		NMNH 121659	М	9979	22
Presbytis	comata		FMNH F250	М	6800	
Presbytis	frontata	frontata	NMNH 151821	F	4082	9
Presbytis	frontata	frontata	NMNH 154361	F	4990	11
Presbytis	frontata	frontata	NMNH 151824	F	5443	12
Presbytis	fro n tata	fro n tata	NMNH 151820	F	5670	12.5
Presbytis	frontata	frontata	NMNH 151823	F	5897	13
Presbytis	frontata	frontata	NMNH 154362	F	6350	14
Presbytis	frontata	frontata	NMNH 154363	F	6350	14
Presbytis	frontata	frontata	NMNH 151822	F	6577	14.5
Presbytis	frontata	frontata	NMNH 151825	Μ	5557	12.25
Presbytis	hosei	sabana	MCZ 35621	F	6577	14.5
Presbytis	hosei	subsp. indet.	MCZ 37370	F	5557	12.25
Presbytis	hosei	subsp. indet.	FMNH F320	F	6750	
Presbytis	hosei	subsp. indet.	FMNH 68693	F	6800	
Presbytis	hosei	subsp. indet.	FMNH F3115	Μ	6000	
Presbytis	hosei	subsp. indet.	FMNH F3110	Μ	6000	
Presbytis	hosei	subsp. indet.	FMNH 85922	Μ	6000	
Presbytis	hosei	subsp. indet.	FMNH 85122	Μ	6000	
Presbytis	hosei	subsp. indet.	FMNH 68697	М	6000	
Preshvtis	hosei	subsp. indet	FMNH F3019	M	6500	
1 resoyus	110301	Subsp. muct.		•••		

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Presbytis	hosei	subsp. indet.	FMNH 85121	М	6500	
Presbytis	melalophos	batuana	NMNH 121809	F	4423	9.75
Presbytis	melalophos	batuana	NMNH 121804	F	5443	12
Presbytis	melalophos	batuana	NMNH 121807	F	6577	14.5
Presbytis	melalophos	batuana	NMNH 121805	F	6804	15
Presbytis	melalophos	batuana	NMNH 121811	F	7258	16
Presbytis	melalophos	batuana	NMNH 121808	F	7484	16.5
Presbytis	melalophos	batuana	NMNH 121899	М	5783	12.75
Presbytis	melalophos	batuana	NMNH 121810	М	6917	15.25
Presbytis	melalophos	batuana	NMNH 121806	М	7144	15.75
Presbytis	melalophos	cana	NMNH 122911	F	5783	12.75
Presbytis	melalophos	cana	NMNH 122914	F	5897	13
Presbytis	melalophos	cana	NMNH 122913	F	7598	16.75
Presbytis	melalophos	cana	NMNH 122916	F	7825	17.25
Presbytis	melalophos	cana	NMNH 122912	M	6010	13.25
Presbytis	melalophos	cana	NMNH 122915	M	6804	15
Presbytis	melalophos	catemana	NMNH 123148	F	5670	12 5
Presbytis	melalophos	catemana	NMNH 123149	F	6350	12.5
Presbytis	melalophos	catemana	NMNH 113175	M	5807	13
Presbytis	melalophos	catemana	NMNH 113173	M	6350	13
Presbytis	melalophos	chrysomalas	NMNH 1/2209	F	6017	15 25
Presbylis	melalophos	chrysometas	NIMNH 142207	I' M	5907	13.23
Presbylis	melalophos	chi ysometas	NIMNIH 142207	M	6250	13
Presbylis Dresbytis	metatophos	chrysometas	NMNH 142203	M	6350	14
Presbylis Dresbytis	metatophos	chrysometas	NMNNH 142204	M	6250	14
Presbylis	metatophos	chrysometas	NMINH 142203	M	7021	14
Presbylis	meiaiopnos	chrysometas	NMINH 142208	M	7031	15.5
Presbyus	melalopnos	cnrysomeias	NMNH 142206	м	/144	15.75
Presbytis	melalopnos	femoralis	NMNH 115500	M	5/83	12.75
Presbytis	melalophos	femoralis	NMNH 8689/	м	5897	13
Presbytis	melalophos	femoralis	NMNH 112709	M	6577	14.5
Presbytis	melalophos	femoralis	NMNH 112612	M	6691	14.75
Presbytis	melalophos	melalophos	NMNH 141150	F	5783	12.75
Presbytis	melalophos	melalophos	NMNH 141148	F	5897	13
Presbytis	melalophos	melalophos	NMNH 141152	F	6691	14.75
Presbytis	melalophos	melalophos	NMNH 141146	М	6124	13.5
Presbytis	melalophos	melalophos	NMNH 141149	М	6237	13.75
Presbytis	melalophos	melalophos	NMNH 141147	М	6691	14.75
Presbytis	melalophos	melalophos	NMNH 141151	М	6691	14.75
Presbytis	melalophos	melalophos	NMNH 144081	М	6691	14.75
Presbytis	melalophos	melalophos	NMNH 141153	М	7371	16.25
Presbytis	melalophos	natunae	NMNH 104843	F	4990	11
Presbytis	melalophos	natunae	NMNH 104845	F	5216	11.5
Presbytis	melalophos	natunae	NMNH 104846	F	5670	12.5
Presbytis	melalophos	natunae	NMNH 104847	М	4536	10
Presbytis	melalophos	percura	NMNH 144086	F	6577	14.5
Presbytis	melalophos	percura	NMNH 144084	F	6917	15.25
Presbytis	melalophos	percura	NMNH 144085	F	6917	15.25
Presbytis	melalophos	percura	NMNH 144087	F	7144	15.75
Presbytis	melalophos	percura	NMNH 115666	М	4536	10
Presbytis	melalophos	percura	NMNH 115664	М	4990	11
Presbytis	melalophos	percura	NMNH 144088	М	7144	15.75
Presbytis	melalophos	percura	NMNH 144083	М	7258	16
Presbytis	melalophos	rhionis	NMNH 115669	F	4082	9

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Presbytis	melalophos	rhionis	NMNH 115668	F	5443	12
Presbytis	melalophos	rhionis	NMNH 115665	F	6010	13.25
Presbytis	melalophos	rhionis	NMNH 115667	F	6350	14
Presbytis	melalophos	robinsoni	BM(NH) 1914.12.8.30	F	6464	14.25
Presbytis	melalophos	robinsoni	BM(NH) 1914.12.8.29	М	7031	15.5
Presbytis	melalophos	robinsoni	NMNH 124217	М	7258	16
Presbytis	melalophos	robinsoni	NMNH 124290	Μ	7258	16
Presbytis	melalophos	robinsoni	NMNH 124231	М	7598	16.75
Presbytis	melalophos	siamensis	Fleagle P17	F	6410	
Presbytis	melalophos	siamensis	Fleagle P24	F	6880	
Presbytis	melalophos	siamensis	Fleagle P23	F	7340	
Presbytis	melalophos	siamensis	Fleagle P22	Μ	6510	
Presbytis	melalophos	siamensis	Fleagle P14	М	6860	
Presbytis	melalophos	sumatrana	NMNH 114509	F	7825	17.25
Presbytis	melalophos	sumatrana	NMNH 114508	F	8051	17.75
Presbytis	melalophos	sumatrana	NMNH 114507	М	7371	16.25
Presbytis	potenziani		NMNH 121671	F	6010	13.25
Presbytis	potenziani		NMNH 121666	F	6804	15
Presbytis	, potenziani		NMNH 121664	М	4536	10
Presbytis	potenziani		NMNH 121669	М	4990	11
Presbytis	potenziani		NMNH 121672	М	5443	12
Presbytis	, potenziani		NMNH 121667	М	6804	15
Presbytis	potenziani		NMNH 121668	М	6804	15
Presbytis	potenziani		NMNH 121673	Μ	7144	15.75
Presbytis	potenziani		NMNH 121670	М	7258	16
Presbytis	rubicunda	rubicunda	ex-MCZ ^{a,} Field No. 369	F	4536	10
Presbytis	rubicunda	rubicunda	MCZ 35609	F	4536	10
Presbytis	rubicunda	rubicunda	MCZ 37368	F	4536	10
Presbytis	rubicunda	rubicunda	MCZ 35718	F	4763	10.5
Presbytis	rubicunda	rubicunda	MCZ 35617	F	4990	11
Presbytis	rubicunda	rubicunda	MCZ 35650	F	5443	12
Presbytis	rubicunda	rubicunda	MCZ 35632	F	5443	12
Presbytis	rubicunda	rubicunda	MCZ 35702	F	5443	12
Presbytis	rubicunda	rubicunda	MCZ 35654	F	5670	12.5
Presbytis	rubicunda	rubicunda	MCZ 35648	F	5670	12.5
Presbytis	rubicunda	rubicunda	MCZ 35624	F	5897	13
Presbytis	rubicunda	rubicunda	MCZ 35570	F	5897	13
Presbytis	rubicunda	rubicunda	MCZ 35624	F	5897	13
Presbytis	rubicunda	rubicunda	MCZ 35664	F	5897	13
Presbytis	rubicunda	rubicunda	MCZ 35706	F	5897	13
Presbytis	rubicunda	rubicunda	MCZ 35679	F	6124	13.5
Presbytis	rubicunda	rubicunda	MCZ 35599	F	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35707	F	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35705	F	6577	14.5
Presbytis	rubicunda	rubicunda	NMNH 125158	F	6577	14.5
Presbytis	rubicunda	rubicunda	NMNH 145333	F	6917	15.25
Presbytis	rubicunda	rubicunda	MCZ 35639	F	7031	15.5
Presbytis	rubicunda	rubicunda	NMNH 125159	F	7258	16
Presbytis	rubicunda	rubicunda	NMNH 153791	F	7258	16
Presbytis	rubicunda	rubicunda	NMNH 153795	F	7711	17
Presbytis	rubicunda	rubicunda	MCZ 35601	М	5443	12
Presbytis	rubicunda	rubicunda	MCZ 35630	Μ	5443	12

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Presbytis	rubicunda	rubicunda	MCZ 35667	М	5670	12.5
Presbytis	rubicunda	rubicunda	MCZ 35653	М	5670	12.5
Presbytis	rubicunda	rubicunda	MCZ 35638	Μ	5897	13
Presbytis	rubicunda	rubicunda	MCZ 35566	М	6124	13.5
Presbytis	rubicunda	rubicunda	MCZ 35573	М	6124	13.5
Presbytis	rubicunda	rubicunda	MCZ 35692	М	6124	13.5
Presbytis	rubicunda	rubicunda	NMNH 151826	М	6124	13.5
Presbytis	rubicunda	rubicunda	MCZ 35637	М	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35564	М	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35684	М	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35691	М	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35703	М	6350	14
Presbytis	rubicunda	rubicunda	NMNH 145335	М	6350	14
Presbytis	rubicunda	rubicunda	NMNH 154364	Μ	6350	14
Presbytis	rubicunda	rubicunda	NMNH 154365	М	6350	14
Presbytis	rubicunda	rubicunda	MCZ 35713	м	6577	14.5
Presbytis	rubicunda	rubicunda	NMNH 153789	м	6691	14.75
Presbytis	rubicunda	rubicunda	NMNH 153792	м	6691	14.75
Presbytis	rubicunda	rubicunda	MCZ 35712	М	6804	15
Presbytis	rubicunda	rubicunda	NMNH 145336	м	6804	15
Presbytis	rubicunda	rubicunda	NMNH 153794	м	6804	15
Presbytis	rubicunda	rubicunda	NMNH 154366	м	6804	15
Presbytis	rubicunda	rubicunda	MCZ 35616	м	7031	15.5
Presbytis	rubicunda	rubicunda	MCZ 35698	м	7031	15.5
Presbytis	rubicunda	rubicunda	NMNH 145334	м	7371	16.25
Presbytis	rubicunda	rubida	NMNH 153790	F	7825	17.25
Presbytis	thomasi		NMNH 143549	F	6350	14
Presbytis	thomasi		NMNH 143555	F	6350	14
Presbytis	thomasi		NMNH 143557	F	6350	14
Presbytis	thomasi		NMNH 143551	F	8051	17 75
Presbytis	thomasi		NMNH 143560	M	6237	13 75
Presbytis	thomasi		NMNH 143561	M	6804	15
Presbytis	thomasi		NMNH 143559	M	7258	16
P. (Rhinopithecus)	avunculus		28: 1	F	7000	10
P. (Rhinopithecus)	avunculus		49 UHVZ ?	F	8000	
P. (Rhinopithecus)	avunculus		28: 2	F	9000	
P. (Rhinopithecus)	avunculus		28: 3	F	9000	
P. (Rhinopithecus)	avunculus		28:1 of 1	M	14500	
P. (Rhinopithecus)	bieti		25; adult	F	9000	
P. (Rhinopithecus)	bieti		28; no info	F	13800	
P. (Rhinopithecus)	hieti		KIZ 79621	F	15000	
P (Rhinopithecus)	bieti		25: subadult	M	13000	
P (Rhinopithecus)	hieti		23, subadult 28: no info	M	19000	
P (Rhinopithecus)	bieti		25; an ecdotal >30	M	20000	
P (Rhinopithecus)	brelichi		25, allocultar, >50	M	12250	
P. (Rhinopithecus)	brelichi		25. adult	M	15250	
P (Rhinopithecus)	rorellana		25 , aunt 25 , Chen 1020 1	IVI E	02/00	
P. (Rhinopithecus)	rorellana		75 Chen 1020 7	E I	12000	
P (Rhinopithecus)	roxellana		75 Chen 1080 3	E I	15400	
P. (Rhinopithecus)	roxellana		25 . Oin 1081 1	Г	15500	
P (Rhinopithecus)	rorellana		23 , Qiu, 1901, 1 75 , Chen 1000	IVI M	16200	
P. (Rhinopithecus)	roxellana		25 , Chen, 1909 25 , Lin, 1090 1	IVI M	16540	
P (Rhinopithecus)	rorellana		23, Liu, 1907, I 35 Ain 1001 2		16750	
· · (initiopuliecus)	i one nunu		23, Qiu, 1901, 2	IVI	10/20	

					N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
P. (Rhinopithecus)	roxellana		28 ; no info	М	17000	
P. (Rhinopithecus)	roxellana		25; Liu, 1989, 2	Μ	19000	
P. (Rhinopithecus)	roxellana		25; Qiu, 1981, 3	М	26500	
Pygathrix (P.)	nemaeus	nemaeus	NMNH 356574	F	8165	18
Pygathrix (P.)	nemaeus	nemaeus	NMNH 356577	Μ	10433	23
Pygathrix (P.)	nemaeus	nemaeus	NMNH 356576	Μ	11340	25
Pygathrix (P.)	nemaeus	nigripes	UHVZ 78.01.T7	F	8700	
Pygathrix (P.)	nemaeus	nigripes	49; UHVZ, none listed	Μ	11000	
Pygathrix (P.)	nemaeus	nigripes	UHVZ 78.01.T6	М	11100	
Semnopithecus	entellus	achates	BM(NH) 1914.11.18.12	F	7711	17
Semnopithecus	entellus	achates	41 , p. 489	F	10206	22.5
Semnopithecus	entellus	achates	BM(NH) 1914.11.8.9	F	12247	27
Semnopithecus	entellus	achates	BM(NH) 1914.11.18.11	М	10319	22.75
Semnopithecus	entellus	achates	BM(NH) 1914.11.18.1	М	13608	30
Semnopithecus	entellus	achates	BM(NH) 1914.11.8.8	М	15876	35
Semnopithecus	entellus	aeneas	BM(NH) 1914.11.18.24	F	9979	22
Semnopithecus	entellus	aeneas	BM(NH) 1914.11.18.23	M	11567	25.5
Semnopithecus	entellus	ajax	BM(NH) 33.12.1.1	F	12701	28
Semnopithecus	entellus	ajax	BM(NH) 23 9 1 2	M	19505	43
Semnopithecus	entellus	ajax	BM(NH) 28.7.11.1	M	20412	45
Semnopithecus	entellus	elissa	BM(NH) 1914 11 18 16 or 17	F	8278	18.25
Semnopithecus	entellus	elissa	BM(NH) 1914 11 18 16 or 17	F	10433	23
Semnopithecus	entellus	entellus	41 n 484 [•] Midnapore	F	11340	25
Semnopithecus	entellus	entellus	41 n 484: Midnapore	M	15876	35
Semnopithecus	entellus	entellus/hypoleucos/	$35 \text{ n } 76^\circ \text{ min of } 11$	F	7711	17
Semilopunecus	emenus	nriam	55, p. 76, mill of 11	-	,,,,,	••
Semnopithecus	entellus	entellus/hypoleucos/ priam	35, p. 76; max of 11	F	12247	27
Semnopithecus	entellus	entellus/hypoleucos/ priam	35 , p. 76; min of 9	М	9072	20
Semnopithecus	entellus	entellus/hypoleucos/ priam	35 , p. 76; max of 9	М	18144	40
Semnopithecus	entellus	hector	BM(NH) 1914.7.10.11	F	13154	29
Semnopithecus	entellus	hector	BM(NH) 1914.7.10.13	F	14062	b 31
Semnopithecus	entellus	hector	BM(NH) 1914.7.10.10	М	17237	38
Semnopithecus	entellus	iulus	BM(NH) 1914.11.18.7?	F	8392	18.5
Semnopithecus	entellus	iulus	BM(NH) 1914.11.18.6	М	9526	21
Semnopithecus	entellus	priam	BM(NH) 1930.11.1.10	F	8845	19.5
Semnopithecus	entellus	priam	BM(NH) 1933.7.29.1	М	16783	37
Semnopithecus	entellus	schistacea	BNHS 5143	F	11340	25
Semnopithecus	entellus	schistacea	BM(NH) 28.7.11.7	F	15909	35
Semnopithecus	entellus	schistacea	BM(NH) 15.9.1.6	F	17237	38
Semnopithecus	entellus	schistacea	NMNH 174083	М	23587	52
Semnopithecus	entellus	thersites	35 . p. 76; min of 4	F	5455	12
Semnopithecus	entellus	thersites	BM(NH) 1915.3.1.9. 10 or 11	F	5897	13
Semnopithecus	entellus	thersites	BM(NH) 1915.3.1.9. 10 or 11	F	6804	15
Semnopithecus	entellus	thersites	35 n 76; max of 4	F	8182	18
Semnoplihecus	entellus	thersites	42 n 115 max of 7	F	8618	19
Semmonitheous	ontollus	thersites	35 n 76: min of 8	M	7938	17.5
Semmopulacus	antallus	tharsitas	BM(NH) 1930 11 1 1	M	10886	24
Semnopullecus	entellus	thersites	BM(NH) 1915 3 1 12 or 13	M	11453	25.25
Semnopunecus	entellus	thersites	BM(NH) 1930 11 1 2	M	12500	23.23
Semnopunecus	entellus	thersites	35 BM(NH) 1015 2 1 12 ~ 12	M	12281	20 5
semnopunecus	entettus	inersues	33, DIVI(1917) 1913.3.1.12 OF 13	141	13301	49.5

					M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
S. (Trachypithecus)	cristata	cristata	NMNH 113174	F	4990	11
S. (Trachypithecus)	cristata	cristata	NMNH 123037	F	5216	11.5
S. (Trachypithecus)	cristata	cristata	NMNH 123070	F	5216	11.5
S. (Trachypithecus)	cristata	cristata	NMNH 124711	F	5783	12.75
S. (Trachypithecus)	cristata	cristata	NMNH 115673	F	6010	13.25
S. (Trachypithecus)	cristata	cristata	NMNH 124712	F	6010	13.25
S. (Trachypithecus)	cristata	cristata	NMNH 114160	F	6237	13.75
S. (Trachypithecus)	cristata	cristata	NMNH 114513	F	6237	13.75
S. (Trachypithecus)	cristata	cristata	NMNH 115674	F	6237	13.75
S. (Trachypithecus)	cristata	cristata	NMNH 115672	F	6350	14
S. (Trachypithecus)	cristata	cristata	NMNH 124971	F	6350	14
S. (Trachypithecus)	cristata	cristata	NMNH 124713	F	6464	14.25
S (Trachypithecus)	cristata	cristata	NMNH 123036	F	6577	14.5
S (Trachypithecus)	cristata	cristata	NMNH 113071	F	6804	15
S (Trachypithecus)	cristata	cristata	NMNH 114514	F	7598	16.75
S (Trachypithecus)	cristata	cristata	NMNH 115670	M	6124	13.5
S (Trachypithecus)	cristata	cristata	NMNH 144371	M	6804	15.5
S (Trachypithecus)	cristata	cristata	NMNH 113170	M	6917	15 25
S (Trachypithecus)	cristata	cristata	NMNH 113171	M	7258	16
S. (Trachypithecus)	cristata	cristata	NMNH 114516	M	7258	16
S. (Trachypithecus)	cristata	cristata	NMNH 113070	M	8051	17 75
S. (Trachypithecus)	cristata	cristata	NMNH 124725	M	8165	18
S. (Trachyptinecus)	cristata	cristata	$35 \cdot RM(NH)$ see ref n 53	M	8676	10
S. (Trachyplinecus)	cristata	ultima	MC7 35663	E	4000	11
S. (Trachypithecus)	cristata	ultima	MCZ 37674	F	4990	11
S. (Trachypithecus)	cristata	ultima	NMNH 154350	F	5216	11 5
S. (Trachyptinecus)	cristata	ultima	MC7 35607	F	5216	11.5
S. (Trachypithecus)	cristata	ultima	MCZ 35718	F	5216	11.5
S. (Trachyptinecus)	cristata	ultima	MCZ 35507	r E	5442	12
S (Trachypithecus)	cristata	ultima	MCZ 35610	F	5443	12
S. (Trachypithecus)	cristata	ultima	MCZ 35636	F	5443	12
S. (Trachyplinecus)	cristata	ultima	MCZ 35675	r E	5443	12
S. (Trachypithecus)	cristata	ultima	MCZ 35683	г Б	5445	12
S. (Trachypithecus)	cristata	ultima	MCZ 37669	г Б	5445	12
S. (Trachypithecus)	cristata	ultima	MCZ 37008	г Б	5445	12
S. (Trachypinecus)	cristata	ultima?	MCZ 35660	г Б	5445	12
S. (Trachypithecus)	cristata	ultima	MCZ 35679	г Е	5670	12.5
S. (Trachypithecus)	cristata	ultima	MCZ 37660	Г	5670	12.5
S. (Trachyplinecus)	cristata	ultima	MCZ 37609	г Г	5670	12.5
S. (Trachyplinecus)	cristata	ultima	MCZ 37073	г Г	5670	12.5
S. (Trachypinecus)	cristata	ullima?	I, p. 155; I	r	50/0	12.5
S. (Trachyplinecus)	cristata	uttima (MCZ 35003	F	5897	13
S. (Trachyptinecus)	cristata	ultima	MCZ 35640	F T	5897	13
S. (Trachyptinecus)	cristata	uttima	NMNH 142213	F	6124	13.5
S. (Trachypithecus)	cristata	ultima	MCZ 35567	F	6124	13.5
S. (Trachypithecus)	cristata	ultima	MCZ 35618	F	6124	13.5
S. (Trachypithecus)	cristata	utitma	MCZ 35683	F T	6124	13.5
S. (Trachypithecus)	cristata	uttima?	MCZ 35696	F	6350	14
S. (Trachyptinecus)	cristata	uttima?	MCZ 35604	F	6350	14
S. (Trachypithecus)	cristata	ultima	MCZ 35605	F	6350	14
S. (Iracnypithecus)	cristata	ultima	MCZ 35680	M	4990	11
S. (Iracnypithecus)	cristata	ultima	MCZ 35595	M	5216	11.5
S. (Trachypithecus)	cristata	ultima	1 , p. 135; 2	Μ	5216	11.5
S. (Trachypithecus)	cristata	ultima	MCZ 35583	М	5670	12.5

