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Mechanics of One- and Two-Joint Muscles

BY WALTERJ. BOCK1

INTRODUCTION

The recent surge of interest in evolutionary morphology has forced
morphologists to re-evaluate older methods and, when necessary, to de-
velop new methods for the analysis of forces in bone-muscle systems.
Considerable success has been attained in studies of the skeletal system
which has proved to be amenable to a variety of approaches (Pauwels,
1965; Evans, 1957; Kummer, 1959a, 1959b, 1961, 1966). Frazzetta (1962,
1966, MS) has, for example, employed a number of methods from
machine theory (kinematics) to analyze the movements of individual
skeletal units in the complex bone systems of the reptilian skull. Investi-
gations of the muscular system have enjoyed considerably less success.
Excellent methods have existed for many years for the treatment of forces
in the movements of entire limbs or of segments of limbs; these forces can
then be compared with estimates of the total force developed by the
muscular system (Fenn, 1930a, 1930b, 1938; Elftman, 1939a, 1939b,
1940, 1941, 1966; Manter, 1938). Unfortunately these methods do not
permit treatment of the force produced by a single muscle or by various
combinations of individual muscles. Clear and practical methods are not
readily available to the morphologist for the analysis of the force devel-
oped by individual muscles functioning normally within bone-muscle
systems. None of the several methods advocated previously have been
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adopted widely, suggesting that the practical difficulties encountered in
their application to actual cases outweigh their advantages. Neverthe-
less, the continued prevalence of vague and often misleading conclusions
on the functional properties of individual muscles in recent comparative
and phylogenetic morphological studies of vertebrate muscle-bone sys-
tems indicates the need for a simple (as possible) and practical method
of analysis.
The goal of this paper is to present a general method for the investi-

gation of the forces produced by one-joint and two-joint vertebrate skel-
etal muscles based on the concept of free-body diagrams (see any text
on mechanics, e.g., Den Hartog, 1961; Dempster, 1961; Dempster and
Duddles, 1964). The level of analysis is the bone-muscle system. The
exact structure of the muscle and its functional properties (Gans and
Bock, 1965) are of no importance to this study; only the muscle force and
its direction are included in the analysis. The force of each muscle is
treated as a single force vector, which may be a simplification in some
cases. I wish to emphasize at the outset that the approach to be developed
does not and cannot solve all the problems in the study of muscle func-
tion. Questions such as maximum force development and variation in
force during contraction lie completely outside the method of free-body
diagrams.

ONE- AND TWO-JOINT MUSCLES
The major morphological distinction in this study is between one-joint

and two-joint skeletal muscles regardless of the size and of the fiber ar-
rangement of the muscles. One-joint muscles are those that run from one
bone to the next successive bone, and thus pass over only one articulation
(fig. IA). Two-joint muscles are those that run from one bone, bypass
the next successive bone and attach onto the third bone of the series, and
therefore pass over two articulations (fig. 1B). Most one- and two-joint
muscles in the same limb segment are similar in their length and in their
sites of attachment, because one-joint muscles usually originate close to
the proximal end of the bone, and two-joint muscles generally originate
just across the articulation on the distal end of the next more proximal
bone; the insertions of these muscles are usually close together. Moreover,
some muscles, e.g., M. triceps, have two heads of origin, one on each
side of an articulation; hence part of the muscle is a one-joint, and part
is a two-joint, muscle. Only those muscles having a direct straight pull
from their origin to their insertion are considered, i.e., those in which the
force lies along a single vector line that connects the points of origin and
insertion. Complications exist in the analysis of muscles in which the
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tendon bends around a collagenous-fibered loop or pulley, or in which
the tendon curves around an articulation and is bound closely to the
bone by a tendon sheath. Most muscles that pass over more than two
joints are of the latter type. Some multi-joint muscles, such as cervical
muscles in long-necked birds, are exceptions, but these are also difficult
to analyze because the movements of the skeletal elements may not be
determinate.
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FIG. 1. Schematic drawings of two simple flexor muscles, to show the relationship
between the muscle, the force vectors of the muscle (Fm and F'm), and the bones.
A. One-joint muscle. B. Two-joint muscle.

An extensive literature on two-joint muscles exists (Baeyer, 1921;
Basmajian, 1957, 1962; Bois-Reymond, 1903; Fenn, 1938; A. E. Fick,
1879; R. Fick, 1910; Fisher, 1906; Manter, 1938; Rasch and Burke, 1963;
Strasser, 1908), most of it dealing with human muscles and much of it
based on experimental studies, yet few of the results and conclusions of
these studies have been utilized in general vertebrate functional morphol-
ogy. Many properties of two-joint muscles as well as their advantages and
disadvantages compared to one-joint muscles have been suggested in
these papers. A discussion of these properties and comparisons with one-
joint muscles can be done best after the method for analyzing the forces
of these muscles is outlined.
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THE METHOD OF FREE-BODY DIAGRAMS
The basic analysis employed is the method of free-body diagrams

(Dempster, 1961; Bock, 1966; Williams and Lissner, 1962; and any gen-
eral college-level textbook of mechanics or physics; the term "free-body
diagram" may not, however, appear in a physics text). Free-body dia-
grams are a most useful approach in studies of bone-muscle systems in
that all forces acting on a single structural element must be accounted
for in the analysis (see Dempster, 1961, for historical background and a
detailed discussion of this approach). This method has been employed
primarily for studies of forces on skeletal elements, but rarely, if ever,
for study of muscle forces and their consequences. The only requirement
demanded for the use of free-body diagrams is that all external forces
acting on the body be included in the analysis. For the purposes of this
study, I make several simplifying assumptions and restrictions to reduce
the complications of the biological systems to rather ideal physical ones.
Most of these simplifications are similar to those frequently applied by
engineers in the analysis of complex real systems. It must be emphasized
that calculations based on free-body diagrams applied to actual cases of
bone-muscle systems will be approximations rather than exact answers;
experimental observations are required to ascertain the actual forces
existing at different points in the system and to justify the simplifying
assumptions.
The assumptions used in this study are: (a) that the skeletal elements

are rigid bodies; (b) that no friction or other force-absorbing processes
occur at the points where external forces act on the skeletal elements; and
(c) that the articulations are ideal joints which are frictionless and do not
store energy that may be released later. Most, but not all, vertebrate
bones that can be analyzed with the help of free-body diagrams are quite
rigid under the loads usually applied. Those bones that deform (e.g.,
bend, as is the case of the upper jaw in many birds) under the forces
usually applied to them cannot be treated with the equations herein de-
veloped. Nevertheless, these flexible bones can still be handled by free-
body diagrams. Friction at the point of force application may impose a
serious problem that must be resolved in some actual studies, but it has
been ignored in this treatment. Friction probably cannot be ignored when
one or more of the forces are external to the animal, such as the force of
a foot against the ground. Articulations between bones may also present
considerable problems. The articular surfaces in diarthroses are generally
quite frictionless, but the amount of energy absorbed or stored, or both,
by the collagenous-fibered capsule and articular ligaments may be con-
siderable under certain conditions. Synarthroses and other forms or
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articulations may have rougher surfaces and higher coefficients of fric-
tion. Other articulations, such as the nasal-frontal hinge in many birds,
consist of a flexible sheet of bone, the bending of which requires force. In
all cases, the loss or storage of energy at the articulation must be deter-
mined by empirical observations.

In all cases, the center of rotation of the skeletal elements is at the
articulation, and this center of rotation is a line at right angles to the
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following figure 1 but including the force at the articulation (Fa) and a load force
(Fl) on the distal bone. A. One-joint muscle. B. Two-joint muscle. Note that a free-
body drawing is drawn for each bone and that all external forces on each bone are
shown.

plane of motion and hence appears on the figures as a point. The articu-
lation is regarded as an ideal hinge. Other requirements are that the
points of application and direction of the force vectors are known exactly,
that the centers of gravity and masses of the free-bodies are known, and
that the moments of inertia (always about the articulation) of these
bodies are known. Again these requirements may not be met precisely
in actual studies, but they can generally be approximated closely. The
necessity of making a number of assumptions should not be discouraging,
because the disadvantages of a partly artificial or simplified system are
greatly outweighed by the advantages afforded by free-body diagrams
both as a theoretical approach and as a rich source of working hypothe-
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ses for further testing in functional anatomical studies of bone-muscle
systems.
One important aspect of free-body diagrams is that one body must be

analyzed at a time and if possible drawn separately. Only the external
forces acting on that body should be shown. The several free-body dia-
grams for a simple one-joint muscle and a simple two-joint muscle are
shown in figure 2. In this study I have assumed that the bone from which
the muscle takes origin is stationary and have not drawn a free-body
diagram for it. This bone and the muscle force acting on it have been
shown by dashed lines for reference in some of the free-body diagrams;
however, I must emphasize that any bodies or forces indicated by dashed
lines are not part of the free-body diagram shown in each figure.
The lengths of the arrows have not been drawn proportional to the

magnitude of the forces, as is conventional, because I was concerned
only with the development of general methods, and numerical values
were not assigned to any of the forces. Except where noted, all forces are
considered to be coplanar and in the plane in which the bones move. In
all cases, the center of the rectilinear coordinates was placed at the center
of rotation. All forces were decomposed into their rectilinear components
and then added. These forces can also be added directly with the use of
methods of vector summation such as the simple polygon method.

Free-body diagrams may be used in both static and dynamic studies.
In dynamic cases, the moving bone may be rotating about an axis (line)
through the center of rotation, or may be moving in a rectilinear direc-
tion, or a combination of both. In the last case the movement of the bone
can be analyzed with respect to the instant center of rotation, as was
done by Frazzetta (1966, MS). I have treated all dynamic conditions
as instantaneous conditions as shown in the diagram; no attempt has
been made to solve the equations for dynamic cases over the range of
movement. In actual studies these equations would have to be solved
exactly by integration (which will be very difficult in most cases) or ap-
proximately by dividing the range of movement into a series of steps.
The latter method will probably be sufficiently accurate when com-
pared with the accuracy of the observations and measurements of the
forces, moment arms, and the various simplifying assumptions.

