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ABSTRACT

This paper* presents a series of detailed paleo-
geographical analyses of the Caribbean region,
beginning with the opening of the Caribbean ba-
sin in the Middle Jurassic and running to the end
of the Middle Miocene. Three intervals within the
Cenozoic are given special treatment: Eocene—Ol-
igocene transition (35-33 Ma), Late Oligocene
(2725 Ma), and early Middle Miocene (16-14
Ma). While land mammals and other terrestrial
vertebrates may have occupied landmasses in the
Caribbean basin at any time, according to the in-
terpretation presented here the existing Greater
Antillean islands, as islands, are no older than
Middle Eocene. Earlier islands must have existed,
but it is not likely that they remained as such (i.e.,
as subaerial entities) due to repeated transgres-
sions, subsidence, and (not incidentally) the K/T
bolide impact and associated mega-tsunamis. Ac-
cordingly, we infer that the on-island lineages
forming the existing (i.e., Quaternary) Antillean
fauna must all be younger than Middle Eocene.
The fossil record, athough still very poor, is con-
sistent with the observation that most land mam-
mal lineages entered the Greater Antilles around
the Eocene—Oligocene transition.

Western Laurasia (North America) and western
Gondwana (South America) were physically con-
nected as continental areas until the mid-Jurassic,
ca. 170 Ma. Terrestrial connections between these
continental areas since then can only have oc-
curred via landbridges. In the Cretaceous, three
major uplift events, recorded as regional uncon-
formities, may have produced intercontinental
landbridges involving the Cretaceous Antillean is-
land arc. The Late Campanian/Early Maastrich-
tian uplift event is the one most likely to have
resulted in a landbridge, as it would have been
coeval with uplift of the dying Cretaceous arc.
However, evidence is too limited for any certainty
on this point. The existing landbridge (Panaman-
ian isthmus) was completed in the Pliocene; evi-
dence for a precursor bridge late in the Middle
Miocene is ambiguous.

We marshal extensive geological evidence to
show that, during the Eocene-Oligocene transi-
tion, the developing northern Greater Antilles and
northwestern South America were briefly con-

* Contribution 2 to the series ““Origin of the Greater
Antillean Land Mammal Fauna.”

nected by a ‘‘landspan’ (i.e., a subaerial connec-
tion between a continent and one or more off-
shelf islands) centered on the emergent Aves
Ridge. This structure (Greater Antilles + Aves
Ridge) is dubbed GAARIlandia. The massive up-
lift event that apparently permitted these connec-
tions was spent by 32 Ma; a general subsidence
followed, ending the GAARIlandia landspan
phase. Thereafter, Caribbean neotectonism result-
ed in the subdivision of existing land areas.

The GAARIlandia hypothesis has great signifi-
cance for understanding the history of the Antil-
lean biota. Typically, the historical biogeography
of the Greater Antilles is discussed in terms of
whether the fauna was largely shaped by strict
dispersal or strict continent—island vicariance. The
GAARIlandia hypothesis involves elements of
both. Continent—island vicariance sensu Rosen ap-
pears to be excludable for any time period since
the mid-Jurassic. Even if vicariance occurred at
that time, its relevance for understanding the ori-
gin of the modern Antillean biota is minimal.
Hedges and co-workers have strongly espoused
over-water dispersal as the major and perhaps
only method of vertebrate faunal formation in the
Caribbean region. However, surface-current dis-
persal of propagules is inadequate as an expla-
nation of observed distribution patterns of terres-
trial faunas in the Greater Antilles. Even though
there is a general tendency for Caribbean surface
currents to flow northward with respect to the
South American coastline, experimental evidence
indicates that the final depositional sites of pas-
sively floating objects is highly unpredictable.
Crucidly, prior to the Pliocene, regional pae-
oceanography was such that current-flow patterns
from major rivers would have delivered South
American waifs to the Central American coast,
not to the Greater or Lesser Antilles. Since at |east
three (capromyid rodents, pitheciine primates, and
megalonychid sloths) and possibly four (neso-
phontid insectivores) lineages of Antillean mam-
mals were already on one or more of the Greater
Antilles by the Early Miocene, Hedges' inference
as to the primacy of over-water dispersal appears
to be at odds with the facts. By contrast, the land-
span model is consistent with most aspects of An-
tillean land-mammal biogeography as currently
known; whether it is consistent with the bioge-
ography of other groups remains to be seen.
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RESUMEN

El propésito de este trabajo es presentar una
serie de andlisis pal eogeograficos detallados de la
region del Caribe, comenzando con la apertura de
la cuenca del Caribe en el Jurasico Medio y ex-
tendiéndose hasta el Mioceno Medio. Tres inter-
valos del Cenozoico reciben un tratamiento es-
pecia: la transiciobn Eoceno-Oligoceno (35-33
Ma), el Oligoceno Tardio (27-25 Ma), y € Mio-
ceno Medio temprano (16-14 Ma). Aunque los
mamiferos terrestres pudieron haber ocupado ma-
sas de tierra en la cuenca del Caribe en cualquier
momento de su historia, de acuerdo con la inter-
pretacion que se presenta en este trabgjo, las ac-
tuales Antillas Mayores, como islas, son no mas
antiguas que Eoceno Medio. Islas méas antiguas
deben haber existido, pero no es probable que el-
las hayan permanecido como tales (es decir, como
entidades subaéreas) debido a las repetidas trans-
gresiones, subsidencia, y (no incidentalmente) al
impacto del limite K/T y el megatsunami asociado
a mismo. De acuerdo con esto nosotros inferimos
que los linajes insulares que forman la fauna an-
tillana actual (y cuaternaria en general) deben ser
mas jovenes que el Eoceno Medio. El registro fos-
il, a pesar de ser muy pobre aln, es consistente
con la observacion de que la mayoria de los li-
najes de mamiferos llegaron a las Antillas Ma-
yores arededor del limite Eoceno—Oligoceno.

El oeste de Laurasia (America del Norte) y el
de Gondwana (Ameérica del Sur) estuvieron fisi-
camente conectados como é&reas continentales
hasta el intervalo Bgjociano al Oxfordiano (178—
160 Ma) cuando se comenz6 a formar la cuenca
oceanica del Caribe. Coneccciones terrestres entre
dichas &reas continentales a partir de entonces
solo pudieron ocurrir mediante puentes naturales
de terreno. En el Creté&cico tres eventos principa-
les de levantamiento, coincidentes con inconfor-
midades regionales, pudieran haber producido
puentes intercontinentales que involucraron al
arco de islas volcanicas de las Antillas. El lev-
antamiento ocurrido en el Campaniano tardio a
Maastrichtiano temprano es el que tiene las ma-
yores posibilidades de haber producido un puente
natural, ya que éste coincidid en €l tiempo con la
extinciéon del vulcanismo cretécico. No obstante,
la evidencia es muy limitada para tener alguna
seguridad sobre este asunto. El puente natural que
existe actualmente (itsmo de Panama) se completd
en el Plioceno; pero la evidencia para un puente
anterior en el Mioceno Medio tardio es ambigua.

Aqui se presenta extensa evidencia geologica
para mostrar que, durante la transicion entre el
Eoceno y € Oligoceno, las tierras antillanas y la
porciobn noroccidental de América del Sur estu-

vieron brevemenmte conectadas por una ‘‘land-
span’’ (proyeccion de terreno) (es decir, por una
coneccion subaérea entre un continente y una o
mas islas situadas fuera del limite de la plataforma
continental), coneccion que estuvo centrada en la
entonces emergida Cresta de Aves. Esta estructura
(Crestas de las Antillas Mayores y de Aves) se
denominb GAARIandia. El evento de levanta-
miento masivo que aparentemente permitio esta
coneccion termind hace unos 32 millones de afos;
debido a una subsidencia general que terminb con
la fase de “'landspan” de GAARIlandia. Posterior-
mente la etapa neotectdnica caribefia resultdo en la
subdivision de las tierras existentes.

La hipotesis GAARIandia tiene un gran signi-
ficado para comprender |a historia de la biota An-
tillana. Tipicamente, la biogeografia histérica de
las Antillas Mayores se discute en términos de si
la fauna fue principalmente formada por disper-
sion estricta o por estricta vicariancia continente—
isla. La hipotesis GAARIlandia comprende ele-
mentos de ambas. Pero la vicariancia continente—
isla a estilo de Rosen puede ser excluida para
cualquier momento desde el Jurasico Medio. In-
cluso si la vicariancia hubiese ocurrido en aquella
€poca, su relevancia para comprender €l origen de
la biota antillana moderna es minima. Hedges y
sus colaboradores han propuesto con énfasis la
dispersion por agua como €l principal, sino el an-
ico, método de formacion de la fauna de verte-
brados en la region del Caribe. Sin embargo, la
dispersion de propagulos mediante las corrientes
marinas superficiales es inefectiva para explicar
los patrones de distribucion actual de la fauna ter-
restre en las Antillas Mayores. Incluso aunque ex-
iste una tendencia general de las corrientes super-
ficiales del Caribe a fluir hacia el norte con res-
pecto a la costa sudamericana, las evidencias ex-
perimentales indican que es practicamente
impredecible donde seran finalmente depositados
los objetos flotantes acarreados por dichas cor-
rientes. Al respecto, es crucial el hecho de que,
antes del Plioceno, la paleoceanografia regional
fue tal que los patrones de corrientes de los rios
sudamericanos debieron acarrear los objetos a la
deriva provenientes de América del sur hacia las
costas de América Central, o hacia el Pacifico, no
hacia las Antillas Mayores. Dado que a menos
tres lingjes (roedores capromidos, primates pite-
cinos y perezosos megalonichidos) y posible-
mente cuatro (insectivoros nesofontidos) de los
mamiferos antillanos se encontraban yaen las An-
tillas Mayores a comienzos del Mioceno, las in-
ferencias de Hedges respecto al dominio de la
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dispersion por agua como € modo de migracion
de esta fauna esta en desacuerdo con los hechos.
En contraste, el modelo de ““‘landspan’ es consis-
tente con muchos de los aspectos de la biogeo-
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grafia histérica de los mamiferos terrestres antil-
lanos tal como se conoce hoy dia; aunque si tam-
bién es consistente con la biogeografia de otros
grupos es algo que esta aln por definir.

RESUMO

Este trabalho apresenta uma série de analises
paleogeogréficas detalhadas da regiao do Caribe,
comegando com a abertura da bacia do Caribe no
Jurassico Médio e seguindo até o fim do Mioceno
Médio. Trés intervalos do Cenozbico receberam
especial atencdo: a transicao Eoceno-Oligoceno
(3533 Ma), o final do Oligoceno (27-25 Ma) e
0 inicio do Mioceno Médio (16-14 Ma). Ainda
que mamiferos e outros vertebrados terrestres pos-
sam ter ocupado massas de terra na bacia do Ca-
ribe em qualquer momento de sua histéria, segun-
do o presente estudo, a existéncia das Grandes
Antilhas, como ilhas, ndo & mais antiga do que o
Mioceno Médio. Ilhas mais antigas podem ter ex-
istido, no entanto, & pouco provavel que tenham
permanecido como tais por longos periodos. As-
sim sendo, inferimos que todas as linhagens que
formam a fauna antilhana atual (ou sgja, Quater-
naria) devam ser mais recentes que o Eoceno Mé-
dio. O registro fossil, apesar de ser bastante pobre,
€ consistente com a observacao de que a maioria
das linhagens de mamiferos terrestres chegaram
as Grandes Antilhas por volta da transicao
Eoceno-Oligoceno.