				M	lass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
S. (Trachypithecus)	cristata	ultima	MCZ 35690	Μ	5897	13
S. (Trachypithecus)	cristata	ultima	MCZ 35709	Μ	5897	13
S. (Trachypithecus)	cristata	ultima	MCZ 37675	Μ	5897	13
S. (Trachypithecus)	cristata	ultima	MCZ 35665	Μ	6124	13.5
S. (Trachypithecus)	cristata	ultima	MCZ 35762	Μ	6350	14
S. (Trachypithecus)	cristata	ultima	MCZ 35685	Μ	6350	14
S. (Trachypithecus)	cristata	ultima	NMNH 142212	Μ	6577	14.5
S. (Trachypithecus)	cristata	ultima	MCZ 35708	М	6577	14.5
S. (Trachypithecus)	cristata	ultima	MCZ 37665	М	6577	14.5
S. (Trachypithecus)	cristata	ultima	MCZ 37670	М	6577	14.5
S. (Trachypithecus)	cristata	ultima	MCZ 37671	М	7031	15.5
S. (Trachypithecus)	cristata	ultima?	MCZ 35666	M	7484	16.5
S. (Trachynithecus)	cristata	ultima	MCZ 35672	M	7484	16.5
S (Trachypithecus)	cristata	ultima?	MCZ 35671	M	7938	17.5
S (Trachyptillecus)	francoisi		UHVZ Ps 11	F	7200	11.5
S (Trachypithecus)	francoisi		49 : max of 2	F	.7500	
S (Trachypithecus)	francoisi		30: KIZ 76102	F	8700	
S. (Trachyptinecus)	francoisi		UHV7 Ps 47	M	5700	
S. (Trachyptiliecus)	francoisi		UHVZ 128	M	6500	
S. (Trachyptiliecus)	francoisi	[françoisi]	31	M	7600	
S. (Trachyptinecus)	francoisi	[leucocenhalus]	30: KIZ 76101	M	7700	
S. (Trachyptinecus)	francoisi	liencocepinansj	30. KIZ 76105	M	8800	
S. (Trachyptinecus)	francoisi	[francoisi]	30, KIZ 70105	M	0000	
S. (Trachyptinecus)	francoisi	[Jrancoisi]	31	IVI M	9000	
S. (Trachypunecus)	francoisi	[leucocepnaius]	31 30: KIZ 77205	M	9000	
S. (Trachypunecus)	grancoisi		7 UUL 1 of 1	E IVI	9430	
S. (Trachypithecus)	geel			Г	9300	
S. (Trachyplinecus)	geel		ZIUR, IIIII 01 4 751 19707	IVI M	10000	
S. (Tracnyptinecus)	geel		ZSI 18/2/	M	10850	
S. (Trachyptinecus)	geel		ZIOH; max of 4	M	8000	
S. (Trachypithecus)	hatinhensis	,	5 NB/DUL 10////2	M	5442	10
S. (Tracnypitnecus)	obscura	carbo	NMINH 104443	Г	01445 01445	12
S. (Trachypithecus)	obscura	carbo	NMNH 104444	M	8105	10 75
S. (Trachypithecus)	obscura	carbo	NMNH 123993	M	8505	18.75
S. (Trachypithecus)	obscura	flavicauda	NMNH 83259	F	4990	11
S. (Trachypithecus)	obscura	flavicauda	NMNH 83258	F	5443	12
S. (Trachypithecus)	obscura	flavicauda	BM(NH) ?1937.9.10.1	г Т	8392	18.5
S. (Trachypithecus)	obscura	flavicauda	FMNH 105686	F	6800	
S. (Trachypithecus)	obscura	flavicauda	NMNH 124205	F	7938	17.5
S. (Trachypithecus)	obscura	flavicauda	BM(NH) 1914.12.8.24 or 25	F	8392	18.5
S. (Trachypithecus)	obscura	flavicauda	BM(NH) 1914.12.8.24 or 25	F	8618	19
S. (Trachypithecus)	obscura	flavicauda	BM(NH) 1914.12.8.24 or 25	M	7031	15.5
S. (Trachypithecus)	obscura	flavicauda	BM(NH) 1914.12.8.27	M	7484	16.5
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.731	F	4990	11
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.706	F	5897	13
S. (Trachypithecus)	obscura	obscura	Fleagle P26	F	6340	
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.703	F	6350	14
S. (Trachypithecus)	obscura	obscura	NMNH 112614	F	6691	14.75
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.705	F	6804	15
S. (Trachypithecus)	obscura	obscura	Fleagle P27	F	6850	
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.737	F	7031	15.5
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.736	F	7031	15.5
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.721	F	7938	17.5
S. (Trachypithecus)	obscura	obscura	NMNH 105023	F	8845	19.5

					M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.704	м	6804	15
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.734	М	6804	15
S (Trachypithecus)	obscura	obscura	Fleagle P25	м	7200	
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.709	М	7258	16
S (Trachypithecus)	obscura	obscura	BM(NH) 71.729	м	7711	17
S. (Trachypithecus)	obscura	obscura	Fleagle P18	М	7960	
S. (Trachypithecus)	obscura	obscura	BM(NH) 71.722	м	8165	18
S. (Trachypithecus)	obscura	obscura	NMNH 115497	М	8165	18
S (Trachypithecus)	obscura	obscura	NMNH 115498	M	8392	18.5
S. (Trachypithecus)	obscura	obscura	NMNH 124084	М	8618	19
S. (Trachypithecus)	ohscura	obscura	BM(NH) 71.733	м	9072	20
S. (Trachypithecus)	obscura	obscura	NMNH 124289	M	9072	20
S (Trachypithecus)	obscura	obscura	NMNH 112613	M	9185	20.25
S (Trachypithecus)	obscura	sanctorum	NMNH 104446	F	8165	18
S (Trachyptinecus)	obscura	sanctorum	NMNH 124113	M	10886	24
S (Trachyptinecus)	obscura	subsp indet	FMNH 105659	F	4150	-
S (Trachypithecus)	obscura	subsp. indet	FMNH 105646	F	4300	
S (Trachypithecus)	obscura	subsp. indet.	FMNH 105651	F	5800	
S (Trachyptinecus)	obscura	subsp. indet	FMNH 105647	F	6250	
S. (Trachyptiliccus)	obscura	subsp. indet	FMNH 105660	м	6100	
S. (Trachyptinecus)	obscura	subsp. indet	FMNH 105680	M	7100	
S. (Trachyptitecus)	obscura	subsp. indet	FMNH 105675	M	8700	
S (Trachyptinecus)	nhavrei	crenuscula	BM(NH) 1924 9 2 14	F	7484	16.5
S. (Trachyptitecus)	nhavrei	crepuscula	BM(NH) 1924.9.2.14	M	6124	13.5
S. (Trachyptinecus)	phayrei	crepuscula	BM(NH) 1924 9 2 9 or 10	M	7484	16.5
S. (Trachypithecus)	phayrei	nhavrei	BM(NH) 1979 2347 (or below)	F	4763	10.5
S. (Trachyptinecus)	phayrei	phayrei	BM(NH) 1937 9 10 13	F	6804	15
5. (Trachyphinecus)	pillagree	phayret	(or above)	•	0004	15
S. (Trachypithecus)	phayrei	phayrei	BM(NH) 1914.7.19.5	F	7031	15.5
S. (Trachypithecus)	phayrei	phayrei	BM(NH) 1915.5.5.9 or	М	7938	17.5
			1936.9.10.12			
S. (Trachypithecus)	phayrei	phayrei	BM(NH) 1914.7.19.3 or 4	Μ	7938	17.5
S. (Trachypithecus)	phayrei	shanica	BM(NH) 1914.7.8.3 or 4	F	6804	15
S. (Trachypithecus)	phayrei	shanica	BM(NH) 1914.7.8.1 or 2	Μ	8618	19
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99732	F	4040	
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99718	F	4500	
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99713	F	5160	
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99717	F	5800	
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99697	F	6000	
S. (Trachypithecus)	phayrei	subsp. indet.	35 , p. 66; min of 5	F	6356	14
S. (Trachypithecus)	phavrei	subsp. indet.	FMNH 99700	F	6600	
S. (Trachypithecus)	phavrei	subsp. indet.	FMNH 99714	F	6700	
S. (Trachypithecus)	phavrei	subsp. indet.	FMNH 99733	F	6800	
S. (Trachypithecus)	phavrei	subsp. indet.	MCZ 38631	F	7031	15.5
S. (Trachypithecus)	phavrei	subsp. indet.	35 , p. 66; max of 5	F	7491	16.5
S. (Trachypithecus)	phavrei	subsp. indet.	35 , p. 66; min of 8	M	5675	12.5
S. (Trachypithecus)	phavrei	subsp. indet.	MCZ 35922	M	7031	15.5
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99698	м	7400	
S. (Trachypithecus)	phayrei	subsp. indet.	FMNH 99730	м	8700	
S. (Trachypithecus)	phayrei	subsp. indet.	35 , p. 66; max of 8	м	9080	20
S. (Trachypithecus)	pileata	durga	BMNH 1921 7 13 7	F	11340	25
S. (Trachypithecus)	pileata	durga	BMNH 1921 7 13.6	M	12247	27
S. (Trachypithecus)	pileata	pileata	39: 5	F	9500	
(· · · · · · · · · · · · · · · · · · ·	r	,-	-		

					N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
S. (Trachypithecus)	pileata	pileata	42, p. 123; Jaintia	F	9752	21.5
S. (Trachypithecus)	pileata	pileata	39 ; 4	F	10000	
S. (Trachypithecus)	pileata	pileata	39 ; 3	F	10500	
S. (Trachypithecus)	pileata	pileata	39 ; 2	М	11500	
S. (Trachypithecus)	pileata	pileata	39 ; 1	М	14000	
S. (Trachypithecus)	pileata	shortridgei	BMNH 1915.5.5.11	F	9526	21
S. (Trachypithecus)	pileata	shortridgei	BMNH 1915.5.5.14	Μ	12701	28
S. (Trachypithecus)	pileata	shortridgei	BMNH 1915.5.5.10	М	13608	30
S. (Trachypithecus)	johnii	subsp. indet.	29 ; 5	F	10886	24
S. (Trachypithecus)	johnii	subsp. indet.	42, p. 148; Kukkal Shola	F	11340	25
S. (Trachypithecus)	johnii	subsp. indet.	ZSI 12099	F	11350	
S. (Trachypithecus)	johnii	subsp. indet.	42, p. 148; Tinnevelly	М	9072	20
S. (Trachypithecus)	johnii	subsp. indet.	BMNH 1913.8.22.1	М	9760	
S. (Trachypithecus)	johnii	subsp. indet.	42, p. 148; Kodaikanal 1	М	10886	24
S. (Trachypithecus)	johnii	subsp. indet.	29 ; 1	М	11794	26
S. (Trachypithecus)	johnii	subsp. indet.	29 ; 3	М	12247	27
S. (Trachypithecus)	johnii	subsp. indet.	29 ; 2	М	13154	29
S. (Trachypithecus)	johnii	subsp. indet.	42, p. 148; Kodaikanal 2	М	13154	29
S. (Trachypithecus)	johnii	subsp. indet.	29; 4	М	13608	30
S. (Trachypithecus)	vetulus	monticola	35 , p. 72; 1 of 1	F	7484	16.5
S. (Trachypithecus)	vetulus	monticola	35 , p. 72; min of 2	М	9072	20.0
S. (Trachypithecus)	vetulus	monticola	35 , p. 72; max of 2	М	9752	21.5
S. (Trachypithecus)	vetulus	vetulus	35 , p. 72; min of 2	F	4990	11.0
S. (Trachypithecus)	vetulus	vetulus	35 , p. 72; max of 2	F	5216	11.5
S. (Trachypithecus)	vetulus	vetulus	40 , p. 16; max of 9	F	5216	11.5
S. (Trachypithecus)	vetulus	vetulus	35 , p. 72; 1 of 1	Μ	5670	12.5
S. (Trachypithecus)	vetulus	vetulus	40 , p. 16; max of 7	М	7711	17.0
Cercopithecus	aethiops	aethiops	BMNH 1915.3.6.1	М	5216	11.5
Cercopithecus	aethiops	arenarius	Haddow UP 251	F	2800	
Cercopithecus	aethiops	arenarius	Haddow UP 241	F	3300	
Cercopithecus	aethiops	arenarius	Haddow UP 238	F	3500	
Cercopithecus	aethiops	arenarius	Haddow UP 240	F	3500	
Cercopithecus	aethiops	arenarius	Haddow UP 244	F	3750	
Cercopithecus	aethiops	arenarius	Haddow UP 264	М	5200	
Cercopithecus	aethiops	arenarius	Haddow UP 247	М	5250	
Cercopithecus	aethiops	arenarius	Haddow UP 243	М	5300	
Cercopithecus	aethiops	arenarius	Haddow UP 265	М	5800	
Cerconithecus	aethiops	arenarius	Haddow UP 246	М	6000	
Cercopithecus	aethiops	budgeti	BMNH 1972.36	F	3900	
Cercopithecus	aethiops	budgeti	BMNH 1930.8.1.15	F	4536	10
Cercopithecus	aethiops	budgeti	BMNH 1951.531	М	6350	14
Cercopithecus	aethiops	callidus	BMNH 1972.27	F	4900	
Cerconithecus	aethiops	callidus	BMNH 1972.30	F	6400	
Cerconithecus	aethiops	callidus	BMNH 1972.31	М	3600	
Cercopithecus	aethiops	callidus	BMNH 1913.10.18.4	М	4082	9
Cercopithecus	aethiops	callidus	BMNH 1972.25	М	4700	
Cerconithecus	aethiops	callidus	BMNH 1972.24	М	6300	
Cerconithecus	aethiops	centralis	Haddow UP 150	F	2722	6
Cercopithecus	aethiops	centralis	Haddow UP 129	F	3175	7
Cerconithecus	aethions	centralis	Haddow UP 157	F	3175	7
Cerconithecus	aethions	centralis	NMNH 452593	F	3572	
Cerconithecus	aethions	centralis	Haddow UP 115	F	3629	8
Cerconithecus	aethiops	centralis	Haddow UP 128	F	3629	8
	pu			-		-

APPENDIX TABLE 1 Continued

					N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cercopithecus	aethiops	centralis	Haddow UP 152	F	3629	8
Cercopithecus	aethiops	centralis	Haddow UP 156	F	3629	8
Cercopithecus	aethiops	centralis	Haddow UP 167	F	3629	8
Cercopithecus	aethiops	centralis	Haddow UP 178	F	3629	8
Cercopithecus	aethiops	centralis	NMNH 452595	F	3875	
Cercopithecus	aethiops	centralis	Haddow UP 153	F	4082	9
Cercopithecus	aethiops	centralis	Haddow UP 146	F	4082	9
Cercopithecus	aethiops	centralis	Haddow UP 93	F	4536	10
Cercopithecus	aethiops	centralis	BMNH 1929.5.14.16	F	4536	10
Cercopithecus	aethiops	centralis	Haddow UP 131	М	4082	9
Cercopithecus	aethiops	centralis	Haddow UP 154	М	4536	10
Cercopithecus	aethiops	centralis	NMNH 452607	М	4780	
Cercopithecus	aethiops	centralis	NMNH 452599	М	4795	
Cercopithecus	aethiops	centralis	Haddow UP 176	М	5330	11.75
, Cercopithecus	aethiops	centralis	Haddow UP 130	М	5443	12
Cercopithecus	aethiops	centralis	Haddow UP 151	М	5897	13
Cercopithecus	aethions	centralis	NMNH 452591	M	5913	
Cercopithecus	aethions	centralis	Haddow UP 177	M	6237	13 75
Cerconithecus	aethions	centralis	Haddow UP 160	M	6350	14
Cercopithecus	aethions	iohnstoni	Haddow UP 215	F	2500	
Cercopithecus	aethions	johnstoni	Haddow UP 236	F	2800	
Cercopithecus	aethions	iohnstoni	Haddow UP 235	M	4500	
Cercopithecus	aethions	matschiei	BMNH 1964 2175	F	4082	٥
Cercopithecus	aethions	naamiensis	NMNH 367894	F	3110	6 875
Cercopithecus	aethions	ngamiensis	NMNH 384044	F	2175	0.075
Cercopithecus	aethions	ngamiensis	NMNH 367904	F	3260	7 1975
Cercopithecus	aethions	ngamiensis	NMNH 368572	F	3402	7.1075
Cercopithecus	aethions	ngamiensis	46: min of 30	F	3410	1.5
Cercopithecus	aethiops	ngumiensis	NMNH 460022	F	2620	0
Cercopinecus	aethions	ngumiensis	NININA 409952 NINNIL 267907	г Б	2696	0 105
Cercopitheous	aethiops	ngumiensis	NIMINE 207015	Г' F	2714	0.123
Cercopinecus	aethiops	ngumiensis	NUMBER 267002	r r	3/14	0.10/3
Cercopithecus	aethiops	ngamiensis	NIMINE 460026	г Б	2040	0.00/3
Cercopithecus	aethiops	ngamiensis	NIVINA 409920 NIVINA 267997	Г	2007	8.73
Cercopinecus	aethiops	ngamiensis	NIMINI 267009	r F	2007	8.8123
Cercopinecus	aethiops	ngamiensis	NMNH 267012	F	3997	8.8123
Cercopinecus	aethiops	ngamiensis	NMINH 30/913	F	4309	9.5
Cercopinecus	aethiops	ngamiensis	NMINH 367001	F	4338	9.5625
Cercopunecus	aethiops	ngamiensis	NMINH 30/901	F	4649	10.25
Cercopunecus	aethiops	ngamiensis	NMINH 409939	F	4990	11
Cercopunecus	aeiniops	ngamiensis	40 ; max of 30	F	5220	
Cercopunecus	aetniops	ngamiensis	46 ; min of 29	M	3860	
Cercoplinecus	aetniops	ngamiensis	NMNH 36/910	M	4536	10
Cercopunecus	aethiops	ngamiensis	NMNH 469937	М	4876	10.75
Cercopiinecus	aethiops	ngamiensis	NMNH 367900	M	4905	10.8125
Cercopitnecus	aethiops	ngamiensis	NMNH 367907	M	5103	11.25
Cercopithecus	aethiops	ngamiensis	NMNH 469941	М	5216	11.5
Cercoputhecus	aethiops	ngamiensis	NMNH 469931	М	5557	12.25
Cercoputhecus	aetniops	ngamiensis	NMNH 367885	Μ	5812	12.8125
Cercoputhecus	aetniops	ngamiensis	NMNH 367898	М	5954	13.125
Cercoputhecus	aethiops	ngamiensis	NMNH 469938	М	6010	13.25
Cercopithecus	aethiops	ngamiensis	NMNH 367899	М	6180	13.625
Cercopithecus	aethiops	ngamiensis	NMNH 469930	М	6237	13.75
Cercopithecus	aethiops	ngamiensis	NMNH 469934	М	6804	15

					N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cercopithecus	aethiops	ngamiensis	NMNH 367896	М	6946	15.3125
Cercopithecus	aethiops	ngamiensis	46; max of 29	М	8000	
Cercopithecus	aethiops	pygerythrus	NMNH 452602	F	3140	
Cercopithecus	aethiops	pygerythrus	NMNH 452597	F	3155	
Cercopithecus	aethiops	pygerythrus	NMNH 452609	F	3395	
Cercopithecus	aethiops	pygerythrus	NMNH 452601	F	3825	
Cercopithecus	aethiops	pygerythrus	NMNH 452605	F	4325	
Cerconithecus	aethions	nvgerythrus	NMNH 452610	м	3777	
Cerconithecus	aethions	nvgerythrus	NMNH 452596	м	3960	
Cerconithecus	aethions	nvgerythrus	NMNH 469905	м	4536	10
Cerconithecus	aethions	nvaervthrus	NMNH 452611	M	5185	
Cercopithecus	aethions	nyaerythrus	NMNH 469907	M	5216	11.5
Cercopithecus	aethiops	pygerythrus	NMNH 452606	M	7404	11.5
Cercopithecus	aethiops	sabaeus	19: min of 20	F	3400	
Cercopinecus	aethiops	sabaeus	PCM 1956 264	F	3700	
Cercoplinecus	aethiops	sabaeus	10: max of 20	F	5000	
Cercopunecus	aethiops	sabaeus	$19, \max_{n=1}^{10} 0120$	Г	4700	
Cercopitnecus	aetniops	sabaeus	19; min of 17	M	4/00	
Cercopithecus	aetniops	sabaeus	PCM 1950.200	M	5000	14
Cercopithecus	aethiops	sabaeus	NMNH 477293	M	7000	14
Cercopithecus	aethiops	sabaeus	19; max of 17	M	/000	11.75
Cercopithecus	aethiops	whytei	NMNH 470263	м	5330	11.75
Cercopithecus	ascanius	katangae	9; min of 187	F	1800	
Cercopithecus	ascanius	katangae	9 ; max of 187	F	3950	
Cercopithecus	ascanius	katangae	9 ; min of 32	M	2200	
Cercopithecus	ascanius	katangae	9 ; max of 32	M	4900	
Cercopithecus	ascanius	schmidti	Haddow UP 161	F	1814	4
Cercopithecus	ascanius	schmidti	Haddow P 162	F	1814	4
Cercopithecus	ascanius	schmidti 🛛	Haddow P 168	F	1814	4
Cercopithecus	ascanius	schmidti	9 ; min of 55	F	2100	
Cercopithecus	ascanius	schmidti	Haddow UP 124	F	2268	5
Cercopithecus	ascanius	schmidti	Haddow UP 117	F	2268	5
Cercopithecus	ascanius	schmidti	Haddow UP 140	F	2268	5
Cercopithecus	ascanius	schmidti	Haddow P 157	F	2268	5
Cercopithecus	ascanius	schmidti	NMNH 452512	F	2478	
Cercopithecus	ascanius	schmidti	Haddow P 163	F	2495	5.5
Cercopithecus	ascanius	schmidti	Haddow UP 13	F	2722	6
Cerconithecus	ascanius	schmidti	Haddow UP 24	F	2722	6
Cerconithecus	ascanius	schmidti	Haddow UP 162	F	2722	6
Cercopithecus	ascanius	schmidti	Haddow UP 438	F	2722	6
Cercopithecus	ascanius	schmidti	Haddow UP 61	F	2722	6
Cercopithecus	ascanius	schmidti	Haddow P 154	F	2722	6
Cercopithecus	ascanius	schmidti	Haddow P 235	F	2722	6
Cercopithecus	ascanius	schmidti	Haddow P 237	F	2722	6
Cercopithecus	ascanius	schmidti	Haddow P 291	F	2722	6
Cercopilhecus	ascanius	schmidti	Haddow P 208	F	2948	6.5
Cercopithecus	ascanius	schmidti	Haddow P 236	F	2948	6.5
Cercopunecus	ascanius	schmidti	Haddow P 232	F	2948	6.5
Cercopunecus	ascantus	schmidti	NMNH 537774	F	3050	
Cercopunecus	ascantus	schmide:	Haddow JID 5	F	3175	7
Cercopunecus	ascanius	schmide	Haddow UD 9	F	3175	7
Cercopunecus	ascanius	schmidti	Haddow JID 12	E I	3175	7
Cercopithecus	ascanius	schmidti	Haddow UP 12	Г	2175	, 7
Cercopithecus	ascanius	schmidti	Haddow UP 10	r E	2175	7
Cercopithecus	ascanius	schmidti	Haddow UP 20	Г	51/5	1

				<u> </u>	Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cercopithecus	ascanius	schmidti	Haddow UP 105	F	3175	7
Cercopithecus	ascanius	schmidti	Haddow UP 159	F	3175	7
Cercopithecus	ascanius	schmidti	Haddow UP 170	F	3175	7
Cercopithecus	ascanius	schmidti	Haddow UP 4	F	3175	7
Cerconithecus	ascanius	schmidti	Haddow UP 160	F	3175	7
Cercopithecus	ascanius	schmidti	Haddow P 227	F	3175	7
Cerconithecus	ascanius	schmidti	Haddow UP 60	F	3175	7
Cerconithecus	ascanius	schmidti	Haddow P 153	F	3175	7
Cerconithecus	ascanius	schmidti	Haddow P 222	F	3175	7
Cercopithecus	ascanius	schmidti	Haddow P 309	F	3175	7
Cercopithecus	ascanius	schmidti?	KNM OM 2001	1 F2	3400	'
Cercopithecus	ascanius	schmidti	Haddow UP 46	F I	3400	75
Cercopithecus	ascanius	schmidti	Haddow UP 11	F	2620	0
Cercopunecus	ascanius	schman		г Г	2629	0
Cercopunecus	ascanius	schmiati	Haddow UP 51	r F	3029	8
Cercoplinecus	ascanius	schmian	Haddow UP 3	r T	3029	8
Cercopunecus	ascanius	schmidti	Haddow UP 45	F	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 239	F	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 199	F	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 243	F	3629	8
Cercopithecus	ascanius	schmidti	9 ; max of 55	F	3750	
Cercopithecus	ascanius	schmidti	Haddow UP 47	F	3856	8.5
Cercopithecus	ascanius	schmidti	9 ; min of 37	М	2950	
Cercopithecus	ascanius	schmidti	Haddow P 158	М	3175	7
Cercopithecus	ascanius	schmidti	Haddow P 175	М	3402	7.5
Cercopithecus	ascanius	schmidti	Haddow P 133	М	3402	7.5
Cercopithecus	ascanius	schmidti	Haddow P 141	М	3515	7.75
Cercopithecus	ascanius	schmidti	Haddow UP 108	М	3629	8
Cercopithecus	ascanius	schmidti	Haddow UP 169	М	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 142	М	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 155	М	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 166	М	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 184	M	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 223	M	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 282	M	3629	8
Cerconithecus	ascanius	schmidti	Haddow P 316	M	3629	8
Cerconithecus	ascanius	schmidti	Haddow P 215	M	3629	8
Cercopithecus	ascanius	schmidti	Haddow P 226	M	3620	8
Cerconithecus	ascanius	schmidti	Haddow P 220	M	3620	0
Cercopithecus	ascanius	schmidti	Haddow P 210	M	2956	0
Cercopithecus	ascanius	schmidti	Haddow P 134	M	2040	0.5
Cercopithecus	ascanius	schmidti	Haddow UD 7	M	3909	0.75
Cercopunecus	ascanius	schmidti a abwidti	Haddow UP /	M	4082	9
Cercopunecus	ascanius	schmian h-mi dri	Haddow UP 37	м	4082	9
Cercopunecus	ascantus	schmian	Haddow UP 120	M	4082	9
Cercopunecus	ascanius	schmidti	Haddow P 188	M	4082	9
Cercopunecus	ascanius	schmidti	Haddow P 296	M	4082	9
Cercopunecus	ascanius	schmidti	Haddow P 164	M	4082	9
Cercopunecus	ascanius	schmidti	Haddow P 247	М	4082	9
Cercopithecus	ascanius	schmidti?	KNM OM 2902	M?	4270	
Cercopithecus	ascanius	schmidti	NMNH 452516	М	4275	
Cercopithecus	ascanius	schmidti	Haddow P 234	М	4309	9.5
Cercopithecus	ascanius	schmidti	Haddow UP 119	М	4536	10
Cercopithecus	ascanius	schmidti	Haddow P 187	М	4536	10
Cercopithecus	ascanius	schmidti	Haddow P 224	М	4536	10