I wish to emphasize that the method of free-body diagrams as used in
this study is little more than simple lever analysis. It does differ from
most lever analyses in that all the forces acting on the structural element
are included; the forces at the fulcrum are frequently omitted in the
lever analyses used in functional anatomical investigations. Moreover,
there is no need to divide the possible lever systems into a classification
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of first-, second-, and third-class levers depending on the arrangement
of the forces relative to the fulcrum. Nothing is gained by such a clas-
sification of levers that could not be shown as well or better by free-body
diagrams. Indeed, the division of levers into several classes frequently
leads to the erroneous impression that each class of lever possesses dif-
ferent and distinct properties, for example, that first- and third-class
levers provide increased speed at the sacrifice of force, whereas second-
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FIG. 3. Schematic drawing of a one-joint flexor muscle and free-body diagram of
bone 2 onto which the muscle inserts. All structures and forces shown by dashed
lines are not part of the free-body diagram. The system is under gravity-free condi-
tions. See text for further explanation.

class levers sacrifice speed for increased force (see Rasch and Burke,
1963, pp. 155-156). Because the use of first-, second-, and third-class
levers requires the memorization of additional and rather unnecessary
factual information, I recommend strongly that this usage be abandoned
in favor of the simpler method of free-body diagrams.

ONE-JOINT MUSCLES
A simple one-joint flexor muscle, such as the brachioradialis in man,

is shown in figure 3, with the muscle originating from bone 1 at point M
and inserting on bone 2 at point N. In this and all other examples in this
study, the mass of the muscle has been ignored. When the muscle con-
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tracts, it exerts an equal and opposite tensile force Fm and F'm on both
bones; the consequences of this force depend on all the other forces act-
ing on the bones. Bone 1 is regarded as fixed in position, whereas bone 2
is free to move (e.g., to rotate). A more general analysis is possible, if both
bones were allowed to move. However, holding one bone fixed simplifies
the analysis greatly without reducing its general applications or affecting
the conclusions on the properties of one-joint or two-joint muscles. I
should point out that, in many cases among vertebrates, such as fish
swimming or birds flying, no part of the body may be considered to be
fixed in position, and the relative movement of each part of the body
must be ascertained. The two bones articulate in an ideal pinlike joint
at point o which allows free rotation of bone 2. For certain analyses, the
structure of the joint has been considered to be so modified as to allow
linear movement of bone 2 past bone 1. In all cases, the masses of the
moving bones are included in the analysis. Free-body diagrams and
equations are formulated only for bone 2.

1HE GRAVITY-FREE CONDITION: In the first case (fig. 3), the force of
gravity has been excluded, although I realize that such a condition was
artificial for all vertebrates until quite recently when several species of
vertebrates, including man, were orbited around the earth in a space
capsule and were placed in a prolonged free-fall, an essentially gravity-
free environment. The force relationships within muscle-bone systems
under gravity-free conditions are quite interesting for a fuller under-
standing of muscle mechanics and deserve special treatment. Because
this condition permits a clear comprehension of the influence of non-
muscular forces on the consequence of the muscular force, it is considered
first.
The force vector Fm of the muscle acts on bone 2 at point N. Because

this force does not pass through the center of rotation, o, of bone 2, it
imparts a rotational effect on this bone. The rotational effect of this force
can be completely described by the following three equation (considering
only the instantaneous condition shown in figure 3 in which the x-axis
coincides with the longitudinal axis ofbone 2):
YMO = I0a; and (1)
EFX = max = mco2RG; and (2)
:FY = may = maRG. (3)

Equation 1 is the sum of the moments or torques acting on the bone, in
which Io is the moment of inertia of the bone about o and a is the angu-
lar acceleration. Equation 2 is the summation of forces in the x direction,
in which a. is the radial acceleration, hence mW2RG is the centripetal
force. Equation 3 is the summation of forces in the y direction, in which
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a is the tangential acceleration, hence maRG is the tangential force.1
The term X is the angular velocity of the bone, and the term RG is the
radius of the center of gravity from the center of rotation o. Throughout
this paper, all equations are written in the form of d'Alembert's principle,
hence the terms I0,a, mC2RG, and maRG are fictitious "inertia torques"
or "inertia forces" (see below). The fictitious "inertia forces," mW2RG
and maRG, act on the body as if the entire mass of the body were con-
centrated at its center of gravity. The two terms, mW2RG and maRG,
may be considered as the centripetal and tangential inertia forces that
are directed against the acceleration of the free-body. The term I0a may,
likewise, be considered as an "inertia torque" directed against the angu-
lar acceleration of the body. These equations and the forces involved are
discussed in detail in the following paragraphs.

In the first example, as shown in figure 3, the vector of the muscle
force, Fm, does not pass through the center of rotation, o, of bone 2,
hence exerts a torque (or moment) on this bone; the torque is the product
of the force and the moment arm of the force. The moment arm, oa, of
the force vector Fm is obtained by dropping the perpendicular from the
center of rotation to the line of the force vector. The magnitude of the
torque (or moment) becomes greater with an increase in either the force
or its moment arm, or both. In this simplest case, the muscle force is the
only torque-producing force acting on bone 2. The sum of moments
(torques; clockwise2 torques are positive) on bone 2 is:

EM, = -Fm(oa) = -1,a. (4)

1An excellent statement describing the factors acting in the rotation of a flat body about a
fixed axis can be found in Den Hartog (1961, p. 233) and is here quoted in full: "The angular
acceleration X [ =a] of a thin, flat, rigid body constrained to move in rotation about a fixed
axis 0 perpendicular to its plane is found from the formula:

Moment of external forces about 0 = I,C

while the reaction forces from the axis on the body are determined by solving the static
equilibrium equations of the body under the influence of the external forces and of two ficti-
tious 'inertia forces' mcorG and mW2ro, as if the entire mass of the body were concentrated at its
center of gravity." This statement sums up the entire physical basis for the analysis in the
present paper.

2 By clockwise torque, I mean a force-lever arm combination that tends to rotate the bone
in a clockwise direction; counterclockwise torques tend to rotate the bone in the opposite
direction and are designated as negative in sign. In a like fashion, the sign used for the Ia term
designates the direction of rotation, with clockwise rotation being positive. The sign of the
fictitious inertia torque term is, therefore, opposite to the direction of rotation and would be
negative for clockwise rotation. The positive or negative signs of the Ia term will not designate
acceleration or deceleration, as is another common convention.
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Hence the bone will rotate in a counterclockwise direction, with the
angular acceleration (a) depending on the moment of inertia (Io) of the
bone for a fixed force produced by the muscle. The sum of the moments
may be rewritten, in the form of d'Alembert's principle, as:

:Mo = -Fm(oa) + Ioa = 0. (5)

The term I0a in this equation is the fictitious torque (or inertial torque)
of bone 2, equal in magnitude but oppositely directed to the Ioa term in
equation 4. D'Alembert's principle has been used throughout this study
as a means of reducing all dynamic situations to equilibriums which can
then be treated with the methods of statics. Because the moment of in-
ertia of a bone (or limb segment, or jaw) generally remains constant,
the speed at which the bone will rotate depends on its angular acceler-
ation (and the duration of the acceleration), and its angular acceleration
depends on the magnitude of torque resulting from the muscle force. Any
increase in torque, either by increase in the magnitude of the force or by
length of the moment arm or by a combination of both, will increase the
angular acceleration and hence the speed of rotation of the bone.

In addition to providing the torque for angular acceleration, the
tensile force developed by the muscle provides some or all of the cen-
tripetal and tangential forces needed for acceleration in these directions.
The centripetal force acts along the longitudinal axis of bone 2 toward
the center of rotation; it appears in the figures and equations as the ficti-
tious centripetal force or centrifugal inertia force acting away from the
center of rotation. For a bone of fixed center of gravity and constant
mass, the centripetal force depends on the angular velocity (proportional
to the square of the angular velocity). The centripetal force remains the
same for constant angular velocity but would increase as the velocity
increases (i.e., under conditions of angular acceleration). Whenever one
bone rotates, it is generally being accelerated (or decelerated) while it
moves; hence the centripetal force will always vary and is time depend-
ent. Rarely does a bone rotate at constant angular velocity, hence rarely
are the radial acceleration and the centripetal force constant. Because of
the stress placed on the bones and on the articulation, the maximum
centripetal force may be of the greatest interest. It should be pointed
out that the muscle force may provide only part of the needed centripetal
force. Some, or even all, of the centripetal force component may be
provided by the resistance of the articular ligaments to the centrifugal
force of the rotating bone. This point is discussed in detail below (p. 22).

The tangential force acts at right angles to the longitudinal axis of
bone 2 in the direction of rotation of the bone; again it appears in the
figures and equations as the fictitious tangential force or tangential in-
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ertia force acting opposite to the tangential acceleration of the bone (i.e.,
in direction, this inertia force is directed opposite to the direction of rota-
tion of the bone). This force may be thought of as the tangential inertia
force that must be overcome before the bone will accelerate or as the
tangential force acting at the center of gravity of the bone needed to
produce the same angular acceleration as would force Fm acting at point
N. A tangential force (inertia force) must be considered only if the bone
is undergoing angular acceleration. When the bone is rotating at con-
stant angular velocity, no tangential force exists. Unlike centripetal force,
which varies with increasing angular velocity or with time under con-
ditions of constant angular acceleration, tangential force remains con-
stant with constant acceleration and does not vary with time. The needed
tangential force is produced only by the muscle force (in this case) and
other torque-yielding forces. It cannot be provided by resistance of artic-
ular ligaments as in the case of centripetal force (see below, p. 23, for a
full discussion).
In addition to its rotary effects on bone 2, the tensile force developed

by the muscle acts to pull bone 2 against bone 1. This effect appears as
a force acting at the articulation of the two bones and can be analyzed
by some form of vector addition. The easiest and clearest method is to
decompose all forces into rectangular components. A set of x-y axes must
first be drawn through the center of rotation. The orientation of these
axes depends only on the choice of the -worker, and they are usually so
placed for the greatest convenience and utility to the particular study.
In studies of static conditions, it is often useful to place one axis parallel
to the longitudial axis of the fixed bone so that one of the component
forces at the articulation will appear as compression or tension on this
bone. However, in conditions of rotational movement, it is usually best
to place one axis along the longitudinal axis of the moving bone so that
the centripetal force is parallel to one axis and the tangential force is
parallel to the other axis. In this case, the x-y axes were placed so that
the x-axis is parallel to the longitudinal axis of bone 2 which allows an
easy summation of forces.
The force Fa at the articulation is the force exerted by bone 1 on

bone 2; it is equal and opposite to the force F'a exerted by bone 2 on
bone 1 which depends on all other forces, real and fictitious, acting on
bone 2. This force passes through the center of rotation, hence does not
exert any torque on bone 2. Because the magnitude and vector direction
of the force Fa are generally not known until after the several equations
are solved, it is often more convenient to show its two component forces,
Fh and Fv, rather than the force itself.
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Once the x-y axes are chosen, each force can be decomposed into its
component forces. Force vector Fm intersects the x-axis at angle 01;
hence its component forces are Fm cos 01, along the x-axis and Fm sin
01 along the y-axis. The articular force, Fa, is represented by Fh (= Fa
COS 02) along the (horizontal) x-axis and Fv (= Fa sin 02) along the
(vertical) y-axis. The centripetal (F,) and tangential (Ft) inertia forces
must be included. The forces acting along the x-y axes can be added
algebraically (with forces acting toward the right along the x-axis and
upward along the y-axis being positive). Thus if the two bones are in
static equilibrium along the x-y axes, then:

EFx= -FmcosO1+ Fh +Fc=O0;and (6)
IFY = Fmsin 01-Fv-Ft=. (7)

The centripetal inertia is equal to mO2RG and increases as the angular
velocity increases, whereas the tangential inertia is equal to maRG and
is constant with constant angular acceleration. If bone 2 is moving past
bone 1 in some linear direction, then it is undergoing a linear acceleration
in addition to the accelerations associated with the rotational movement.1
The equations can then be written, with the use of the form of d'Alem-
bert's principle as:

EFx= -Fmcos01 + Fh + Fc + max= 0; or (8)
EFY = Fm sin 01- F- Ft - may = 0, or both, (9)

in which m is the mass of bone 2 and ax is the linear acceleration along
the x-axis and ay is the linear acceleration along the y-axis; the signs
of the ma terms are directional only, depending on the direction of the
inertia force. The actual linear acceleration of bone 2 is the result of the
accelerations along the x and the y axes. The proper combination of
these formulas must be chosen according to the existing conditions.