O oeste da Laurasia (Ameérica do Norte) e o da
Gondwana (América do Sul) estiveram fisica
mente conectados como areas continentais até o
Jurassico Médio. Trés principais eventos de soer-
guimento no Cretaceo, registrados por inconfor-
midades regionais, podem ter produzido pontes
intercontinentais envolvendo o arco de ilhas an-
tilhanas do Cretaceo. O soerguimento ocorrido no
Campaniano superior/Maastrichtiano inferior pa-
rece ser o mais relacionado com a formagdo de
uma ponte de conexao, uma vez que este coincide
com o soerguimento ocorrido durante o desapa-
recimento do arco do Cretaceo. A conexao atual
(istmo do Panama) completou-se no Plioceno;
evidéncias de uma ponte anterior no fim do Mio-
ceno Médio sdo ambiguas.

Nos buscamos extensivas evidéncias geol dgicas
para demonstrar que durante a transicao Eoceno-
Oligoceno, a parte norte das Grandes Antilhas
(entdo em desenvolvimento) e o noroeste da
Ameérica do Sul estiveram brevemente conectados
por uma ‘‘landspan’ (i.e., uma conexao sub-aérea

entre um continente e uma ou mais ilhas oceani-
cas). Esta “‘landspan’ estaria centrada na, entao
emergente, Cadeia de Aves. Denominou-se esta
estrutura (Cadeia das Grandes Antilhas + Cadeia
de Aves) como GAARlandia. O soerguimento
massivo que aparentemente permitiu estas conex-
0es ocorreu a cerca de 32 milhdes de anos, sendo
seguido por uma subsidéncia geral que terminou
com a fase de “‘landspan”” da GAARlandia. Pos-
teriormente, o neotectonismo caribenho resultou
na subdivisdo das terras existentes.

Tradicionalmente, a histéria biogeogréafica das
Grandes Antilhas é discutida em termos de for-
magcao da fauna estritamente por dispersao ou por
vicariancia continente-ilha. A hipotese da GAAR-
landia envolve elementos de ambas as correntes,
ainda que os modelos de vicariancia continente-
ilha sensu Rosen possam ser excluidos para qu-
alquer periodo desde o Jurassico Médio. Hedges
e colaboradores tém veementemente sugerido a
dispersao através d’ agua como o principal, sendo
o Unico, meio pelo qual teria ocorrido a formagdo
da fauna de vertebrados do Caribe. Entretanto, a
proposta de dispersao de propagul os por correntes
marinhas superficiais & inadequada para explicar
os padrdes de distribuicdo de fauna terrestre ob-
servados nas Grandes Antilhas. Enfatiza-se que,
antes do Plioceno, a paleoceanografia da regiao
era tal que o padrdo de fluxo de correntes dos
principais rios sulamericanos deviam carrear ob-
jetos para a costa da América Central e nado para
as Grandes e Pequenas Antilhas. No minimo trés
(roedores capromiideos, primatas piteciineos e
preguicas megaloniquideas) e talvez quatro (in-
setivoros nesofondideos) linhagens de mamiferos
antilhanos ja ocorriam em uma ou mais ilhas das
Grandes Antilhas no inicio do Mioceno, indican-
do que as propostas de Hedge quanto a primazia
da dispersdo aguatica da fauna nao estdo de acor-
do com os fatos. Neste sentido, o modelo de
“landspan’ € consistente com a maioria das pro-
postas atualmente aceitas para a biogeografia dos
mamiferos terrestres antilhanos. Permanece em
aberto se este modelo esta de acordo com as pro-
postas biogeogréaficas para outros grupos.
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It is this independence of biological from geological data that makes the
comparison of the two so interesting because it is hard to imagine how
congruence between the two could be the result of anything but a causal
history in which geology acts as the independent variable providing op-
portunities for change in the dependent biological world.

— Donn E. Rosen (1985: 637)

INTRODUCTION

During the past century, a number of hy-
potheses have been offered as partial or com-
plete explanations for the origins of Antillean
terrestrial vertebrate faunas.* Three mecha-
nisms have been discussed extensively in the
literature: (1) dispersal over water barriers
(e.g., Matthew, 1918; Darlington, 1938;
Woods, 1989; Hedges et al., 1992, 1994,
Hedges, 1996a, 1996b); (2) dispersal over
short-lived landbridges and landspans® (e.g.,
Fernandez de Castro, 1884; De La Torre,
1910; Gayet et a., 1992; MacPhee and Itur-
ralde-Vinent, 1994, 1995); and (3) vicari-
ance, i.e., splitting or division of a biota or
taxon through the development of a natural
barrier (e.g., Rosen, 1975, 1985; Guyer and
Savage, 1987; MacPhee and Wyss, 1990).
Although these mechanisms are sometimes
presented as though they were discrete, mu-
tually exclusive alternatives, depending on
the time, place, and taxon under discussion,
any or all of them may have been involved
in Antillean faunal formation. In fact, to pre-
view the chief conclusion of this paper, it

1 There are several current biogeographical definitions
of the “Antilles,”” *“West Indies,”” ‘* Caribbean Islands,”
“insular Neotropics’ and their various subdivisions. In
this paper, Greater and Lesser Antilles will have their
usual meanings; ‘“Antillean” as an adjective refers to
anything having to do with these islands, and is used in
preference to ““West Indian” (which, as generally used,
covers other, non-Antillean islands such as Bahamas).
The Caribbean region, which we newly define as a pa-
leogeographical concept, consists (at any stage of its de-
velopment) of the Caribbean Sea and all of its contents,
plus the facing continental margins of North, South, and
Central America. Thus the Caribbean region is larger
than the Caribbean Plate, although the structures on that
plate comprise most of the entities of interest here. It is
also larger than “West Indies’ as defined by Hedges
(19964, 1996b).

2For definition of ‘‘landspan” see section entitled
GAARIandia Landspan and Island—Island Vicariance.

seems inescapable that all three were in-
volved in the formation of the Antillean land-
mammal fauna, although not necessarily in
either the manner or the degree envisaged by
other authors.

Our present purpose is to present a fresh
perspective on the ‘‘geography’’ part of bio-
geography, as it relates to the Caribbean re-
gion, and to examine how this may offer
novel insights into historical processes of
faunal formation. (For a listing of most of
the features and localities mentioned in the
text, see figure 1). Although our specific con-
cept of Antillean paleogeographical history
differs in various ways from those of other
authors (see Biogeographical Hypotheses
and Caribbean Paleogeography), we have
made a particular effort to document and
evaluate other views.

It is widely recognized that hypotheses
concerning Antillean historical biogeography
are critically dependent on specific recon-
structions of regional paleogeography, paleo-
ceanography, tectonics, and other bodies of
data. However, most discussions of this sub-
ject by life scientists have tended to empha-
size biological evidence over geological ev-
idence. This bias should not be viewed as
being merely reflective of biologists under-
standable preference for their own kinds of
data, because several issues are involved.

First, although much of the general geo-
logical and tectonic literature is significant
for understanding the biogeographical histo-
ry of the Caribbean region, virtually none of
it was written with the needs of biologistsin
mind. Accordingly, biologists hoping to in-
tegrate geological information into their
work are faced with the daunting tasks of
having to compile evidence from many dif-
ferent sources, judge as best they can the ac-
curacy of age assignments and other primary
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data, and, frankly, recognize when geol ogical
theory outstrips fact. Lack of familiarity with
the subject matter and the methods of geo-
logical argumentation may lead to simple
factual errors, or, possibly worse, encourage
the uncritical acceptance of insufficiently
tested geological scenarios primarily because
they appear to support certain biological hy-
potheses. It is partly for this reason that some
authors validly question whether biologists
should place themselves in the very vulner-
able position of relying on the revealed truths
of geologists to explain biogeographical pat-
ternings (Henderson, 1991: 61; see also Craw
and Weston, 1984). Knowledge, we suggest,
is the best antidote to vulnerability.

Second, despite their apparent elegance,
plate tectonic models (e.g., Malfait and Din-
kelmann, 1972; Duncan and Hargraves,
1984; Leclere and Stephan, 1985; Ross and
Scotese, 1988; Donnelly, 1989a; Pindell and
Barrett, 1990; Mann et a., 1995; Hay and
Wold, 1996; Iturralde-Vinent, 1996a, 1997b)
vary widely in their comprehensiveness and
testability (Rull and Schubert, 1989; Perfit
and Williams, 1989). For example, agree-
ment is still lacking regarding the number
and fit of plates and microplates in the Ca-
ribbean Region—a basic issue of fact (cf.
Donnelly, 1985; Ross and Scotese, 1988;
Pindell, 1994; Hay and Wold, 1996). Fur-
thermore, plate tectonic models do not nec-
essarily provide the kinds of information that
biologists are most interested in. Typically,
such models focus on reconstructing histor-
ical positions of specific geologic units com-
monly denoted as plates, terranes, blocks,
volcanic arcs, and ridges (e.g., Malfait and
Dinkelmann, 1972; Duncan and Hargrave,
1984; Leclere and Stephan, 1985; Donnelly,
1985; Ross and Scotese, 1988; Pindell and
Barrett, 1990; Pindell, 1994; Mann et a.,
1995; Hay and Wold, 1996). They are not at
al, or are only incidentally, concerned with
creating well-constrained paleogeographical
maps that portray the physical geography of
such units (or parts thereof) through time.
(For further discussion of these and other
concepts, see Paleogeography of the Carib-
bean Region: Evidence and Analysis.) With
the purely tectonic literature as the sole
guide, one cannot derive any consistent pic-
ture concerning how many times subaerial
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land masses existed in the Caribbean, or
when or how many times these land masses
were connected to nearby continents, or the
nature of the relief they exhibited. Thus,
Hedges et al. (1992) explored structural re-
lationships among Caribbean land masses
and nearby continents on the basis of Pindell
and Barrett’s (1990) tectonic reconstruction
which, in fact, contains no information on
such relationships. (The latter authors discuss
only the position of geological units, which
is not paleogeography as we define it.)

In this paper we offer the first comprehen-
sive paleogeographical and paleoceanograph-
ical reconstructions of the Caribbean basin,
from latest Eocene to Middle Miocene, an
interval selected for reasons explained in de-
tail in succeeding sections. We also briefly
review paleogeographical scenarios for Ju-
rassic through Late Eocene time, for the pur-
pose of evaluating evidence for early land
connections and island permanency. Reflect-
ing our own interests, we concentrate on the
paleogeography of the central part of the Ca-
ribbean basin and portions of Central Amer-
ica and northwestern South America. In the
main, the biogeographical implications that
we have pursued in this investigation are
those most closely tied in with geography.
Understanding the phylogeny of the Antil-
lean biota is equally important and interest-
ing; however, this topic is reserved for a sub-
sequent paper in this series (MacPhee and
Iturralde-Vinent, in prep.).

Because of the large quantity of ancillary
documentation required to support a study of
this sort, for efficiency in presentation much
of the basic geological, paeogeographical,
and paleontological information is presented
in the form of appendices, tables, and figures.
The text summarizes this information in dis-
cursive form, but its main function is to dis-
cuss problems of interpretation and expla-
nation. Readers wishing to utilize the chief
results of our investigations may profitably
consult the main text, but those requiring a
greater level of detail should refer to the ap-
pendices throughout.