<u></u>					M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cercopithecus	ascanius	schmidti	Haddow P 238	М	4536	10
Cercopithecus	ascanius	schmidti	Haddow UP 15	Μ	4536	10
Cercopithecus	ascanius	schmidti	9 ; max of 37	М	4750	
Cercopithecus	ascanius	schmidti	Haddow UP 6	М	4990	11
Cercopithecus	ascanius	schmidti	Haddow P 283	Μ	4990	11
Cercopithecus	ascanius	schmidti	Haddow P 297	Μ	4990	11
Cercopithecus	ascanius	schmidti	Haddow UP 25	М	4990	11
Cercopithecus	ascanius	schmidti	Haddow P 196	Μ	4990	11
Cercopithecus	ascanius	schmidti	Haddow P 284	Μ	5443	12
Cercopithecus	ascanius	schmidti	NMNH 452517	Μ	5520	
Cercopithecus	ascanius	schmidti?	KNM OM 2900	M ?	5730	
Cercopithecus	ascanius	schmidti	NMNH 452514	Μ	5775	
Cercopithecus	ascanius	schmidti	Haddow UP 26	Μ	5897	13
Cercopithecus	ascanius	schmidti	NMNH 452510	Μ	6235	
Cercopithecus	ascanius	schmidti	Haddow UP 53	Μ	6350	14
Cercopithecus	campbelli	campbelli	38 , table 1; min of 9	F	2000	
Cercopithecus	campbelli	campbelli	38 , table 1: max of 9	F	4500	
Cercopithecus	campbelli	campbelli	38 , table 1: min of 10	M	3200	
Cercopithecus	campbelli	campbelli	38. table 2: Tiwai	м	4500	
Cercopithecus	campbelli	campbelli	38. table 1: max of 10	м	5500	
Cercopithecus	campbelli	lowei	NMNH 477303	F	1800	
Cercopithecus	campbelli	lowei	NMNH 450064	F	1814	4
Cerconithecus	campbelli	lowei	NMNH 477302	F	2000	
Cercopithecus	campbelli	lowei	NMNH 481765	F	2200	
Cercopithecus	campbelli	lowei	NMNH 477306	F	2268	5
Cercopithecus	campbelli	lowei	NMNH 481759	F	2300	
Cercopithecus	campbelli	lowei	NMNH 481767	F	2300	
Cercopithecus	campbelli	lowei	NMNH 481769	F	2400	
Cercopithecus	campbelli	lowei	NMNH 477298	F	2600	
Cercopithecus	campbelli	lowei	NMNH 481760	F	2600	
Cercopithecus	campbelli	lowei	NMNH 481768	F	2600	
Cercopithecus	campbelli	lowei	NMNH 481764	F	2800	
Cercopithecus	campbelli	lowei	NMNH 481763	- F	3200	
Cercopithecus	campbelli	lowei	NMNH 465914	F	5000	
Cercopithecus	campbelli	lowei	NMNH 481756	M	3200	
Cercopithecus	campbelli	lowei	NMNH 477305	M	3200	
Cercopithecus	campbelli	lowei	NMNH 481755	M	3200	
Cercopithecus	campbelli	lowei	NMNH 481762	M	3200	
Cercopithecus	campbelli	lowei	NMNH 477296	M	4082	9
Cerconithecus	campbelli	lowei	NMNH 477297	M	4100	-
Cercopithecus	campbelli	lowei	NMNH 477300	M	4200	
Cercopithecus	campbelli	lowei	NMNH 481757	M	4200	
Cercopithecus	campbelli	lowei	NMNH 481761	M	4200	
Cercopithecus	campbelli	lowei	NMNH 477307	M	4536	10
Cercopithecus	campbelli	lowei	NMNH 477304	M	4600	
Cercopithecus	cenhus	101101	Susman 85-8	F	2400	
Cercopithecus	cenhus		Susman 85-13	F	2600	
Cerconithecus	cenhus		27: 1	- F	2900	
Cerconithecus	cenhus		Susman 85-12	F	3000	
Cerconithecus	cenhus		Susman 85-2	F	3900	
Carcopitheous	cepius		Susman 85-16	М	3350	
Cercopitheous	ceptus		Susman 85-6	M	4150	
Corcopitheous	denti		9. min of 26	F	2000	
Cercopunecus	uenn		7, mm 01 30	Ι.	2000	

Mass Genus Species Subspecies Specimen reference Sex lb g **Cercopithecus** denti 9; max of 36 F 3700 denti 9: min of 4 Μ 3550 **Cercopithecus Cercopithecus** denti 9: max of 4 Μ 4950 diana diana NMNH 481754 F **Cercopithecus** 2500 diana diana F Cercopithecus 38, table 1; min of 11 2900 F diana Cercopithecus diana NMNH 481749 3400 F **Cercopithecus** diana diana NMNH 477295 3629 8 diana F Cercopithecus diana NMNH 481753 3800 **Cercopithecus** diana diana NMNH 481750 F 4000 NMNH 481751 F **Cercopithecus** diana diana 4000 Cercopithecus diana diana NMNH 481752 F 4000 F **Cercopithecus** diana diana 4900 38, table 1; max of 11 F **Cercopithecus** diana diana? McGraw 94-1 5400 **Cercopithecus** diana diana 38, table 1; min of 4 Μ 4000 **Cercopithecus** diana diana 37; Tiwai killed Μ 6000 **Cercopithecus** diana diana 38, table 1; max of 4 Μ 6300 **Cercopithecus** hamlyni hamlyni 9; min of 9 F 2600 **Cercopithecus** hamlyni hamlyni 9: max of 9 F 4300 **Cercopithecus** hamlyni hamlyni 9: min of 11 Μ 4350 **Cercopithecus** hamlyni hamlvni 9: max of 11 Μ 7300 **Cercopithecus** lhoesti 9; min of 50 F 1750 Cercopithecus lhoesti 9: max of 50 F 5200 **Cercopithecus** lhoesti 9; min of 19 Μ 3250 Cercopithecus lhoesti 9; max of 19 Μ 8450 Cercopithecus mitis erythrarchus NMNH 425426 F 2835 6.25 **Cercopithecus** mitis erythrarchus NMNH 425425 F 3062 6.75 Cercopithecus mitis erythrarchus NMNH 425424 F 3289 7.25 NMNH 425429 Cercopithecus mitis erythrarchus F 10.75 4876 F **Cercopithecus** mitis erythrarchus NMNH 425427 5557 12.25 **Cercopithecus** mitis erythrarchus NMNH 425432 F 5557 12.25 **Cercopithecus** mitis erythrarchus F NMNH 425421 5897 13 **Cercopithecus** mitis erythrarchus NMNH 425423 F 13.25 6010 Cercopithecus mitis erythrarchus NMNH 425422 Μ 4876 10.75 **Cercopithecus** mitis erythrarchus NMNH 470262 Μ 8618 19 **Cercopithecus** mitis erythrarchus NMNH 425428 Μ 9299 20.5 **Cercopithecus** mitis kolbi NMNH 425568 F 3470 **Cercopithecus** mitis kolbi NMNH 452578 F 3590 **Cercopithecus** mitis kolbi F NMNH 452581 4210 kolbi Cercopithecus mitis NMNH 425571 Μ 5750 **Cercopithecus** mitis kolbi NMNH 425570 М 5890 **Cercopithecus** mitis kolbi NMNH 452587 Μ 6555 **Cercopithecus** kolbi mitis NMNH 452574 Μ 7550 **Cercopithecus** mitis kolbi NMNH 452575 Μ 7630 **Cercopithecus** mitis kolbi NMNH 452586 Μ 8200 **Cercopithecus** mitis stuhlmanni 9: min of 94 F 2250 Cercopithecus mitis stuhlmanni F NMNH 452531 3705 **Cercopithecus** stuhlmanni? mitis F **KNM OM 2886** 4050 Cercopithecus mitis stuhlmanni? F **KNM OM 1978** 4142 **Cercopithecus** mitis stuhlmanni NMNH 452535 F 4303 Cercopithecus mitis stuhlmanni NMNH 452540 F 4366 Cercopithecus mitis stuhlmanni NMNH 452544 F 4680 **Cercopithecus** mitis stuhlmanni 9; max of 94 F 5250 Cercopithecus

NMNH 452537

F

5414

stuhlmanni

mitis

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cercopithecus	mitis	stuhlmanni	9 ; min of 41	М	3650	
Cercopithecus	mitis	stuhlmanni?	KNM OM 2879	М	4745	
Cercopithecus	mitis	stuhlmanni	Sarmiento, unnumbered	М	4900	
Cercopithecus	mitis	stuhlmanni	NMNH 452536	М	6799	
Cercopithecus	mitis	stuhlmanni?	KNM OM 2796	Μ	7200	
Cercopithecus	mitis	stuhlmanni	9 ; max of 41	М	7800	
Cercopithecus	mitis	stuhlmanni	NMNH 452538	Μ	7950	
Cercopithecus	mitis	stuhlmanni	NMNH 452545	М	8440	
Cercopithecus	mitis	stuhlmanni	NMNH 452530	М	9510	
Cercopithecus	mona		NMNH 481758	F	2500	
Cercopithecus	mona		PCM CAM-II-56	М	4760	
Cercopithecus	mona		PCM CAM-II-57	М	5440	
Cercopithecus	neglectus		9 ; min of 62	F	2500	
Cercopithecus	neglectus		NMNH 537775	F	3050	
Cercopithecus	neglectus		27 ; 1	F	3550	
Cercopithecus	neglectus		9; 1 of 1	F	3750	
Cercopithecus	neglectus		NMNH 452522	F	3860	
Cercopithecus	neglectus		34 , p. 92; min of 2	F	4100	
Cercopithecus	neglectus		KNM OM 2906	F	4200	
Cercopithecus	neglectus		27 ; 2	F	4305	
Cercopithecus	neglectus		KNM OM 2907	F	4390	
Cercopithecus	neglectus		NMNH 452520	F	4423	
Cercopithecus	neglectus		NMNH 452525	F	4460	
Cercopithecus	neglectus		34 , p. 92; max of 2	F	4816	
Cercopithecus	neglectus		9; max of 62	F	4900	
Cercopithecus	neglectus		NMNH 452523	М	6310	
Cercopithecus	neglectus		KNM OM 2903	М	7000	
Cercopithecus	neglectus		NMNH 452524	М	7490	
Cercopithecus	neglectus		34 , p. 92; min of 2	М	7850	
Cercopithecus	neglectus		34 , p. 92; max of 2	М	8245	
Cercopithecus	nictitans	martini	NMNH 481773	М	4800	
Cercopithecus	nictitans	martini	NMNH 481771	М	6000	
Cercopithecus	nictitans	martini	NMNH 481770	М	6800	
Cercopithecus	nictitans	nictitans	9 ; min of 21	F	2650	
Cerconithecus	nictitans	nictitans	27: 1	F	3800	
Cercopithecus	nictitans	nictitans	9: max of 21	F	6100	
Cercopithecus	nictitans	nictitans	9: min of 17	М	4700	
Cercopithecus	nictitans	nictitans	PCM French Congo 144	М	7484	16.5
Cerconithecus	nictitans	nictitans	9: max of 17	М	8500	
Cerconithecus	netaurista	buettikofferi	37: Tiwai killed	F	2000	
Cerconithecus	netaurista	buettikofferi	38 , table 1: min of 7	F	2300	
Cerconithecus	netaurista	buettikofferi	37; Tiwai killed	F	2400	
Cerconithecus	petaurista	buettikofferi	AIUG F 2572	F	3000	
Cerconithecus	petaurista	buettikofferi	AIUG A 574	F	3315	
Cerconithecus	petaurista	buettikofferi	38, table 1; max of 7	F	3800	
Cercopithecus	petaurista	buettikofferi	38, table 1; min of 13	М	3900	
Cercopithecus	petaurista	buettikofferi	37; Tiwai killed	М	4200	
Cerconithecus	petaurista	buettikofferi	38 , table 1; max of 13	Μ	5000	
Cerconithecus	petaurista	petaurista	McGraw 98-4	Μ	5200	
Cerconithecus	netaurista	petaurista	McGraw 94-12	М	5900	
Cerconithecus	netaurista	subsp. indet	NMNH 477313	F	2000	
Cerconithecus	netaurista	subsp. indet	NMNH 481774	F	2200	
Cerconitheous	netaurista	suben indet	NMNH 477310	- F	2268	5
Cercopunecus	peranisia	subsp. muct.	111111111111111111		-200	-

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cerconithecus	netaurista	subsp indet	NMNH 477314	F	2600	
Cercopithecus	petaurista	subsp. indet.	34 n 122 min of 5	F	2600	
Cerconithecus	petaurista netaurista	subsp. indet.	NMNH 477318	F	2700	
Cercopithecus	petaurista	subsp. indet	NMNH 477316	F	2800	
Cercopithecus	petaurista	subsp. indet.	NMNH 477317	F	2800	
Cercopithecus	peraurista	subsp. indet.	NMNH 477310	F	3000	
Cercopithecus	petaurista	subsp. indet.	NIMNIH 491791	F	3200	
Cercopithecus	petaurista	subsp. indet.	NIMNIH 401701	F	3200	
Cercopunecus	pelaurisia	subsp. indet.	NIMINE 401//0	r F	3400	
Cercopunecus	pelaurisia	subsp. indet.	1000000000000000000000000000000000000	r F	2800	
Cercopunecus	pelaurisia	subsp. indet.	34, p. 122; max of 5	r	3800	
Cercopunecus	petaurista	subsp. indet.	34, p. 122; min of 5	M	3400	•
Cercopithecus	petaurista	subsp. indet.	NMNH 477311	м	4082	9
Cercopithecus	petaurista	subsp. indet.				
Cercopithecus	petaurista	subsp. indet.	34 , p. 122; max of 5	М	4500	
Cercopithecus	petaurista	subsp. indet.	NMNH 481777	М	4800	
Cercopithecus	petaurista	subsp. indet.	NMNH 481776	М	5000	
Cercopithecus	petaurista	subsp. indet.	NMNH 481780	М	5200	
Cercopithecus	pogonias	grayi	9 ; min of 4	F	2150	
Cercopithecus	pogonias	grayi?	NMNH 537779	F	3000	
Cercopithecus	pogonias	grayi	9 ; max of 4	F	3100	
Cercopithecus	pogonias	grayi	9 ; 1 of 1	М	3300	
Cercopithecus	pogonias	grayi?	NMNH 537778	М	4600	
Cercopithecus	pogonias	nigripes	27; 4	F	2793	
Cercopithecus	pogonias	nigripes	27; 1	F	2874	
Cercopithecus	pogonias	nigripes	27; 5	М	3030	
Cercopithecus	pogonias	nigripes	27; 6	М	3400	
Cercopithecus	tantalus	marrensis	9 : min of 7	F	2800	
Cercopithecus	tantalus	marrensis	9: max of 7	F	4600	
Cercopithecus	wolfi	wolfi	9 : min of 84	F	1800	
Cercopithecus	wolfi	wolfi	9: max of 84	F	3600	
Cercopithecus	wolfi	wolfi	9: min of 13	M	2450	
Cerconithecus	wolfi	wolfi	9. max of 13	M	4950	
Mionithecus	talanoin	talanoin	PCM 7-II-16	F	2000	
Mionithecus	talanoin	talapoin	PCM 7-V-24	F	2000	
Miopithecus	talapoin	talapoin	$\mathbf{PCM} = \mathbf{V} \cdot \mathbf{Z} + \mathbf{V} \cdot \mathbf{A}$	M	2500	
Miopinecus	talapoin	naupoin	PCIVI 2- V-40	E	1064	
Miopinecus	talanoin	nov.	27, J NIXANIH 207649	Г	1004	
Miopinecus	talapoin	nov. ?	NMINE 397048	F F	1208	
Miopinecus	iaiapoin talan sin	nov.	27; 1	F	1625	
Miopinecus		nov.	27; 9	M	1045	
Miopitnecus	tatapoin	nov.	32, p. 4/; 1	M	1400	
Mioplinecus	talapoin	nov.	27; /	M	1428	
Miopithecus	talapoin	nov.	27; 8	M	1435	
Miopithecus	talapoin	nov.	32 , p. 47; 2	М	1500	
Allenopithecus	nigroviridis		MRAC-T 28771	F	3200	
Allenopithecus	nigroviridis		9 ; 1 of 1	F	3250	
Allenopithecus	nigroviridis		MRAC-T 28770	Μ	4450	
Allenopithecus	nigroviridis		MRAC-T 27993	М	5500	
Allenopithecus	nigroviridis		Susman 81-21	М	5500	
Allenopithecus	nigroviridis		MRAC-T 28645	М	7000	
Allenopithecus	nigroviridis		MRAC-T 28769	М	8200	
Erythrocebus	patas		3 ; 1 of 1	F	4000	
Erythrocebus	patas		36 ; min of 4	F	4082	9
Erythrocebus	patas		24 ; P5 ^c	F	4400	

<u></u>					M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Ervthrocebus	patas		AIUZ 1812	F	4900	
Erythrocebus	patas		19 ; min of 14	F	5400	
Ervthrocebus	patas		20 ; 1 of 1	F	6000	
Erythrocebus	patas		36 ; max of 4	F	7100	
Erythrocebus	patas		19 : max of 14	F	8000	
Erythrocebus	patas		19 : min of 9	М	5400	
Erythrocebus	patas		34 , p. 173; 1	М	7000	
Erythrocebus	patas		24: P1c	M	7460	
Erythrocebus	patas		36. p. 412: min of 3	M	7484	16.5
Erythrocebus	patas		24 : P4 ^c	M	7800	
Erythrocebus	patas		24. P6c	M	9280	
Erythrocebus	patas		8:1 of 1	M	11340	25
Frythrocebus	patas		20	M	12000	
Frythrocebus	natas		36 : max of 3	M	12600	
Frythrocebus	patas		19: max of 9	M	18000	
Lophocebus	alhiaena	alhiaena	9 ; min of 4	F	4700	
Lophocebus	albigena	albigena	9: max of 4	F	5250	
Lophocebus	alhigena	albigena	9: min of 4	M	6100	
Lophocebus	albigena	albigena	9: max of 4	M	8350	
Lophocebus	albigena	iohnstoni?	KNM OM 3002	F	3640	
Lophocebus	albigena	johnstoni	Haddow UP 146	F	3969	8 7 5
Lophocebus	albigena	johnstoni	Haddow P 213	F	4536	10
Lophocebus	alhigena	johnstoni	Haddow UP 150	F	4536	10
Lophocebus	albigena	johnstoni	Haddow P 198	F	4876	10 75
Lophocebus	albigena	johnstoni?	KNM OM 3003	F	4905	10.75
Lophocebus	albigena	johnstoni . johnstoni	Haddow P 132	F	4990	11
Lophocebus	albigena	johnstoni	Haddow P 214	F	4990	11
Lophocebus	albigena	johnstoni	Haddow P 118	F	4990	11
Lophocebus	albigena	johnstoni	9: min of 6	F	5050	••
Lophocebus	albigena	johnstoni	Haddow UP 54	- F	5443	12
Lophocebus	albigena	johnstoni	Haddow P 231	F	5443	12
Lophocebus	albigena	johnstoni	Haddow IIP 122	F	5443	12
Lophocebus	albigena	johnstoni	PCM 1930 8 1 27	F	5443	12
Lophocebus	albigena	johnstoni	PCM 1972 22	F	5700	12
Lophocebus	albigena	johnstoni	Haddow P 203	F	5897	13
Lophocebus	albigena	johnstoni	PCM 1072 20	F	5900	15
Lophocebus	albigena	johnstoni	PCM Congo-237	F	6124	13.5
Lophocebus	albigena	johnstoni	Haddow LIP 147	F	6237	13.5
Lophocebus	albigena	johnstoni	Haddow UP 125	F	6350	13.75
Lophocebus	albigena	johnstoni	NMNH 452408	F	6890	14
Lophocebus	albigena	johnstoni	$0 = \max 0 6$	F	7850	
Lopnocebus	albigena	jonnstoni ichnotoni	9, max of 0 Haddow LIP 52	F	8165	18
Lopnocebus	albigena	jonnstoni ichnotoni	0 : min of 4	M	5700	10
Lopnocebus	albigena	jonnstoni iekneteni	9, mm or 4 Hoddow P 246	M	5807	13
Lopnocebus	albigena	jonnstoni	DCM 1020 8 1 23	M	6804	15
Lophocebus	albigena	johnstoni?	KNM OM 3004	M	7150	15
Lophoceous	albigena	johnstoni : johnstoni	Haddow LIP 127	M	7258	16
LophoceDus	albiarra	johnstoni	Haddow JID 12/	M	7258	16
LophoceDus	albiaana	johnstoni	Haddow JID 175	M	7258	16
LophoceDus	albierna	johnstoni	DCM 1030 9 1 25	M	7258	16
Lopnocedus	awigena	johnstoni	PCINI 1750.0.1.25	M	7500	10
Lopnocebus	aibigena	jonnsioni	rUN 1772.21 Haddow UD 22	IVI NA	7500	17
Lophocebus	albigena	jonnstoni	Haddow UP 25		7711	17
Lophocebus	albigena	johnstoni	Haddow UP 126	M	//11	1/

APPENDIX TABLE 1 Continued

					М	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Lophocebus	albigena	johnstoni	Haddow UP 135	М	7711	17
Lophocebus	albigena	johnstoni	PCM 1930.8.1.24	Μ	7711	17
Lophocebus	albigena	johnstoni	PCM Congo-236	Μ	8165	18
Lophocebus	albigena	johnstoni	Haddow P 286	М	8165	18
Lophocebus	albigena	johnstoni	Haddow UP 10	М	8165	18
Lophocebus	albigena	johnstoni	NMNH 452500	М	8360	
Lophocebus	albigena	johnstoni	NMNH 452502	М	8480	
Lophocebus	albigena	johnstoni	9 ; max of 4	М	8650	
Lophocebus	albigena	zenkeri	PCM Z-VII-4	F	6000	
Lophocebus	albigena	zenkeri	PCM Z-VII-5	F	6000	
Lophocebus	albigena	zenkeri	PCM Z-II-33	М	8000	
Lophocebus	albigena	zenkeri	PCM Z-II-44	М	8500	
Lophocebus	albigena	zenkeri	PCM Z-VII-3	М	8500	
Lophocebus	albigena	zenkeri?	PCM M-852	М	9000	
Lophocebus	albigena	zenkeri	PCM Z-VII-6	М	9000	
Lophocebus	albigena	zenkeri	PCM French Congo-140	м	9072	20
Lophocebus	albigena	zenkeri	PCM Z-VI-29	м	10000	
Lophocebus	albigena	zenkeri	PCM Z-VIII-19	м	10000	
Lophocebus	albigena	albigena	1	F	7250	
Lophocebus	albigena	albigena	2	M	7700	
Lophocebus	aterrimus	aterrimus	- 9: min of 4	F	4450	
Lophocebus	aterrimus	aterrimus	9: max of 4	F	6700	
Lophocebus	aterrimus	aterrimus	9:1 of 1	M	7900	
Lophocebus	aterrimus	subsp indet	Susman 2	F	6000	
Lophocebus	aterrimus	subsp. indet.	Susman 3	F	6000	
Lophocebus	aterrimus	subsp. indet	Susman 1	M	7000	
Lophocebus	aterrimus	subsp. indet	MRAC-T 28767	M	7500	
Lophocebus	aterrimus	subsp. indet	MRAC-T 28568	M	8000	
Lophocebus	aterrimus	subsp. indet	MRAC-T 28573	M	8000	
Lophocebus	aterrimus	subsp. indet	MRAC-T 28575	M	8650	
Cercocebus	oaleritus	agilis	9: min of 2	F	4325	
Cercocebus	aalaritus	agilis	0 ; may of 2	F	6200	
Cercocebus	galeritus	agilis	9 ; min of 2	M	0200	
Cercocebus	galeritus	agilis	9 , max of 2	M	10000	
Cercocebus	galeritus	suben indet	MRAC-T 28778	F	4600	
Cercocebus	galeritus	subsp. indet	MRAC-1 287/8 MRAC T 28780	F	4000	
Cercocebus	galeritus	subsp. indet	MRAC-1 28780 MRAC-T 28770	F	5100	
Cercocebus	galeritus	subsp. indet	MRAC-T 28781	F	6100	
Cercocebus	galeritus	subsp. indet	MRAC-1 20701 MRAC T 20774	Г	8200	
Cercocebus	galeritus	subsp. indet	MRAC-1 28774 MPAC T 28775	M	8200	
Cercocebus	galeritus	subsp. indet	MRAC-1 28775 MDAC T 28776	M	10200	
Cercocebus	galernus	subsp. mact.	$\frac{1}{29} \text{ table 1: min of } 4$	M E	10200	
Cercocebus	torquatus	atys	36 , table 1; min 01 4	r · r	5000	
Cercoceous	torquatus	alys	INMINH 481740		0400	
Cercocebus	torquatus	atys	Minini 481/4/	F M	/000	
Cercoceous	torquatus	arys	MCGraw 94-9	M	9500	
Cercocebus	torquatus	atys	NMNH 481748	M	10800	
Cercocebus	torquatus	alys	INMINE 477201	M	11400	
Cercoceous	torquatus	arys	1000000000000000000000000000000000000	M	12/00	
Cercoceous	torquatus	torquatus	32 , p. 48; 2	F	5800	
Cercocedus	torquatus	torquatus	32 , p. 48; 5	M	8800	
Cercocedus	torquatus	torquatus	32, p. 48; 3	M	9900	
Cercoceous	torquatus	torquatus	PCM 1903.2.4.1	M	10800	
Cercocebus	torquatus	torquatus	32, p. 48; 1	М	11300	