In the construction of figure 3, bone 2 was allowed to rotate only and
was not allowed to slide past bone 1-this being the simplest rotational
movement that can be described by equations 5, 6, and 7. Under these
conditions, force Fh is equal to Fm cos 01 - F, and force Fv is equal to
Fm sin 01 - Ft. The resultant vector Fa of the forces Fh and Fv is the
force exerted by bone 1 onto bone 2 at their articulation. Because of the
presence of the centripetal and tangential inertias when bone 2 is under
angular acceleration, the force Fa is always different (usually less) from
Fm, and the vector directions of these forces are not parallel. Hence,

1 If bone 2 is moving past bone 1 in some linear direction, then its moment of inertia, I., and
the distance between the center of rotation and the center of gravity, RG, would be changing.
However, these changes can be ignored in most cases, because bones undergo very limited
linear movement past one another.
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Fa

F, sin02

FIG. 4. Schematic drawing of a one-joint flexor muscle and free-body diagram of
bone 2. The system is the same as in figure 3 except for the addition of a load force
(Fi). See text for further explanation.

forces Fm and Fa can never constitute a force couple' acting on bone 2
(see below, p. 33, for a discussion of this important point.)

In the second example under gravity-free conditions, static equilib-
rium, both rotational and linear, exists when a second force, Fl, acting
on bone 2 opposes the force developed by the muscle (fig. 4) so that the
sums of the moments and of the vector forces are equal to zero, thus:

.Mo = -Fm(oa) + Fi(ob) = 0; and (10)

lThe term "force couple" or "couple" throughout this paper designates a simple force
couple, i.e., a pair of parallel forces, equal in magnitude, but acting in opposite directions. It is
never used in the meaning ofa turning couple. The term "couple" in the biomechanical litera-
ture, e.g., "The total effect of the action of a one-joint muscle can be most simply represented
by two equal and opposite couples, one on each of the adjacent members on which the muscle
acts" (Manton, 1938, p. 535), has always been used in the sense of a simple force couple,
although the term "turning couple" is frequently used (e.g., Gray, 1956, p. 203). No clear
definition has been given, to my knowledge, for "turning couple," nor has this term been
distinguished from force couple in the biomechanical literature. The German term "Kraft-
paar" translates directly as force couple.
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EFX = -FmcosO + F1 cos 02 + Fh = 0; and (11)
IFY = Fmsin -F, sin0S2-2Fv O. (12)

Note that the Ita, Fc, and Ft terms are absent, because bone 2 is not
undergoing angular acceleration. The terms max and may are missing,
because bone 2 is not undergoing linear acceleration. In this case, be-
cause of the vector direction of force F1, its x and y components cancel
out much of the x and y components of force Fm so that the resultant
force at the articulation is reduced. However, when force F1 acts along
certain other vector directions, its components may add to the compo-
nents of force Fm and increase the total force on the articulation. Tensile
forces at the articulation are resisted by the collagenous fibers of the
articular capsule and associated ligaments, while compression forces are
resisted by the cartilage and bone.

In this example, when bone 2 is under static conditions, a second
force, F1, must always act upon the bone. Because force F1 is present
and must be added vectorially to force Fm for one to ascertain the magni-
tude and direction of the force at the articulation, Fa, the force vectors
Fm and Fa can never constitute a force couple acting on bone 2 (see
below, p. 33, for additional discussion).
THE GENERAL CASE: A general statement describing the mechanics of

a simple one-joint (flexor) muscle can be made with the aid of figure 5.
The arrangement of the muscle and bones is the same as in figures 3 and
4. The major difference between the present case and the cases dis-
cussed above is that the force of gravity is included and is shown as the
force Fg acting at the center of gravity, G, of bone 2. Because bone 1 is
fixed, the pull of gravity on this structure does not affect the bone-muscle
system under consideration. A second force, F1, acts on bone 2 at point
P.

Several possible static and dynamic conditions are analyzed, with the
use of the same conventions as above. No attempt was made to include
all possible conditions, which would be overly repetitious. In all cases,
the conditions are stated explicitly.
When bone 2 is under static conditions, then the sums of the moments

and of the vector forces are equal to zero; hence

IM. = -Fm(oa) + Fg(ob) + Fi(oc) = 0; and (13)
YFx = -Fm cos 01 + Fg cos 02 -F COS 03 + Fh = O;and (14)
EFY = Fm sin 1 - Fg sin 2 -F1 sin 03-F = 0. (15)

The direction of the Fh and F, forces and of their resultant force, Fa, can
be determined only after the other forces are calculated and added.
When bone 2 is undergoing angular acceleration, i.e., rotating under

the action of the muscular force, then the equations are as follows:
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==-Fm(oa) + Fg(ob) +Fi(oc) + a - 0;andb (16)
= -FmcosO + Fgcos26-F1 cos 03 + Fc + Fh =O;Fand, (17)

F = Fmsini1- FgsinO 2- F1 sinOR- Ft - F = 0. (18)

It is obvious from equation 16 that the torques of the Fg and F1 forces
must be subtracted from the torque of the muscle force for one to deter-
mine the torque available to accelerate bone 2 about its center of rotation.
The moment of inertia depends on the distribution of the mass of the
bone and any other mass that may be attached to the bone. If the force
F1 does not have any associated mass (such as if it were a spring attached
to the bone), then it would not contribute to the moment of inertia. But
if this force is associated with a mass (such as if this force were the pull of
gravity of an object held at point P), then the mass of this object must
also be included in the moment of inertia of the system. Note that Fc is
increasing steadily with time as the angular velocity of the bone increases
while Ft is constant. Because of the presence of the Fc and Ft terms, the
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Fh and Fv (and consequently the resultant force Fa) terms differ from
those in equations 14 and 15, and generally are smaller.

In a few cases, such as propalinal chewing in mammals, bone 2 moves
past bone 1 in a certain direction; this linear movement may occur with
or without rotation of bone 2. As with rotational movement, the cases
of linear movement without acceleration or deceleration are so rare that
they can be ignored. The force required for linear acceleration is pro-
vided by the several forces acting on bone 2. Analysis of this acceleration
can be done by the decomposition ofthe acceleration and the forces caus-
ing it into rectilinear components. (It may be noted that the analysis of
movements of bone 2 which are a combination of rotational and linear
movement may be handled more easily with the method of instant cen-
ters, such as employed by Frazzetta, 1966.) In the case in which the con-
traction of the muscle results in linear movement of bone 2 without any
rotational movementl (propalinal chewing in mammals), the equations
are:

MO = -Fm(oa) + Fg(ob) + Fi(oc) = 0; and (19)
Fx = -Fm cos 01 + FgCOS 2 -F1 cosO 03 + Fh + max = 0; and (20)

Y.FY = Fmsinf1 - Fgsinf02 - F1 sin 03 - F, - may = 0, (21)

in which m is the mass of bone 2 and ax is the acceleration along the
x-axis and ay is the acceleration along the y-axis. Again if force F1 is asso-
ciated with a mass attached to bone 2, then this mass must be included
in the mass undergoing linear acceleration. The equations for bone 2
undergoing both angular and linear equations may be left to the reader.
The various equations, 13-21, describe the consequences resulting

from the contraction of a simple one-joint muscle and from the actions
of all other forces acting on this bone-lever system. The proper set of
equations must be chosen according to the rectilinear and rotary condi-
tions of the system. The number of muscular or other forces acting on the
bones does not complicate the equations other than by including addi-
tional terms to be added algebraically. A term must be present in the
sum of the moments for each torque-producing force, and a term must be
present in each sum of the rectilinear component forces for each force.
In addition, a term for the inertia torque and the radial and tangential
inertia forces must be included, if the bone is undergoing angular accel-
eration, as well as a term for the linear inertia force, if the bone is under-
going linear acceleration (these inertia forces may be considered as
fictitious torques or forces under the notion of d'Alembert's principle). It
is important to note that the force vectors Fm and Fa do not constitute a

1 In such cases, frictional forces would generally exist and must be included in the equations.

16 NO. 2319



BOCK: MECHANICS OF MUSCLES

force couple acting on bone 2 except by rare chance depending on the
magnitudes and directions of the several actual and fictitious forces acting
on this bone.
A few additional examples may serve to illustrate the general applica-

bility of free-body diagrams to muscle analysis as well as showing some
special points; not all possible conditions are treated. In the following
cases, the muscle is a one-joint muscle, and the general conditions are the
same as those specified above for figure 5.

F Is

F1 cos3
Fmsin 61

FIG. 6. Schematic drawing of a one-joint extensor muscle and free-body diagram
of bone 2. The system is under the same conditions as in figure 5. See text for further
explanation.

AN EXTENSOR MUSCLE: The arrangement of forces in a simple one-
joint extensor muscle, such as the triceps (part) in man, is shown in figure
6. Under static conditions of bone 2, the equations for the sum-of the mo-
ments and of the force vectors are:

YMo = Fm(oa) + Fg(ob) - Fi(oc) = 0; and
EFX = FmcosO1- Fgcos 02 + F1COS03 + Fh = 0; and
Y.Fy = Fm sin9i - Fg sin 02 + F1 sin03 - F, = 0.