ACKNOWLEDGMENTS

The manuscript of the present paper was
awarded the 1997 Premio Anual de la Cien-



1999

cia by the Academia de Ciencias de Cuba for
outstanding scientific investigations. We are
grateful to the Academy, and thus the people
of Cuba, for this honor.

We extend specia thanks to Gregory Mayer
(University of Wisconsin—Parkside), Peter
Mattson (Queens College, City University of
New York), Gary Morgan (New Mexico Mu-
seum of Natura History), and Marcelo San-
chez Villagra (Universitat Tubingen) for re-
viewing the manuscript, to Lisa Gahagan (In-
gitute of Geophysics, University of Texas at
Ausgtin) for programming assistance in devel-
oping the tectonic model presented in appendix
2, and to Clare Flemming (AMNH) for help
with editing the text. We a so acknowledge our
great debt to Clare Flemming and Inés Horo-
vitz (AMNH) and to Stephen Diaz Franco and
Reinaldo Rojas Consuegra (MNHNH) for their

ITURRALDE-VINENT AND MACPHEE: CARIBBEAN PALEOGEOGRAPHY 9

many contributions to our field program. Re-
search related to this paper was partly sup-
ported by a Kalbfleisch postdoctoral fellowship
a the AMNH (to MIV) and NSF 902002 (to
RDEM). Figures were drafted by MIV, with
the exception of figures 10 and 11 (by Patricia
J. Wynne) and figures 9 and 13 (by RDEM).
Fernando Sicuro kindly supplied the Portu-
guese version of the abstract.

ABBREVIATIONS

AMNH American Museum of Natural History
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STATEMENT OF PROBLEM AND METHODS

We agree with Hedges (1996b: 166) that
the aspect of Caribbean geological history of
greatest interest to biogeographers, the rela-
tionships of emergent land areas, is unfortu-
nately the one that is most poorly under-
stood. This point is best explored by noting
some illustrative examples:

Not all geological maps contain recoverable
paleogeographical information.

Eva and MacFarlane's (1985: figs. 4-12)
study of carbonate development in Jamaica
includes a series of nine illustrations that de-
pict the development of various features
(e.g., subaeria land surfaces, subaerial and
marine volcanoes, shallow and deep sea)
from Paleocene to Pliocene times. However,
they are not paleogeographical maps in any
literal sense, because all features are shown
as evolving within the present-day perimeter
of the island, with no attempt to restore fold-
ed and faulted rock unitsto their original rel-
ative geographical positions. Because some
of Jamaica's basement rocks were strongly
folded and faulted during the Middle Eocene
and late Neogene (Lewis et al., 1990; Rob-
inson, 1994), any effort to capture pal eogeo-
graphical reality would require the use of
palinspastic methods to reconstruct displace-
ments of blocks along faults and restore orig-
inal surface areas of deformed formations.

Eva and MacFarlane's (1985) investigation
did not require this kind of reconstruction,
and they simply portrayed the different geo-
logic units forming the Jamaican basement
(ophiolites, metamorphic rocks, Cretaceous/
Paleogene island arc suites, and late Cam-
panian to Holocene sedimentary formations)
as though they have had the same relative
positions and areal dispositions since the Pa-
leocene. The message is that nonpalinspastic
reconstructions—by far the most common
“‘paleogeographical’ representations in the
geological literature (e.g., Khudoley and
Meyerhoff, 1971; Maurrasse, 1982; Salvador,
1987; Smith et al., 1994)—may be of negli-
gible value for biogeographical investigations
because they are not intended to be paleogeo-
graphicaly accurate. A simplified example of
palinspastic reconstruction for the Greater An-
tilles is illustrated in figures 2 and 3.

Paleogeographical information is difficult to
treat in a uniform way.

Just as there is no such thing as a perfect
biological classification, there is no such
thing as a perfect map. Often, maps are de-
signed to depict only one body of data ac-
curately; thus, even if they are intentionally
paleogeographical in nature, they may not
show different categories of information with
equal degrees of precision. For example, as
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A: Present-day structure of the Greater Antilles Foldbelt

Sierra Maestra EASTERN CUBA Gibara BAHAMAS

Cauto Basin

Old Bahamas Channel

CENTRAL HISPANIOLA

SanJuan  Cordillera Central Cibao A Puerto Plata-
Samana

Southern
Peninsula

Caribbean 0 km
crust
4
B: Palinspastic reconstruction
C. HISPANIOLA _CUBA
@ A G E BAHAMAS
Okm Okm Okm ayman 0 km
Trench ,
4 4 4 4
A
A

0 km ke Y i okm 1. Present width of the Greater
-\ Uil “ /i /‘,/,_——_—_ Antilles Foldbelt
4 Hraae == N 2. Realignment of E. Cuba and
ik C

ontinental margin C. Hispaniola after removing
effect of sinistral fault A-A'
3. Present position of main
@ geologic elements of foldbelt
4. Width of foldbelt after removing

F B }@“ . Width: = 500 km . effect of tectonic superimposition
5. Approximate width of foldbelt

@ Width: > 600 km after removing deformations
B e e
sedimentary Width: > 800 km
@ basin volcanic arc complexes ophiolites continental margin

S R N S O Y O [« _
R A A A e e e A A A f——————————————

Fig. 2. Simplified palinspastic reconstruction of Greater Antilles Foldbelt along a cross section pass-
ing through eastern Cuba and western Hispaniola, to illustrate methodological points. Note that the
foldbelt consists of a series of tectonically superimposed units that have been foreshortened by defor-
mation. As a result, the current width of the set of geological units transected by the section amounts
to only a fraction of the units' origina width (for additional explanation, see text). See figure 3 for
location of cross section.
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its title implies, the Atlas of Mesozoic and
Cenozoic Coastlines (Smith et al., 1994) is
concerned with depicting coastline informa-
tion, on a global scale, for the past 245 Ma.
Because its intended scope is the entire plan-
et, regional details are often lost or portrayed
inaccurately. As the authors point out, small
discrepancies do not affect the big picture,
but they do complicate the use of the maps
for other purposes. Of interest here is the fact
that the Greater Antilles are depicted in their
current sizes and positions relative to North
America during all relevant time periods. Be-
cause the dimensions of the Caribbean Sea
have changed over time, the Greater Antilles
are forced by the mapping program into po-
sitions they could never have occupied.
Thus, these islands overlap northern South
America at 170 Ma, project east of Trinidad
into the South Atlantic (!) at 155 Ma, and
finally end up at their present-day position at
80-0 Ma. Furthermore, subaerial exposures
on these islands are depicted on Oligocene
and later maps, but not on earlier ones. This
suggests that land areas did not exist as such
prior to the mid-Cenozoic, which is not ac-
curate. Similarly, the Chortis Block is de-
picted as overlapping southern Central
America at 170 Ma, then acting as a bridge
between southern Central Americaand North
Americaat 155 Ma, then coming into contact
with the Maya (Yucatan) Block as both were
uplifted around 148 Ma, and finally achiev-
ing its present-day position with respect to
North America by 80-0 Ma. The Yucatan
Peninsula is successively depicted as (1)
overlapping South America at 170 Ma, (2)
uplifted and in contact with northern South
America by 155 Ma, and (3) situated near its
present-day position with respect to North
America in the Tithonian (148 Ma). Al-
though these implied motions can be dis-
missed as minor artifacts of mapping pro-
grams designed to show large segments of
the geode, the point is that they seriously
conflict with all available models of Carib-
bean plate tectonics (Malfait and Dinkel-
mann, 1972; Donnelly 1985; Pindell and
Barrett, 1990; Pindell, 1994; Mann et a.,
1995). Fine-scale interpretation of the paleo-
geography of small areas is untenable with
maps of this sort, although they have been
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used for that purpose (e.g., Hedges, 19963,
1996h).

Island geology and island paleogeography
are not isomor phous.

Conventionally, a geographical island is
defined by its shoreline (i.e., its subaerial pe-
rimeter), although other criteria are of course
possible (e.g., —100 m isobath). Shorelines
can be affected by rise or fall in sea level,
deposition or erosion, and uplift or subsi-
dence of the geological unit that constitutes
the islands basement. Shorelines are there-
fore exceptionally dynamic at virtually all di-
mensional and tempora scales. Geological
units, by contrast, are only indirectly affected
by surficial processes such as prograding or
degrading shorelines; they reflect a deeper
structure, and deep structure is rarely coter-
minous with conventional geography. The
usual objective of geological study is to in-
terpret the history of tectonic elements in
terms of their formation, evolution and sub-
sequent transformation into other elements,
utilizing the imprints that such processes
leave in the rocks themselves. Shoreline re-
construction is therefore a difficult task, be-
cause the evidence needed to make paleo-
geographical reconstructions is almost inev-
itably destroyed or modified substantialy
over geologically long periods of time.

Smith et al. (1994) pointed out that coast-
line reconstruction is additionally complica-
ted by the fact that different datasets, osten-
sibly for the same interval, may yield quite
different paleogeographical results. This can
happen when stratigraphic data are collected
for specific purposes, such as documenting a
general transgression or sealevel drop. For
example, reconstructions of Maastrichtian
coastlines for the same area may look quite
different from one another, depending on
what part of the interval and which events
individual authors intended to depict.

Another point about island geology versus
island paleogeography can be made by ref-
erence to Hedges (1996b) claim that some
terrestrial environments in the Caribbean Sea
may have been in existence since the end of
the Cretaceous. Hedges (1996b: 166) stated
that there is **no place in the West Indies that
is known by the presence of a continuous
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sequence of sediments to have been emer-
gent since the late Cretaceous, although some
areas of Cuba, northern Hispaniola, and pos-
sibly Puerto Rico, may have been.”’3 It isun-
clear what Hedges meant to convey by the
phrase *‘ continuous sequence of sediments,”
since the only conceivable contexts in which
unbroken sedimentary accumulations might
have occurred throughout the last 65 Ma are
deep oceanic basins situated on comparative-
ly ancient sea floor (e.g., eastern Pacific).
Furthermore, his paleogeographical obser-
vation has significance only if it is addition-
aly inferred that the hypothesized emergent
lands of the late Mesozoic and early Ceno-
zoic were incorporated while still subaerial
into the developing Greater Antilles. We
know of no geological evidence that supports
this inference; the little evidence that does
exist indicates that no terrestrial contexts
from these earlier periods survived as such
into the Late Eocene (see Paleogeography of
the Caribbean Region: Evidence and Analy-
Sis).

Tectonic modeling and paleogeographical
reconstruction are not the same.