					M	ass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Cercocebus	torquatus	torquatus	32 , p. 48; 4	М	12500	
Cercocebus	torquatus	torquatus	PCM CAM I 18	М	17237	38
Mandrillus	leucophaeus		32 , p. 56	М	20000 ^d	
Mandrillus	sphinx		PCM Z-VII-21	F	10000	
Mandrillus	sphinx		32 , p. 54; 3	F	11000e	
Mandrillus	sphinx		32 , p. 54; text	F	11000	
Mandrillus	sphinx	1	PCM Z-V-26	F	12000	
Mandrillus	sphinx		32 , p. 54; 2	F	12000	
Mandrillus	sphinx		47, graph p. 132; 6	F	12000	
Mandrillus	sphinx		47, graph p. 132; 7	F	12000	
Mandrillus	sphinx		47, graph p. 132; 8	F	14000	
Mandrillus	sphinx		PCM Z-VII-17	F	17000	
Mandrillus	sphinx		32 , p. 54; 6	М	27000 ^d	
Mandrillus	sphinx		32 , p. 54; 9	М	28000d	
Mandrillus	sphinx		32 , p. 54; text	М	30000	
Mandrillus	sphinx		48 , p. 911; 13	М	33300	
Mandrillus	sphinx		48 , p. 911; 15	М	33600	
Mandrillus	sphinx		48 , p. 911; 18	Μ	34500	
Mandrillus	sphinx		48 , p. 911; 9	М	34800	
Mandrillus	sphinx		48 , p. 911; 14	М	37000	
Mandrillus	sphinx		32, p. 54; text	М	39000	
Mandrillus	sphinx		PCM Z-VIII-9	М	45000	
Papio	hamadryas	anubis "Ethiopian-	26 ; min of 92	F	9500	
	,	small"				
Papio	hamadryas	anubis "neumanni"	21; 8	F	10433	23
Papio	hamadrvas	anubis "neumanni"	21: 36	F	10886	24
Papio	hamadrvas	anubis "neumanni"	AMNH 161115	F	10886	24
Papio	hamadrvas	anubis "neumanni"?	43 : min of 23	F	10900	
Panio	hamadrvas	anubis "neumanni"	21: 1	F	11567	25.5
Panio	hamadrvas	anubis "neumanni"	21: 9	F	11567	25.5
Panio	hamadrvas	anubis "neumanni"	21: 34	F	11567	25.5
Panio	hamadrvas	anubis "neumanni"	11: min of 17. PHG group	F	11700	
Panio	hamadryas	anubis "neumanni"	21: 4	F	11794	26
Panio	hamadrvas	anubis "neumanni"	21: 14	F	11794	26
Panio	hamadryas	anubis "neumanni"	FSM 2595	F	11794	26
Panio	hamadryas	anubis "neumanni"	NMNH 384217	F	11794	26
Panio	hamadryas	anubis "neumanni"	NMNH 384222	F	11794	26
Panio	hamadryas	anubis "neumanni"	21.13	F	12247	27
Panio	hamadryas	anubis "neumanni"	NMNH 452508	F	12358	21
Panio	hamadryas	anubis "neumanni"	21.16	F	12701	28
l'upio Panio	hamadryas	anubis "neumanni"	NMNH 384221	F	12701	28
Panio	hamadryas	anubis "neumanni"	21. 38	F	12928	28 5
Panio	hamadryas	anubis "neumanni"	11: min of 10 WBY group	F	13000	20.5
Papio Papio	hamadryas	anubis "neumanni"	71 , min of 10, whith group	F	13154	29
Papio Papio	hamadryas	anubis "neumanni"	NMNH 384219	F	13154	29
Panio	hamadryas	anubis "neumanni"	21 · 2	F	13608	30
Panio	hamadryas	anubis "neumanni"	21, 2	F	13608	30
Papio	hamadryas	anubis "neumanni"	21, 3	F	13608	30
I upio Panio	hamadroas	anubis "noumanni"	21, 35	F	13608	30
i apio Danio	hamadmaa	anubis "noumann?"	11: min of Q CPID group	r F	14000	50
r apio Banio	hamadryas	anubis "neumanni	11, mm of 2, CKIF group 21. 15	r F	14060	31
r apio Danio	hamadryas	anubis "neumanni	41, 1J 11: may of 17 DUC group	r F	141002	51
rapio Dania	namaaryas	anuois neumanni"	11 , max of 17, Price group	r F	14100	21 5
г арю	namadryas	anubis "neumanni"	41 ; 12	г	14288	51.5

APPENDIX TABLE 1 Continued

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Papio	hamadryas	anubis "Ethiopian- small"	Jolly F1	F	14515	32
Papio	hamadryas	anubis "neumanni"	21; 6	F	14515	32
Papio	hamadryas	anubis "neumanni"	BM(NH) 62.25	F	14515	32
Papio	hamadryas	anubis "Ethiopian- small"	Jolly F2	F	15876	35
Papio	hamadryas	anubis "neumanni"	NMNH 384224	F	16330	36
Papio	hamadryas	anubis "neumanni"	NMNH 384225	F	16330	36
Papio	hamadryas	anubis "neumanni"	NMNH 384235	F	16330	36
Papio	hamadryas	anubis "Ethiopian- small"	SAF AM II 154	F	17000	
Papio	hamadryas	anubis "neumanni"	NMNH 384227	F	17237	38
Papio	hamadryas	anubis "neumanni"?	43 ; max of 23	F	18000	
Papio	hamadryas	anubis "neumanni"	11; max of 10, WBY group	F	18000	
Papio	hamadryas	anubis "Ethiopian- small"	26 ; max of 92	F	18120	
Papio	hamadryas	anubis "neumanni"	11; max of 9, CRIP group	F	18200	
Papio	hamadryas	anubis "neumanni"	NMNH 384228	F	18598	41
Papio	hamadryas	anubis "Ethiopian- small"	26 ; min of 188	М	14100	
Papio	hamadryas	anubis "neumanni"	21 ; 24	М	15422	34
Papio	hamadryas	anubis "neumanni"	11; min of 5, WBY group	М	16500	
apio	hamadryas	anubis "neumanni"	11; min of 9, PHG group	М	17900	
Papio	hamadryas	anubis "neumanni"	AMNH 161116	М	18144	40
Papio	hamadryas	anubis "neumanni"	FSM M12	М	18598	41
apio	hamadryas	anubis "Ethiopian- small"	Jolly M1	М	19278	42.5
Papio	hamadryas	anubis "neumanni"	21; 29	Μ	19732	43.5
Papio	hamadryas	anubis "neumanni"	FSM M42	М	19732	43.5
Papio	hamadryas	anubis "neumanni"	21 ; 10	Μ	19958	44
Papio	hamadryas	anubis "neumanni"	21 ; 11	Μ	19958	44
Papio	hamadryas	anubis "neumanni"	21; 26	Μ	19958	44
Papio	hamadryas	anubis "neumanni"	FSM M3	Μ	20185	44.5
Papio	hamadryas	anubis "neumanni"	21 ; 21	Μ	20412	45
Papio	hamadryas	anubis "neumanni"	21; 23	Μ	20412	45
Papio	hamadryas	anubis "Ethiopian- small"	Jolly M2	М	20865	46
Papio	hamadryas	anubis "neumanni"	FSM M13	М	20866	46
Papio	hamadryas	anubis "neumanni"	21; 22	М	21092	46.5
Papio	hamadryas	anubis "neumanni"	21; 30	М	21092	46.5
Papio	hamadryas	anubis "neumanni"	21 ; 17	М	21319	47
Papio	hamadryas	anubis "neumanni"	21; 28	М	21319	47
Papio	hamadryas	anubis "neumanni"	AMNH 161117	М	21773	48
Papio	hamadryas	anubis "neumanni"	11; min of 4, CRIP group	Μ	21800	
Papio	hamadryas	anubis "neumanni"?	43 ; min of 54	М	21800	
apio	hamadryas	anubis "choras"	BM(NH) 53.654	Μ	22000	
Papio	hamadryas	anubis "Ethiopian- small"	Jolly M3	М	22226	49
Papio	hamadryas	anubis "neumanni"	21 ; 25	М	22226	49
Papio	hamadryas	anubis "neumanni"	FSM M10	Μ	22226	49
Papio	hamadryas	anubis "neumanni"	FSM M4	Μ	22680	50
Papio	hamadryas	anubis "neumanni"	FSM M5	М	22907	50.5
Papio	hamadryas	anubis "neumannī"	21 : 32	М	23134	51

				Mass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Papio	hamadryas	anubis "neumanni"	FSM M11	Μ	23134	51
Papio	hamadryas	anubis "neumanni"	21; 18	Μ	23587	52
Papio	hamadryas	anubis "neumanni"	21; 20	Μ	23587	52
Papio	hamadryas	anubis "neumanni"	FSM M1	М	23587	52
Papio	hamadryas	anubis "neumanni"	FSM M16	Μ	23587	52
Papio	hamadryas	anubis "neumanni"	FSM M27	М	23587	52
Papio	hamadryas	anubis "neumanni"	NMNH 384216	Μ	23587	52
Papio	hamadryas	anubis "neumanni"	FSM M9	Μ	23814	52.5
Papio	hamadryas	anubis "neumanni"	NMNH 384218	Μ	24041	53
Papio	hamadryas	anubis "neumanni"	NMNH 384220	Μ	24041	53
Papio	hamadryas	anubis "neumanni"	21 ; 31	Μ	24268	53.5
Papio	hamadryas	anubis "Ethiopian- small"	Jolly M4	М	24494	54
Panio	hamadrvas	anuhis "neumanni"	FSM M14	м	24494	54
apio Panio	hamadryas	anubis "neumanni"	FSM M17	M	24494	54
Panio	hamadryas	anubis "neumanni"	NMNH 384230	M	24494	54
apio Panio	hamadryas	anubis "neumanni"	NMNH 384229	M	25402	56
apio Papio	hamadryas	anubis "neumanni"	11: max of 5 WBY group	M	26100	50
apio Panio	hamadryas	anubis "neumanni"	NMNH 384234	M	26762	59
apio Panio	hamadryas	anubis "neumanni"	11: may of 4 CRIP group	M	27200	57
apio	hamadryas	anubis "neumanni"	21· 33	M	27216	60
apio Panio	hamadryas	anubis "neumanni"	11: max of 9 PHG group	M	27800	
apio Panio	hamadryas	anubis "neumanni"	NMNH 384223	M	28804	63 5
apio Panio	hamadryas	anubis "neumanni"	71 · 10	M	20004	64
apio	hamadryas	anubis "neumanni"	NMNH 162899	M	29030	64
apio Panio	hamadryas	anubis "neumanni"	NMNH 384233	M	29030	64
apio Panio	hamadryas	anubis "Ethiopian-	26 : max of 188	M	29440	04
apio	nanaar yas	small"	20 , max of 100		227110	
Panio	hamadrvas	anubis "neumanni"?	43 : max of 54	м	32000	
apio Panio	hamadryas	anubis anubis	NMNH 236975	F	14062	31
apio Panio	hamadryas	anubis	BM(NH) 14.3.8.2	F	14969	33
apio Panio	hamadryas	anubis	NMNH 236973	F	15422	34
apio Panio	hamadryas	anubis	NMNH 236974	F	15876	35
apio Panio	hamadryas	anubis	SAF MO 4 2	F	17900	
upio Panio	hamadryas	anubis	SAF AM 2 86	M	23000	
apio Panio	hamadryas	anubis	SAF Bull 72	M	25300	
apio Panio	hamadryas	anubis	BM(NH) 13 10 18 2	M	27216	60
apio Panio	hamadryas	anubis	BM(NH) 51 532	M	27216	60
upio Panio	hamadryas	anubis	SAF Bull 71	M	27500	
upio Panio	hamadryas	anubis	MNHN-P 4770	M	30000	
upio Panio	hamadryas	anubis	NMNH 236976	м	34474	76
apio Panio	hamadryas	anubis	MNHN-P 4646	M	35000	
upio Panio	hamadryas	anubis	SAF AMIL 85	M	35000	
apio Danio	hamadryas	anubis	MNHN-P 4987	M	35500	
Papio Papio	hamadryas	anubis	BM(NH) 13 10 18 3	M	37195	82
apio Panio	hamadruas	anuhislevnocenhalus	FSM M-24	M	20866	46
upio	numuuryus	(hybrid)	1 UIVI IVI "& T	141	20000	
Papio	hamadryas	anubis/cynocephalus (hybrid)	FSM M-21	М	21773	48
Papio	hamadryas	anubis/cynocephalus (hybrid)	FSM M-22	М	22226	49
Papio	hamadryas	anubis/cynocephalus (hybrid)	FSM M-25	М	22680	50

					Mass	
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Papio	hamadryas	anubis/cynocephalus (hybrid)	FSM M-20	М	23134	51
Papio	hamadryas	anubis/cynocephalus (hybrid)	FSM M-23	М	26082	57.5
Papio	hamadryas	anubis/hamadryas (hybrid)	MNHN-P 4310	М	20000	
Papio	hamadryas	cynocephalus	KNM OM 7261/KK18	F	8800	
Papio	hamadryas	cynocephalus	UT-A 40	F	9979	22
Papio	hamadryas	cynocephalus	KNM OM 7275/KK17	F	10000	
Papio	hamadryas	cynocephalus	KNM OM 7256/KB29	F	10000	
Papio	hamadryas	cynocephalus	UT-A 56	F	10433	23
Papio	hamadryas	cynocephalus	KNM OM 3190	F	10450	
Papio	hamadryas	cynocephalus	UT-A 61	F	10886	24
Papio	hamadryas	cynocephalus	KNM OM 7399	F	11000	
Papio	hamadryas	cynocephalus	KNM OM 7285/MD8	F	11000	
Papio	hamadryas	cynocephalus	UT-A 34	F	11340	25
Papio	hamadryas	cynocephalus	KNM OM 7311/MD6	F	11400	
Papio	hamadryas	cynocephalus	KNM OM 7264/KB31	F	11400	
Papio	hamadryas	cynocephalus	KNM OM 7248/KB23	F	11400	
Papio	hamadryas	cynocephalus	KNM OM 7262/KB21	F	11500	
Papio	hamadryas	cynocephalus	UT-A 1	F	11567	25.5
Papio	hamadryas	cynocephalus	UT-A 33a	F	11794	26
Papio	hamadryas	cynocephalus	KNM OM 7276/	F	12000	
Papio	hamadryas	cynocephalus	KNM OM 7255/KB2	F	12000	
Papio	hamadryas	cynocephalus	KNM OM 7245/KK12	F	12200	
Papio	hamadrvas	cvnocephalus	KNM OM 7242/DG3	F	12400	
Papio	hamadrvas	cvnocephalus	NMNH 384215	F	12474	27.5
Papio	hamadrvas	cvnocephalus	KNM OM 7413	F	12500	
, Papio	hamadrvas	cvnocephalus	UT-A 66	F	12928	28.5
Panio	hamadryas	cynocephalus	KNM OM 7277/KB34	F	13000	20.0
Papio	hamadrvas	cynocephalus	KNM OM 7254/KK11	F	13000	
apio Papio	hamadrvas	cynocephalus	KNM OM 7383	F	13500	
Papio	hamadrvas	cynocephalus	UT-A 27	F	13608	30
apio Panio	hamadrvas	cynocephalus	KNM OM 7501	F	14000	50
Panio	hamadryas	cynocephalus	KNM OM 7386	F	14000	
Papio	hamadryas	cvnocephalus	KNM OM 7241/KB12	F	14000	
apio Panio	hamadrvas	cynocephalus cynocephalus	UT-A 64	F	14062	31
anio Panio	hamadryas	cynocephalus	KNM OM 7243/KB1	F	14500	51
apio Panio	hamadryas	cynocephalus		F	156/0	34 5
anio Panio	hamadryas	cynocephalus	NMNH 384210	F	15876	35
apio Panio	hamadryas	cynocephalus	KNM OM 7408	F	16000	55
apio Panio	hamadryas	cynocephalus	KNM OM 7402	F	17500	
apio Panio	hamadryas	cynocephalus	KNM OM 7381	I' M	17000	
anio	hamadryas	cynocephalus	KNM OM 7267/TP1	M	12000	
apio Janio	hamadryas	cynocephalus	KNM OM 7404	M	18500	
anio	hamadryas	cynoceptatus	FSM M32	M	18824	41 5
anio	hamadruas	conocenhalus	FSM M26	IVI NA	10024	41.3
apio Panio	hamadruas	cynocephalus	FSM M30	M M	10722	42
anio	hamadruas	cynocephalus	KNM OM 7252/MD0	IVI NA	20000	43.3
anio	hamadroas	cynocephalus	NMNH 452500	IVI NA	20000	
Panio	hamadmas	cynoceptulus	FSM M10	M	20100	45
apio Panio	hamadmas	cynocepnulus	1.21VI IVI 19 1 IT A A2	M	20412	43 45
apio Panio	hamadmaa	cynocepitulus	U 1-M 43	M	20412	43
upio	namaaryas	cynocepnatus	KNM UM /2/4/KKIU	M	20800	

					М	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Panio	hamadrvas	cynocephalus	KNM OM 7239/KB43	м	20800	
Panio	hamadryas	cynocephalus	FSM M38	M	20866	46
Panio	hamadryas	cynocephalus	KNM OM 7412	M	21000	
Panio	hamadryas	cynocephalus	KNM OM 7281/MD10	M	21000	
Panio	hamadryas	cynocephalus	FSM M30	M	21319	47
Panio	hamadryas	cynocephalus	I IT-A 49	M	21319	47
Panio	hamadryas	cynocephalus	LIT-A 42	M	21319	47
Panio	hamadryas	cynocephalus	LIT-A 35	M	21319	47
Panio	hamadryas	cynocephalus	KNM OM 7419	M	21500	
Panio	hamadryas	cynocephalus	FSM M28	M	21546	47 5
Panio	hamadryas	cynocephalus	FSM M29	M	21773	48
Panio	hamadryas	cynocephalus	KNM OM 7284/KB4	M	21800	40
Panio	hamadryas	cynocephalus	KNM OM 7247/KB9	M	22300	
Panio	hamadryas	cynocephalus	KNM OM 7240/KK5	M	22500	
Papio	hamadryas	cynocephalus	FSM M40	M	22500	50
l'apio Panio	hamadryas	cynocephalus		M	22680	50
Papio Papio	hamadryas	cynocephalus		M	22000	50
Papio	hamadryas	cynocephalus	KNM OM 7240/DC9	M	22000	50
Fupio Banio	hamadryas	cynocephalus	ESM M34	M	23000	51
Papio Papio	hamadryas	cynocephalus	FSM M7	M	23134	51
Papio	hamadryas	cynocephalus	NMNH 452507	M	23134	51
Papio	hamadryas	cynocephalus		M	23134	51
F upio Banio	hamadryas	cynocephalus		M	23134	51
Fapio Banio	hamadmas	cynocephalus		M	23134	51
Fapio Danio	hamadmas	cynocephalus	UI-A 41 KNM OM 7251/KK2	M	23104	51
Papio	hamadmas	cynocephalus	RM(NH) 66 401	M	23587	52
Fapio Danio	hamadmas	cynocephalus	KNM OM 7280/MD11	M	23800	52
Fapio Danio	hamadmas	cynocephalus		M	23814	52 5
Fupio Danio	hamadmas	cynocephalus	KNM OM 7286/KK6	M	24000	52.5
Papio	hamadmas	cynocephalus	KNM OM 7273/KR5	M	24000	
Papio	hamadmas	cynocephalus	ESM M35	M	24200	54 5
Papio	hamaaryas	cynocephalus	NIMNIL 284211	M	24721	55
Papio	hamaaryas	cynocephalus	KNNA OM 7486	M	24940	55
Papio	namaaryas kana dimaa	cynocephaius	KNM OM 7271/KP3	M	25000	
Рарю	namaaryas tu suu si den see	cynocephaius	KINNI OM 7272/KK1	M	25000	
Рарю	namaaryas	cynocephaius	KINNI OMI 7272/KKI ESM M22	M	25000	57
Papio	namaaryas hamadmiaa	cynocephaius	FSM M26	M	25855	58
Рарю	namaaryas	cynocephaius	FSWI WISO	M	26500	70
Рарю	namaaryas	cynocepnaius	ESM M21	M	20300	50
Рарю	namaaryas	cynocephaius	FSWINDT KNIM OM 7260/DG5	M	20702	39
Ραριο	namaaryas	cynocepnaius	ESM M27	IVI M	21900	63
Ραριο	namaaryas	cynocepnaius		M	20377	63
Рарю	namaaryas	cynocepnaius		M	20377	68
Ραριο	hamadryas	cynocepnaius	UI-A 9 KNN OM 7208	IVI M	21000	00
Ραριο	namaaryas	cynocepnaius	$\frac{12}{12} \min cf 13$	IVI E	9500	
Papio	namaaryas	namaaryas hamadmina	$43; \min 0113$	r F	10000	
Рарю	namaaryas	namaaryas hama danaa		F	11750	
rapio	namaaryas	namaaryas hamadroos	3AF HA VIII.39	Г	13120	
Рарю В	namadryas	namaaryas hamadroor	20, 1110X 01 2 12: may of 12	г Б	13500	
rapio	namaaryas	namaaryas	45, 111ax 01 15 26: min of 26	Т.	15500	
Рарю	namaaryas	namaaryas	20; IIIII OI 30 SAE HA VIII 41	IVI N <i>4</i>	17400	
Рарю Р	namadryas	namaaryas	баг па VIII.41 42: min of 7	M	19250	
Papio	hamadryas	hamadryas	43 ; min of /	M	18250	
Papio	hamadryas	hamadryas	SAF HA 8 40	м	18750	

					N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Papio	hamadryas	hamadryas	PCM [26]	М	19505	43
Papio	hamadryas	hamadryas	SAF HA 8 3	М	19600	
Papio	hamadryas	hamadryas	MNHN-P 4235	М	20000	
Papio	hamadryas	hamadryas	MNHN-P 4486	Μ	20250	
Papio	hamadryas	hamadryas	SAF HA VIII.4	М	20750	
Papio	hamadryas	hamadryas	AIUZ 9283	Μ	21100	
Papio	hamadryas	hamadryas	SAF HA 8 83	Μ	24000	
Papio	hamadryas	hamadryas	43 ; max of 7	М	24000	
Papio	hamadryas	hamadryas	26 ; max of 36	Μ	25370	
Papio	hamadryas	hamadryas	MNHN-P 4133	М	30350	
Papio	hamadryas	kindae	10; XIX	F	9000	
Papio	hamadryas	kindae	10; XXIV	F	9400	
Papio	hamadryas	kindae	10; XVI	F	10000	
Papio	hamadryas	kindae	10; XXV	F	11000	
Papio	hamadryas	kindae	10; XXI	М	15000	
Papio	hamadryas	kindae	MNHN-P SMY 14/68	Μ	15422	34
Papio	hamadryas	kindae	10; XXII	Μ	16000	
Papio	hamadryas	kindae	10; XV	М	16500	
Papio	hamadryas	kindae	BM(NH) 67.1658	М	17237	38
Papio	hamadryas	ursinus	2; 3	F	11200	
Papio	hamadryas	ursinus	6 ; 16	F	12200	
Papio	hamadryas	ursinus	33 ; B25	F	12270	
Papio	hamadryas	ursinus	33 ; B58	F	12270	
Papio	hamadryas	ursinus	33 ; B87	F	12270	
Papio	hamadryas	ursinus	33 ; B95	F	12270	
Papio	hamadryas	ursinus	6 ; 6	F	12700	
Papio	hamadryas	ursinus	6 ; 8	F	12700	
Papio	hamadryas	ursinus	33 ; B45	F	12730	
Papio	hamadryas	ursinus	33 ; B52	F	12730	
Papio	hamadryas	ursinus	6 ; 7	F	12800	
Papio	hamadryas	ursinus	6; 22	F	13100	
Papio	hamadryas	ursinus	33 ; B9	F	13180	
Papio	hamadryas	ursinus	2 ; 7	F	13200	
Papio	hamadryas	ursinus	6 ; 11	F	13200	
Papio	hamadryas	ursinus	6 ; 13	F	13400	
Papio	hamadryas	ursinus	6; 14	F	13600	
Papio	hamadryas	ursinus	6; 17	F	13600	
Papio	hamadryas	ursinus	33 ; B41	F	13640	
Papio	hamadryas	ursinus	33 ; B 55	F	13640	
Papio	hamadryas	ursinus	33 ; B90	F	13640	
Papio	hamadryas	ursinus	33 ; B19	F	13860	
Papio	hamadryas	ursinus	6; 4	F	13900	
Papio	hamadryas	ursinus	NMNH 367880	F	14062	31
Papio	hamadryas	ursinus	33 ; B69	F	14090	
Papio	hamadryas	ursinus	33 ; B89	F	14090	
Papio	hamadryas	ursinus	33 ; B98	F	14090	
Papio	hamadryas	ursinus	6; 3	F	14100	
Papio	hamadryas	ursinus	6; 10	F	14100	
Papio	hamadryas	ursinus	2 ; 15	F	14500	
Papio	hamadryas	ursinus	6 ; 5	F	14500	
Papio	hamadryas	ursinus	33 ; B30	F	14550	
Papio	hamadryas	ursinus	33 ; B81	F	14550	
Papio	hamadryas	ursinus	SAF 153 67	F	14742	32.5