When bone 2 is undergoing angular acceleration, these equations are:

MM = Fm(oa) + Fg(ob) - FI(oc) - I.a = 0; and
YFx = Fmcos 1- Fgcos 02 + F1 COS 03 + Fc + Fh = ; and
:FY = Fm sin0i - Fg sin 02 + F, sin 03 + Ft-Fv =O.

(22)
(23)
(24)

(25)
(26)
(27)
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In this case, it should be noted that the pull of gravity assists rather than
opposes the muscle force, e.g., gravity adds to the clockwise torque re-
quired for angular acceleration of the bone as expressed in equation 25.
It should also be noted that, because of the arrangement of the system,
the radial inertia force acts in the same direction as the x-component of
the muscle force; consequently, the muscle force does not provide any

\ \ "

\ \"

\ \ %u

Fm~~~F

Fgin2 FM

Fm C OS

x P F1coso3 Fmsinl&i

Ft

FIG. 7. Schematic drawing of a one-joint flexor muscle and free-body diagram
of bone 2. The system is the same as in figure 5 except for the locations of the
muscle force and the load force. See text for further explanation.

of the needed centripetal force. Because of the arrangement of forces, I
would expect that the x-component of the articular force, Fh, would be
directed toward the left, not toward the right as shown in figure 6. The
correct direction for this component will be apparent when values are
substituted for the other terms and the equation solved for Fh.
A FLEXOR EXAMPLE: The arrangement of forces in a simple one-joint

flexor muscle in which the muscle inserts on bone 2 distal to the points
at which the other forces act is shown in figure 7, this arrangement being
the condition of a second-class lever. This system is seen in some mam-
malian jaws in which the molar teeth engage an object behind the at-
tachment of the adductor muscles.
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FIG. 8. Schematic drawing of a one-joint "spurt muscle" and a one-joint "shunt
muscle" and free-body diagram of bone 2. The system is the same as in figure 5
except that the load force is omitted. See text for further explanation.

Under static conditions, the sums of the moments and of the vector
forces are:

iMo = -Fm(oa) + Fg(ob) + Fi(oc) = 0; and (28)
YFx = -Fm cos 91 + Fg cos 02 + F1 COS 03 + Fh = O;and (29)
EFY = Fmsin 91-Fg sin 02-F, sin 03-Fv O. (30)

Under conditions of angular acceleration, the equations are:

EMO = -Fm(oa) + Fg(ob) + Fi(oc) + Ioa = 0; and (31)
7Fx = -Fm cosO1 + Fg cos 02 + F1 COS 03 + Fe + Fh = 0; and (32)
YFY = Fm sinOi - Fg sin02 - F1 sin 03 - Ft -Fv = 0. (33)

Note that except for a difference in sign ofthe F1 cos 03 term because of a
difference in the vector direction of force F1, equations 28-33 are identi-
cal to equations 13-18, although the former equations describe the action
of a second-class lever, whereas the latter equations describe the action
of a third-class lever. The differences between these cases lie, of course,
in the values for the several terms. For the same muscle force under static
conditions, the load force F1 will be greater in the present case (as shown
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in equation 28) than in the previous case (as shown in equation 13).
Moreover, when the muscular and other forces are arranged as shown
in figure 7, a tensile force generally exists at the articulation along the
y-axis tending to pull the bones apart instead of the compression force
seen in the previous cases. The collagenous fibers of the articular capsule
and associated ligaments would resist this tensile force.

"SPURT" AND "SHUNT" MUSCLES: Recently, Basmajian (1959, 1962,
pp. 63-67; see also Hall, 1965, pp. 33-34) discussed the mechanics of the
biceps, brachialis, and the brachioradialis which are all flexors of the
elbow joint. He described the brachioradialis as a "shunt" muscle that
acts during rapid flexion and provides centripetal force along the long
axis of the moving bone. The biceps and the brachialis are "spurt" mus-
cles that provide the force for angular acceleration. With the help of
electromyography, Basmajian provided apparent experimental support
for the earlier theories of MacConaill (1946, 1949). Unfortunately,
Basmajian's analysis of "spurt" and "shunt" muscles does not include a
consideration of all the forces, muscle and other, acting on the bone-lever
system. Moreover, MacConaill's mechanical treatment is incomplete and
vague on some important points, so that a complete re-analysis of the
mechanical properties of "shunt" and "spurt" muscles1 is desirable.
The arrangement of the biceps and the brachialis (the "spurt" muscles)

and of the brachioradialis (the "shunt" muscle) are shown schematically
in figure 8, with the use ofthe same conventions as in figure 5. The biceps
has been shown as a one-joint muscle for this purpose which does not
affect the general conclusions. No load has been placed at the distal end
of bone 2, as this would only add another term to all the equations with-
out increasing the clarity or the general application of the analysis. Bone
1 is fixed, and bone 2 is free to rotate. The vectors of the two muscle forces
are placed so that their moment arms are equal in length. The magni-
tudes of the forces Fml and Fm2 have been set equal, so that the various
consequences of these forces can be compared readily. I consider only the
condition of angular acceleration, which is the only one pertinent to the

1 It is not easy to determine from Basmajian's and MacConaill's papers exactly what was
meant by "spurt" muscles, whether these muscles provide a large torque for angular accelera-
tion or a large force in the tangential direction (which may or may not produce a large torque)
or both. MacConaill stated that "spurt" muscles provide a force along the tangent to the curve
ofmovement of the bone (which is not the same as the tangential inertia force) but also wrote
that this force rotates the bone (i.e., provides the angular acceleration). These two properties
are not the same, and one does not imply the other. A muscle could provide a large force in the
tangential direction and little torque, and vice versa. Because these workers stated that spurt
muscles displace the bone along a curve (rotate it), I assume that they mean that "spurt"
muscles provide large torques, although I realize that neither author stated so clearly.
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consideration of "spurt" and "shunt" muscles.
If each muscle is considered separately, then the sums of the moments

and of the vector forces for the "spurt" muscle are:

IMo = -Fmi(oa) + Fg(oc) + 10a = 0; and (34)
Fx = -FmlcosO1 + Fg cos 03 + Fc + Fh =0; and (35)

YFY = Fml sin 01-Fgsin 03-Ft-Fv= 0. (36)

For the "shunt" muscle, these equations are:

EMo = -Fm2(ob) + Fg(oc) + I0a = 0; and (37)
FX = -Fm2cos 02 + Fg cos 03 + F, + Fh = O;and (38)

EFY = Fm2 sin 2- Fg sin 3- Ft - = 0. (39)

When the "spurt" and the "shunt" muscles act together, these equa-
tions are:

M = -Fml(oa) - Fm2(ob) + Fg(oc) + 1oa = 0; and (40)
YFX = -Fml cosOi - Fm2 Cos 02 + Fg cos 03 + F, + Fh = O; and (41)
:FY = Fml sin 01 + Fm2 sin 2- Fg sin03 - Ft - Fv = 0. (42)

Comparing the effects of the forces developed by the "spurt" muscles
and the "shunt" muscles, we see that the torque produced by each muscle
is the same, because the force and the moment arm of each muscle were
set equal. Thus each muscle could impart the same amount of angular
acceleration to bone 2. If the duration of the acceleration was the same
for each muscle, then the angular velocity of bone 2 would be the same as
would be the needed centripetal and tangential forces on bone 2. But the
component forces along the x-y axes differ for each muscle. Force Fml
intersects the x-axis at a greater angle than does force Fm2; consequently,
the force Fm2 cos 02 is greater than force Fml cos 01 (along the x-axis),
whereas force Fml sin 01 is greater than force Fm2 sin 02 (along the y-axis).
The component force acting along the x-axis would provide the radial
acceleration and the component of force acting along the y-axis would
provide the tangential acceleration needed to keep bone 2 moving in a
circular path about its articulation. There is no question that the "shunt"
muscle, which intersects the x-axis at a small angle, could provide a larger
force for radial acceleration as has been advocated by MacConaill and
Basmajian. I must emphasize that the "shunt" muscle could provide a
greater centripetal force if needed, but neither MacConaill nor Basmajian
nor I have shown yet that this greater amount of centripetal force is
needed. It is tempting to conclude, as MacConaill and Basmajian implied
(see footnote, p. 20), that the "spurt" muscle would provide more force
for tangential acceleration, but it should be obvious that the "spurt" and
the "shunt" muscles in the present case impart the same amount of
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tangential acceleration onto bone 2 because they impart the same
amount of angular acceleration onto this bone. Hence, apparently,
several important points were left unanswered in these earlier studies.
The magnitude of the components of each muscle force in the direc-

tions of the centripetal and tangential forces had not been determined
and compared to the required centripetal and tangential forces. If a muscle,
either the "spurt" or the "shunt" muscle in this example, contracts, it
develops a certain amount of force along a certain vector direction. This
force produces a moment, depending on the length of its moment arm,
and this moment will impart a certain angular acceleration onto the
bone, depending on its moment of inertia. Because of its angle of insertion
with the bone, the muscle force will have a rectilinear component of
force along the longitudinal axis of the bone and a component of force
at right angles to this axis. For each force produced by the muscle, the
magnitudes of the torque and of each component force are fixed because
of the arrangement of the bones and the muscle. The consequences of
each component force are here discussed separately.
The component of the muscular force along the longitudinal axis of

bone 2 provides part of or all the centripetal force required to keep this
bone moving in a circular direction. The amount of centripetal force re-
quired depends on the angular velocity of the bone, hence it will vary as
the bone rotates. Only rarely will the force component of the muscle along
the x-axis be exactly equal to the amount of centripetal force needed to
keep the bone rotating about the articulation. When more force is avail-
able than needed as centripetal force, the excess force pushes bone 2
against bone 1; this appears as the Fh term in the equations. When less
force is produced by the muscle along the x-axis than the needed cen-
tripetal force, the bone tends to move away from the center of rotation.
The additional centripetal force required to keep the bone rotating about
the articulation is provided by the resistance of the collagenous-fibered
articular capsule and the ligaments about the articulation.
No empirical measurements have ever been taken of the "centripetal

force component" of "shunt" and "spurt" muscles compared with the
levels of centripetal force required. Certainly a "shunt" muscle produces
a larger "centripetal force component" than does a "spurt" muscle, but
it is possible that the "centripetal force component" of each muscle is
more than sufficient to keep the bone rotating about the articulation.
If so, then the only difference would be that the "shunt" muscle would
push bone 2 against bone 1 with greater force than would the "spurt"
muscle. Or it is possible that the ligaments of the articulation are more
than strong enough to provide the needed centripetal force by resisting
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the centrifugal pull of bone 2. Hence the "centripetal force component"
of the muscle may not be essential, although it is present. Moreover, in
some muscles, such as the extensor muscle shown in figure 6, the direction
of the force vector is such that none of the centripetal force is provided
by the muscle. Indeed the component of the muscle along the x-axis will
oppose the centripetal force. In this case most of the centripetal force is
provided by the resistance of the collagenous fibers at the articulation.