This point can be conveniently illustrated
by reference to Pindell’s (1994) frequently
cited work. As part of a genera tectonic re-
construction of the Caribbean region, Pindell
(1994: fig. 2.6a—n; see aso Pindell and Bar-
rett, 1990) attempted to depict the paleogeo-
graphical history of certain physical features
(subaeria land, deep and shallow water, vol-
canic arcs). Although Pindell’s model utilizes
an extensive database, it contains a few in-
accuracies and unverifiable conjectures that
have both tectonic and paleogeographical im-
plications. For example, Florida and Baha-
mas are shown as comprising a single car-
bonate platform from late Jurassic through
Late Miocene, which contradicts recent evi-
dence for their long-term separation (Austin
et a., 1988; Droxler et al., 1989; Hine, 1997;
Denny et al., 1994; lturralde-Vinent et al.,
1996a). The Nicaragua Rise is drawn as a

3“West Indies” is defined by Hedges (1996b) to in-
clude the Greater and Lesser Antilles, Bahamas, and a
number of small islands that lie immediately off the con-
tinental shelves of Central and South America. It does
not include the southern Netherlands Antilles or Trinidad
and Tobago (cf. footnote 1).
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shallow-water promontory of the Chortis
Block from Middle Eocene to Late Miocene
time, contra Sigurdsson et al. (1997) who de-
pict it more correctly as a series of isolated
carbonate banks. Cuba is shown as uplifted
at 59, 21, and 10 Ma, but as completely sub-
merged at 49 and 35 Ma, in conflict with the
data analyzed by Iturralde-Vinent (1969,
1972, 1988a).

Pindell’s (1994) maps are particularly
problematic in their depiction of island arc
connections. North and South America are
shown as being completely linked by island
arcs in the Vaanginian, late Albian, Cam-
panian, Maastrichtian, and Middle Eocene,
and as nearly linked in the Barremian, Tu-
ronian, and Paleocene. Although these vol-
canic arcs certainly existed, reconstructing
them accurately as paleogeographical entities
requires detailed scrutiny of relevant evi-
dence. It is obvious from present-day geog-
raphy that volcanic arcs may form continu-
ous subaerial entities (e.g., Kamchatka Pen-
insula, presently sutured to Chukotka; isth-
mus region of Central America) as well as
island chains (e.g., Lesser Antilles, Kuriles).
The life-span of an island qua island cannot
be predicted from first principles: islands at
the position of Krakatau and Aldabra, to cite
two quite different examples, have appeared
and disappeared more than once in the late
Quaternary (Stoddart et al., 1971; Nunn,
1994). Without careful appraisal, contradic-
tory conclusions may be reached on the basis
of the same evidence. For example, Gayet et
al. (1992: fig. 1) argued on the basis of Pin-
dell’s model (see Pindell and Barrett, 1990)
that ““the terrestrial bridge that linked North
and South America by latest Cretaceous and
Paleocene times probably comprised the
Greater Antilles and the Aves Ridge which
consisted of a magmatic [arc] submitted to
uplift and deformation....” By contrast,
Hedges (1996a), also citing Pindell and Bar-
rett (1990), claimed that any possible con-
nection between North and South America
via the developing ‘‘proto-Antilles” (or
““proto-Greater Antilles’) was sundered in
the Late Cretaceous (70-80 Ma). However,
in actuality Pindell and Barrett (1990; see
also Pindell, 1994) took no position on the
existence of land connections, as this issue
was ancillary to the topics they were consid-
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ering. In any case, if numerous long-term
connections between North and South Amer-
ica had indeed existed (as might be inferred
from a literal reading of Pindell’s [1994]
maps), evidence of this fact would surely
have been found in the vertebrate fossil rec-
ord; but it has not (Gingerich, 1985; Alva
rado, 1988; Webb, 1985; see also Biogeo-
graphical Hypotheses and Caribbean Paleo-
geography).

Similar difficulties attend the use of Perfit
and Williams (1989) tectonic reconstruc-
tions as paleogeographical evidence. In this
useful and incisive paper—in several ways
the intellectual precursor of the present
monograph—maps were intended to support
a critical discussion of Antillean biogeogra-
phy and paleogeography. However, their re-
constructions actually present little in the
way of physical geography, as land and sea
are the only items discriminated. More prob-
lematically, their maps (but not their text)
give the impression that most of the Greater
Antillean islands originated as such in the
late Cretaceous, and merely grew larger as
they were tectonically transported to their
current relative plate position. In redlity, the
Greater Antilles in their current guises are
relatively young geographical features (see
appendix 1; Iturralde-Vinent, 1978, 1982,
1988a, 19944).

From this brief review it is evident that the
recent Caribbean geological literature is not
(and was never intended to be) a source of
ready-made, easily interpreted paleogeo-
graphical maps—that is, maps specifically
designed to trace the physical and positional
history of particular geographical entities.
Appropriate design features for such maps
vary with the nature of the entities being
traced. In the case of terrestrial environ-
ments, which constitute our special concern,
reliable paleogeographical maps of the Ca-
ribbean region would help to both constrain
and enrich discussion of a range of signifi-
cant inquiries, among which are: (1) When
did specific terrestrial environments
(“lands”) exist in the Caribbean region, and
for how long? (2) Where were these lands
geodesically located, at any given time pe-
riod? (3) What was the nature of physical
connections between and among different
lands? (4) How long did such connections
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last? (5) What were the surface areas of in-
dividual lands, and how did their sizes alter
over time? As has already been made clear,
such questions cannot be answered merely
by examining geological maps or tectonic re-
constructions.

Our paleogeographical maps provide in-
formation on four contexts. high-elevation
and low-elevation terrestrial environments
(hereafter, ‘*highlands” and ‘‘lowlands’),
and shallow-water and deep-water marine
environments (‘‘shallow marine’”” and *‘ deep
marine’). These environments are distin-
guished by certain diagnostic features,
among which positive or negative elevation
relative to ambient sea level is the most sig-
nificant (see also appendix 1). Although pre-
cise measures of elevation are not possible,
plausible benchmark estimates can be made
within =1 order of magnitude. We define
highlands as environments that existed at
positive elevations greater than ca. 200 m;
lowlands were less than 200 m. Although
with good faunal evidence it is possible to
distinguish marine environments very finely,
we reconstruct only two—shallow marine,
covering shelf conditions to —100 m; and
deep marine, embracing all sea-floor settings
deeper than —100 m.

We emphasize that the contact line be-
tween terrestrial and marine environments on
any given map should be thought of as a me-
dian value for coastline position during the
interval being depicted. The accuracy of any
paleocoastline delimitation is, in any case, a
function of sedimentary exposure: in general,
paleocoastline positions can be traced more
accurately within uplifted areas than in ones
that are currently below sea level.

Three quasi-independent parameters were
used in map construction: (1) geological con-
stitution, (2) geographical positioning, and
(3) physical paleogeography. Geological
constitution is the sum of those attributes of
a particular geological unit that are defined
by its composition, boundaries, and position
with respect to other such units in the Carib-
bean area or elsewhere. A geological unit can
be thought of as a time-bounded suite of
rocks that were formed by a particular set of
geodynamic processes operating at a desig-
nated location in the lithosphere. Typical ex-
amples of such units might include a specific
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section of oceanic or continental crust, avol-
canic arc, a set of genetically related sedi-
mentary basins, afoldbelt, or ablock-terrane.
Each geological unit has its own ontogeny,
spanning its origin, evolution, and possible
transformation into other units. Units are
named for convenience and book-keeping
purposes, but the reader should be aware that
names do not necessarily imply identity with
geographical elements. For example, the Ca-
ribbean Mountains of northern South Amer-
ica, which now form an area of high relief,
contain fragments of oceanic crust and island
arc. Both Beata and Aves are identified as
‘““ridges,” but geologically they are quite dif-
ferent. The Beata Ridge is a thick oceanic
crustal unit, while the Aves Ridge is part of
an extinct volcanic arc (Holcombe et al.,
1990). In the Caribbean region, many larger
features, such as terranes, blocks, ridges, and
arcs, are minutely subdivided by faults. Fault
boundaries permit the delimitation of smaller
entities that can be considered to have had
semi-independent histories since faulting oc-
curred (appendix 1, fig. 1).

Geological units can be superimposed in a
single stack (i.e., in the same crustal posi-
tion), as the following simple example illus-
trates. A section of early Mesozoic oceanic
crust might evolve into a Cretaceous volca-
nic arc; later, both of these units might be
deformed into a series of mountains and ba-
sins. The fate of each unit implies a different
paleogeographical setting (in this example
there are three: ocean floor, volcanic island-
arc, and fully terrestrial conditions with com-
plex relief). In this example only the last geo-
logic unit can be said to be “active’ or still
in its original geomorphological form. The
other two units are no longer resolvable as
either ocean floor or volcanic arc; they are
part of the basement of the last unit.

A more dynamic example would illustrate
the point that, over time, segments of the
earth’s crust can change their relationship,
form, and position, thereby affecting paleo-
geography. Along compressional plate
boundaries, for example, oceanic crust and
ridges may undergo subduction, thereby los-
ing their original geological and geomorpho-
logical character. Similarly, ocean crust or
volcanic arc suites overthrusting continental
margins along a collisional suture will create
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a new stack, one having the distinctive com-
posite nature of a foldbelt (a geological unit
in its own right, consisting of several amal-
gamated ‘“‘fossil”” precursors). Thus a new
geography may arise ontogenetically from
the old.

In creating reliable paleogeographical
maps, it has long been recognized that to de-
termine the successive sizes of a geological
unit, the effects of movement and deforma-
tion have to be figuratively undone. How
“reverse ontogeny’’ can be understood and
worked out in a particular case of interest is
illustrated in figure 2. The two cross sections
in figure 2A represent the structure of the
foldbelt in eastern Cuba and western Hispan-
iola as seen today. In figure 2B, these cross
sections are restored to their relative posi-
tions before separation caused by sinistral
movements along fault A'—A (steps 1 and 2).
This requires the deletion of entities that
have been intercalated as the result of move-
ment along A'-A (Cayman Trench and
southern and northern Hispaniolan blocks).
With these omitted, it can be seen that the
two cross sections can be precisely lined up
along their volcanic arc sequences (step 2).
In step 3, we simplify the present-day rela-
tive position and width of the geological
units found in the foldbelt (carbonate conti-
nental margin, ophiolites, volcanic arcs, and
sedimentary basins), depicting them as a se-
ries of superimposed bars. In steps 4 and 5
we sequentially remove the effects of over-
thrusting and shortening due to internal de-
formation within the units themselves, there-
by resolving the original width of the fold-
belt. Although this example is schematic, it
makes the point that the geography of the
present may differ radically from the geog-
raphy of the past, even for the **same” land
mass.

For each geological unit under discussion,
positional coordinates in time (in Ma) and
space (in degrees of latitude and longitude)
are provided in appendix 2. Unit positions
were constrained per time-slice using various
sources of information, including maximum
possible amplitude of strike-slip movements,
continuity of geological structures across dif-
ferent block-terranes or arc segments, pres-
ence of correlatable rock complexes of
known age in two or more distinct units, and
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so forth (fig. 3). Plate motions provide an-
other, more general form of constraint (ap-
pendix 2).

The third variable used to build paleogeo-
graphic maps is physical geography, which
we define as information (indicators) regard-
ing positive or negative relief of contiguous
geological units (or their subcomponents)
across time. Relevant information is widely
but thinly scattered in the geological litera-
ture. For effective use, this information had
to be refined in various ways, including re-
interpretation of the age of late Tertiary sec-
tions according to current paleontological
and stratigraphical criteria, reanalysis (if re-
quired) of depositional environment, deter-
mination of topographic indicators, and so
forth.