						-
Canua	Species	Subanasias	Encoimon reference	Sav	N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	10
Ραριο	hamadryas	ursinus	6; 25	F	14800	
Ραριο	hamadryas	ursinus	Susman	F	15000	
Рарю	namaaryas	ursinus	33; B28	F	15000	
Рарю	namadryas	ursinus	6 ; 2	F	15000	
Рарю	namaaryas	ursinus	6 ; 21	F	15000	
Papio	namadryas	ursinus	2; 11	F	15100	
Papio	namaaryas	ursinus	0 ; 1	F	15100	
Рарю	hamadryas	ursinus	6; 9	F	15100	
Рарю	hamadryas	ursinus	6 ; 15	F	15400	
Рарю	hamadryas	ursinus	33; 859	F	15450	
Рарю	namadryas	ursinus	6 ; 12	F	15500	04 1075
Рарю	hamadryas	ursinus	NMNH 367879	F	15507	34.18/5
Рарю	hamadryas	ursinus	2; 4	F	15700	
Papio	hamadryas	ursinus	6; 20	F	15800	
Ραριο	hamadryas	ursinus	7; ST	F	15900	
Papio	hamadryas	ursinus	33; B65	F	16020	
Ραριο	hamadryas	ursinus	6; 19	F	16200	
Papio	hamadryas	ursinus	33 ; B71	F	16360	
Papio	hamadryas	ursinus	33 ; B82	F	16360	
Papio	hamadryas	ursinus	6; 23	F	16400	
Papio	hamadryas	ursinus	6; 26	F	16600	
Papio	hamadryas	ursinus	33 ; B43	F	16640	
Papio	hamadryas	ursinus	Susman	F	17000	
Papio	hamadryas	ursinus	2; 16	F	17100	
Papio	hamadryas	ursinus	33 ; B14	F	17270	
Papio	hamadryas	ursinus	2; 12	F	17500	
Papio	hamadryas	ursinus	33; B97	F	17730	
Papio	hamadryas	ursinus	6; 24	F	18200	
Papio	hamadryas	ursinus	6; 18	F	18300	
Papio	hamadryas	ursinus	33 ; B67	F	20450	
Papio	hamadryas	ursinus	2; 8	F	20500	
Papio	hamadryas	ursinus	2; 17	M	20500	
Papio	hamadryas	ursinus	7; DV	M	21600	
Papio	hamadryas	ursinus	7; HL	M	21800	
Papio	hamadryas	ursinus	2; 1	M	21800	
Papio	hamadryas	ursinus	33 ; B26	M	25000	
Papio	hamadryas	ursinus	6; 27	M	25800	
Papio	hamadryas	ursinus	33 ; B22	M	25910	
Papio	hamadryas	ursinus	2;9	M	26200	
Papio	hamadryas	ursinus	33 ; B62	M	26360	
Papio	hamadryas	ursinus	33; B88	M	26360	
Papio	hamadryas	ursinus	2; 18	M	26400	
Papio	hamadryas	ursinus	2; 5	M	26800	
Papio	hamadryas	ursinus	33; B36	M	26820	
Papio	hamadryas	ursinus	33 ; B38	M	26820	
Papio	hamadryas	ursinus	2; 13	M	27000	
Papio	hamadryas	ursinus	33 ; B32	M	27730	
Papio	hamadryas	ursinus	Susman	M	28000	()
Papio	namadryas	ursinus	FMNH 98095	M	28123	02
Papio	hamadryas	ursinus	33; B4	м	28180	
Papio	hamadryas	ursinus	33; B2/	M	28180	()
Papio	hamadryas	ursinus	SAF 213 67	M	28577	03
Papio	hamadryas	ursinus	33 ; B20	М	28640	

				Mass		
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Papio	hamadryas	ursinus	33 ; B 35	Μ	28640	
Papio	hamadryas	ursinus	33 ; B64	Μ	28640	
Papio	hamadryas	ursinus	33 ; B42	Μ	29090	
Papio	hamadryas	ursinus	33 ; B86	Μ	29090	
Panio	hamadrvas	ursinus	33 : B93	м	29090	
Panio	hamadrvas	ursinus	33 : B1	М	29550	
Panio	hamadrvas	ursinus	2:2	М	29700	
Panio	hamadryas	ursinus	33· B16	M	29980	
Panio	hamadryas	ursinus	Susman	M	30000	
Panio	hamadryas	ursinus	33 . B21	M	30000	
Panio	hamadryas	ursinus	33, B21 33, B47	M	30000	
l apio Panio	hamadrovas	ursinus	33, D47 32, P72	M	30450	
Fupio Panio	hamadryas	ursinus	33, B/2 23, B02	M	20450	
rupio Damia	hamaaryas	ursinus	33 , D2 33 , D2	M	20540	
Papio D. :	namaaryas	ursinus	33 ; B 31	M	30340	
Papio D	namaaryas	ursinus	33; B49	M	30910	
Papio D	hamadryas	ursinus	33; B 53	M	31140	
Рарю	hamadryas	ursinus	2; 10	M	31500	
Papio	hamadryas	ursinus	BM(NH) 55.1131	M	31752	70
Papio	hamadryas	ursinus	33 ; B78	Μ	32270	
Papio	hamadryas	ursinus	33 ; B 73	Μ	32500	
Papio	hamadryas	ursinus	33 ; B75	Μ	32730	
Papio	hamadryas	ursinus	2; 14	М	33500	
Papio	hamadryas	ursinus	NMNH 469923	Μ	33566	74
Papio	hamadryas	ursinus	2; 6	Μ	34100	
Papio	hamadryas	ursinus	6; 28	Μ	35000	
Theropithecus	gelada		MNHN-P 4105	F	9000	
Theropithecus	gelada		MNHN-P 4107	F	11000	
Theropithecus	gelada		MNHN-P 4099	F	12000	
Theropithecus	gelada		MNHN-P 4374	F	13800	
Theropithecus	gelada		SAF DB 9/55	F	13800	
Theropithecus	gelada		SAF DB 9 60	М	16500	
Theropithecus	gelada		MNHN-P 4372	М	20250	
Macaca	arctoides	arctoides	FMNH 99367	F	6020	
Macaca	arctoides	arctoides	17	F	7500	
Macaca	arctoides	arctoides	17	F	8500	
Macaca	arctoides	arctoides	17	F	9100	
Macaca	arctoides	arctoides	FMNH 105682	M	0000	
Macaca	arctoides	arctoides	17	M	10100	
Macaca	arctoides	arctoides	17	M	10100	
Macaca	arcioides	arctoides	17	IVI M	10200	
Macaca	arciolaes	arcioides	17	M	14000	
Macaca	arciolaes	arcioiaes	17	M	14000	
Macaca	arctolaes	arciolaes	17	M	15000	
Macaca	arctoides	arctoides	17	M	15500	
Macaca	arctoides	melanota	NMNH 111966	F	8505	18.75
Macaca	arctoides	melanota	FMNH 105683	М	10200	
Macaca	assamensis	assamensis	15; (FMNH)	F	4860	
Macaca	assamensis	assamensis	15; (FMNH)	F	6200	
Macaca	assamensis	assamensis	15; (FMNH)	F	6600	
Macaca	assamensis	assamensis	15; (FMNH)	F	6800	
Macaca	assamensis	assamensis	MCZ 37710	Μ	7938	17.5
Macaca	assamensis	assamensis	FMNH 99622	Μ	8500	
Macaca	assamensis	assamensis	FMNH 99631	М	8700	
Macaca	assamensis	assamensis	15: BM(NH) 1937.3.4.10 or 11	м	10433	23

-			Continuea			
					M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	assamensis	assamensis	15	М	13000	
Macaca	assamensis	assamensis	15	Μ	14500	
Macaca	assamensis	assamensis	15	Μ	15000	
Macaca	assamensis	pelops	15	F	7000	
Macaca	assamensis	pelops	15	F	7900	
Macaca	assamensis	pelops	15	F	8600	
Macaca	assamensis	pelops	15	Μ	10400	
Macaca	assamensis	pelops	15	Μ	10900	
Macaca	assamensis	pelops	15; BM(NH) 1915.9.1.3?	Μ	11340	25
Macaca	assamensis	pelops	15	Μ	12400	
Macaca	assamensis	pelops	15; BM(NH) 1915.9.1.2?	Μ	12700	28
Macaca	fascicularis		NMNH 344989	F	2350	
Macaca	fascicularis		MCZ 35693	F	2495	5.5
Macaca	fascicularis		44; min of 11	F	2500	
Macaca	fascicularis		MCZ 35652	F	2700	
Macaca	fascicularis		MCZ 35658	F	2722	6
Macaca	fascicularis		MCZ 35727	F	2722	6
Macaca	fascicularis		ANSP 20219	F	2722	6
Macaca	fascicularis		FMNH 68702	F	2830	
Macaca	fascicularis		MCZ 37352	F	2835	6.25
Macaca	fascicularis		NMNH 114561	F	2835	6.25
Macaca	fascicularis		NMNH 121869	F	2948	6.5
Macaca	fascicularis		NMNH 121874	F	2948	6.5
Macaca	fascicularis		FMNH 99661	F	2950	
Macaca	fascicularis		MCZ 35626	F	3175	7
Macaca	fascicularis		MCZ 37663	F	3175	7
Macaca	fascicularis		MCZ 35694	F	3175	7
Macaca	fascicularis		MCZ 37348	F	3175	7
Macaca	fascicularis		MCZ 35765	F	3200	
Macaca	fascicularis		FMNH 68700	F	3210	
Macaca	fascicularis		MCZ 35634	F	3400	
Macaca	fascicularis		CTNRC ? (ex FMNH 99665)	F	3430	
Macaca	fascicularis		MCZ 37347	F	3515	7.75
Macaca	fascicularis		FMNH 99659	F	3560	
Macaca	fascicularis		44; max of 11	F	3600	
Macaca	fascicularis		IEBR 1532	F	3600	
Macaca	fascicularis		MCZ 35724	F	3629	8
Macaca	fascicularis		NMNH 121513	F	3742	8.25
Macaca	fascicularis		NMNH 83274	F	3742	8.25
Macaca	fascicularis		FMNH 105654	F	3750	
Macaca	fascicularis		SICONBREC 1225	F	3750	
Macaca	fascicularis		FMNH 140938	F	3800	
Macaca	fascicularis		FMNH 99658	F	3800	
Macaca	fascicularis		NMNH 123990	F	3856	8.5
Macaca	fascicularis		NMNH 151830	F	3856	8.5
Macaca	fascicularis		SICONBREC 1586	F	3930	
Macaca	fascicularis		MCZ 37349	F	3969	8.75
Macaca	, fascicularis		NMNH 114165	F	3969	8.75
Macaca	fascicularis		NMNH 114166	F	3969	8.75
Macaca	, fascicularis		NMNH 144679	F	4000	
Macaca	fascicularis		40; BM(NH) 1914.12.8.17	F	4082	9
Macaca	fascicularis		AMNH 54677	F	4082	9
Macaca	fascicularis		NMNH 141145	F	4082	9
	,					

					M	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	fascicularis		ZRC 4-021	F	4082	9
Macaca	fascicularis		MCZ 37350	F	4309	9.5
Macaca	fascicularis		NMNH 114162	F	4423	9.75
Macaca	fascicularis		FMNH 99644	F	4720	
Macaca	fascicularis		40; BM(NH) 1914.12.8.16	F	4763	10.5
Macaca	fascicularis		34; p. 13; max of 3	F	4763	10.5
Macaca	fascicularis		NMNH 111898	F	5100	
Macaca	fascicularis		BNHS 5072	F	5443	12
Macaca	fascicularis		NMNH 115675	М	3402	7.5
Macaca	fascicularis		NMNH 101744	М	3515	7.75
Macaca	fascicularis		NMNH 143583	М	3515	7.75
Macaca	fascicularis		MCZ 35695	Μ	3600	
Macaca	fascicularis		NMNH 121836	М	3629	8
Macaca	fascicularis		NMNH 114409	М	3742	8.25
Macaca	fascicularis		MCZ 35673	М	3856	8.5
Macaca	fascicularis		44; min of 15	М	3900	
Macaca	fascicularis		MCZ 35571	М	3900	
Macaca	fascicularis		NMNH 114410	М	3969	8.75
Macaca	fascicularis		SICONBREC 1475	М	4250	
Macaca	fascicularis		MCZ 35629	М	4309	9.5
Macaca	fascicularis		MCZ 35701	М	4309	9.5
Macaca	fascicularis		MCZ 35608	М	4309	9.5
Macaca	fascicularis		34 ; p. 13; min of 3	М	4309	9.5
Macaca	fascicularis		NMNH 101639	М	4309	9.5
Macaca	fascicularis		NMNH 124970	М	4423	9.75
Macaca	fascicularis		NMNH 143582	М	4423	9.75
Macaca	fascicularis		MCZ 35656	М	4536	10
Macaca	fascicularis		MCZ 35736	М	4536	10
Macaca	fascicularis		NMNH 113169	М	4536	10
Macaca	fascicularis		NMNH 115676	М	4536	10
Macaca	fascicularis		NMNH 121872	М	4536	10
Macaca	fascicularis		NMNH 124710	М	4536	10
Macaca	fascicularis		NMNH 124969	М	4536	10
Macaca	fascicularis		NMNH 114506	М	4649	10.25
Macaca	fascicularis		NMNH 115677	М	4649	10.25
Macaca	fascicularis		MCZ 35755	М	4763	10.5
Macaca	fascicularis		MCZ 35729	М	4763	10.5
Macaca	fascicularis		NMNH 123991	М	4763	10.5
Macaca	fascicularis		NMNH 121871	М	4876	10.75
Macaca	fascicularis		NMNH 144419	М	4876	10.75
Macaca	fascicularis		NMNH 151831	М	4876	10.75
Macaca	fascicularis		MCZ 35613	М	4990	11
Macaca	fascicularis		MCZ 35612	М	4990	11
Macaca	fascicularis		MCZ 37414	М	4990	11
Macaca	fascicularis		NMNH 121803	М	4990	11
Macaca	fascicularis		NMNH 121870	М	4990	11
Macaca	fascicularis		NMNH 114505	Μ	5216	11.5
Macaca	fascicularis		NMNH 121868	Μ	5216	11.5
Macaca	fascicularis		NMNH 282628	Μ	5300	
Macaca	fascicularis		IEBR L.311	Μ	5300	
Macaca	fascicularis		NMNH 114560	М	5330	11.75
Macaca	fascicularis		NMNH 124863	Μ	5330	11.75
Macaca	fascicularis		NMNH 125102	Μ	5330	11.75

					М	ass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	fascicularis		NMNH 521839	М	5400	
Macaca	fascicularis		MCZ 35681	М	5443	12
Macaca	fascicularis		MCZ 35619	М	5443	12
Macaca	fascicularis		NMNH 114163	М	5443	12
Macaca	fascicularis		NMNH 114559	М	5443	12
Macaca	fascicularis		NMNH 125101	М	5443	12
Macaca	fascicularis		NMNH 141371	М	5443	12
Macaca	fascicularis		FMNH 99651	М	5480	
Macaca	fascicularis		FMNH 140939	М	5600	
Macaca	fascicularis		MCZ 35677	М	5897	13
Macaca	fascicularis		NMNH 114168	М	5897	13
Macaca	fascicularis		NMNH 141372	М	5897	13
Macaca	fascicularis		NMNH 83272	Μ	5897	13
Macaca	fascicularis		44; max of 15	М	5900	
Macaca	fascicularis		NMNH 104854	М	6010	13.25
Macaca	fascicularis		FMNH 99642	М	6100	
Macaca	fascicularis		NMNH 114169	М	6124	13.5
Macaca	fascicularis		NMNH 151829	М	6237	13.75
Macaca	fascicularis		NMNH 114248	М	6350	14
Macaca	fascicularis		NMNH 121512	М	6350	14
Macaca	fascicularis		NMNH 156291	М	6350	14
Macaca	fascicularis		FMNH 105689	М	6600	
Macaca	fascicularis		NMNH 114167	М	6804	15
Macaca	fascicularis		SICONBREC 100	М	7540	
Macaca	fascicularis		NMNH 114164	М	7711	17
Macaca	fascicularis		NMNH 144678	М	7711	17
Macaca	fascicularis		NMNH 111795	М	8165	18
Macaca	fascicularis		40: BM(NH) 1914.12.8.15	Μ	8278	18.25
Macaca	fascicularis		NMNH 111801	Μ	9526	21
Macaca	fascicularis		18; Kohlbrugge, p. 280	М	12000	
Macaca	fuscata		23; Glance, min	F	6350f	
Macaca	fuscata		23: Chonpe, min	F	6600f	
Macaca	fuscata		23: Kuiiro, min	F	6650f	
Macaca	fuscata		23: Deko, min	F	6890f	
Macaca	fuscata		23: Midori, min	F	7000f	
Macaca	fuscata		23: Petit-Mon. min	F	7300	
Macaca	fuscata		23: Shiro, min	F	7400 ^f	
Macaca	fuscata		23 : Kin, min	F	7650	
Macaca	fuscata		23: Matsu, min	F	7680	
Macaca	fuscata		23: Meme, min	F	7900f	
Macaca	fuscata		23: Kan, min	F	8100	
Macaca	fuscata		23: Russe, min	F	8150	
Macaca	fuscata		23: Mol. min	F	8680	
Macaca	fuscata		23: Opless, min	F	8750	
Macaca	fuscata		23: Peruka, min	F	8850	
Macaca	fuscata		23; Ai, min	F	9010	
Macaca	fuscata		23 ; Momo, min	F	9380	
Macaca	fuscata		23; Deko, max	F	9400	
Macaca	fuscata		23; Kusha, min	F	9500	
Macaca	fuscata		23: Midori. max	F	9700	
Macaca	fuscata		23: Matsu, max	F	9750	
Macaca	fuscata		23: Rakushi, min	F	10200	
Macaca	fuscata		23: Shiro, max	F	10700	
mucucu	Jusculu		are, outro, mun	-		

					М	ass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	fuscata	· · · · · · · · · · · · · · · · · · ·	23; Russe, max	F	10750	
Macaca	fuscata		23 ; Nose, min	F	11230	
Macaca	fuscata		23; Petit-Mon, max	F	11600	
Macaca	fuscata		23; Glance, max	F	11610	
Macaca	fuscata		23 ; Kin, max	F	11650	
Macaca	fuscata		23; Kujiro, max	F	11740	
Macaca	fuscata		23; Chonpe, max	F	11750	
Macaca	fuscata		23; Momo, max	F	12030	
Macaca	fuscata		23 ; Meme, max	F	12800	
Macaca	fuscata		23 ; Ai, max	F	13350	
Macaca	fuscata		23; Opless, max	F	13520	
Macaca	fuscata		23; Rakushi, max	F	13750	
Macaca	fuscata		23; Peruka, max	F	14150	
Macaca	fuscata		23 ; Kan, max	F	14950	
Macaca	fuscata		23; Kusha, max	F	15550	
Macaca	fuscata		23 ; Mol, max	F	15600	
Macaca	fuscata		23 ; Nose, max	F	16300	
Macaca	fuscata		23 ; Y, min	М	8200	
Macaca	fuscata		23 ; Z, min	Μ	8500	
Macaca	fuscata		23 ; Goku, min	Μ	9450	
Macaca	fuscata		23 ; X, min	Μ	9800	
Macaca	fuscata		23; Kokinta, min (1960)	М	10250	
Macaca	fuscata		23; Shan, min	М	10910	
Macaca	fuscata		23; Zao, min	М	11600	
Macaca	fuscata		23; Azuma, min	М	11960	
Macaca	fuscata		12; 4	М	12000	
Macaca	fuscata		23; Goku, max	М	12900	
Macaca	fuscata		23; Kokinta, max	М	13340	
Macaca	fuscata		23 ; Z, max	М	13460	
Macaca	fuscata		23; Lincoln, min	М	13500	
Macaca	fuscata		12 ; 5	М	13700	
Macaca	fuscata		23; Shan, max	М	13750	
Macaca	fuscata		23 ; X, max	М	14850	
Macaca	fuscata		23; Gongen, max	М	14900s	
Macaca	fuscata		23; Zao, max	М	15000	
Macaca	fuscata		23 ; Y, max	М	15000	
Macaca	fuscata		23 ; Riki, min	М	15150	
Macaca	fuscata		23; Azuma, max	М	15950	
Macaca	fuscata		23 ; Riki, max	М	17000	
Macaca	fuscata		23; Lincoln, max	Μ	18000	
Macaca	fuscata		12; 6	М	20500	
Macaca	maura		34 , p. 9; 1 of 1	М	5954 ^h	
Macaca	mulatta		FMNH 99668	F	3000	
Macaca	mulatta		IZCAS 04990	F	3600	
Macaca	mulatta		IZCAS 10304	F	3900	
Macaca	mulatta		BM(NH) 1921.7.9.4	F	4200	9.25
Macaca	mulatta		ZSI 12088	F	4309	9.5
масаса	mulatta		BNHS 5106	F	4310	9.5
масаса	mulatta		BM(NH) 1931.1.11.21	F	4540	10
масаса	mulatta		BNHS 5089	F	4540	10
macaca	mulatta		BNHS 5097	F	4540	10
масаса	mulatta		SCIEA 89	F	4750	
масаса	mulatta		BM(NH) 1914.7.19.2	F	4760	10.5