Consideration of the tangential force differs somewhat from the dis-
cussion of centripetal force, because the amount of angular acceleration
depends directly on the amount of tangential acceleration which in turn
depends on the "tangential force component" of the muscular force and
the moment arm of this force vector. Hence the "spurt" muscle has a
larger force component in the direction ofthe tangential acceleration and
a smaller moment arm, whereas the "shunt" muscle has a smaller force
component and a larger moment arm. The torque produced by each force
component in the direction of the tangential acceleration is the same;
thus the "shunt" muscle and the "spurt" muscle in this example impart
the same angular acceleration to bone 2. These muscles differ, however,
in the amount they pull bone 2 against bone 1 along the direction of the
y-axis. Because the "spurt" muscle has a larger component of force along
the y-axis than does the "shunt" muscle, it will pull bone 2 against bone 1
more forcefully; this will show up as a larger Fv term in the case of the
"spurt" muscle.
With increased angular acceleration on a bone, more moment-produc-

ing force is needed. Both "spurt" and "shunt" muscles contribute force
to the torque needed for angular acceleration (one could also say "force
for tangential acceleration"). It should be emphasized that only the force
and the moment arm are essential to the magnitude of the torque; no
other factors are needed, but these two are essential. A "shunt" muscle
could have a larger torque than a "spurt" muscle of equal force only if its
moment arm is longer. MacConaill's notion that "spurt" muscles (i.e.,
those that impart more angular acceleration to a bone) direct more of
their force across the bone than along it (1949, p. 100) is not meaningful.
A muscle could direct most of its force across a bone but have an ex-
tremely short moment arm and hence develop little torque. Other mus-
cles could pull along a bone but have a large moment arm and thus
produce a large torque. "Spurt" muscles do provide a large component
of force in the direction of the tangential acceleration, but this force by
itself is not sufficient to rotate a bone.

If all moment-producing forces contribute to the torque needed for
angular acceleration, then Basmajian's (1959) electromyographic obser-
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FIG. 9. Schematic drawing and free-body diagram of a two-joint muscle. A. Two-
joint flexor muscle. B. Free-body diagram of bone 3. C. Free-body diagram of bone
2. See text for further explanation.

vations may allow several interpretations. His observations were, briefly,
that during slow flexion of the elbow, the "spurt" muscles were active
while the "shunt" muscles were relatively quiescent, but in quick flexion
the "shunt" muscles were active as were the "spurt" muscles. Basmajian
concluded that the "shunt" muscles were active during fast flexion to
provide the larger centripetal force needed in fast flexion. Although it is
absolutely true that considerably more centripetal force is needed during
rapid flexion, and although the "shunt" muscle would produce a large
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centripetal force, there is no reason on the basis of Basmajian's observa-
tions to conclude that the primary reason for the contraction of the
"shunt" muscle (the brachioradialis) during rapid flexion was to provide
the needed centripetal force. No evidence was presented showing that
the ligaments of the articulation could not provide the necessary centripe-
tal force during rapid flexion, or that the "spurt" muscles were not pro-
viding sufficient centripetal force. Another explanation is available to
explain Basmajian's experimental observations. In slow flexion of the
elbow joint, less torque and hence less muscular force are required. Dur-
ing rapid flexion, more torque and hence more force are needed to pro-
duce the greater angular acceleration on the bone. Hence, I suggest that
the activity of the "shunt" muscles during rapid flexion is primarily to
provide sufficient torque for the greater angular acceleration. No doubt
can exist that increased angular acceleration requires increased muscular
force, whereas increased centripetal force can be provided by the resis-
tance of articular ligaments.

Basmajian (1962, fig. 43) has also published the electromyograms
of the flexor muscles during quick flexion of the elbow joint with and
without a load. The "shunt" muscle is less active than the other flexors
without a load, and all the muscles are almost equally active with a load.
But the activity of the "spurt" muscles also appears to be greater with a
load than without a load. Although no data are available for testing the
several explanations for the observed facts, I believe that the need for
increased moment-producing force is very important. I do not gainsay the
fact that the "shunt" muscles provide a considerable "centripetal force
component" in addition to increased torque, but I do not believe that the
increased "centripetal force component" provided by "shunt" muscles is
the primary reason for their evolutionary development or for their con-
traction during rapid flexion.
A reasonable explanation for the varied arrangement of muscles, such

as the several flexors of the elbow joint, is that selection would favor an
arrangement that has the optimum distribution of forces.1 Certainly an

1 After the manuscript was completed, I received a copy of Friedrich Pauwels' "Gesammelte
Abhandlungen zur funktionellen Anatomie des Bewegungsapparates" (1965), which provides
a possible explanation for the arrangement of muscle sets such as the several flexors of the
elbow joint. With the help of photoelastic techniques, Pauwels showed (pp. 226-231) that the
stress within the long bones of the arm is less when both sets of flexor muscles ("spurt" and
"shunt") contract than when only one set is active. Hence the explanation for the distribution
of elbow flexors may be to reduce the maximum stress within the bones of the forearm-an
explanation that is quite outside the realm of free-body diagrams as used in this study, and
quite outside any notion of reducing the centripetal force on the rotating bone.
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arrangement in which the muscles provide both the needed centripetal
and tangential accelerations is more advantageous than an arrangement
of muscles that provides only one of these accelerations. Probably the
elbow flexors evolved for reasons such as these. However, activity in a
muscle of this group during any flexion is probably governed by the
amount of moment-producing force needed for angular acceleration.
The notion of "spurt" and "shunt" muscles should be dropped in favor

of free-body diagrams, because these terms refer to only one of the several
functions of muscles in the bone-muscle system and because they strongly
tend to deny the existence of the other functions of muscles.

TWO-JOINT MUSCLES

The two-joint muscle can be analyzed exactly as the one-joint muscle
except that a free-body diagram must be drawn for each bone. Because
three bones are involved, a larger number of movements are possible. In
all cases, I consider the bone from which the two-joint muscle takes origin
to be fixed in position, whereas the other bones are movable. The follow-
ing analyses of two-joint muscles are based on the same general assump-
tions used for the one-joint muscle, but the series of examples are simpler.
No reason exists, for example, for repeating the analysis in a gravity-free
condition or for treating linear acceleration. The relationship between
the direction of the force vector of the muscle and the longitudinal axis
of the central bone of the three-bone series is of special interest and is
emphasized.
A simple two-joint flexor muscle, such as the biceps in man, is shown in

figure 9A, with the muscle originating from bone 1 at point M and insert-
ing on bone 3 at point N; the mass of the muscle is ignored. When this
muscle contracts, it exerts an equal and opposite tensile force, Fm and
F'm, on bones 1 and 3; the consequences of this force depend on all the
other forces acting on the bones and the arrangement of the bones. Bones
2 and 3 are free to rotate only. Note that the orientation of the x-axis and
the y-axis differs for bones 2 and 3; in each case one of the axes lies along
the longitudinal axis of the bone.

In the first case, bone 3 is assumed to be initially under static conditions
relative to bone 2, with moment-producing forces Fm, Fg, and F1 acting
on it as shown in figure 9; the free-body diagram for bone 3 is shown in
figure 9B. Thus, the equations for the sum of the moments and for the
vector forces for bone 3 are:

EMo = -Fm(oa) + Fg(ob) + Fi(oc) = 0; and (43)
.Fx = -Fm cosO1 + Fg cos 2- F1COSO3 + Fh = 0; and (44)
Y.FY = Fmsin0l - FgsinfO2- F1 sinG3- F, = 0. (45)
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The magnitudes and directions of the forces Fh and Fv depend, of course,
on the algebraic sum of the other forces acting along the x-axis and the
y-axis. If these forces are as shown in figure 9B, then Fa is the resultant
force and is the force exerted by bone 2 on bone 3 at their articulation.
(Force Fa can also be found by direct vector summation of the forces
acting on bone 3.) It should be noted that, except for very special cases,
a force Fa will exist at the articulation of bone 3 under the action of a
two-joint muscle.

If a force Fa acts on bone 3 at its articulation with bone 2, then the
equal and opposite reaction force, F'a, will act on bone 2 at its articula-
tion; force F'a is the force exerted by bone 3 on bone 2 under the action
of the two-joint muscle. The consequences of this force on bone 2 must be
analyzed relative to the center of rotation, q, of bone 2, which is situated
at the articulation of bone 2 with bone 1. Bone 2 is free to rotate only;
the free-body diagram for bone 2 is shown in figure 9C. Thus, the equa-
tions for the sum of the moments and for the vector forces for bone 2 are:

lMq = F'a(qd) + Fw(qe) - Iqal = 0; and (46)
EFX = -F'acos04 -Fwcos95 + Ft1 + Fk = O;and (47)
:FY = F'asinf04 - FwsinO5- F,1 -Fu = 0. (48)

in which Fw is the force of gravity on bone 2, Fk and Fu are the com-
ponents of the force, Fj, acting on bone 2 at the articulation, and F,1 is
the centripetal, and Ft1 is the tangential inertia force of bone 2 when it
is undergoing radial acceleration (a1). Thus bone 2 is undergoing clock-
wise angular acceleration. Another force, muscular or other, would have
to act on bone 2 in a counterclockwise direction to maintain this bone in
a static state.1 This force could be a one-joint flexor muscle running from
bone 1 to bone 2 (not shown in fig. 9 to preserve clarity). In this case the
equations for static equilibrium would have to be written for bone 2. With
the contribution of this one-joint muscle, bones 1 and 2 would be equiva-
lent to a single rigid body, and the two-joint muscle would act as a one-
joint muscle.
The result of all torque-producing forces acting on bone 3, which is

initially in a static condition relative to bone 2, is a force, F'a, acting on
bone 2 at point o, except for the rare case in which the vector sum of these

1 In the rare case in which F'a(qd) is equal and opposite to Fw(qe), bone 2 does not rotate
about bone 1; no Iq(a term exists in equation 46, no Ft1 term in equation 47, and no F,1 term
exists in equation 48. This is one case in which the action of a two-joint muscle by itself would
result in static equilibrium of both bones 2 and 3. The other possible case may be one in which
the forces on bone 3 balance each other so that no Fa force exists at the articulation, and in
which the vector of the F'a force on bone 2 passes through the center of rotation (point q) of
this bone.
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torque-producing forces is equal to zero. Force F'a produces a torque on
bone 2 which rotates about point q. When bone 2 begins to rotate about
point q, the relationships of forces Fm, Fg, and F1 to bone 3 are altered
so that the sum of their torques relative to point o will, except by rare
chance, no longer be equal to zero. Hence bone 3 will start to rotate about
its center of rotation. Thus, except for a few rare arrangements of forces,
the contraction of a single two-joint muscle cannot by itself maintain the
bone-lever system in a condition of static equilibrium-a two-joint
muscle-bone system is an inherently non-static system. Even the few rare
cases mentioned are ones of unstable equilibrium. At least, one additional
torque-producing force must act on bone 2 to guarantee static equilib-
rium. A one-joint muscle between bones 1 and 2 would be most advan-
tageous, because it could develop a varying amount of force to balance
the other torque-producing forces acting on bone 2. Only when the cen-
tral bone (2) is maintained in static equilibrium can the distal bone (3)
retain its initial static equilibrium with the contraction of a two-joint
muscle.