A land indicator provides evidence of the
existence of subaerial conditions within a
geological unit at a specific time in its on-
togeny. However, land indicators have to be
interpreted carefully, as some are much better
than others. Thus, although unconformities
and hiatuses both represent gaps in the geo-
logical record, their significance is not the
same. An unconformity is a surface that sep-
arates two superimposed sets of strata. Un-
conformities are erosional surfaces and may
provide clear evidence of land emergence if
associated with long-lasting hiatuses (but see
below). Although also a gap in the rock re-
cord, a hiatus is defined as time not repre-
sented by strata (i.e., an interval of nonde-
position, erosion, or both). Uplift and non-
deposition of sediments during n1 Ma can
produce a hiatus, but uplift also causes ero-
sion of preexisting rocks, thereby addition-
aly enlarging the gap in the record by n2
Ma. The total gap (n1 + n2) istherefore pro-
duced by erosion as well as nondeposition.
Owing to the effects of bottom currents or
rising sea floor, hiatuses can also be produced
in the absence of subaerial exposure by sub-
marine erosion, nondeposition, or both of
these processes. Thus, a hiatus by itself does
not imply land emergence, nor does the ac-
tual gap (in millions of years) necessarily
mirror the time during which the area was
uplifted as land.

Usually, indicators other than gaps per se
are required in order to reach reliable con-
clusions about land emergence and coastline
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position. These may include (1) sediments
deposited in terrestrial environments (e.g.,
red beds, aluvium), (2) weathering surfaces
or weathering products (e.g., paleosols,
‘““coated”’” pebbles), (3) land-derived sedi-
ments in contiguous marine basins (e.g., con-
glomerates, sandstones), (4) lagoonal depos-
its representing fresh- or brackish-water near-
shore environments, (5) coastal sediments
(e.g., beach sands, dunes), and (6) remains of
terrestrial organisms preserved in marine
sediments (e.g., lignites, terrestrial plants,
pollen, spores).

Among marine indicators, different rock
types and their fossil inclusions are of great
value because they are highly correlated with
water depth at the time of original deposi-
tion. Lack of marine sedimentsin a particular
section may be the result of erosion (within
a hiatus), so whether a transgression actually
occurred has to be resolved by examining the
composition and environment of deposition
of rocks in surrounding basins. This is why
some geological units are represented as sub-
marine environments in the paleogeographi-
cal maps, even though marine rocks of ap-
propriate age are not known within them. For
example, although several hiatuses are re-
corded on the Beata Ridge, unequivocal in-
dicators of subaerial conditions have not
been found. Accordingly, we assume that
these hiatuses are due to submarine erosion
and nondeposition, and portray the ridge as
a submarine feature from Late Oligocene to
Recent (see fig. 4).

Other phenomena may have paleogeo-
graphical significanceif they provide insights
into specific conditions or occurrences in the
past. For present purposes, the most impor-
tant of these is termination of volcanic activ-
ity in island arcs. This phenomenon, usually
due to arc—arc, arc—ridge or arc—continental
collision (Hamilton, 1988), is known to have
a profound effect on uplift. The mechanism
of uplift is related to the emplacement of
huge intrusive bodies coincidental with arc
extinction, causing widespread isostatic ad-
justment (uplift) along the arc axis (Iturralde-
Vinent, 1988a, 1994a). Uplift is then fol-
lowed by subsidence within a period of only
afew million years. Although postmagmatic-
phase uplift is well substantiated, its perti-
nence to Caribbean paleogeography has not
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been widely appreciated (but see Early Mid-
dle Jurassic to Late Eocene Paleogeography).
As discussed here in relation to the arcs as-
sociated with the evolution of the Caribbean
Plate, termination of arc magmatism in the
Aptian, Late Campanian/Early Maastrichtian,

NO. 238

and early Middle Eocene consistently pro-
duced substantial uplift followed by deep
erosion of the extinct volcanic arc edifices
(Iturralde-Vinent, 1988a, 1994a; MacPhee
and lturralde-Vinent, 1994, 1995).

PALEOGEOGRAPHY OF THE CARIBBEAN REGION:
EVIDENCE AND ANALYSIS

This section provides an analysis of the
several categories of basic geological infor-
mation presented in the tables, figures, and
appendices. Appendices 1 and 2 and tables
1-4 should be consulted throughout for sup-
porting evidence and additional literature not
directly referenced in the following para-

graphs.

EARLY MIDDLE JURASSIC TO LATE
EOCENE PALEOGEOGRAPHY

This long stage in the evolution of the Ca-
ribbean region may be considered to have be-
gun with the creation of a basin, the embry-
onic Caribbean Sea, coincident with the
break-up of Pangaea and the separation of
Laurasia from Gondwana (fig. 5; table 1).
During the late Triassic/middle Jurassic, an
epicontinental siliciclastic basin developed
between the cratonic areas of South and
North America in reaction to the eastward
migration of the Tethys (Anderson and
Schmidt, 1983; Burke et al., 1984; Bartok,
1993). This epicontinental sea should not be
thought of as the Caribbean basin as pres-
ently configured, but as a precursor situated
within western Pangaea (see Pindell, 1994:
fig. 2.69). Its epicontinental nature is dem-
onstrated conclusively by associated marine
invertebrate faunas and sediment composi-
tion (Salvador, 1987, 1991; Pszczolkowski,
1987).

The early Caribbean basin began as a nar-
row seaway between the Pacific and Tethys,
probably during the Bajocian/Bathonian
(Bartok et al., 1985) as oceanic crust was be-
ing formed between western Laurasia (North
America) and western Gondwana (South
America) (fig. 5; Pindell, 1994: fig. 2.6b, c).
The existence of lands closely bordering this
seaway is indicated by evidence of coastal-

type vegetation at several localities of ?Early/
Middle Jurassic to early Late Jurassic age in
Mexico and western Cuba (Areces-Mallea,
1990).

In the North American portion of Laurasia
an important marine transgression took place
during early to middle Oxfordian time. Vo-
lant terrestrial and shallow-water marine ver-
tebrates, indicative of proximate land envi-
ronments, make an appearance at thistime at
localities on the Guaniguanico terrane that
forms westernmost Cuba (Iturralde-Vinent
and Norell, 1996). The occurrence of this
Oxfordian faunule in what is now Cuba con-
stitutes an example of *“Viking funeral ship”
emplacement (McKenna, 1973), because
these taxa were extinct before Guaniguanico
reached western Cuba long after detaching
from the Yucatan borderland early in the Ter-
tiary (lturralde-Vinent, 1994a, 1996a; Bra-
lower and Iturralde-Vinent, 1997). In the
South American portion of Gondwana the
paleogeographical context was different, be-
cause the main transgression across the
northern continental margin took place later,
during the Early Cretaceous. With the Ox-
fordian transgression and widening marine
gap between Laurasia (North America) and
Gondwana (South America), any possibility
of direct, overland dispersal between these
continental areas ended (fig. 5).

The developing Caribbean seaway (‘‘His-
panic Corridor’ of Bartok et al., 1985) un-
derwent widening from the Middle Jurassic
to the Early Cretaceous as a consequence of
sea floor spreading (Pindell, 1994: fig. 2.6c,
d). Oceanic crust and sediments formed at
that time are now represented in part by de-
formed ophiolite bodies and thrust belts
around the margins of the Caribbean region
(Guatemala, Greater Antilles, Aruba/Tobago
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Belt, Caribbean Mountains, and Colombian—
Venezuelan Andes) (Dengo and Case, 1990).
Oceanic basalts associated with radiolarian
cherts and carbonate rocks of Jurassic
through Cretaceous age have been found
within these allochthonous crustal bodies
(Bartok et al., 1985; Montgomery et a.,
1994; Iturralde-Vinent, 1996a). In some plac-
es these vulcano-sedimentary rocks consti-
tute segments of a continuous section (e.g.,
northwestern Cuba, southwestern Puerto
Rico), but most frequently they consist of
isolated cobble- to boulder-sized bodies
within highly deformed belts. Although it
cannot be determined from existing infor-
mation whether the age gaps record actual
hiatuses, the absence of any evidence of ter-
restrial environments in these contexts
strongly suggests prevailing deep-water con-
ditions from their origin until their incorpo-
ration into the foldbelts fringing the Carib-
bean region.

Indications of lands or shallow seas (or
both) within the confines of the early Carib-
bean sea are found in rocks of the Cretaceous
volcanic arc. As a geologica unit, the Cre-
taceous arc is defined by a particular set of
igneous, sedimentary, and metamorphic
rocks of Neocomian through late Campanian/
early Maastrichtian age (Dengo and Case,
1990; Iturralde-Vinent, 1994a, 1994c, 1996a,
1996b). Today, elements of this arc are wide-
ly distributed in the foldbelts found within
the Caribbean region (fig. 5). The paleogeo-
graphical position of the Cretaceous arc in
relation to North and South Americaremains
the subject of debate (see Leclere and Ste-
phan, 1985; Ross and Scotese, 1988; Don-
nelly, 1989a; Pindell, 1994, Mann et d.,
1995; Hay and Wold, 1996; Iturralde-Vinent,
19963, 1997b).

Shallow marine environments are marked
by the occurrence of rudist limestones of dif-
ferent ages, occurring as isolated, lenticular
intercalations within marine-deposited vol-
canic sediments. Although the presence of
rudists is not diagnostic of nearby emergent
land, it is consistent with the existence of
atoll-like islands similar to those seen today
on shallowly submerged volcanoes. More
substantive indications of land development
in the Cretaceous island arc are Neocomian
plant remains reported from the Los Ranchos
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Fm, a volcanic arc section in Hispaniola
(Smiley, ms, cited by Kedler et a., 1991b).
This assemblage (including Gleichenites,
Zamites, Phoenicopsis, Yuccites, Podozami-
tes, and other taxa) is thought to have grown
in a warm, open, seasonally dry habitat ad-
jacent to the shallow-water marine environ-
ment in which the remains were deposited
(Kedler et al., 1991b). Other geologica in-
dicators of emergence during the evolution
of the Cretaceous arc include terrestrially de-
posited volcanic rocks and several major un-
conformities occurring within volcanic arc
sections, usually in association with hiatuses
and basal conglomerates.