			an latha dharda e 18 dhe dha		М	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	mulatta		IEBR 48	F	4800	
Macaca	mulatta		IEBR 733(833)/5	F	4800	
Macaca	mulatta		BM(NH) 1931.1.11.26	F	4990	11
Macaca	mulatta		BNHS 5098	F	4990	11
Macaca	mulatta		KIZ 03179	F	5000	
Macaca	mulatta		KIZ 76320	F	5000	
Macaca	mulatta		SCIEA 2155	F	5020	
Macaca	mulatta		IEBR 32	F	5200	
Macaca	mulatta		BM(NH) 1915.9.1.1	F	5220	11.5
Macaca	mulatta		IZCAS 25233	F	5300	
Macaca	mulatta		BNHS 5085	F	5440	12
Macaca	mulatta		KIZ 59200	F	5500	
Macaca	mulatta		SIZ 00001	F	5500	
Macaca	mulatta		UHVZ 08/3.20.72	F	5850	
Macaca	mulatta		BM(NH) 1914.7.10.5	F	5900	13
Macaca	mulatta		BM(NH) 1931.1.11.30	F	5900	13
Macaca	mulatta		SIZ 00002	F	6500	
Macaca	mulatta		BM(NH) 1914.7.10.3	F	6580	14.5
Macaca	mulatta		KIZ 76318	F	7000	
Macaca	mulatta		BNHS 5113	F	7030	15.5
Macaca	mulatta		IZCAS 19186	F	8250	
Macaca	mulatta		NMNH 173812	F	9979	22
Macaca	mulatta		NMNH 356979	M	4010	
Macaca	mulatta		IZCAS 23020	M	5000	
Macaca	mulatta		18: Dao 1985, no. 98	M	5100	
Macaca	mulatta		IZCAS 15054	M	5300	
Macaca	mulatta		UHVZ 01/3 61 40	M	6000	
Macaca	mulatta		BM(NH) 1931 1 11 22	M	6124	13.5
Macaca	mulatta		FMNH 99669	M	6200	1010
Macaca	mulatta		SCIEA 2150	M	6400	
Macaca	mulatta		IZCAS 19554	M	6510	
Macaca	mulatta		BM(NH) 1914 7 19 1	M	6804	15
Macaca	mulatta		BM(NH) 1915 5 5 6	M	6804	15
Macaca	mulatta		IZCAS 20218	M	7350	
Macaca	mulatta		FDCG C 0014	M	7400	
Macaca	mulatta		BM(NH) 1921 7 9 3	M	7484	16.5
Macaca	mulatta		7SI 12001	M	7484	16.5
Macaca	mulatta		RM(NH) 1031 1 11 7	M	7711	10.5
масаса	mulatta		BM(NH) 1014 7 10 4	M	7038	175
Macaca	mulatta		IEBD 560	M	8200	17.5
масаса	mulatta		1111V7 26/3 10 71	M	8500	
масаса	mulatta		EMNH 25//2	M	8730	
масаса	mulatta		RM(NH) 1014 7 10 1	M	0070	22
масаса	mulatta		BM(NH) 1014 7 10 2	M	10433	22
масаса	mulatta		D(M(111) 1914.7.10.2)	M	10900	25
масаса	mulatta		7MNH 633	M	12000	
масаса	mulatta		NMNH 173913	M	12701	28
масаса	mulatta		NIMNIL 20120	M	14062	20
macaca Macaca	mulalla	leaning	12. (EMNU)	F	4/002	51
масаса	nemestrina	leonina leonin -	13, (FIVINE) 12, (NIMANU)	r E	4400	
масаса	nemestrina	leonina Leonin -	IJ; (INIVILINIT) DM(NILL) 1014 12 9 20	г г	4000	10.25
масаса	nemestrina	leonina	BM((NH) 1914.12.8.20	r	4049	10.25
масаса	nemestrina	ieonina	13; (FMNH)	r T	4030	
Macaca	nemestrina	leonina	13; (FMNH)	F	4/10	
					M	lass
--------	------------	--------------------	----------------------------	--------	-------	-------
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	nemestrina	leonina	13; (FMNH)	F	4960	
Macaca	nemestrina	leonina	13; (FMNH)	F	5480	12.00
Macaca	nemestrina	leonina	NMNH 124022	F	5557	12.25
Macaca	nemestrina	leonina	13; (NMNH)	F	5700	12.50
Macaca	nemestrina	leonina	NMNH 104439	М	5330	11.75
Macaca	nemestrina	leonina	NMNH 104440	М	6237	13.75
Macaca	nemestrina	leonina	NMNH 104441	М	6237	13.75
Macaca	nemestrina	leonina	NMNH 124230	М	6350	14
Macaca	nemestrina	leonina	13; (FMNH)	М	8100	
Macaca	nemestrina	leonina	BM(NH) 1914.12.8.19	М	8165	18
Macaca	nemestrina	leonina	13; (FMNH)	Μ	8500	
Macaca	nemestrina	leonina	NMNH 124023	М	9072	20
Macaca	nemestrina	nemestrina?	MCZ 35697	F	5216	11.5
Macaca	nemestrina	nemestrina	MCZ 35687	F	5443	12
Macaca	nemestrina	nemestrina	FMNH 105658	F	5450	
Macaca	nemestrina	nemestrina	MCZ 35631	F	5670	12.5
Macaca	nemestrina	nemestrina?	MCZ 35598	F	6350	14
Macaca	nemestrina	nemestrina	NMNH 123146	F	6350	14
Macaca	nemestrina	nemestrina	MCZ 35602	F	6350	14
Macaca	nemestrina	nemestrina	MCZ 35649	F	6804	15
Macaca	nemestrina	nemestrina	NMNH 114503	F	7258	16
Macaca	nemestrina	nemestrina	NMNH 141144	F	7258	16
Macaca	nemestrina	nemestrina	NMNH 114502	F	7598	16.75
Macaca	nemestrina	nemestrina	1. p. 134: 2	F	8165	18
Macaca	nemestrina	nemestrina	NMNH 123144	M	8618	19
Macaca	nemestrina	nemestrina	MCZ 35670	M	9979	22
Macaca	nemestrina	nemestrina	1. p. 134: 1	M	10886	24
Macaca	nemestrina	nemestrina	NMNH 123143	M	10886	24
Macaca	nemestrina	nemestrina	NMNH 143585	M	10886	24
Macaca	nemestrina	nemestrina	NMNH 145330	M	10886	24
Macaca	nemestrina	nemestrina	NMNH 154367	M	10886	24
Macaca	nemestrina	nemestrina	NMNH 144094	M	11000	24 25
Macaca	nemestrina	nemestrina	PCM 1955 1503	M	11340	24.25
Macaca	nemestrina	nemestrina	NMNH 143548	M	11704	25
Macaca	nemestrina	nemestrina	NMNH 123145	M	17247	20
Macaca	nemestrina	nemestrina		M	12609	20
Macaca	nemestrina	nemestrina	NMNH 121653	E	4500	50
Macaca	radiata	radiata	22 : 145	F	2020	
Macaca	radiata	radiata	42, 143	F	2930	. 7
Macaca	radiata	radiata	42 , p. 41, mm or 2	г Б	2410	/
Macaca	radiata	radiata	22, 138	Г	3410	
Macaca	radiata	radiata	22, 138	Г	3520	
Macaca	radiata	raaiaia nadioto	22, 144	r T	3570	
Macaca	raaiaia	raaiaia	14	F	3030	
Macaca	raalala	raaiata	14	F	3630	
Macaca	raaiaia	raaiaia	22; 148	F	3000	
масаса	raalata	raaiaia	14	F	3860	
Macaca	rudiaia	raaiaia	22; 134 23: 126	r r	3930	
Macaca	rudiala	raaiaia	22; 130 14	г 5	4040	
macaca	radiata	raaiata	14	F	4160	
масаса	radiata	radiata	14	F -	4160	
масаса	radiata	radiata	22; 135	F	4420	
масаса	radiata	radiata	14	F	4990	
масаса	radiata	radiata	14	М	5440	

			Continued			
					N	lass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	radiata	radiata	22 ; L16	Μ	5670	
Macaca	radiata	radiata	42 , p. 41; max of 2	Μ	5897	13
Macaca	radiata	radiata	14	Μ	5900	
Macaca	radiata	radiata	22 ; L 11	Μ	6450	
Macaca	radiata	radiata	22 ; L20	Μ	6480	
Macaca	radiata	radiata	22 ; L14	Μ	6520	
Macaca	radiata	radiata	14	М	6580	
Macaca	radiata	radiata	22 ; L12	Μ	6820	
Macaca	radiata	radiata	22 ; L19	М	6890	
Macaca	radiata	radiata	22 ; L18	М	6960	
Macaca	radiata	radiata	22 ; L15	Μ	7000	
Macaca	radiata	radiata	14	М	7260	
Macaca	radiata	radiata	14	М	8850	
Macaca	silenus		36	М	6750	
Macaca	sinica	"aurifrons"	40 , p. 9; min of 2	F	2495	
Macaca	sinica	"aurifrons"	40 , p. 9; max of 2	F	4309	
Macaca	sinica		34 , p. 27; min of 5	Μ	3289	
Macaca	sinica	"aurifrons"	40 , p. 9; min of 2	М	4082	
Macaca	sinica		BM(NH) 1915.3.1.1 or 2	Μ	4536	
Macaca	sinica		BM(NH) 1915.3.1.3?	Μ	4763	
Macaca	sinica	"aurifrons"	40 , p. 9; max of 2	Μ	4763	
Macaca	sinica	"aurifrons"	40 , p. 7; large male	М	5443	
Macaca	sinica	"aurifrons"	BM(NH) 1915.3.1.1 or 2	Μ	5443	
Macaca	sylvanus		45 ; 1012	F	8000	
Macaca	sylvanus		NMNH 476783	F	8200	
Macaca	sylvanus		NMNH 476786	F	9000	
Macaca	sylvanus		45 ; 1018	F	9000	
Macaca	sylvanus		45 ; 1020	F	9000	
Macaca	sylvanus		NMNH 476782	F	9800	
Macaca	sylvanus		4 NMNH 76787	F	10000	
Macaca	sylvanus		45 ; 1004	F	10000	
Macaca	sylvanus		45 ; 1006	F	10000	
Macaca	sylvanus		45 ; 1014	F	10000	
Macaca	sylvanus		45 ; 1022	F	10000	
Macaca	sylvanus		45 ; 1030	F	10000	
Macaca	sylvanus		45 ; 1040	F	10000	
Macaca	sylvanus		45 ; 1032	F	11000	
Macaca	sylvanus		45 ; 1034	F	11000	
Macaca	sylvanus		45 ; 1036	F	11000	
Macaca	sylvanus		45 ; 1038	F	11000	
Macaca	sylvanus		45 ; 1028	F	12000	
Macaca	sylvanus		NMNH 476781	М	8600	
Macaca	sylvanus		NMNH 476791	М	10000	
Macaca	sylvanus		45 ; 1007	М	10000	
Macaca	sylvanus		45 ; 1015	М	12000	
Macaca	sylvanus		45 ; 1055	М	12000	
Macaca	sylvanus		45 ; 1095	М	12000	
Macaca	sylvanus		45 ; 1031	М	13000	
Macaca	sylvanus		45 ; 1043	М	13000	
Macaca	sylvanus		45 ; 1105	М	13000	
Macaca	sylvanus		45 ; 1071	М	13000	
Macaca	sylvanus		45 ; 1005	Μ	14000	
Macaca	sylvanus		45 ; 1009	Μ	14000	

					М	ass
Genus	Species	Subspecies	Specimen reference	Sex	g	lb
Macaca	sylvanus		45 ; 1011	М	14000	
Macaca	sylvanus		45 ; 1013	М	14000	
Macaca	sylvanus		45 ; 1017	М	14000	
Macaca	sylvanus		45 ; 1019	М	14000	
Macaca	sylvanus		45 ; 1087	М	14000	
Macaca	sylvanus		45 ; 1099	М	14000	
Macaca	sylvanus		45 ; 1021	М	15000	
Macaca	sylvanus		45 ; 1025	М	15000	
Macaca	sylvanus		45 ; 1027	М	15000	
Macaca	sylvanus		45 ; 1029	М	15000	
Macaca	sylvanus		45 ; 1035	М	15000	
Macaca	sylvanus		45 ; 1037	М	15000	
Macaca	sylvanus		45 ; 1091	М	15000	
Macaca	sylvanus		45 ; 1063	М	15000	
Macaca	sylvanus		45 ; 1079	М	16000	
Macaca	sylvanus		45 ; 1089	М	16000	
Macaca	sylvanus		45 ; 1093	М	16000	
Macaca	sylvanus		45 ; 1103	М	16000	
Macaca	sylvanus		45 ; 1107	М	16000	
Macaca	sylvanus		45 ; 1001	М	16500	
Macaca	sylvanus		45 ; 1051	М	17000	
Macaca	sylvanus		45 ; 1045	Μ	18000	
Macaca	sylvanus		45 ; 1057	М	18000	
Macaca	thibetana		50; min of 15 winter	F	9000	
Macaca	thibetana		50; max of 15 winter	F	13000	
Macaca	thibetana		50; min of 13 autumn	F	14000	
Macaca	thibetana		50; max of 13 autumn	F	21500	
Macaca	thibetana		50; min of 14 winter	Μ	11500	
Macaca	thibetana		16 ; 1	Μ	15000	
Macaca	thibetana		50; min of 15 autumn	Μ	16000	
Macaca	thibetana		16; 2	М	17500	
Macaca	thibetana		50; max of 14 winter	М	20000	
Macaca	thibetana		50; max of 15 autumn	М	25000	

^a Specimen transferred to another institution not indicated on its catalog card.

^b Pocock indicated 39 lb, but Napier listed maximum as 31, and 39 would be too high for a female; it is possible that 39 lb refers to 1914.7.10.12, a male listed by Pocock without mass.

^c Semi-free-ranging individuals (at U.S. primate centers)

^d Subadult individual?; its mass appears low compared with others.

e Female with infant.

f Counted only mass for 1959 and 1960, because 1958 max was below 9000 g and occurred in December, suggesting that growth had not ceased.

8 Only two values were given: 14700 and 14900; only max is used here.

h "Gutted."

 i It is possible that this specimen is the same as that in the next entry, because Fooden combined several localities. However, because he also rounded off mass listings it would be expected that 4649 g would have been given as 4650 g (see next line) rather than 4600 g, suggesting that the BM(NH) specimen was not included in his 1975 list.

Notes continue on next page

References to published sources of mass data are listed below; item numbers correspond to bold numbers in the table. Page or table number(s) are given here if possible, but in some cases (refs. 1, 32, 34, 35, 38, and 40) mass values occur throughout the source, and the relevant page numbers are provided in the table.

- 1. Banks, 1931.
- 2. Barrett and Henzi, 1997: 436.
- 3. Bauchot and Stephan, 1969: 238.
- 4. Booth, 1957: 422.
- 5. Brandon-Jones, 1995, tables 3, 4.
- 6. Bulger and Hamilton, 1987: 646.
- 7. Byrne et al., 1989, table II.
- 8. Chism, J., personal commun. to M. Cords.
- 9. Colyn, 1994, table 1.
- 10. Compère, 1971: 472.
- 11. Eley et al., 1989, table IV.
- 12. Fooden, 1971: 306.
- 13. Fooden, 1975: 114.
- 14. Fooden, 1981: 3.
- 15. Fooden, 1982: 10.
- 16. Fooden, 1983: 7.
- 17. Fooden, 1990: 620.
- 18. Fooden, J., personal commun. to ED.
- 19. Galat-Luong et al., 1996: 93.
- 20. Gautier-Hion, 1975, table 1.
- Gest and Siegel, 1983 (data provided by M. Siegel; see also McGill et al., 1960, and Snow and Vice, 1965, on source of animals).
- 22. Hartman, 1938: 468.
- 23. Hazama, 1964, tables 1 and 2. Highest and lowest values listed for each animal over three years given, except that no values were used for a year in which the maximum mass for a male did not exceed 12 kg (or 9 kg for a female) and in which the minimum was early in the year and the maximum in December, thus indicating that growth was still in progress. These animals were partly provisioned but living in nearly natural habitat conditions.
- 24. Hurov, 1987: 299.

- 25. Jablonski and Pan, 1995: 258.
- 26. Jolly, C. J. and J. Phillips-Conroy, commun. to ED.
- 27. Jones, 1970, table 1.
- 28. Kirkpatrick, 1998, appendix.
- 29. Leigh, 1926.
- 30. Li and Ma, 1980 (fide ref. 5).
- 31. Ma et al., 1989, table 1.
- 32. Malbrant and Maclatchy, 1949.
- 33. McConnell et al., 1974, table 2.
- Napier, 1981 [specimens in BM(NH); some located via Pocock references].
- Napier, 1985 [specimens in BM(NH); some located via Pocock references].
- 36. Napier and Napier, 1967, pp. 406, 412.
- Oates, J. F., personal commun. to ED (animals discussed in ref. 38).
- 38. Oates et al., 1990.
- 39. Oboussier and Maydell, 1959: 107.
- 40. Phillips, 1935.
- 41. Pocock, 1928.
- Pocock, 1939 [this and above cross-referenced to Napier's lists (refs 34 and 35) of BM(NH) specimens unless otherwise indicated].
- 43. Popp, 1983: 203.
- 44. Rodman, 1991: 362.
- 45. Scheffrahn, W., personal commun. to ED.
- 46. Skinner and Smithers, 1990: 155.
- 47. Wickings and Dixon, 1992a, Graph p. 132.
- 48. Wickings and Dixon, 1992b, table p. 911.
- Willis, 1995, table 2.6, pp. 58–59 (and personal commun. to ED).
- 50. Zhao, 1994, table 1.

				Fe	males			1	Males	
Genus	Species	Subspecies	N	Mean	Min	Max	N	Mean	Min	Max
Colobus	angolensis	angolensis	2	10100	6400	9150	2	10100	7600	12600
Colobus	angolensis	nalliatus	1	9100			3	9437	8730	10590
Colobus	quereza	dodingae					1	10433		
Colobus	guereza	oallarum	3	7600	6100	8700	1	9400		
Colobus	guereza	guereza	3	9233	8200	10100	6	11873	9750	14400
Colobus	guereza	kikuvuensis	1	9030	0200		3	0847	7100	11/17
Colobus	guereza	matschiei	18	7897	6420	10230	20	9758	8000	11790
Colobus	guereza	occidentalis	46	7423	5443	10250	20 46	9087	6804	11340
Colobus	nolykomos	dollmani	2	7300	6100	8500	2	9550	0100	10000
Colobus	nolykomos	nolykomos	16	7935	6200	10000	8	10188	8000	11700
Colobus	polykomos	vellerosus	5	6860	6200	7500	3	8500	8000	0100
Colobus	satanas	1011010343	6	7018	5000	10000	2	10000	0000	11000
Procolohus	badius	hadius	37	7830	5000	0050	17	9201	5000 6400	0600
Procolobus	badius	birbi	57	5378	5100	6100	1/	5900	0400	9000
Procolobus	badius	langi	7	5575	4400	6650	1	7650	7650	7650
Procolobus	badius	iangi ovetaleti	2	JJZJ 7099	4400	8000	2	1000	12000	12500
Procolobus	badius	Dustatett	4	7900	7000	8900	3	5200	12000	12500
Frocolodus	Daatus	orum	Z	1250	3330	8930	1	3800		
Procolobus	badius	preussi	1	7259		_				_
Procolobus	badius	rufomitratus	7	7214	6000	8000	3	9667	9000	10000
Procolobus	badius	tephrosceles	1	6728	_		6	9413	7940	10886
Procolobus	badius	waldroni	2	5750	5500	6000	2	6400	6300	6500
Procolobus	verus		13	4218	2900	5400	25	4637	3300	5700
Nasalis	larvatus		24	9637	7258	11794	28	19758	13268	23587
Nasalis (Simias)	concolor		4	6889	6237	7144	3	9148	8618	9979
Presbytis	comata						1	6800		
Presbytis	frontata	frontata	8	5670	4082	6577	1	5557		_
Presbytis	hosei	sabana	1	6577						
Presbytis	hosei	subsp. indet.	3	6369	5557	6800	7	6143	6000	6500
Presbytis	melalophos	batuana	6	6332	4423	7484	3	6615	5783	7144
Presbytis	melalophos	cana	4	6776	5783	7825	2	6407	6010	6804
Presbytis	melalophos	catemana	2	6010	5670	6350	2	6124	5897	6350
Presbytis	melalophos	chrvsomelas	-	6917			6	6521	5897	7144
Presbytis	melalophos	femoralis					4	6237	5783	6601
Presbytis	melalophos	melalophos	3	6124	5783	6691	6	6634	6124	7371
Presbytis	melalophos	natunae	3	5292	4990	5670	1	4536	0124	1511
Presbytis	melalophos	percura	4	6889	6577	7144	4	5982	4536	7258
Presbytis	melalophos	rhionis	4	5472	4082	6350	-	5762	4550	7258
Presbytis	melalophos	rohinsoni	1	6464			4	7286	7031	7508
Preshvtis	melalophos	siamensis	3	6877	6410	7340		6685	6510	6960
Presbytis	melalophos	sumatrana	2	7038	7825	8051	1	7271	0510	0800
Presbytis	notenziani	Sumanana	2	6407	6010	6804	7	5020	1526	7259
Preshvtis	ruhicunda	rubicunda	25	5047	4536	7711		6220	4330	7230
Preshvtis	rubicunda	rubida	1	7825	4550	//11	20	0558	5445	/3/1
Presbytis	thomasi	rublau	1	6776	6250	PO51		6766	())7	7050
Pygathrix (Rhino-	avunculus		4	8250	7000	9000	5 1	14500	6237	/258
pithecus)										
Pygathrix (Rhino-	bieti		3	12600	9000	15000	3	20333	13000a	30000%
pithecus)										
Pygathrix (Rhino- pithecus)	brelichi			—		—	2	14500	13250	15750
Pygathrix (Rhino- pithecus)	roxellana		3	12300	9500	15400	7	18216	15500	26500

APPENDIX TABLE 2 Mean Cercopithecid Body Mass Values (in g)

				Commu						
		-		Fe	males			М	ales	
Genus	Species	Subspecies	Ν	Mean	Min	Max	Ν	Mean	Min	Max
Pygathrix (Pygathrix)	nemaeus	nemaeus	1	8165	_		2	10886	10433	11340
Pygathrix (Pygathrix)	nemaeus	nigripes	1	8700	_	—	2	11050	11000	11100
Semnopithecus	entellus	achates	.3	10055	7711	12247	3	13268	10319	15876
Semnopithecus	entellus	aeneas	1	9979			1	11567		
Semnopithecus	entellus	ajax	1	12701			2	19959	19505	20412
Semnopithecus	entellus	elissa	2	9356	8278	10433				
Semnopithecus	entellus	entellus	1	11340			1	15876	_	
Semnopithecus	entellus	entellus/hypo- leucos/priam	2	9 979	7711	12247	2	13608	9072	18144
Semnopithecus	entellus	hector	2	13608	13154	14062	1	17237		
Semnopithecus	entellus	iulus	1	8392	_	—	1	9526		_
Semnopithecus	entellus	priam	1	8845			1	16783		
Semnopithecus	entellus	schistacea	3	14829	11340	17237	1	23587		<u> </u>
Semnopithecus	entellus	thersites	5	6991	5455	8618	5	11232	7938	13381
S. (Trachypithecus)	cristata	cristata	15	6139	4990	7598	7	7225	6124	8165
S. (Trachypithecus)	cristata	germaini		—	—	—	1	8626		
S. (Trachypithecus)	cristata	ultima	26	5670	4990	6350	18	6325	4990	7938
S. (Trachypithecus)	francoisi		3	7800	7200	8700	8	7969	5700	9450
S. (Trachypithecus)	geei		1	8700		_	3	10950	10000	12000
S. (Trachypithecus)	hatinhensis			_			1	8000		—
S. (Trachypithecus)	obscura	carbo	1	5443		_	2	8335	8165	8505
S. (Trachypithecus)	obscura	flavicauda	7	6868	4990	8618	2	7258	7031	7484
S. (Trachypithecus)	obscura	obscura	11	6797	4990	8845	13	8031	6804	9185
S. (Trachypithecus)	obscura	sanctorum	1	8165			1	10886	_	_
S. (Trachypithecus)	obscura	subsp. indet.	4	5125	4150	6250	3	7300	6100	8700
S. (Trachypithecus)	phayrei	crepuscula	1	7484		_	2	6804	6124	7484
S. (Trachypithecus)	phayrei	phayrei	3	6199	4763	7031	2	7938	7938	7938
S. (Trachypithecus)	phayrei	shanica	1	6804		_	1	8618		·
S. (Trachypithecus)	phayrei	subsp. indet.	10	5899	4040	7031	5	7577	5675	9080
S. (Trachypithecus)	pileata	durga	1	11340			1	12247		
S. (Trachypithecus)	pileata	pileata	4	9938	9500	10500	2	12750	11500	14000
S. (Trachypithecus)	pileata	shortridgei	1	9526			2	13154	12701	13608
S. (Trachypithecus)	johnii	-	3	11192	10886	11350	8	11709	9072	13608
S. (Trachypithecus)	vetulus	monticola	1	7484	—	_	2	9412	9072	9752
S. (Trachypithecus)	vetulus	vetulus	3	5141	4990	5216	2	6690.5	5670	7711
Cercopithecus	aethiops	aethiops		_	_		1	5216		_
Cercopithecus	aethiops	arenarius	5	3370	2800	3750	5	5510	5200	6000
Cercopithecus	aethiops	budgeti	2	4218	3900	4536	1	6350		
Cercopithecus	aethiops	callidus	2	5650	4900	6400	4	4671	3600	6300
Cercopithecus	aethiops	centralis	15	3702	2722	4536	10	5336	4082	6350
Cercopithecus	aethiops	johnstoni	2	2650	2500	2800	1	4500		
Cercopithecus	aethiops	matschiei	1	4082			—			
Cercopithecus	aethiops	ngamiensis	17	3930	3119	5220	15	5733	3860	8000
Cercopithecus	aethiops	pygerythrus	5	3568	3140	4325	6	5013	3777	7404
Cercopithecus	aethiops	sabaeus	3	4333	3400	5900	4	5763	4700	7000
Cercopithecus	aethiops	whytei				—	1	5330	_	
Cercopithecus	ascanius	katangae	2	2875	1800	3950	2	3550	2200	4900
Cercopithecus	ascanius	schmidti	49	2968	1814	3856	47	4310	2950	6350
Cercopithecus	campbelli	campbelli	2	3250	2000	4500	3	3750	1800	5500
Cercopithecus	campbelli	lowei	14	2563	1800	5000	11	3883	3200	4600
Cercopithecus	cephus		5	2960	2400	3900	2	3750	3350	4150