If, under the action of the two-joint muscle, bone 3 is undergoing angu-
lar acceleration, then the equations for the sums of the moments and for
the vector forces are:

:Mo = -Fm(oa) + Fg(ob) + Fl(oc) + I0a = 0; and (49)
EFX = -Fm cosO1 + Fgcos2 F-F1cos 03 + Fc + Fh 0; and (50)
ER = Fmsinfl9 - Fgsinf02 -F1sin03 - Ft- F = 0, (51)

in which Fc is the centripetal inertia force and Ft is the tangential inertia
force of bone 3. Again, the magnitudes and directions of forces Fh and Fv
depend on the algebraic sum of all other force components along the
x-axis and the y-axis. If these forces are as shown in figure 9, then Fa is
the resultant force and is the force exerted by bone 2 on bone 3; the equal
and opposite reaction force, F'a, acts on bone 2 and can be analyzed as
discussed above. Again, as shown above, bone 2 will usually rotate rela-
tive to bone 1 unless an additional torque-producing force, e.g., the con-
traction of a one-joint muscle, is present.

It is apparent from these analyses that, except in rare cases, the center
of rotation of bone 3 in a two-joint muscle-bone system is never stationary
but moves as bone 2 rotates. Thus the relationships of the forces to bone
3 are constantly changing and could not be analyzed easily with the
above equations. These forces might be analyzed with an approach using
instant centers but even this would be difficult. It must be stressed that
the analysis of the movement of the central bone depends on one's know-
ing force Fa, which can be 'determined only after analyzing all the forces
on the distal bone, which depends on the position and hence the move-
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ment of the central bone. At this point, theoretical treatment becomes
most difficult indeed, and the best approach is a series of empirical obser-
vations.
One of the pertinent problems associated with two-joint muscles is the

relationship between (a) the direction of force vector Fm of the muscle
and the longitudinal axis of the central bone, i.e., where these two lines
intersect, and (b) the direction of the resultant force by the distal bone
upon the central bone-the vector direction of the F'a force. It is very
tempting to conclude that, if Fm is parallel to the axis 0-01 (fig. 10A),
the central bone undergoes pure compression and does not rotate; if Fm
intersects axis 0-01 below point o (fig. 10B), the central bone rotates
counterclockwise; and, if Fm intersects axis 0-01 above point ol (fig. 10C),
bone 2 rotates clockwise. This conclusion follows from the notion that a
muscle contraction places a force couple on the bone (e.g., Gray, 1944,
1956) and has been applied in a general way to two-joint muscles by
Fischer (1906, p. 51), R. Fick (1910, pp. 33-337), and Manter (1938, pp.
535-536), and, in a special case, by Zusi (1959).1 However, force couples
never occur except by rare chance, as is discussed above for the one-joint
muscle (see p. 16, and below, p. 33). Either the pull of gravity or some
other force acts on distal bone 3 in addition to the pull of the muscle, or
bone 3 will undergo angular acceleration, in which case a centripetal and
a tangential inertia force will exist. Thus, no direct relationship exists
between the direction of the vector of the muscular force Fm and the
movement of the central bone. An exact relationship does not even exist
between the direction of force vector F'a (the force exerted by bone 3 on
bone 2 at their articulation) and the movement of bone 2 because of the
effect of gravity on the central bone. However, the following relationships
generally hold for the muscle-bone system shown in figure 10. If F'a lies
along the y-axis, then bone 2 suffers compression or tension, but it does
not rotate. If F'a lies in one of the two negative x-quadrants (to the left),
then bone 2 will rotate clockwise, and, if F'a lies in one of the two positive
x-quadrants, then bone 2 will rotate counterclockwise. But the direction
of force vector F'a may be obtained only after all the necessary terms in
the equations are solved for the Fh and F, forces. The resultant force, F'a)
will vary for the same muscle force Fm, depending on the magnitude and

1 Unfortunately my earlier correction (Bock, 1964, pp. 16-17) of Zusi's discussion is in error.

Both Zusi and I had failed to include all the forces acting on the mandible and quadrate in
our analysis. The source of these errors should be apparent from the general conclusions of the
present paper. The mechanics of the morphological system described by Zusi can be analyzed
with the help of free-body diagrams.
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direction of the other forces acting on bone 3, on whether bone 3 is under
static conditions or being accelerated, and on the mass and the moment
of inertia of bone 3. Thus it is not possible to determine, by inspection
alone of the morphological diagram of the forces resulting from the con-
traction of a two-joint muscle, what consequence it will have on the
central bone of the system. The free-body diagrams for both the distal

I A B C

FIM~ ~~1 I

F1~~~~~~~~~~~~~~~
FM FFMa Fl~~~~aF

FIG. 10. Schematic drawings of a two-joint muscle to show the (presumed) rela-
tionship between the vector of the muscle forces, the longitudinal axis of bone 2, and
the rotation of bone 2. A. The vector of the muscle force and axis 0-01 are parallel.
B. These lines intersect below point o. C. These lines intersect above point 01. The
thin curved arrow shows the movement of bone 2. The analysis illustrated in this
figure is incomplete and incorrect and should not be followed. See text for further
explanation.

and central bones must be completed before the movement of the central
bone is known. This limitation is not a weakness of the method of free-
body diagrams but a consequence of the fact that certain calculations
must be made before the diagrams can be completed. This limitation
does mean that in any study of two-joint muscles a complete analysis
cannot be based only on study of the morphological form of the bone-
muscle system. No matter how carefully the muscles and bones are dis-
sected and described, the effect of the muscle on the central bone of the
system (and hence on the distal bone) cannot be determined by a simple
examination of the morphology of the bone-muscle relationships.

GENERAL THREE-DIMENSIONAL MODEL

In the above analysis of one-joint and two-joint muscles, I have as-
sumed that the pull of the muscle lies in the plane containing the moving
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bone and the stationary bone. In most cases, this assumption is either
realized, or the deviation of the muscle pull from this plane is so small
that it can be ignored. However, in some cases, as in certain avian and
mammalian jaw muscles, the pull of the muscle is well off the plane con-
taining the bones. An abbreviated model is presented to illustrate the
general method for treating muscles in which the tensile force is not in

A

FIG. 11. A. Free-body diagram of a one-joint muscle, the pull of which is not
coplanar with the plane of rotation of the bone. B. The decomposition of the muscle
force Fm. See text for further explanation.

the plane containing the bones. I analyze only a one-joint muscle under
static conditions.

Consider a one-joint muscle inserting at point a (fig. l1A; only one
bone is shown for clarity). The muscle inserts at an acute angle to each
of the three rectilinear axes, x, y, and z, which are oriented with the x-
axis along the longitudinal axis of the bone, the y-axis in the plane of
rotation of the bone, and the z-axis coinciding with the axis of rotation of
the bone. Torques relative to the point center, o, may exist in all three
planes; however, the bone can rotate only in the x-y plane about the
z-axis. The insertion of the muscle, point a, does not lie on any of the
three axes. Point b lies in the x-y plane and is the same distance from the
x-z and the y-z planes as is point a. Point c lies on the x-axis in the x-y
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plane and is the same distance from the y-z plane as is point a. Force
vector Fm of the muscle is superimposed on the vector Fm sin 01 in
figure llA.
The force Fm must first be decomposed into its three component forces

along the x, y, and z axes. A plane, perpendicular to the x-z plane, is
passed through the vector Fm (fig. 1iB). Vector Fm can be decomposed
into two components, one parallel to the y-axis, Fm sin 01, and one lying
in the x-z plane, Fm cos 01. The vector Fm cos 01 can be decomposed
further into two components, one parallel to the x-axis, (Fm cos 01) cos 02,
and one parallel to the z-axis, (Fm cos 01) sin 02. Each of these com-
ponents is a moment-producing force on the bone; they act in pairs in
each plane. They can be treated in the normal way with the use of free-
body diagrams with three torque and three linear force equations.
The equations for the sum of the moments are (for static conditions):

lMx_y = -FmFsin 01(oc) - (Fm cos 01) cos 02(cb) + Fg(og) = 0; and (52)
E Mx_z = (Fm cos 01) sin 02(OC) + (Fm cos O1) cos 02(ab) - Fr(od) = 0; and (53)
EMY_z = (Fm cos 01) sin 02(bc) - Fm sin 01(ab) + Ft(oe) = 0. (54)

Force Fg is the force of gravity at the center of gravity g. The forces Fr and
Ft are the resistances of bone, ligaments, and other tissues of the articula-
tion against torques in the x-z and the y-z planes; these forces are con-
centrated at points d and e.
The equations for the sums of the vector forces are (for static condi-

tions):

YFx = -(Fm COS 01) COS 02 - Fr + Fh = 0; and (55)
7Fy = Fm sin9i - Fg - Fv = 0; and (56)
7.FZ = (Fm cos 01) sin 02 - Ft + Fu = 0. (57)

These equations can be expanded if additional forces act on the bone,
or if the bone rotates, or if the bone moves in some linear direction. The
expansion of the equation would follow the same form as shown above
except that the forces and movements must be considered in three dimen-
sions instead of two, which may make the equations messier in appear-
ance, but no more complicated.

Two-joint muscles can be analyzed in the same way, with the only
possible problem being increased messiness of the diagrams and of the
equations.