Unfortunately, the paleogeographica in-
formation content of these indicators is lim-
ited and cannot be reliably used to provide a
detailed assessment of areal extensiveness
and orographic relief in the Cretaceous arc.
On the other hand, such information does
provide some indication of the temporal suc-
cession of environments in specific geologi-
cal wunits. In Hispaniola, the Neocomian
plant-bearing rocks are overlain by marine
limestones of the Albian Rio Husillo Fm
(Kesler et al., 1991b; Iturralde-Vinent,
1997a), implying that a transgression oblit-
erated previously existing terrestrial environ-
ments. This sequence of events is rather
common in the Cretaceous arc sections, and
our interpretation is substantiated by two
pieces of evidence. First, volcanic and non-
volcanic marine rocks drape all of the un-
conformities recorded in the Cretaceous arc,
indicating that hiatuses were succeeded by a
new phase of marine deposition (Nagy et a .,
1983; Lewis et al., 1991; Rojas et a., 1995;
Iturralde-Vinent, 1995, 1997a; Beccaluva et
al., 1996). Second, the rudist limestones oc-
cur in the form of lenses intercalated within
other marine sediments and laterally transi-
tional with isochronous deeper water beds
(Rojas et al., 1995). This indicates that any
intra-Caribbean land environments existing
on the volcanic arc at that time would have
been limited in size, and therefore suscepti-
ble to rapid obliteration during transgressive
phases. We conclude from this that, while
land environments certainly existed in the
Caribbean Basin during the Cretaceous, they
were short-lived, probably winking in and
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TABLE 1
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Land and Marine Indicators for Selected Geological Units of Caribbean Region,

Early Jurassic to Late Eocene (180-37 Ma)

Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

1. CONTINENTAL MARGINS AROUND THE CARIBBEAN

Florida Block

Bahamas Platform

Gulf of Mexico
Basin

Mexican terranes

Maya Block

Chortis Block

South American
shields, foldbelts,
and basins

Florida Peninsula

Bahamas

Gulf of Mexico
Basin

Southern Mexico

Yucatan Peninsula

Northern Central
America

Northern half of
South America

(1) pre-Tithonian, Cenomanian,
Danian, Ypresian, mid-Late Eocene:
McFarlane and Menes, 1991;
Galloway et al., 1991

(2) pre-Oxfordian: Meyerhoff and
Hatten, 1974

(1, 3) pre-Oxfordian, late Tithonian,
Cenomanian, Turonian—Coniacian,
mid-Campanian, latest Maastrichtian,
mid-Late Eocene: Salvador, 1991;
McFarlane and Menes, 1991;
Galloway et al., 1991

(2—red beds) late Triassic to Jurassic
(Callovian): Salvador, 1991

(1) Aptian, early Campanian:
Salvador, 1991; McFarlane and Menes,
1991; Galloway et al., 1991

(1, 2, 3) pre-Oxfordian red beds:
Michalzik, 1987

(1) Aptian-Barremian?: McFarlane
and Menes, 1991

(2—red beds) pre-Aptian undifferen-
tiated: Lépez-Ramos, 1975; Salvador,
1991; McFarlane and Menes, 1991

(1, 2) several levels of late Jurassic,
Cretaceous, Paleocene, and Eocene
age: Donnelly et al., 1990

(1) Jurassic—Cretaceous boundary,
Campanian—Maastrichtian, Early—
Middle Eocene: Lugo and Mann,
1995; Parnaud et al., 1995; Cooper
et al., 1995

(1, 2) pre-Cretaceous: Maze, 1984;
Lugo and Mann; 1995; Parnaud et al.,
1995; Cooper et al., 1995

(1) Tithonian transgression and
marine sediments up to Late Eocene:
McFarlane and Menes, 1991;
Galloway et al., 1991

(1) Oxfordian to Late Eocene

(2) channels of Aptian to Late Eocene
age: Meyerhoff and Hatten, 1974,
Iturralde-Vinent, 1994a; Buffler and
Hurst, 1995

(1) Oxfordian to Late Eocene:
Salvador, 1991; McFarlane and
Menes, 1991; Galloway et al., 1991

(1, 2) Oxfordian transgression and
pre-Late Eocene marine sediments:
Michalzik, 1987; Salvador, 1991;
McFarlane and Menes, 1991;
Galloway et al., 1991

(1) Aptian to Late Eocene carbonates:
Lépez-Ramos, 1975; Viniegra, 1981;
McFarlane and Menes, 1991;

Galloway et al., 1991; Salvador, 1991

(1) several levels of Cretaceous,
Paleocene, and Eocene age:
Donnelly et al., 1990

(3) Paleocene and Eocene:
Donnelly et al., 1990

(1, 2) transgression in early Creta-
ceous and marine sediments up to
Late Eocene: Lugo and Mann, 1995;
Parnaud et al., 1995; Cooper et al.,
1995

(3) Jurassic and Cenozoic in the
Andes: Case et al., 1990
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Western Cuban
allochthonous
terranes

Cuba
(Guaniguanico,
Isla de Juventud,
and Escambray)

2. CRETACEOUS VOLCANIC ARC

Jamaican arc
segment

Greater Antilles
Foldbelt

Greater Antilles
Foldbelt

Greater Antilles
Foldbelt

Western Jamaica

Cuba

Eastern Jamaica
(Blue Mountains)

Hispaniola

(northern peninsula,

Puerto Plata/

Samand, Cordillera
Central, Cordillera

Oriental)

(1) Campanian—early Maastrichtian,
Middle Eocene: Pszczolkowski, 1978;
Iturralde-Vinent, 1994a

(2, 3) pre-Oxfordian: Pszczolkowski,
1978, 1987; Iturralde-Vinent, 1994a,
1996b

(1) Aptian?, Turonian, Campanian—
Maastrichtian: Maurrasse, 1990;
Lewis et al., 1990; Robinson, 1994

(1, 3—conglomerates) mid-Aptian,
mid-Albian, Turonian—Coniacian,
mid-Campanian, Paleocene,
Middle-Late Eocene: Iturralde-
Vinent, 1994a, 1996a-1996d,;
Rojas et al., 1995

(1) Campanian—Maastrichtian:
Lewis et al., 1990

(1, 3—conglomerates) early Aptian,
Santonian?, mid-Campanian-Maas-
trichtian: Bowin, 1975; Draper et al.,
1997; Maurrasse, 1990; Lewis et al.,
1990; Mann et al., 1991; Lebrén and
Perfit, 1993; Russell and Kesler,
1991; Tturralde-Vinent, 1994b, 1997b

(2—plant fossils) Neocomian:
Kesler et al., 1991b; Iturralde-Vinent,
1997b

(1) transgression in the Oxfordian;
early Tithonian, Cenomanian-
Turonian shallow marine

(2) since Tithonian: Pszczolkowski,
1978, 1987; Iturralde-Vinent, 1988b,
1994a

(3) mid-Jurassic to early Cretaceous
rift basalts: Iturralde-Vinent, 1988b,
1996e

(1) Aptian, Albian, Santonian,
Campanian, Maastrichtian:

Maurrasse, 1990; Lewis et al.,
Draper, 1990; Robinson, 1994

(3—arc) Barremian to Maastrichtian:
Montadert et al., 1985; Maurrasse,
1990; Lewis et al., 1990; Robinson,
1994

(1) late Albian, Santonian, early
Campanian, Maastrichtian: Iturralde-
Vinent, 1994a, 1996a-1996d;

Rojas et al., 1995

(2) Albian, Cenomanian, Santonian:
Tturralde-Vinent, 1994a, 1996a—
1996d; Rojas et al., 1995

(3—arc and oceanic) Aptian-late
Campanian: Iturralde-Vinent, 1994a,
1996a-1996d; Rojas et al., 1995

(1) Barremian, Campanian; Robinson,
1994

(3—oceanic) pre-Barremian?—mid-
Albian?, Campanian?-Maastrichtian:
Montadert et al., 1985; Robinson,
1994; Iturralde-Vinent, 1995

(1—limestone) Albian, Santonian?,
Campanian, Maastrichtian, Paleocene:
Bowin, 1975; Lebrén and Perfit,
1993; Iturralde-Vinent, 1994b, 1997a

(3—arc) Neocomian—Campanian:
Bowin, 1975; Maurrasse, 1990; Lewis
et al,, 1991; Mann et al., 1991; Lebr6n
and Perfit, 1993, Iturralde-Vinent,
1994b, 1997a; Russell and Kesler,
1991; Kesler et al., 1991a, 1991b
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Greater Antilies
Foldbelt

Aves—Lesser Antilles
arc segment

Aves—Lesser Antilles
arc segment

Aruba/Tobago Belt

Caribbean Mountains
Foldbelt

3. PALEOCENE-EOCENE VOLCANIC ARC

Nicaragua—Cayman
arc segment

Nicaragua—Cayman
arc segment

Greater Antilles
Foldbelt

Puerto Rico/Virgin
Islands

Aves Ridge

Lesser Antilles

Aruba to Tobago

Caribbean Mountains

Cayman Ridge and
Nicaragua Rise

Western Jamaica

Eastern Cuba

(1) Albian, Coniacian—Santonian,
mid-Campanian, Maastrichtian:
Maurrasse, 1990; Lewis et al.,, 1990

(1) Campanian: Maurrasse, 1990

(1) Campanian—Maastrichtian:
Gonzélez de Juana et al., 1980;
Jackson and Robinson, 1994;
Donovan, 1994

(1) mid-Campanian: Bellizia and
Dengo, 1990; Beccaluva et al., 1996

(1) Middle Eocene: Eva and
McFarlane, 1985; Robinson, 1994

(1) Middle Eocene, very local:
Iturralde-Vinent, 1976-77

(1) Aptian?, Albian, Santonian,
Campanian, Maastrichtian:
Maurrasse, 1990; P. Skelton and
H. Santos, personal commun. 1996

(3—arc) Barremian?-Maastrichtian:
Maurrasse, 1990; Lewis et al., 1990

(3—arc) Cretaceous: Nagle, 1972;
Bouysse et al., 1985; Pinet et al.,
1985

(3—arc) Berriasian?-Maastrichtian:
Bouysse et al., 1985; Pinet et al.,
1985; Westercamp et al., 1985;
Maury et al., 1990

(3—oceanic or back arc) early
Cretaceous: Gonzdlez de Juana et al.,
1980; Jackson and Robinson, 1994;
Donovan, 1994

(3—arc) late Cretaceous: Gonzédlez
de Juana et al., 1980; Jackson and
Robinson, 1994; Donovan, 1994

(1) late Campanian, Maastrichtian:
Bellizia and Dengo, 1990; Beccaluva
et al., 1996

(3—oceanic and back arc) Cretaceous
(pre-Campanian): Bellizia and Dengo,
1990; Beccaluva et al., 1996

(3—arc) Perfit and Heezen, 1978

(3—back arc) Early to Middle Eocene:
Sigurdsson et al., 1997 [Hole 998]

(1, 2) Eva and McFarlane, 1985;
Robinson, 1994

(1) Middle Eocene: Iturralde-Vinent,
197677, 1994a, 1996d

(2) Paleocene—Late Eocene: Iturralde-
Vinent, 1976-77, 1994a, 1996b,
1996d

(3-—arc, back arc) Paleocene—early
Middie Eocene: Iturralde-Vinent,
1976-77, 1994a, 1996
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Greater Antilles
Foldbelt

Greater Antilles
Foldbelt

Greater Antilles
Foldbelt

Aves-Lesser Antilles
arc segment

Aves-Lesser Antilles
arc segment

Eastern Jamaica
(Blue Mountains)

Hispaniola

Puerto Rico/
Virgin Islands

Aves Ridge

Lesser Antilles

(1) Early Paleocene, Middle Eocene:
Eva and McFarlane, 1985; Robinson,
1994

(1) Middie Eocene: Butterlin, 1960;
Maurrasse, 1982; Draper, 1989;
Mann et al., 1991

(1) Middle Eocene: Mattson, 1984,
Lewis et al., 1990

4. PALEOCENE-EOCENE INACTIVE ARC SEGMENTS (FOLDBELT)

Western, west-
central, and east-
central Cuba
inactive segment

Aruba/Tobago Belt

Aruba/Tobago Belt

Cordillera del Caribe
thrust belt

Western and central

Cuba

Aruba to Los Roques

and Tobago

Margarita and
Trinidad

Caribbean Mountains

5. OCEANIC CRUSTAL SEGMENTS

Yucatan Basin

Cayman Trench

Southern Hispaniola
Terrane

Yucatan Deep

Cayman Trench

Hispaniola

(Southern [Tiburon]