										· · · · · · · · · · · · · · · · · · ·
<i>.</i>	a .			Fe	emales			1	viales	
Genus	Species	Subspecies	N	Mean	Min	Max	N	Mean	Min	Max
Cercopithecus	denti		2	2850	2000	3700	2	4250	3550	4950
Cercopithecus	diana	diana	10	3853	2500	5400	3	5433	4000	6300
Cercopithecus	hamlyni	hamlyni	2	3450	2600	4300	2	5825	4350	7300
Cercopithecus	lhoesti		2	3475	1750	5200	2	5850	3250	8450
Cercopithecus	mitis	erythrarchus	8	4635	2835	6010	3	7598	4876	9299
Cercopithecus	mitis	kolbi	3	3757	3470	4210	6	6929	5750	8200
Cercopithecus	mitis	stuhlmanni	9	4240	2250	5414	9	6777	3650	9510
Cercopithecus	mona		1	2500		—	2	5100	4760	5440
Cercopithecus	neglectus		13	4023	2500	4900	5	7379	6310	8245
Cercopithecus	nictitans	martini					3	5867	4800	6800
Cercopithecus	nictitans	nictitans	3	4183	2650	6100	3	6895	4700	8500
Cercopithecus	petaurista	buettikofferi	10	2832	2000	3800	8	4548	3900	5200
Cercopithecus	petaurista	petaurista	7	2710	2000	3500	2	5550	5200	5900
Cercopithecus	petaurista	subsp. indet.	2	3200	2600	3800	2	3950	3400	4500
Cercopithecus	pogonias	grayi	3	2750	2150	3100	2	3950	3300	4600
Cercopithecus	pogonias	nigripes	2	2834	2793	2874	2	3215	3030	3400
Cercopithecus	tantalus	marrensis	2	3700	2800	4600				
Cercopithecus	wolfi	wolfi	2	2700	1800	3600	2	3700	2450	4950
Miopithecus	talapoin		2	2000	2000	2000	1	2500		_
Miopithecus	talapoin	nov.	3	1319	1064	1625	5	1362	1045	1500
Allenopithecus	nigroviridis		2	3225	3200	3250	5	6130	4450	8200
Erythrocebus	patas		8	5485	4000	8000	10	9836	5400	18000
Lophocebus	albigena	albigena	2	4975	4700	5250	2	7225	6100	8350
Lophocebus	albigena	johnstoni	23	5538	3640	8165	19	7522	5700	8650
Lophocebus	albigena	zenkeri	2	6000	6000	6000	8	9009	8000	10000
Lophocebus	albigena	albigena	1	7250			1	7700		
Lophocebus	aterrimus	aterrimus	2	5575	4450	6700	1	7900	_	
Lophocebus	aterrimus	subsp. indet.	2	6000	6000	6000	5	7830	7000	8650
Cercocebus	galeritus	agilis	2	5263	4325	6200	2	9500	9000	10000
Cercocebus	galeritus	subsp. indet.	4	5100	4600	6100	3	9033	8200	10200
Cercocebus	torquatus	atys	3	6333	5600	7000	4	11100	9500	12700
Cercocebus	torquatus	torquatus	1	5800			6	11756	8800	17237
Mandrillus	leucophaeus	•					1	20000		
Mandrillus	sphinx		9	12333	10000	17000	10	34220	27000	45000
	-						or 8c	35900	30000	45000
Papio	hamadryas	anubis "small"	44	13787	9500	18598	53	23475	18598	32000
Papio	hamadryas	anubis	5	15646	14062	17900	11	30673	23000	37195
Papio	hamadryas	anubis/cyno-	_				6	22793	20866	26082
	-	<i>cephalus</i> (hybrid)							20000	20002
Papio	hamadryas	anubis/hama- dryas	—		_		1	20000	_	
Panio	hamadryar	(inyoniu)	36	12440	8600	17500	==	22057	17000	21000
Panio	hamadryas	t ynocepnaius hamadmiae	50	12448	0500	12500	22	22957	17000	31000
Panio	hamadmaa	hamaaryas hindaa	2	11380	9500	13500	14	210/3	15500	30350
Panio	hamadmaa	Kinaae	4	9630	9000	11000	5	16032	15000	17237
Theropitheous	numuur yus aalada	ui sinus	5	14622	11200	20500	4/	28655	20500	35000
Macaca	geiuuu arctaidar	arotoid	2	11920	9000	13800	2	18375	16500	20250
Macaca	arctoidan	urcioiaes	4	1/80	6020	9100	7	12243	9900	15500
Macaca	assamania	meranota	1	6300	40/0		1	10200		
Macaca	assamensis	nelone	4	0113	4800	0000	1	11153	7938	15000
Macaca	fascicularia	perops	3 50	1000	7000	8000	2	11548	10400	12700
11146464	juscicularis		30	2288	2330	5445	15	5535	3402	12000

				Continue	d					
				Fe	males			M	lales	
Genus	Species	Subspecies	N	Mean	Min	Max	N	Mean	Min	Max
Macaca	fuscata		40	10348	6350	16300	24	13320	8200	20500
Macaca	maura						1	5954d		_
Macaca	mulatta		33	5339	3000	9979	26	7889	4010	14062
Macaca	nemestrina	leonina	9	4967	4400	5700	8	7249	5330	9072
Macaca	nemestrina	nemestrina	12	6493	5216	8165	12	11085	8618	13608
Macaca	nemestrina	pagensis	1	4500				_		
Macaca	radiata	radiata	14	3851	2930	4990	13	6678	5440	8850
Macaca	silenus						1	6570		_
Macaca	sinica		2	3402	2495	4309	7	5040	3289	8000
Macaca	sylvanus		18	9944	8000	12000	35	14231	8600	18000
Macaca	thibetana		4	14375	9000	21500	6	17500	11500	25000

APPENDIX TABLE 2

Mean values in this table are derived from data presented in appendix table 1.

^a Subadult individual.

^b Anecdotal value.

^c If two lowest-mass males are removed as being probably subadult.

d Gutted.

APPENDIX TABLE 3

Humeral and Femoral Measurements (in mm) Used to Estimate Mass of Fossil Cercopithecids

Taxon	Sex	HL	HAP	HTR	FL	FAP	FTR
Paracolobus chemeroni Chemeron	Male	259.0	17.7	21.0	270.0	23.0	20.9
Cercopithecoides? cf. williamsi Koobi Fora	Male	215.0	18.5	18.0	_		
Mesopithecus pentelicus Pikermi	Male?	149.6	12.9	13.4	190.0	13.3	13.8
Mesopithecus pentelicus Pikermi	Female?	139.8	10.4	9.0	167.0		—
Dolichopithecus ruscinensis Perpignan	Male		—		—	18.7	18.2
Dolichopithecus ruscinensis Perpignan	Male?	220.0	18.6	18.25	220.5	16.8	17.6
Dolichopithecus ruscinensis Perpignan	Female?		14.6	14.2		12.8	13.2
Macaca sylvanus sylvanus? Ain Mefta	(?Male)	169.1	12.8	15.7			—
Macaca sylvanus pliocena Zlaty Kun	Male?		12.4	14.2	-	—	—
Paradolichopithecus arvernensis Graunceanu	(?Male)	236e	20.0	16.1		18.9	19.5
Parapapio cf. jonesi Hadar	Male?		16.7	19.5	_	16.5	18.0
Theropithecus cf. darti Hadar	Male?		17.5	17.0	_		_
Theropithecus cf. darti Hadar	Female		13.1	14.9	—		
Theropithecus oswaldi oswaldi Kanjera	Male?	_	20.0	17.5		18.0	
Theropithecus oswaldi oswaldi Kanjera	Female?	_	16.0	13.0		17.0	16.0
Theropithecus oswaldi oswaldi Olduvai FLK I	?Male	264.0	25.0	25.0		—	_
Theronithecus oswaldi leakevi? Olduvai MCK II	Male	277.0	30.2	22.0	284.0	25.7	25.4
Theropithecus oswaldi leakeyi Olorgesailie	Male?		26.0			29.0	26.0
Theropithecus oswaldi leakeyi Olorgesailie	Female?	275.0	_		232.0	23.0	20.0

Sex determined as indicated in text ("Male?" is more likely a male than is "?Male"), except that "(?Male)" indicates that bones of unknown sex were identified as male after analysis of mass estimates, as discussed in text. "e" indicates estimate based on incomplete specimen. Sources of data and variable abbreviations indicated in text and table 1.

APPENDIX TABLE 4	asurements (in mm) of Lower Tooth Dental Variables Used to Estimate Mass of Fossil Cercopithecids
------------------	---

Measurements (in r	mm) of Lower	Tooth I	ental V	ariables	Used to	Estima	ite Mass	of Foss	il Cercop	oithecids			
Taxon	Sex	mlAW	mlPW	mlL	mlAR	m2AW	m2PW	m2L	m2AR	m3AW	m3PW	m3L	m3AR
Microcolobus tugenensis	?Male	4.10	4.20	5.30	22.00	4.50	4.80	5.20	24.18	4.30	4.20	6.10	25.93
Colobine sp. "A" Leadu/Hadar	Male	6.55	6.70	8.55	56.64	7.20	7.45	8.90	65.16	7.40	7.60	11.40	85.42
Colobine cf. sp. "A" Aramis	Male	I	١	8.00	ł	I	I	I	I	I	1	I	88.34
Colobus? flandrini	Unk.	I	I	I	ł	7.70	7.50	9.20	69.92	I	7.30	10.70	I
Rhinocolobus turkanaensis Omo/Hadar	Male	6.70	7.03	9.57	65.65	8.18	8.35	11.00	90.91	8.70	8.67	14.33	128.18
Rhinocolobus turkanaensis Omo/Hadar	Female	6.70	6.70	9.50	63.65	7.75	7.75	10.20	80.05	8.50	8.33	14.07	118.95
Paracolobus chemeroni	Male	7.40	8.40	11.50	90.85	9.00	9.60	12.60	117.18	9.70	9.90	16.10	157.78
Paracolobus mutiwa	Male	Ι	I	١	I	1	I	ł	I	10.20	9.60	18.20	180.18
Paracolobus mutiwa	(?Male)	I	I	I	I	8.60	8.90	13.30	116.38	I	I	١	I
Paracolobus? sp. Laetoli	Male	I	7.40	9.65	34.41	8.50	9.10	11.40	103.17	9.20	9.10	14.60	133.59
Paracolobus? sp. Laetoli	Female	6.00	6.60	9.20	57.96	7.85	8.40	10.65	86.54	8.00	8.20	13.00	105.30
Cercopithecoides williamsi Makapan/	Male	6.43	6.68	7.65	50.12	7.55	7.70	8.93	68.12	TT.T	8.10	11.65	91.44
Sterktontein/Boit's													
Cercopithecoides williamsi Makapan/ StartformainBolt?	Female	7.70	7.75	7.67	58.62	8.40	8.50	8.78	76.05	8.65	8.43	11.94	101.94
	- [i	: : :						
Cercopithecoides williamsi Leba	Female?	I	I		I	7.70	7.90	9.80	76.44	8.20	I	I	I
Cercopithecoides williamsi Kromdraai B	Female	7.90	8.55	10.05	82.65	9.20	9.80	11.20	106.40	9.30	9.50	13.50	126.90
Cercopithecoides? cf. williamsi Koobi Fora	Male	6.90	6.90	9.20	63.48	7.70	7.80	9.70	75.18	8.00	8.00	12.40	99.20
Cercopithecoides kimeui Koobi Fora	Male	I	I	١	I	10.70	10.80	13.40	144.05	10.70	10.60	16.90	179.99
Pygathrix (Rhinopithecus) lantianensis	Male	7.30	7.80	7.80	58.89	8.70	9.00	9.50	84.08	9.20	9.10	13.20	120.78
Semnopithecus? sivalensis Siwaliks	Unknown	4.80	5.10	6.20	30.69	5.40	5.50	6.60	35.97	I	5.20	8.20	22.10
Semnopithecus? sp. Yushe	Unknown	ł	I	Ι		I	I		1	8.60	8.07	12.97	108.10
Mesopithecus pentelicus Pikermi	Female	5.60	5.90	6.50	37.38	6.40	6.60	7.20	46.80	6.30	6.00	8.90	54.74
Mesopithecus pentelicus Pikermi	Male	5.70	6.00	6.90	40.37	6.60	6.90	7.50	50.63	6.60	6.20	9.30	59.52
Mesopithecus pentelicus Macedonia	Female	5.20	5.70	6.70	36.52	6.70	6.70	7.70	51.59	6.80	6.20	9.40	61.10
Mesopithecus pentelicus Macedonia	Male	5.70	5.90	7.20	41.76	6.70	6.90	7.60	51.68	6.60	6.30	9.80	63.21
Mesopithecus monspessulanus Various sites	Female	4.60	4.85	6.10	28.83	5.45	5.55	6.65	36.59	5.55	5.35	9.30	46.90
Mesopithecus monspessulanus Various sites	Male	4.93	5.17	6.67	33.67	5.73	5.93	6.95	40.47	5.90	5.70	8.60	52.78
Dolichopithecus ruscinensis Perpignan	Male	7.10	7.40	9.20	66.70	8.40	8.40	10.70	88.68	8.60	8.20	13.40	112.56
Dolichopithecus ruscinensis Perpignan	Female	6.90	7.10	9.20	64.40	8.00	8.20	10.50	85.05	8.30	7.90	12.50	101.25
Dolichopithecus? eohanuman Shamar	Female	7.45	7.75	9.60	73.01	9.00	9.00	10.60	95.45	9.10	8.80	13.50	120.80
Macaca sylvanus ?pliocena Various sites	Male	6.72	6.75	8.44	51.33	8.13	7.60	10.20	80.32	8.55	7.80	13.50	110.41
Macaca sylvanus ?pliocena Ubeidiya	Female	5.80	5.80	7.70	44.66	6.80	6.30	9.40	61.57	7.10	6.70	12.00	82.80

			U U	ontinuec	1								
Taxon	Sex	mlAW	m1PW	mlL	mlAR	m2AW	m2PW	m2L	m2AR	m3AW	m3PW	m3L	m3AR
Macaca sylvanus Horentina Valdarno	Male	6.45	6.27	8.08	51.56	7.82	7.32	9.90	75.10	7.96	7.30	12.80	97.67
Macaca sylvanus ?florentina Valdarno	Female	6.70	6.90	7.90	53.72	8.30	7.50	9.60	75.84	8.40	7.80	13.50	109.35
Macaca volvanus ?prisca Various sites	Male	6.00	6.30	7.20	44.28	6.80	6.80	8.80	59.84	I	I	١	1
Macaca mainri Cano Figari	Male	5.70	5.47	7.32	35.67	6.97	6.77	8.73	59.97	7.05	6.60	10.40	70.62
Marara majori Capo Figari	Female	5.40	5.30	6.90	36.92	6.40	6.50	7.60	49.02	I	1	١	ł
Macaca libyca Wadi Natrun	Female	6.75	7.00	8.00	54.00	8.10	7.80	9.40	74.73	ł	Ι	Ι	I
Marara ⁹ sn. Menacer	Unknown	I	I	ļ	I	7.10	6.60	8.50	58.23	7.10	6.00	10.50	68.66
Macaca rohusta Zhoukoudian	Female	6.45	6.80	7.85	51.99	8.40	7.80	9.75	79.00	8.70	7.65	12.80	104.21
Macaca palaeindica Siwaliks	Unknown	6.80	7.30	8.30	58.52	8.10	7.90	9.50	76.00	8.35	7.90	13.60	110.46
Paradolichonithecus arvernensis Senèze	Female	8.60	8.50	10.10	86.36	10.50	10.00	12.40	127.10	10.80	10.40	17.80	188.68
Paradolichonithecus arvernensis Graunceanu	Male	8.50	8.60	11.40	97.47	11.00	10.40	14.20	151.94	11.80	11.00	18.80	214.32
Paradolichopithecus arvernensis Graunceanu	Female	8.60	8.70	11.30	97.75	11.00	10.90	13.30	145.64	10.60	10.10	16.50	170.78
Paradolichopithecus sushkini Kuruksay	Male	9.40	9.50	10.30	97.34	12.40	12.10	14.70	180.08	12.10	10.50	18.90	213.57
Paradolichopithecus cf. arvernensis	Male	7.40	7.60	10.50	78.75	9.50	8.70	12.70	115.57	10.00	I	16.20	81.00
Cova Bonica													
Procynocenhalus wimani Honan	Female	8.80	9.40	9.70	88.27	11.10	10.00	12.20	128.71	10.80	9.50	16.90	171.54
Procynocenhalus subhimalavanus Siwaliks	Female	9.00	9.50	10.10	93.43	11.40	11.50	13.40	153.43	13.00	11.60	17.90	220.17
Procynorenhalus subhimalayanus Siwaliks	Male?	١	7.40	8.00	29.60	7.50	7.50	10.80	81.00	10.00	9.70	15.70	154.65
Procynocephana and an Dongcun	Unknown	I	1	I	Ι	I	١	1	I	12.10	11.60	17.50	207.38
Corrections or Paranania innesi Makanan	Unknown	7.20	7.40	9.30	67.89	I	ļ	I	Ι	I	I	I	Ι
Corrections of Language Journey Kromdraai A	Unknown	1	ļ	I	I	9.00	8.70	10.40	92.04	8.90	7.70	12.00	09.66
Paranania ionesi Sterkfontein	Male	7.43	7.53	9.45	70.67	8.78	8.46	11.04	95.20	8.57	7.63	13.10	106.13
Parananio ionesi Sterkfontein	Female	7.16	7.12	8.42	61.18	8.50	8.32	10.13	78.81	8.80	8.05	12.90	108.59
Parananio cf. ionesi Makapan	Male	7.17	7.33	8.77	63.54	9.30	9.20	10.50	97.15	9.40	8.10	13.80	120.40
Parananio cf ionesi Makanan	Female	7.20	7.23	8.94	63.23	9.30	8.63	10.87	80.32	9.40	8.00	13.40	116.58
Parananio cf. ionesi Hadar	Male	I	ł	7.60	ļ	9.20	8.90	10.40	94.12	9.50	8.40	14.10	126.20
Parananio cf. ionesi Hadar	Female	7.60	7.40	7.90	59.25	9.20	9.20	10.00	92.00	9.70	8.40	13.60	123.08
Parananio hroomi Makanan	Male	7.74	7.70	9.17	70.72	9.88	9.66	11.20	100.34	10.22	9.02	13.50	142.74
Parananio hroomi Makaban	Female	8.35	8.19	9.32	76.73	10.06	9.41	10.96	97.31	10.22	8.98	14.50	139.24
Paranania hraami Sterkfontein	Male	8.20	8.23	9.26	76.02	10.25	10.21	11.05	104.46	10.58	9.36	14.60	129.15
Parapapio broomi Sterkfontein	Female	8.01	8.07	9.20	69.01	9.87	9.39	11.23	96.76	9.81	9.15	14.70	132.63

			Ű	ontinuec	-								
Taxon	Sex	mIAW	m1PW	mlL	mlAR	m2AW	m2PW	m2L	m2AR	m3AW	m3PW	m3L	m3AR
Parapapio whitei Makapan	Male	8.50	7.90	10.23	85.13	10.37	9.80	12.37	124.72	11.05	9.75	14.90	174.76
Parapapio whitei Sterkfontein	Female	8.30	8.70	9.80	83.30	10.70	10.40	13.60	143.48	11.30	10.40	16.50	179.03
Parapapio? ado Laetoli	Male	7.40	7.60	9.50	75.00	9.40	8.60	11.20	100.70	10.80	8.90	15.00	147.75
Parapapio? ado Laetoli	Female	6.87	7.13	8.73	62.91	8.58	8.68	10.67	84.01	8.60	7.97	13.40	111.06
Parapapio sp. Kanapoi	Male	7.10	6.90	7.90	55.30	1	8.40	10.30	43.26	9.60	7.80	12.20	106.14
?Parapapio sp. Aramis	Female	I	I	I	l	1	7.10	I	64.50	7.30	6.60	1	74.64
Papio hamadryas robinsoni Sterkfontein	Male	9.10	9.40	9.90	71.10	11.03	10.50	12.93	116.95	12.15	10.25	18.70	209.39
Papio hamadryas robinsoni Sterkfontein	Female	8.70	9.23	99.6	88.23	10.58	10.78	12.12	130.12	10.83	10.23	16.30	169.65
Papio hamadryas robinsoni Swartkrans	Male	I	I	11.21	1	11.21	10.49	14.06	152.58	I	I	I	1
Papio hamadryas robinsoni Swartkrans	Female			9.94	9.69	12.21	119.82	10.30	9.10	16.30	158.11		
Papio angusticeps Kromdraai A	Male	8.80	8.50	9.85	83.13	9.70	9.50	12.20	114.24	10.20	9.17	14.40	139.80
Papio angusticeps Kromdraai A	Female	8.23	7.83	9.20	73.74	11.30	10.30	12.25	99.01	I	I	I	I
Papio izodi Taung	Male	١	l	10.30	Ι	9.60	ł	I	١	I	I	I	I
Papio izodi Taung	Female	I	1	1	I	1	10.20	11.80	60.18	11.80	I	15.50	91.45
Papio (Dinopithecus) ingens Schurweburg/	Male	10.00	10.50	12.50	140.43	13.40	12.85	15.53	209.19	13.85	11.35	20.80	261.43
Swartkrans													
Papio (Dinopithecus) quadratirostris Omo	Male	10.50	9.60	12.40	94.43	12.35	10.90	14.75	171.47	12.65	9.97	18.30	214.13
Papio (Dinopithecus) quadratirostris Omo	Female	9.00	9.10	10.80	97.74	11.20	10.80	12.90	141.90	11.60	10.40	16.30	179.30
Papio (Dinopithecus) cf. quadratirostris Leba	Female?	8.93	8.93	10.97	98.27	11.50	10.30	14.40	156.96	11.65	10.10	18.00	195.18
Gorgopithecus major Kromdraai/Cooper's/	Male	9.50	9.80	11.80	113.87	11.85	11.30	15.10	174.87	12.75	11.45	19.30	233.08
Swartkrans													
Theropithecus darti Makapan	Male	9.90	10.25	11.75	119.36	12.10	11.50	15.77	182.31	12.65	11.55	20.40	246.38
Theropithecus darti Makapan	Female	9.20	9.75	11.00	96.68	11.70	11.67	13.45	148.00	12.60	11.37	18.10	216.85
Theropithecus cf. darti Hadar	Male	8.53	8.30	10.59	83.62	10.67	9.97	13.29	127.61	12.10	10.58	18.20	206.25
Theropithecus cf. darti Hadar	Female	8.03	7.78	9.73	17.71	9.75	9.75	12.19	102.48	10.60	9.70	15.90	149.47
Theropithecus oswaldi oswaldi Kanjera	Female	I	I	١	ł	I	11.70	1	169.86	12.10	11.30	I	234.00
Theropithecus oswaldi oswaldi Swartkrans Mbr 1	Male	9.40	9.60	12.90	122.55	12.00	11.50	17.00	199.75	13.70	13.00	23.70	249.96
Theropithecus oswaldi oswaldi Swartkrans Mbr 1	Female	9.70	9.80	11.40	111.15	12.30	11.70	15.00	180.00	13.10	11.80	19.80	246.51
Theropithecus oswaldi leakeyi Koobi Fora	Male	9.20	9.30	11.30	104.5	11.90	11.30	17.20	199.5	13.90	12.60	23.40	310.1

APPENDIX TABLE 4

			APPEN C	DIX TA ontinue	BLE 4 d								
Taxon	Sex	mlAW	mlPW	mlL	mlAR	m2AW	m2PW	m2L	m2AR	m3AW	m3PW	m3L	m3AR
Therenitherus acualdi acualdi Olduvai DK I	Female				I	1	I	1	1	14.70	12.60	21.90	298.94
Theropinecus osman osman osman osman ostani	Male	۱	1	I	I	14.10	14.50	29.50	421.9	16.30	14.20	24.60	375.2
Theropithecus ostimus company. Clause Average	Male	11.90		14.70	87.47	14.60	13.30	18.30	255.29	16.00	14.00	24.90	373.50
Theropithecus ostration concerned Theropithecus ostration	?Male	11.30	11.00	12.70	141.61	15.00	14.60	17.60	260.48	16.20	14.50	24.30	373.01
Theronithecus oswaldi leakevi Tighenif	Unknown	I	١	I	١	13.60	12.60	18.50	242.35	15.50	13.00	24.10	343.43
Theronithecus oswaldi leakevi Thomas Quarry 3?	Male	12.40	11.40	14.10	167.79	12.00	11.60	16.70	197.06	12.70	11.60	21.10	257.63
Theronithecus oswaldi leakevi Hopefield	Male	11.80	11.60	13.30	155.61	14.00	12.70	18.80	250.98	16.00	14.95	25.60	396.54
Theropithecus oswaldi leakevi Honefield	Female	9.70	9.90	13.80	135.24	١	I	17.60	I	١	١	26.40	I
Therewishers consider the Oloroesailie Mean	Male	١	I	I	I	16.00	I	22.50	180.00	١	ł	I	I
Theropinecus osman camp. Oloroesailie Max	Male	13.00		17.50	113.75	17.50	I	22.50	196.88	19.00	I	28.40	I
Theropinecus osman curves Olorgesailie Mean	Female	11.50	10.50	14.40	158.40	12.80	13.30	17.80	232.29	15.90	14.50	24.70	375.44
Theronithecus oswaldi delsoni Cueva Victoria	Unknown	I	I	I	I	13.20	12.90	19.60	255.78	I	4	١	I
Thermitherus "atlanticus" Ain Jourdel (m1?)	Unknown	I		I	1	9.4	9.3	14.1	131.84	I	1	1	I
Theronithecus "atlanticus" Ahl al Ouchlam	Unknown	11.8	I		111.50	I	I	I	ł	12.1	I	I	١
Theronithecus? haringensis Chemeron	Male	7.90	8.30	10.70	86.67	10.20	9.50	11.80	116.23	10.70	9.20	17.10	174.13
Theronithecus hrumuti Omo Shungura	Male	9.40	9.90	12.50	120.63	12.60	12.30	16.20	201.69	13.80	12.80		296.59
Theronithecus brumpti Omo Shungura	Female	9.2	9.5	12.2	114.07	11.5	11.1	15.2	171.76	12.4	11.4	19.5	232.05
Theronithecus sn indet Lothagam	Unknown	۱	1	I	I	11.3	10.6	15.1	165.35	I	I	1	
Victorianithecus macinnesi Maboko	Unknown	5.00	5.50	6.00	26.53	6.60	6.37	7.53	49.03	6.20	5.26	8.90	51.51
Prohylobates tandyi Wadi Moshara	Female	5.90	5.50	5.60	31.92	6.20	5.90	5.80	35.09	5.00	I	6.50	I
Prohylobates simonsi Gebel Zelten	Unknown	I	I	I	Ι	11.00	10.40	10.40	111.28	9.10	8.20	12.90	111.59
Sex determined as indicated in text and appendix t mass for that population. Sources of data and variab	table 3, except ble abbreviation	that (?Ma is indicate	le) or (?Fe d in text a	emale) in and table	dicates ca 2.	ases when	e the larg	est or sma	llest teeth	of unknov	vn sex we	rre used to	o estimate