DISCUSSION

The analyses of the biomechanical properties of one-joint and two-
joint muscles provide the basis for a general consideration of three prob-
lems. These are: (a) whether the tensile force of a muscle produces a

32 NO. 2319



BOCK: MECHANICS OF MUSCLES

simple force couple on the bone to which it inserts; (b) the advantages
and disadvantages of two-joint muscles; and (c) the usefulness of free-
body diagrams for our understanding of the consequences of a muscle
acting in a bone-muscle system. These problems are not independent,
because most workers who have discussed two-joint muscles have based

Fm=Fa=FFaI=FlaI= Fm

A B

Fm = Fa = Fla = F1m

FmSinOa

F.sin

FIG. 12. Schematic drawing to show how the concept of force couples may have
developed. A. One-joint flexor muscle. B. Two-joint flexor muscle. In the one-joint
muscle, forces Fm and Fa constitute a force couple on bone 2, whereas forces F'm
and F'a constitute a force couple on bone 1. In the two-joint muscle, forces Fm and
Fa constitute a force couple on bone 3, and so forth. The analysis illustrated in this
figure is incomplete and incorrect and should not be followed. See text for further
explanation.

part of their analysis on the notion that a muscle produces a force couple
on the bone to which it attaches, and because many parts ofthe discussion
depend on the general applicability of free-body diagrams.
MUSCLE ACTION AS A FORCE COUPLE: One of the oldest prevailing ideas

in studies on bone-muscle biomechanics is the notion that the tensile
force produced by a muscle results in a simple force couple on each ofthe
bones to which the muscle attaches (fig. 12; and see the footnote on page
13). This notion may be traced back as far as A. E. Fick (1856, cited by
R. Fick, 1910, p. 328) and doubtless has even older roots. It was firmly
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established by 1900 and has been used extensively since then (Bois-
Raymond, 1903, pp. 212, 236; Fischer, 1906, pp. 48-52 and elsewhere;
R. Fick, 1910, pp. 328-337; Manter, 1938, pp. 534-538; Elftman, 1939a,
pp. 341-343; Barclay, 1946, pp. 190-192; and Gray, 1944, p. 99, 1956,
p. 203, and 1962, p. 1). Some of these authors used the term "turning
couple" without a clear definiton of the term and how it differs from a
force couple. However, in all cases, the discussion and figures leave no
doubt that these authors used the term "turning couple" as a synonym
for "force couple," as used in this paper. This idea has doubtlessly de-
veloped from an analysis of only the force exerted by the muscle on the
bones of the bone-muscle system. Indeed, if the forces of the muscle and
at the articulation shown in figure 12A were decomposed into rectilinear
components and added algebraically, their sum would be equal to zero,
hence the forces would be balanced (or so the argument would run). In
most of these papers (e.g., Manter, 1938, p. 536), the concept that a mus-
cle produces a force couple on each bone to which it attaches is applied
in a similar fashion to two-joint muscles (fig. 12B).

Unfortunately, none of the papers examined included a clear statement
of how the directions and magnitudes of the resultant force vector at the
articulation were determined. Either an earlier work was cited, or the
author based his conclusion on an analysis of only the muscle force, as
indicated above. (The muscle force was first decomposed into rectilinear
components, to which were added opposing force components at the
articulation until the vector sums of these forces were equal to zero. The
resulting force at the articulation is, then, parallel to, opposite in direc-
tion to, and equal in magnitude to, the muscle force-hence the muscle
force and articular force constitute a force couple.) Moreover, these
papers generally omitted mention of the center of rotation of the bone-
whether at the articulation, at the center of gravity, or at some other
point. In most cases, the center of rotation would be at the articulation;
thus the articular force would pass through the center of rotation and
would not produce a moment on the bone. A pair of equal, parallel, but
opposite-in-direction forces, of which one passes through the center of
rotation, is a trivial type of force couple and one that may best be ex-
cluded from treatment of couples in biomechanical studies. However, it
should be stressed that, if such a pair of forces having these properties
existed, they could be called a couple and analyzed as such.
The difficulties in these earlier treatments lay, I believe, first, in the

attempt to analyze the force produced by a muscle in its bone-lever sys-
tem independently of all other forces in the system, and, second, in the
failure of the authors to realize that, whenever a free-body is acted on
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by a moment-producing force, a minimum of two forces must act on the
free-body aside from any resultant force at the center of rotation.1 The
second force is either a moment-producing force that opposes the moment
of the muscle force to maintain the body in static equilibrium, or an
inertia torque or inertia force (this could be considered as a fictitious
torque or a set of fictitious centrifugal and tangential forces) associated
with the angular acceleration of the free-body. No other conditions exist.
The size and direction of the resultant force at the articulation (center of
rotation) will depend on all the other forces on the body, not only on the
muscle force. It should be obvious that the vector addition of the second
force or inertia force (most easily done by the algebraic addition of the
rectilinear components) to the force of the muscle will result in a force at
the articulation that is not equal to, parallel to, and opposite in sense to
the vector of the muscle force. It is possible by rare chance that the forces
on a bone will be so arranged that the muscular force and the articular
force will constitute a force couple. But such is only a rare chance phe-
nomenon that does not violate the general conclusion that the contraction
of a muscle does not produce a force couple on each bone onto which the
muscle attaches.

This conclusion is in direct variance with the conclusion used for more
than a century in biomechanical studies of bone-muscle systems, and for
that reason it must be checked carefully and thoroughly. The importance
of checking this conclusion lies in the fact that much of the previous
literature on bone-muscle biomechanics is based on the notion that mus-
cle contraction places force couples on the bones onto which it attaches;
hence the general results of these earlier works must be re-evaluated care-
fully for their validity to be ascertained. The effect of reversing this basic
tenet will probably be less serious than it appears at first glance, because
the statement that muscle action produces force couples appears to be
cited more frequently than actually used. For example, although Gray
(1944, 1956) made the very strong statement that muscle action produces
force couples, he overlooked this statement in his correct analysis of the
resultant force at the articulation produced by two moment-producing
forces which hold a bone in static equilibrium (Gray, 1944, fig. 30a).
Manter (1938), in his excellent study, apparently made little or no use of
his statement that a muscle produces a force couple on each bone to
which it attaches. Perhaps the most serious effect of the earlier conclusion

'The last statement may or may not be true for all free bodies; however, it is true for rigid
flat bodies that rotate about a fixed axis which constitute all the structures (i.e., bones) that are

considered in this study.
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that muscle action produces force couples has been in the analysis of two-
joint muscles; this is discussed below.

Two-JOINT MUSCLES: Interest in two-joint muscles dates back to a very
early period in functional morphological studies. Much of the literature
covered the advantages and, to a lesser extent, the disadvantages of two-
joint muscles as compared to one-joint muscles. Much of this earlier dis-
cussion is subject to question, because it was based on the notion that
muscle action produces force couples. In the case of a two-joint muscle,
each of three bones in series was thought to be acted on by a force couple
(Manter, 1938, p. 536; and see fig. 12B). Rejection of this conclusion and
the application of free-body diagrams to two-joint muscles permit the
clarification of the following points.

1. Not all the consequences of a two-joint muscle can be determined
from the examination of the relative positions of the three bones and the
direction of the force vector. No direct relationship exists between the
inclination of the force vector of the muscle to the longitudinal axis of
the central bone and the rotation of this bone (see above, p. 29). Separate
free-body diagrams must be constructed for the distal and central bones
of the system. (I have assumed that in all cases the bone from which the
two-joint muscle originates is the "stationary" bone; no example is known
to me in which the central bone is stationary and both end bones are
movable. If such cases exist, they are probably rare.) The resultant artic-
ular force between the central bone and the distal bone onto which the
muscle inserts must be calculated from all the forces, real and fictitious,
acting on the distal bone. All these forces can be calculated and placed
on the free-body diagram for the distal bone, but they cannot be ascer-
tained from the morphological relationships of the muscle and bones.
Once the force at the articulation between the central and distal bones
is known, then the free-body diagram for the central bone can be con-
structed. It should be apparent that for the same two-joint muscle-bone
system, the force on the central bone can be quite different, depending
on the pattern of forces on the distal bone, even if the muscle force re-
mains constant.
Thus all the functional properties of a two-joint muscle-bone system

cannot be determined from only morphological observations; the masses
and the moments of inertia of the bones as well as all forces acting on
these bones must be known.

2. In general, a pair of one-joint muscles can duplicate the moments
produced by a two-joint muscle. However, a pair of one-joint muscles
cannot duplicate exactly all the functional properties of a single two-joint
muscle; the resultant forces at the articulations would differ, and the
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force available for possible linear acceleration of one bone past another
would also differ in most cases. The converse to the statement that the
torques produced by a two-joint muscle can be duplicated by two one-
joint muscles is not true. A single two-joint muscle generally cannot re-
produce the moments of a pair of one-joint muscles. Construction of free-
body diagrams for a number of examples will readily demonstrate this
conclusion.

Elftman (1940, pp. 680-682), in his analysis of the work done by sets
of one-joint and of two-joint muscles in human locomotion, assumed that
a single two-joint muscle can reproduce the torques of two one-joint
muscles. He based his discussion on a system for illustrating torques by
arcs of circles the centers of which were at the center of rotation and the
radii of which were proportional to the torques. Any muscle force of the
same magnitude that is tangential to this arc will produce the same
torque. However, Elftman went far beyond this scheme by stating that
the force vectors can be applied to the arcs, using them as pulleys, which
is not possible because the arcs do not represent morphological structures.
Moreover, if the two-joint muscle is tangential to these arcs, then it must
develop the tension of one of the one-joint muscles at one end and the
tension of the other one-joint muscle at the other end, as was strongly
implied by Elftman (1940, p. 681), which, again, is not possible, because
the tension of the muscle is the same throughout the length of the two-
joint muscle. Moreover, the method of indicating relative magnitudes of
torques by arcs is not very useful, because the same torque can be
achieved by varying both the moment arm and the force. The use of a
system that holds one or both of these factors constant is of limited value.
No doubt exists about the validity of Elftman's general conclusion

(1940) that two-joint muscles allow a saving of energy compared to one-
joint muscles. However, I cannot agree with his theoretical analysis or
with his conclusion on how much energy two-joint muscles save. Elftman
stated (1940, p. 681) that the rate at which a two-joint muscle works
(the horsepower of the muscle) is the algebraic sum of the rates (one of
which may be negative) of the one-joint muscles it replaces; the saving
would be the duplication avoided by the two-joint muscle. This amount
is probably the maximum possible saving, and most likely the saving of
energy of a two-joint muscle would be less, and probably considerably
less, than this amount.