Peninsula)

(1) Paleocene, Middle-Late Eocene:
Iturralde-Vinent, 1994a, 1996a

(1) Late Paleocene, Middle Eocene,
Late Eocene: Jackson and Robinson,
1994

(1) Middle-Late Eocene locally:
Jackson and Donovan, 1994; Algar
and Erikson, 1995

(1) Gonzédlez de Juana et al., 1980

(1) mid-Campanian, Maastrichtian:
Maurrasse, 1990; Lewis et al., 1990;
Mann et al., 1991

(1) Paleocene, Middle-Late Eocene:
Eva and McFarlane, 1985; Robinson,
1994

(2) Eocene: Eva and McFarlane,
1985; Robinson, 1994

(3—arc) Paleocene—Early Eocene:
Robinson, 1994

(1—arc, back arc) Paleocene-Lower
Eocene: Butterlin, 1960; Maurrasse,
1982; Draper, 1989; Mann et al., 1991

(37) Maurrasse, 1990; Mann et al.,
1991; Lewis et al., 1990

(1, 3——arc) Nagle, 1972; Bouysse
et al., 1985; Pinet et al., 1985

(3—arc) Bouysse et al., 1985;
Maury et al., 1990

(1, 2) Iturralde-Vinent, 1994a, 1996a

(1) Gonzalez de Juana et al., 1980;
Maurrasse, 1990; Jackson and
Robinson, 1994

(2) Paleocene~latest Eocene:
Donovan, 1994; Algar and Erikson,
1995

(2) Paleocene—~Eocene foreland
sediments: Gonzdlez de Juana et al.,
1980

(3—oceanic) Maastrichtian?—
Eocene?: Rosencrantz, 1990

(3—oceanic) mid-Eocene-Recent,
with Oligocene gap: Rosencrantz,
1990, 1995

(3—oceanic) Cenomanian—
Campanian: Maurrasse, 1990; Lewis
et al., 1990; Mann et al., 1991
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Beata Ridge

Greater Antilles
ophiolite thrust belts

Colombia and
Venezuelan Basins

Siquisique thrust
belt

Aruba/Tobago Belt

Southern Central
American Volcanic

Beata Ridge

Greater Antilles

Colombia and
Venezuelan Basins

Venezuela

Aruba to Tobago

Costa Rica and
Panama

(3—oceanic) Cretaceous: Holcombe
et al,, 1990

(3—oceanic) early Jurassic to late
Cretaceous: Montgomery et al., 1994;
Iturralde-Vinent, 1996a; Dengo and
Case, 1990

(3—oceanic) Cretaceous: Holcombe
et al., 1990; Case, 1975

(3—oceanic) mid-Jurassic: Bartok
et al., 1985; Case et al., 1990

(3—oceanic) Cretaceous: Jackson
and Robinson, 1994

(3—oceanic) Jurassic, Cretaceous:

Arc

Escalante, 1990; Dengo and Case,
1990; Kolarski et al., 1995a, 1995b

out of existence within periods of only afew
million years.

A good example of such evanescence can
be seen in the section along the Cana Paso
Bonito a Cruces, northwest of Sierra de Es-
cambray, Cuba (unpubl. obs.). Here, Creta-
ceous volcanic breccias and agglomerates are
patchily overlain by slope and alluvial sands
and gravels which have been weathered to
paleosols that exhibit caliches, root casts, and
other indications of subaerial exposure.
These rocks are in turn succeeded by un-
weathered, well-bedded tuffs and rare marine
limestones. Thus, however long this island
may have existed, it did not last as land into
later epochs.

Tracking the paleoposition (i.e., changesin
latitude and longitude through time) of the
Cretaceous volcanic arc is another issue of
great importance. There appears to be a con-
sensus, at least among authors of the most
widely cited plate tectonic models, that this
arc originated in the Pacific (Malfait and
Dinkelmann, 1972; Burke et al., 1984; Le-
clere and Stephan, 1985; Pindell and Barrett,
1990; Pindell, 1994), although other inter-
pretations also exist (fig. 5; Turner, 1972;

Donnelly, 1989a; Iturralde-Vinent, 1994a,
1997b). However, whatever its starting po-
sition might have been, there is little evi-
dence to support the view that the continents
were physicaly united by the arc. In princi-
ple, connection might have occurred during
major uplift events recorded in association
with various unconformities (between the
Neocomian and early Albian, between the
Coniacian and Santonian, and in the early
Campanian). However, information is lack-
ing concerning whether these erosional sur-
faces were continuous or synchronous along
the trend of the arc (Iturralde-Vinent 1994a,
1996b, 1997b). During the late Campanian
and early Maastrichtian (ca. 70—-80 Ma) sub-
stantial subaerial exposure existed along the
Cretaceous arc and adjacent continental mar-
gins, as indicated by evidence of deforma-
tion, angular uncomformities, hiatuses, deep-
seated erosion, mountain building, and ter-
restrial sedimentation (including conglomer-
ate and paleosol development) (Khudoley
and Meyerhoff, 1971; Mattson, 1984; Push-
charovski et al., 1989; Maurrasse, 1990;
Lewis et al., 1990; Iturralde-Vinent, 1994a,
c, 1995, 1996b, 1997b; Beccaluva et al.,
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1996). At this time magmatic activity ter-
minated along large segments of the volcanic
arc, including its western and eastern extrem-
ities (i.e., modern central and western Cuba
in the north and west, and the Netherlands
and Venezuelan Antilles and Caribbean
Mountains in the south and east). Cessation
of the magmatic phase is coincidental on a
wider scale with the Subhercinian orogeny
(Schwan, 1980; Leonov and Khain, 1987),
an important global tectonic event, and sev-
eral drops in eustatic sea level (Hag et al.,
1987). It is reasonable to infer that if any
land connection existed between North and
South America in the last part of the Creta-
ceous, this connection most probably would
have occurred during the late Campanian and
early Maastrichtian. However, if in fact con-
tact occurred it would have been brief, be-
cause transgressive late M aastrichtian marine
sediments are recorded in the Cretaceous
volcanic arc as well as in North and South
America (table 1; appendix 1).

There does not appear to be any reliable
evidence of permanent islands or island—con-
tinent connections in the Caribbean region
during the early part of the Paleogene, al-
though we cannot reject this possibility al-
together (see Biogeographical Hypotheses
and Caribbean Paleogeography). An uncon-
formity dated to the K/T boundary is known
to exist in some parts of the Caribbean sea
floor, but uninterrupted sedimentation evi-
dently continued elsewhere in the Caribbean
Basin, even within the area of the inactive
Cretaceous arc. This unconformity could
have been caused by submarine erosion rath-
er than by cessation of deposition if, for ex-
ample, it was induced by tsunamis triggered
by the K/T impactor landing in Chicxulub
(Pszczolkowski, 1986; Maurrasse and Sen,
1991) and/or in the Yucatan Basin (Iturralde-
Vinent, 1992).

After a period of relative quiescence, vol-
canic activity began again in the Caribbean
region in the Paleocene (lturralde-Vinent,
19944, 1997b), as indicated by the occur-
rence of a set of magmatic, sedimentary, and
metamorphic rocks that widely outcrop in the
region (eastern Cuba, Jamaica, Hispaniola,
Puerto Rico, Virgin Islands, Cayman Ridge,
Nicaragua Rise, and Aves Ridge/Lesser An-
tilles). This resumption of activity ushered in
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the formation of the Paleogene volcanic arc.
However, magmatism was short-lived in this
new arc, effectively ending by the Middle
Eocene. Within the Paleogene arc, marine
sediments uninterruptedly filled some basins,
indicating that land contacts between arc
components and the continents were not (or
were no longer) in existence (Lewis and
Straczek, 1955; Bresznyanszky and Iturralde-
Vinent, 1985). Uninterrupted sedimentation
from Paleocene through Middle Eoceneisre-
corded in basins located on the Caribbean
seafloor (Edgar et a., 1973; Sigurdsson et al .,
1997), as well as in foldbelt areas, along the
trend of the inactive segments of the Creta-
ceous arc (e.g., deep marine sediments out-
cropping through much of La Habana and
Matanzas provinces in west central Cuba)
(Bronnimann and Rigassi, 1963; Pszczol-
kowski, 1987; Bresznyanszky and lturralde-
Vinent, 1985; Bralower and Iturralde-Vinent,
1997). Furthermore, a major transgression
occurring between the late Early and Middle
Eocene produced extensive deposits of shal-
low- and deep-water marine carbonate rocks
on previously positive areas throughout the
Caribbean (Lewis and Straczek, 1955; Bron-
nimann and Rigassi, 1963; lturralde-Vinent,
1982, 1994a; Holcombe et al., 1990; Lewis
et al., 1990; Maurasse, 1990; Edgar et al.,
1973; Sigurdsson et al., 1997). The occur-
rence of this transgression militates against
there having been any considerable exposure
of land during the early Middle Eocene.
Another global tectonic event, the Illyrian
phase of tectogenesis (Leonov and Khain,
1987), produced a profound modification of
the Caribbean tectonic regime between Mid-
dle and Late Eocene (fig. 5). Extensive uplift
and deformation occurred not only in the Ca-
ribbean Basin per se but also in the surround-
ing continental margins and oceanic domains
(Khudoley and Meyerhoff, 1971; Gonzalez
de Juana et al., 1980; Mattson, 1984; Lewis
et al., 1990; Iturralde-Vinent 1981, 19943,
1994b, 1994c, 1996a; Maurrasse, 1990).
With reorganization of the geodynamic re-
gime, the relative motion of the Caribbean
Plate shifted eastward, and relative motion
between the North and South American
plates decreased markedly (Pindell, 1994). In
concert with these developments, several de-
formed belts were consolidated and accreted
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against continental areas, and magmatic ac-
tivity shifted to new locations (Central
America and Lesser Antilles). The north-
western edge of the Caribbean Plate (NW
Greater Antilles Belt) collided with the Yu-
catan and Bahamas margins, while the south-
eastern edge (Aruba/Tobago Belt) interacted
with the South American margin. Also, be-
ginning in the latest Eocene, new tectonic el-
ements were defined within the Caribbean re-
gion. Transverse faulting divided the plate
into several microplates and block-terranes,
and their subsequent displacement disrupted
the original structure (see appendix 2).

In summary, existing data indicate that
subaerial entities were formed along the Cre-
taceous and Paleogene volcanic arcs and
nearby continental margins from time to time
from the Jurassic into the Eocene. However,
there is no evidence that any of these entities
lasted for long periods,; indeed, none seems
to have survived as emergent land into the
subsequent interval (latest Eocene to Middle
Miocene). Nevertheless, if the Cretaceousarc
ever connected North and South America,
this most likely occurred during the late
Campanian to early Maastrichtian (ca. 70—80
Ma ago), just after extinction of the Creta-
ceous volcanic arc.