APPENDIX TABLE 5	Measurements (in mm) of Upper Tooth Dental Variables Used to Estimate Mass of Fossil Cercopithecid
------------------	--

Taxon	Sex	MIAW	MIPW	MIL	MIAR	M2AW	M2PW	M2L	M2AR
Colobine sp. "A" Leadu/Hadar	Male	7.90	7.40	8.80	67.32	8.60	7.80	8.60	70.52
Colobine cf. sp. "A" Aramis	Male		6.85	7.90	I	I	7.25	I	66.40
Colobine cf. sp. "A" Aramis	Female	I	6.78	I	56.50	I	7.54	I	I
Colobus? flandrini Menacer	Unknown	8.90	8.60	8.30	72.63	10.00	9.10	9.30	88.82
Libypithecus markgrafi Wadi Natrun	Male	6.50	6.00	7.20	45.00	7.50	6.30	7.50	51.75
Rhinocolobus turkanaensis Omo/Hadar	Male	8.43	7.85	9.80	67.02	10.00	8.90	10.90	103.07
Rhinocolobus turkanaensis Omo/Hadar	Female	8.60	8.00	10.05	83.83	9.80	8.50	10.65	94.25
Paracolobus chemeroni Chemeron	Male	10.10	9.70	10.90	107.91	11.20	11.00	12.10	134.31
Paracolobus mutiwa Turkana Basin	(?Male)	ł	1	Ι	-	12.10	11.50	13.90	164.02
Paracolobus mutiwa Turkana Basin	Female?	10.50	9.50	10.30	103.00	12.30	10.80	11.80	136.29
Paracolobus? sp. Laetoli	(?Male)	9.05	8.70	9.95	88.31			ł	I
Paracolobus? sp. Laetoli	Female?	8.40	8.10	9.10	56.16	9.80	8.65	9.85	90.95
Cercopithecoides williamsi Makapan/Sterkfontein/Bolt's	Male	8.50	8.10	8.05	66.93	10.20	8.50	9.33	88.65
Cercopithecoides williamsi Makapan/Sterkfontein/Bolt's	Female	8.30	7.60	7.70	61.22	9.60	8.50	9.10	62.72
Cercopithecoides williamsi Swartkrans?	Male	8.20	7.40	8.50	66.30	9.20	8.30	9.40	82.25
Cercopithecoides williamsi Kromdraai B	Female	10.25	9.45	9.80	96.85	11.20	06.6	10.90	115.20
Cercopithecoides? cf. williamsi Koobi Fora	Male	8.40	7.70	9.30	74.87	9.30	8.30	10.00	88.00
Cercopithecoides kimeui Koobi Fora	Male	I	1	9.50	ł	12.00	11.80	12.00	142.80
Cercopithecoides kimeui Koobi Fora	Female?	9.60		9.00	43.20	11.30	11.30	11.60	131.08
Cercopithecoides kimeui Olduvai	Unknown	10.10	9.50	10.90	106.82	11.70	10.80	11.70	131.63
Pygathrix (Rhinopithecus) roxellana? Honan	Female?	8.00	8.10	8.00	64.40	9.30	8.50	9.80	87.22
Pygathrix (Rhinopithecus) lantianensis Gongwangling	Male	8.80	8.70	9.30	81.38	I	I		I
Semnopithecus? sivalensis Siwaliks	Unknown	5.95	5.70	6.35	37.00	6.60	6.20	6.50	41.60
Mesopithecus pentelicus Pikermi	Male	6.90	6.70	7.00	47.60	7.70	7.20	7.50	55.88
Mesopithecus pentelicus Pikermi	Female	6.90	6.70	6.80	46.24	7.40	7.00	7.20	51.84
Mesopithecus pentelicus Macedonia	Male	7.00	6.80	6.70	46.23	7.70	7.10	7.40	54.76
Dolichopithecus ruscinensis Perpignan	Female	8.40	8.10	8.90	73.43	9.50	8.40	10.40	93.08
Dolichopithecus? eohanuman Shamar	Female	8.60	9.00	9.60	84.5	10.00	9.70	10.30	101.5
Macaca sylvanus ?prisca Various sites	Male	8.00	7.60	00.6	70.20	10.00	9.10	10.30	98.37
Macaca majori Capo Figari	Male	7.05	6.80	7.40	51.25	8.15	7.70	8.35	66.18
Macaca majori Capo Figari	Female	6.70	6.30	6.80	44.20	7.60	7.20	7.30	54.02
Macaca anderssoni Mien Chih	Male	8.60	7.90	7.70	63.53	10.20	9.60	9.30	92.07
Macaca robusta Zhoukoudian	Male?	9.70	9.50	9.50	91.20	10.80	9.50	10.10	102.52
Macaca robusta Zhoukoudian	Female	8.60	8.10	8.40	70.14	9.70	8.70	10.40	95.68

			APPENDIX Contii	TABLE 5 wed						
Taxon		Sex	MIAW	MIPW	MIL	MIAR	M2AW	M2PW	M2L	M2AR
Paradolichopithecus arvernensis	Senèze	Female	10.20	<u>9.60</u>	10.80	106.92	12.80	11.00	13.30	158.27
Paradolichopithecus arvernensis	Graunceanu	Male	10.20	9.60	11.10	109.89	13.20	12.10	13.90	175.84
Paradolichopithecus arvernensis	Graunceanu	Female	9.80	9.40	11.20	107.52	12.30	10.80	12.70	146.69
Paradolichopithecus sushkini Kuri	ruksay	Male	11.70	11.80	12.70	149.23	14.70	13.00	14.80	204.98
Paradolichopithecus sushkini Kur	ruksay	Female	11.70	10.70	13.30	148.96	14.00	12.40	14.70	194.04
Procynocephalus wimani Honan	•	Female	11.00	10.50	10.50	112.88	12.40	10.60	12.40	142.60
Procynocephalus subhimalayanus	Siwaliks	Female	11.00	ł	11.20	61.60	13.00	12.40	13.30	168.91
Procynocephalus? sp. Yushe		Unknown	10.45	10.60	10.65	112.60	11.30	11.10	11.10	124.32
Cercocebus? or Parapapio jonesi	Makapan	Unknown	1		1		9.70	00.6	9.30	86.96
Cercocebus? or Parapapio jonesi	Kromdraai A	Unknown	8.00	8.00	8.40	67.20	9.80	8.70	9.30	86.03
Cercocebus? or Parapapio jonesi	Taung	Unknown	I	6.70	8.00	ļ	7.90	7.60	10.20	79.05
Parapapio jonesi Sterkfontein	•	Male	9.00	8.60	8.25	63.36	10.40	9.80	10.00	93.93
Parapapio jonesi Sterkfontein		Female	8.93	8.12	8.90	62.80	10.06	9.22	10.30	92.57
Parapapio cf. jonesi Makapan		Male	8.50	7.60	8.60	69.23	11.00	10.13	10.25	106.91
Parapapio cf. jonesi Makapan		Female	8.40	8.00	8.50	69.70	10.10	9.20	10.10	97.47
Parapapio cf. jonesi Hadar	-	Male	8.20	8.30	8.00	66.00	I	I	10.60	I
Parapapio cf. jonesi Hadar		Female	10.20	9.80	8.20	82.00	11.90	10.50	10.60	118.72
Parapapio broomi Makapan		Male	9.63	8.98	9.50	87.95	11.42	10.53	11.33	109.42
Parapapio broomi Makapan		Female	9.70	9.15	9.58	87.16	11.06	9.81	10.93	106.71
Parapapio broomi Sterkfontein		Male	9.68	9.25	9.80	94.01	12.03	10.92	11.42	117.33
Parapapio broomi Sterkfontein		Female	9.80	8.84	9.30	83.12	11.06	10.31	11.02	108.02
Parapapio broomi or whitei Bolt's	's Farm 23	Male	10.20		9.80	49.98	12.00	11.20	11.40	132.24
Parapapio whitei Makapan		Male	10.45	9.60	10.35	103.67	12.66	11.16	12.18	144.96
Parapapio whitei Sterkfontein		Female	10.10	9.80	9.60	95.52	12.50	11.00	11.40	133.95
Parapapio antiquus Taung		Male	8.70	8.40	9.70	82.94	10.30	8.80	11.70	111.74
Parapapio antiquus Taung		Female	8.83	7.93	9.63	80.28	10.33	9.20	11.53	112.68
Parapapio? ado Laetoli		Male	I		I	I	11.80	10.55	11.85	132.28
?Parapapio sp. Aramis		Female	I	I	1	55.20		I	I	1
Papio hamadryas robinsoni Sterk	cfontein	Male	10.90	10.20	11.80	124.49	12.90	11.60	14.10	172.73
Papio hamadryas robinsoni Sterk	cfontein	Female	10.50	9.80	10.46	106.75	12.03	11.46	12.90	151.69
Papio hamadryas robinsoni Swar	rtkrans	Male		1	I		12.68	11.54	14.16	171.51
Panio hamadrvas rohinsoni Swar	rtkrans	Female	9.87	9.08	10.08	95.54	I	I	I	I

		APPENDI) Cont	K TABLE 5 inued						
Taxon	Sex	MIAW	MIPW	MIL	MIAR	M2AW	M2PW	M2L	M2AR
Papio angusticeps Kromdraai A	Male	10.70	09.6	9.60	105.53	11.25	10.08	12.00	127.83
Papio angusticeps Kromdraai A	Female	9.24	8.32	9.92	87.25	10.80	9.90	12.23	126.80
Papio izodi Taung	Female	9.40	9.20	10.03	93.00	10.00	10.40	11.75	78.58
Papio cf. izodi Sterkfontein	Female	10.00	9.10	10.60	101.23	11.20	10.20	11.40	121.98
Papio (Dinopithecus) ingens Schurweburg/Swartkrans	Male	13.05	12.50	14.15	180.76	16.20	I	I	I
Papio (Dinopithecus) ingens Schurweburg/Swartkrans	Female	11.62	10.96	12.88	150.48	13.78	12.25	15.02	195.50
Papio (Dinopithecus) quadratirostris Omo	Male	11.10	11.50	12.35	132.21	13.85	13.15	14.70	198.55
Papio (Dinopithecus) quadratirostris Omo	Female	10.65	10.10	11.20	116.19	12.85	11.40	13.75	166.83
Papio (Dinopithecus) cf. quadratirostris Leba	Male	-		11.90	Ι	15.20	14.20	15.80	232.26
Papio (Dinopithecus) cf. quadratirostris Leba	Female?	11.50	11.00	11.90	133.88	13.80	13.10	15.10	203.10
Gorgopithecus major Kromdraai/Cooper's/Swartkrans	Male	11.80	11.00	12.90	147.06	14.10	13.10	15.50	210.80
Gorgopithecus major Kromdraai/Cooper's/Swartkrans	Female	11.50	10.80	11.80	131.57	14.30	13.30	14.70	202.86
Theropithecus darti Makapan	Male		10.70	١	I	14.10	13.80	I	I
Theropithecus darti Makapan	Female	9.95	9.60	12.47	121.77	12.00	11.50	16.45	197.40
Theropithecus cf. darti Hadar	Male	9.80	9.90	11.15	83.65	11.70	10.50	12.75	144.30
Theropithecus cf. darti Hadar	Female	8.95	8.30	10.75	92.71	11.05	9.95	12.70	133.43
Theropithecus oswaldi oswaldi Kanjera	Male	ł	I	I		14.50	13.20	17.90	247.92
Theropithecus oswaldi oswaldi Kanjera	Female	I	I		110.70			1	I
Theropithecus oswaldi oswaldi Swartkrans Mbr 1	Male	11.50	12.00	13.00	152.75	13.50	12.00	18.00	229.50
Theropithecus oswaldi oswaldi Swartkrans Mbr 1	Female	11.15	10.25	13.30	142.73	13.85	13.05	17.25	232.44
Theropithecus oswaldi leakeyi Koobi Fora	Male	10.70	10.90	14.30	154.4	11.80	10.80	17.30	195.5
Theropithecus oswaldi leakeyi? Olduvai MCK II	Male		-	14.50	Ι	15.20	13.90	19.00	276.5
Theropithecus oswaldi leakeyi Olorgesailie Mean	Male	15.30	14.70	16.00	240.00		ł	I	
Theropithecus oswaldi leakeyi Bodo	Male	I	-	Ι		16.51	14.97	18.55	291.90
Theropithecus oswaldi delsoni Mirzapur	Unknown	14.00	13.30	14.60	199.29	17.30	16.30	20.80	349.44
Theropithecus "atlanticus" Ahl al Oughlam	Unknown	I	10.6	1	11.6		1		
Theropithecus? baringensis Chemeron	Male	10.50	9.80	10.50	106.58	12.30	11.60	12.50	149.38
Theropithecus brumpti Omo Shungura	Male	11.40	11.00	13.20	147.84	13.50	12.80	16.60	218.29
Theropithecus brumpti Omo Shungura	Female	11.00	10.10	12.60	132.93	13.50	12.50	16.00	208.00
Victoriapithecus macinnesi Maboko	Unknown	7.10	6.70	6.60	45.54	7.87	7.47	7.57	58.05
Sex determined as indicated in text and appendix table 3, 6	except that (?Male	e) or (?Femal	e) indicates c	ases where th	ne largest or si	mallest teeth	of unknown s	ex were use	to estimate

2000

mass for the population. Sources of data and variable abbreviations indicated in text and table 2.

Measurements (in mm) of Cranial Va	riables Us	ed to Esti	mate Mas	s of Fossil	Cercopit	hecids			
Taxon	Sex	NAIN	GLIN	NABA	GLBA	PORB	BIOR	ORBW	ORBH	ORBAR
I ihunithecus markorafi Wadi Natrin	Male	97.5	94.0	65.6	67.5	43.5	71.7	23.6	26.6	627.8
Dhinocolohus hurkanaensis Omo/Hadar	Male	101.7	100.3	85.9	86.1	49.0	95.5	29.0	27.5	1
Deinocolobus turbangensis Omo/Hadar	Female	106.0	105.5	90.0	90.06	49.0	90.0	26.0	29.0	I
Nithecoloous tar manachists Onto Andreas	Male	1	I	I	١	57.5	104.5	24.8	28.3	701.8
ratacotobas chemerora Cucuston Commistancidae willigneei Makanan/Sterkfontein/Bolt's	Male	109.3	107.5	T.TT	79.2	54.8	83.0	27.8	23.0	641.0
Cercopiniecones viniansi makapan sona sona sona sona sona sona sona so	Female	I	I	71.8	74.5	49.0	80.0	29.3	22.8	670.3
Cercopunecoures vunumus Anarapus concerciones Cerconitheconides williamsi Kromdraai B	Female	ł	I	I	I	50.0	81.0	31.5	30.0	945.0
Cercopiniccours remains Example Robi Fora	Male	ł	I	I	1	ł	104.0	25.0	20.0	500.0
Cercopunecoures: Ci. minumis. Construction Concorrection C	Female?	113.0	111.5	80.0	83.0	47.0	97.0	34.0	26.0	884.0
Cercopinecours minum record of Carconitheconides kimeni Olduvai	Unknown	119.7	118.2		I	52.7	I		I	I
Cercupturecourses winnen Organia Duarthrit (Rhinanithecus) rayellana? Honan	Female?	ł	100.0		١	48.0	70.0	1	I	
I Jauni a (Anunopuncus) Poarmini Masonitherus neutelicus Pikermi	Male	82.0	80.0	65.0	57.0	48.5	72.3	25.3	23.0	ł
Mesophineeus penneneus a morria Masonitheeus penneneus Pikermi	Female	76.0	75.5	59.0	60.0	1	62.0	23.0	18.6	1
Delichanitherus ruscinensis Pernionan	Female	1	I	I	I	48.5	75.0	1	19.5	Ι
Douchopunecus ruscinerisis - Apresian Manana mainri Pano Rigari	Male	1	I	I	ļ	41.0	65.4	19.9	21.2	421.9
Macaa andareeni Mien Chib	Male	I	1	1	I	46.0	81.8	1	25.3	ł
Macaca anaer 330nu Mutu Cum Macaca zohinta 7houboudian	Male?	95.0	92.5	72.2	74.0	44.0	86.0	28.0	28.0	784.0
Daradolichonithecus arvernensis Senèze	Female	115.0	110.6	78.5	88.0	48.2	101.0	32.5	27.8	1
Paradolichonithecus arvernensis Graunceanu	Male	109.8	109.4	93.0	96.0	١	I	I	Ι	l
Paradolichonithecus sushkini Kuruksav	Male	1	1	1	1	60.0	80.0	ł	I	I
Paradolichonithecus sushkini Kuruksay	Female	107.0	105.0	76.5	78.0	50.0	75.0	26.0	20.5	533.0
Derananio of ionesi Makanan	Male		I	I	I	53.1	I	27.0	24.2	653.4
nupupuo di jonesi Aakanan Damania of ionasi Makanan	Female	1	I	I	I	53.0	I	26.5	24.0	636.0
Lutupupeo Ci. Jonese Anumpun Domononio ef ionesi Hadar	Male	0.66	0.66	69.5	69.5	47.5	85.0	25.0	22.0	550.0
n angapto Ci. Jonese Aman Derenanis kroami Makanan	Male	ļ	120.5	I	I	54.6	76.3	28.2	23.5	663.8
Darananja kraami Makanan	Female	I	96.0	1	1	51.0	I	26.5	22.8	604.2
n unupupto or oconte artameteri Daranania kraami ar ushirei Ralt's Farm 23	Male	112.0	110.0	81.0	82.0	54.0	87.0	28.3	26.7	755.6
Parapapio whitei Makapan	Male	121.0	117.5	81.0	84.0	53.0	78.0	28.0	22.5	631.0

APPENDIX TABLE 6 APPENDIX TABLE 6 Of Cranial Variables Used to Estimate Mass of Fossil Ce

158 ANTHROPOLOGICAL PAPERS AMERICAN MUSEUM OF NATURAL HISTORY NO. 83

		Contin	pən							
Taxon	Sex	NAIN	GLIN	NABA	GLBA	PORB	BIOR	ORBW	ORBH	ORBAR
Parapapio antiquus Taung	Male	97.0	95.0	70.0	72.0	43.0	81.0	27.0	24.0	648.0
Parapapio antiquus Taung	Female	91.5	91.0	70.0	75.0	54.5	70.5	25.0	22.0	550.0
Papio hamadryas robinsoni Sterkfontein	Female	Ι	105.0	73.5	1	I	I	I	I	ļ
Papio angusticeps Kromdraai A	Male	Ι	I	78.0	80.0	50.0	82.5	26.0	21.5	559.0
Papio angusticeps Kromdraai A	Female	100.0	100.5	66.0	68.0	47.7	67.7	19.0	18.0	372.0
Papio izodi Taung	Male	I	1	74.0	I	Ι	I	I	1	I
Papio izodi Taung	Female	91.7	91.7	66.5	69.0	52.0	75.0	26.5	23.0	0.609
Papio (Dinopithecus) quadratirostris Omo	Male	121.0	119.0	I	I	46.0	106.5	29.0	27.0	783.0
Papio (Dinopithecus) quadratirostris Omo	Female	110.0	111.0	I	ł	49.5	75.5	27.5	27.0	743.0
Papio (Dinopithecus) cf. quadratirostris Leba	Female?	1	ł	I	I	41.0	1	I	I	I
Gorgopithecus major Kromdraai/Cooper's/Swartkrans	Male		125.0	ł	I	I	I	I	۱	1
Gorgopithecus major Kromdraai/Cooper's/Swartkrans	Female	I	1	ł	I	I	95.0	I	I	I
Theropithecus darti Makapan	Female	108.5	108.0	80.5	81.5	43.5	78.5	27.5	22.5	618.8
Theropithecus cf. darti Hadar	Female	100.5	100.3	73.7	75.2	46.0	81.0	26.8	25.7	688.8
Theropithecus oswaldi oswaldi Kanjera	Male	125.5	I	I	I	I	I	I	ł	ł
Theropithecus oswaldi oswaldi Kanjera	Female	116.0	ł	83.5	87.5	49.5	I	I	I	I
Theropithecus oswaldi oswaldi Swartkrans Mbr 1	Female	116.0	116.0	83.5	87.5	45.0	83.0	28.5	25.0	712.5
Theropithecus oswaldi leakeyi Koobi Fora	Male	138.0	I	104.0	107.0	١	I	I	1	ł
Theropithecus oswaldi leakeyi Koobi Fora	Female	114.5	114.0	84.0	84.5	60.5	91.5	30.5	28.0	854.0
Theropithecus oswaldi leakeyi Bodo	Male	171.3	ļ	110.9	112.7	1	I	I	I	ł
Theropithecus? baringensis Chemeron	Male	Ι	I	90.06	1	43.5	91.5	24.0	27.5	660.0
Theropithecus brumpti Omo Shungura	Male	114.5	I	87.0	92.0	1	I	I	I	I
Theropithecus brumpti West Turkana	Male	135.5	I	0.66	102.0	I	I	I	I	Ι
Victoriapithecus macinnesi Maboko	Male	75.5	Ι	52.5	52.0	I	I	1	I	I
Sources of data and variable abbreviations indicated in text	and table 2.									

APPENDIX TABLE 6

DELSON ET AL.: BODY MASS IN CERCOPITHECIDAE

Extant Cercopithecidae (Old World monkeys) range in mass from about 1 to 50 kg, and extinct species have been suggested to have weighed as much as 100 kg. The development of reliable methods for determining body size in extinct taxa is an important prerequisite to more detailed paleobiological analyses. In this monograph, the authors develop a series of equations to be used in such estimation as well as a protocol for the selection of the "best" equations. Bivariate relationships between each of the variables and mass were determined in a subset of taxa to obtain prediction equations. These equations were then tested on a smaller subset of taxa that had not been included in the previous step, in order to determine prediction accuracy as judged by Mean Prediction Error. A final set of prediction equations was developed for the highest-ranked variables in each of seven taxon-sex subgroups. The scaling of these variables with mass was examined in extant taxa using reduced major axis regression. The prediction equations were applied to over 90 fossil taxa, using postcranial, dental, and cranial specimens from both sexes. The resulting mass estimates were used to examine sexual dimorphism, body size evolution, and energetics in extinct cercopithecids.

Eric Delson is a paleoanthropologist whose research interests range from the origin of the anthropoid primates to the spread of anatomically modern humans, with a focus on fossil Old World monkeys, family Cercopithecidae. Currently he is codirecting both field research at the French Pliocene site of Senèze and laboratory work in three-dimensional geometric morphometric analysis of primate skulls. His major publications include *Evolutionary History of the Primates* (with Frederick S. Szalay), *Ancestors: The Hard Evidence,* and the *Encyclopedia of Human Evolution and Prehistory,* second edition (edited with Ian Tattersall, John A. Van Couvering, and Alison S. Brooks). He is Chairman of the Department of Anthropology at Lehman College of the City University of New York; a member of several graduate faculties at CUNY; and the Director of the New York Consortium in Evolutionary Primatology.

Carl J. Terranova is a comparative and functional morphologist interested in strepsirhine and other primates, especially their locomotor adaptations and evolution. He has published on topics ranging from the functional anatomy of leaping to the ontogeny of body size and life history. He is an Assistant Professor of Anatomy, Laboratory of Evolutionary Biology, Howard University College of Medicine.

William L. Jungers is a physical anthropologist and anatomist whose research interests range from the evolution and extinction of primates in Madagascar to biomechanics and morphometrics, including the scaling of the primate locomotor skeleton. Fieldwork in Madagascar is currently focused on coastal sites in the south and southwest that have deposits that span the time of human arrival and the faunal "extinction window". He edited *Size and Scaling in Primate Biology* and coedited the forthcoming *Reconstructing Behavior in the Primate Fossil Record* (with J. M. Plavcan, R. F. Kay, and C. P. van Schaik). He is currently the Chair of Medical Admissions and the co-Director of the Medical Scientist Training Program at Stony Brook and is a member of the Interdepartmental Doctoral Program in Anthropological Sciences.

Eric J. Sargis is an evolutionary morphologist whose dissertation research focused on the functional postcranial morphology and systematics of scandentians, primates, and other archontan mammals. He recently completed a monograph on Middle Paleocene marsupial postcranials from Itaboraí, Brazil (with Frederick S. Szalay). He is a Visiting Assistant Professor in the Department of Anthropology at Yale University.

Nina Jablonski is an evolutionary anthropologist who studies topics from cercopithecid paleontology to the evolution of human locomotion and skin color. She has edited several recent volumes including *Theropithecus: Rise and Fall of a Primate Genus, The Natural History of the Doucs and Snub-nosed Monkeys,* and (with E. Meikle and F. C. Howell) *Issues in Human Evolution.* She is Irvine Chair and Curator of Anthropology at the California Academy of Sciences.

Paul C. Dechow is a biomedical scientist with interests in bone and muscle biology, biomechanics, and physical anthropology. He has applied techniques of mechanics and physiology to studies of structure, function, development, growth, and evolution of the craniofacial region in humans and other primates. Dr. Dechow is the Director of the Graduate Program in Biomedical Sciences at Baylor College of Dentistry, Texas A&M Health Science Center.