3. The torque produced by a two-joint muscle on each bone onto
which it attaches is not determined simply by the length of the moment
arm from the center of rotation of each bone as has often been assumed
(e.g., Elftman, 1941, p. 197; his lever arm is the same as the moment
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arm). Calculation of the torque of the two-joint muscle on this basis is
correct only when the central bone of the three bone series is stationary
and the two outer bones are moving. In most cases, the bone from which
the two-joint muscle originates is the stationary bone in the system.
The torque of a two-joint muscle on the distal bone of the series (the

bone on which it inserts) depends on the force of the muscle and the mo-
ment arm of this vector from the center of rotation of the distal bone.
However, the torque on the central bone depends on the resultant force
of the distal bone on the central bone and the moment arm of this force
from the center of rotation of the second bone. Thus, as shown above,
the torque on the central bone cannot be ascertained until the magnitude
and direction of the articular force between the distal and proximal
bones are known.

4. Two-joint muscles exert the same tension at both points of attach-
ment, as has been stressed by Basmajian (1957, and 1962, p. 68), Manter
(1938), and others (a two-joint muscle does not produce equal but oppo-
sitely directed torques on the two bones onto which it attaches, as implied
by Elftman, 1941, p. 196, although a one-joint muscle does place equal
torques on the two bones). The two-joint muscle cannot exert an effect
on one attachment without affecting the other, nor could the muscle
produce tension and shorten at one end and receive tension and lengthen
at the other end, unless it was constructed and attached in a most peculiar
way. No two-joint muscle has been described, to my knowledge, with the
necessary properties needed for these actions.

Little doubt exists that two-joint muscles possess certain advantages
over one-joint muscles, as may be concluded from their common occur-
rence in all groups of vertebrates. Some of these advantages may stem
from the following properties of two-joint muscles.

1. Two-joint muscles exert an effect (produce torques and rectilinear
forces) on two moving bones, but one-joint muscles can affect only one
moving bone for the same (approximately) amount of energy expended
during contraction. Many two-joint muscles are so arranged in the body
that their effect on both moving bones is a desirable one for the required
movement of the bones. Thus, with two-joint muscles, fewer muscles
would be required and less energy would be expended (as stressed by
Elftman, 1941, and others) to accomplish the same results.

2. Two-joint muscles, because of their arrangement in the bone-lever
system, generally have longer moment arms than do one-joint muscles
and therefore need develop less force to produce the same torque. Or,
the two-joint muscle could develop a larger torque and therefore impart
a greater acceleration on the bone.
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3. The greater length of two-joint muscles as compared with that of
one-joint muscles may be an advantage in isotonic contractions. Longer
muscles shorten with greater speed than do shorter muscles of the same
physiological cross section (i.e., muscles that develop the same maximum
isotonic tension). Moreover, longer muscles can shorten with less loss of
tension and can accelerate bones with less expenditure of energy (see
Fenn, 1938, pp. 167-169; and Elftman, 1941, pp. 204-208).

4. The two-joint muscle can transmit tension between the end bones
of the three bone series more efficiently (less expenditure of energy) than
can the corresponding sets of one-joint muscles, as noted by Elftman
(1940, p. 681, and 1941, pp. 204-208). In many places in the body, a
ligament cannot connect two bones because of the required movement
of the bones. A muscle must be present in such sites to transmit tension.
In each such case, the muscle must contract and develop a tension equal
to the amount being transmitted. When a single two-joint muscle exists,
only one muscle contracts, but, when two one-joint muscles exist, both
muscles must contract; hence they use more energy. The efficiency of the
two-joint muscle is far greater than the set of one-joint muscles; however,
the saving is probably less than half the energy, as might be concluded.

Two-joint muscles do have some disadvantages when compared with
one-joint muscles. The major disadvantage of two-joint muscles is that
they lack independent control over the distribution of forces about each
articulation and over the movement of each bone. Whenever the muscle
contracts and develops a certain tension, the movements of the bones
and the forces will depend on the whole system and upon all forces acting
on it. The effect of the muscle on the individual bones cannot be varied
independently. Moreover, the two-joint muscle-bone system is inherently
non-static, so that a two-joint muscle by itself could not serve as a holding
muscle for static conditions.

Little can be said at this time about the general advantages and disad-
vantages of two-joint muscles. Detailed theoretical analyses and empirical
observations of the functional properties of many different two-joint
muscles are needed before general conclusions are possible. On the basis
of the above analysis, it seems reasonable to conclude that two-joint mus-
cles may possess an over-all advantage over one-joint muscles except in
their lack of ability for independent control at each joint and their un-
stableness as holding muscles. Hence, it may be suggested that, in a large
functional system, such as a limb or the vertebral column or the jaw ap-
paratus, many of the muscles are two-joint muscles, with only enough
one-joint muscles about each articulation to provide the necessary inde-
pendent control of action about each joint and the necessary stability.
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FREE-BODY DIAGRAMS: The functional properties of the tensions de-
veloped by the contraction of a muscle in its normal position in a bone-
muscle system can be analyzed by the application of free-body diagrams.
These diagrams have their greatest advantage in their simplicity and in
their widespread applicability to almost all, if not all, bone-muscle sys-
tems. The only equations needed in free-body diagrams (the sums of the
moments and ofthe vector forces) are simple additive algebraic equations.
If all the terms, save one, in each equation are known, then the equations
can be solved. Herein lies a major shortcoming of the method in that all
but one of the terms must be known. In the analysis of actual cases, it
may be difficult or impossible to ascertain all the needed information
with the available observational and experimental techniques.

Additional forces acting on the system can be treated readily with the
inclusion of an additional term to each equation for each new force. The
inclusion of new forces does not increase the complexity of the equation.
The only result of a large number of forces in any analysis is that the
equations become long and may be rather messy in appearance.
One essential factor in the use of free-body diagrams is the construction

of accurate diagrams showing the disposition of all the forces acting on
the system. Because of the theoretical approach used in this study, no
care was taken to draw the length of the force vectors proportional to the
magnitude of the forces. In studies of actual cases, it is recommended that
the force vectors be drawn proportional to the size of the force whenever
possible. If such is not done, the fact should be stated clearly. A separate
diagram should be drawn for each free-body, as was done in figures 2 and
9, after the free-bodies are clearly identified.

Free-body diagrams may be used for both static conditions and dy-
namic ones in which the bones are being accelerated or decelerated.
Static conditions are the easiest to treat. Dynamic conditions are most
easily handled when the system is considered as a series of instantaneous
conditions. Dynamic conditions may also be analyzed by writing
the equations for the changing parameters (such as length of moment
arms, size of forces, and so on) and integrating over the required range.
The equations that describe the forces acting on a bone in free-body

diagrams present a major stumbling block in dynamic cases, because
most of the terms are non-linear. As the bone rotates, the muscle changes
in length; hence its force changes according to the tension-length relation-
ships, a curve that cannot be described simply. Moreover, the length of
the moment arm of each force changes as well as the angle of intersect
between the force vector and the established x and y axes. Writing the
equations may be simple enough, but integrating them over the angular
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displacement of the bone becomes very difficult. Several simplifying as-
sumptions may have to be used if the equations are integrated. The gain
in accuracy obtained in exact solutions may be slight over that obtained
by dividing the angle of rotation into a small number of segments and
treating each segment as an elongated "instantaneous" acceleration so
that the dynamic conditions can be considered as a series of "static"
conditions. The solution will not be exact, but it may be close to degree
of experimental error involved when the forces, moment arms, angles,
and other figures that must be substituted into the equations are being
obtained.

Because of these reasons, I believe, and agree with Dempster (1961),
that the method of free-body diagrams is a most powerful and useful
method of analyzing the functional properties of the force developed by
a muscle in its bone-lever system and that this approach has a very wide-
spread applicability in vertebrate (and some invertebrate) functional
morphology. Free-body diagrams are, however, not the only method or
the most useful one for all applications. Nevertheless, it is clear that a
general adoption of free-body diagrams would lead to a far better under-
standing of the biomechanical properties of muscles in their normal bone-
lever systems, and of the adaptive significances of the evolutionary
changes of both components of vertebrate bone-muscle systems.

SUMMARY

The mechanics of one-joint and two-joint muscles are described by
means of free-body diagrams. Both static and dynamic (rotational and
linear motions) conditions are analyzed. Free-body diagrams treat all the
forces acting on bodies and allow analysis of the consequences of these
forces; the associated equations are simple summations. D'Alembert's
principle is employed (inclusion ofa fictitious force or torque) in examples
of linear or angular acceleration so that the forces and torques are re-
duced to an equilibrium and can be treated by the method of statics.
Centripetal and tangential forces are included whenever a bone is rotat-
ing. Equations are written for each example of one-joint and two-joint
muscles. A general three-dimensional model is presented.
The use of the notion of first-, second-, and third-class levers is dis-

couraged, because such a classification of lever systems is more mislead-
ing than useful.
The mechanics of "spurt" and "shunt" muscles are analyzed, with

special emphasis on the amount of torque produced and the contribution
to the needed centripetal and tangential forces. "Shunt" muscles could
produce as much torque as could "spurt" muscles; the needed centripetal

1968 41



AMERICAN MUSEUM NOVITATES

force may be less than that supplied by the muscles or could be provided
by ligaments at the articulation. It is argued that this division of muscles
is misleading and even erroneous, and that these terms should be avoided.
The contraction of a muscle does not produce a force couple on each

bone onto which the muscle attaches, as has been advocated in the earlier
literature. The force at the articulation depends on all other forces, real
and fictitious, acting on the bone and, except by rare chance, is not equal
in magnitude, parallel, and opposite in direction to the muscle force.

Two-joint muscle-bone systems are non-static (and non-stable if
static) and are indeterminate (the consequences of the muscle force can-
not be ascertained merely from a knowledge of the morphology). No sim-
ple correlation exists between the relationship of the force vector of the
muscle to the longitudinal axis of the central bone and the direction of
rotation of the central bone. Some of the advantages and disadvantages
of two-joint muscles as compared with one-joint muscles are discussed.
A completely satisfactory analysis of these advantages and disadvantages
must wait until empirical studies of many two-joint muscle-bone systems
have been made.
The advantages and disadvantages of free-body diagrams in bio-

mechanical studies are outlined, with the recommendation that all analy-
ses of bone-muscle systems should use free-body diagrams or methods
that are clearly derived from free-body diagrams. The strength of such a
method is that all the forces acting on each free-body (bone) are included
and the consequences of their combined actions can be readily ascer-
tained.
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