LATEST EOCENE TO MIDDLE
MIOCENE PALEOGEOGRAPHY

In this section, three ““ snapshot’ intervals
are discussed in detail: Eocene—Oligocene
transition (35—-33 Ma), Late Oligocene (27—
25 Ma), and early Middle Miocene (16-14
Ma). Basic data are presented in appendix 1
(see also figs. 68 and tables 2—4). These in-
tervals were chosen in order to contrast pe-
riods of maximum and minimum land de-
velopment. The Eocene—Oligocene transition
was a time of general uplift; therefore, the
amount of subaerial land in the Caribbean
should have been at a maximum. The Late
Oligocene was a time of high sea level, and
therefore of mimimum exposure (and, prob-
ably, interconnectedness) of emergent areas
in the early Cenozoic. In the early Middle
Miocene, further isolation of land areas took
place as a consequence of active tectonic dis-
ruption of the northern and southern Carib-
bean Plate boundaries. In the case of the
Greater Antilles, this resulted in the subdi-
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vision and separation of block-terranes pre-
viously acting as continuous landmasses.
This subdivision may have been significant
biogeographically if it caused island—sland
vicariance (as opposed to continent—island
vicariance; see Biogeographical Hypotheses
and Caribbean Paleogeography).

EocENE—OLIGOCENE TRANSITION (35-33 Ma)

The transition between the end of the Eo-
cene and the beginning of the Oligocene
(zones P16 to P18 of Berggren et a., 1995)
coincides with the Pyrenean phase of tecto-
genesis (Schwan, 1980; Leonov and Khain,
1987), the effects of which are well repre-
sented in the Caribbean region (MacPhee and
Iturralde-Vinent, 1995). In this phase, gen-
eral tectonic uplift coincided with a major
eustetic sea level drop at ca 35 Ma (Miller
et al., 1996). As a result, subaerial exposure
within the Caribbean basin was probably
more extensive then than at any other time
in the Cenozoic, including the late Quater-
nary. The map in figure 6 reflects this fact
(see also table 2). However, it isimportant to
compare this map with other “Oligocene”
reconstructions which represent this period
as one of overall minimum land exposure
(e.g., Gonzélez de Juana et al., 1980; Gallo-
way et al., 1991; Macellari, 1995). The ex-
planation for the difference in treatment lies
in the fact that most Oligocene reconstruc-
tions depict the paleogeography of the mid-
to later Oligocene, by which time the Pyre-
nean orogenic phase had terminated (see dis-
cussion of next map).

Evidence for Pyrenean uplift can be seen
in stratigraphic sections as well as submarine
dredge samples, drill cores, and seismic lines
recovered from many parts of the Caribbean
and surrounding continental borderlands (ta-
ble 2; appendix 1). Stratigraphic sections
consistently lack marine sediments of latest
Eocene—Early Oligocene age, presenting in-
stead hiatuses, red beds, and other kinds of
terrestrial deposits (table 2; appendix 1). In
many sedimentary basins |located near former
topographic highs, latest Eocene/Early Oli-
gocene sediments carry abundant land-de-
rived debris, chiefly very coarse conglomer-
ates (matrix or clast-supported) and sand-
stones. This type of sedimentary unit is so
common that it may usefully be dubbed the
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TABLE 2
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Land and Marine Indicators for Selected Geological Units of Caribbean Region,
Eocene-Oligocene Transition (35-33 Ma, Zones P16-18)

Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Florida Block

Bahamas Platform

Mexican terranes

Maya Block

Chortis Block

Nicaragua Block

Western Jamaica
Block

Southern Central
American Volcanic
Arc

Atrato Basin

Northwestern South
American foldbelts
and basins (NWSA
Microcontinent)

Cordillera del Caribe
Thrust Belt

Aruba/Tobago Belt

Greater Antilles
Foldbelt (Cuban
blocks)

Greater Antilles
Foldbelt (Blue
Mountains Block)

Florida Peninsula

Bahamas

Southern Mexico

Yucatan Peninsula

Northern Central
America

Nicaragua Rise

Western Jamaica

Southern Central
America

Northwestern South

America

Northwestern South
America

Caribbean Mountains

Aruba to Tobago

Cuba

Eastern Jamaica

(1) Galloway et al., 1991; Hine, 1997;
Randazzo and Jones, 1997

(1—local hiatus) Ravenne et al., 1985

(1, 3) Lépez Ramos, 1975

(1) Butterlin and Bonet, 1966
(1, 2) Lépez Ramos, 1975

(1, 2) Maurrasse, 1990; Donnelly
et al., 1990

(1) Maurrasse, 1990; Holcombe et al.,
1990; Sigurdsson et al., 1997 [Hole
1001]

(1, 2) Waterford Touche-1, Colombia
Berta-1 wells: Holcombe et al., 1990,
Maurrasse, 1990; Donnelly et al.,
1990

(1) Eocene-Oligocene hiatus of short
duration: Eva and McFarlane, 1985;
Robinson, 1994; Montadert et al., 1985

(3) Escalante, 1990; Kolarsky et al.,
1995a

(1) Duque-Caro, 1990

(1, 2, 3) Gonzélez de Juana et al.,
1980; Balkwill et al., 1995; Macellari,
1995; Lugo and Mann, 1995; Parnaud
et al., 1995; Cooper et al., 1995

(1) Gonzalez de Juana et al., 1980,
Mills, 1994; Macellari, 1995

(1) Hunter, 1978; Gonzélez de Juana
et al., 1980; Jackson and Robinson,
1994; Donovan, 1994; Macellari, 1995

(1, 2, 3) Iturralde-Vinent, 1972, 1988a;
MacPhee and Iturralde-Vinent, 1995

(1) Eva and McFarlane, 1985;
Montadert et al., 1985; Robinson,
1994

(1) Galloway et al., 1991; Hine, 1997,
Randazzo and Jones, 1997

(1, 2) Meyerhoff and Hatten, 1974;
Buffler and Hurst, 1995

(1, 2, 3) Lépez Ramos, 1975

(1, 2) Butterlin and Bonet, 1966;
Lépez Ramos, 1975

(3) Maurrasse, 1990; Donnelly et al.,
1990

(1) Oligocene rocks dredged from
Cayman Trench walls: Perfit and
Heezen, 1978

(3) Holcombe et al., 1990

(1, 2) Eva and McFarlane, 1985;
Robinson, 1994; Montadert et al.,
1985

(1, 2, 3) Escalante, 1990; Kolarsky
et al., 1995a

(1, 2) Orinoco River basin: Gonzélez
de Juana et al., 1980; Cooper et al.,
1995; Algar and Erikson, 1995

(2) Trinidad: Algar and Erikson, 1995

(1, 2) Iturralde-Vinent, 1972, 1988a;
MacPhee and Iturralde-Vinent, 1995

(1) Eva and McFarlane, 1985;
Robinson, 1994



1999

TABLE 2
(Continued)
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Greater Antilles
Foldbelt
(Hispaniolan
block-terranes)

Greater Antilles
Foldbelt
(Puerto Rico/
Virgin Islands
Block)

Lesser Antilles
Volcanic Arc

Aves Foldbelt

Grenada Backarc

Basin“

Beata Block

Cayman Ridge

Cayman Trench?

Caribbean oceanic

crust

Hispaniola

Puerto Rico/
Virgin Islands

Lesser Antilles

Aves Ridge

Grenada Basin

Beata Ridge

Cayman Ridge

Cayman Trough

Colombia and
Venezuela Basins

(1, 2, 3) Butterlin, 1960; Maurrasse,
1982; Mann et al., 1991; Iturralde-
Vinent and MacPhee, 1996

(1, 2, 3) Meyerhoff, 1933; Monroe,
1980; MacPhee and Iturralde-Vinent,
1995

(1) St. Croix: MacLaughlin et al.,
1995

(1) Westercamp et al., 1985;
Maury et al., 1990

(1, 2, 3) hiatus is inferred; weathering
is reported from clasts in the conglom-
erate: Nagle, 1972; Bock, 1972;
Bouysse et al., 1985; Pinet et al., 1985

(1) Case, 1975; Mascle et al., 1985;
Holcombe et al., 1990; DSDP Hole
151: Maurrasse, 1990

(1) Perfit and Heezen, 1978;
Jones, 1994

(1) Edgar et al., 1973; Maurrasse,
1990

(1, 2) Butterlin, 1960; Maurrasse,
1982; Mann et al., 1991; Iturralde-
Vinent and MacPhee, 1996

(1) Meyerhoft, 1933; Monroe, 1980;
MacPhee and Iturralde-Vinent, 1995

(1, 3) Westercamp et al., 1985;
Maury et al., 1990

(1) Saba Bank: Nemec, 1980;
Pinet et al., 1985

(1, 2) Bouysse et al., 1985;
Pinet et al., 1985; Nemec, 1980;
Bird, 1991; Bird et al., 1993

(1) Oligocene rocks dredged from
Cayman Trench walls: Perfit and
Heezen, 1978

(2) Edgar et al., 1973; Maurrasse,
1990; Sigurdsson et al., 1997
[Hole 999]

Yucatan Basin and
Cayman Rise

Yucatan Basin and
Cayman Rise

(1, 2) Inferred from seismic lines:
Rosencrantz, 1990

(2) Sigurdsson et al., 1997 [Hole 998]

a Active at this time (Bouysse et al., 1985; Pinet et al., 1985; Bird, 1991; Bird et al., 1993).
& Trench not then in existence between Cuba and Hispaniola (Iturralde-Vinent, 1991; Calais et al., 1992).

“* Eocene—Oligocene transition conglomerate
event.”” In places far removed from terrestrial
sediment sources, such as basins in the Ca-
ribbean sea floor, deep-marine deposition
was condensed (i.e., pelagic sedimentation
occurred at a low rate). Low sedimentation

rate is in agreement with the combined ef-
fects of lowered sea level and restricted sea-
water circulation (Haq et al., 1987).

The Aves Ridge deserves special mention
because it has been proposed as the site of a
potential landspan between the Greater An-
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tilles and northern South America (Borhidi,
1985; MacPhee and Iturralde-Vinent, 1994,
1995). This structure—presently almost com-
pletely submerged—was originally continu-
ous with the Greater Antilles Ridge and is
considered to have constituted a single entity
in latest Eocene/Early Oligocene time. We
argue that exposure of the ridgecrest created,
for a short time ca. 33-35 Ma, a series of
large, closely spaced islands or possibly a
continuous peninsula stretching from north-
ern South America to the Puerto Rico/Virgin
Islands Block (see GAARIandia Landspan
and Island—-Island Vicariance).

Among the points in the paleogeographi-
cal reconstruction that require further refine-
ment and explanation are the close position-
ing of southwestern Hispaniola and the Blue
Mountains Block, as well as inferred per-
manent exposure of parts of Jamaica as early
as 33-35 Ma (see appendix 1). Also note-
worthy is the fact that western Cuba would
have been separated by deep-water environ-
ments (Havana—Matanzas Channel) from
central and eastern Cuba at this time.

Other features characteristic of the present
Caribbean sea floor that did not exist in Eo-
cene-Oligocene times (and are therefore not
depicted) include the Cayman Trench and
Anegada Trough, among others (see appen-
dix 1) (Caais et al., 1989, 1992; see discus-
sion by MacPhee and Iturralde-Vinent, 1994,
1995).

LATE OLIGOCENE (27-25 Ma)

The Late Oligocene (zones P21b—P22 of
Berggren et al., 1995) was a time of exten-
sive marine invasions, probably due to a
combination of tectonic subsidence and high
sea level stands (table 3). Marine sediments
of this age are common in North and South
America and the Greater Antilles (fig. 7). In-
undation of terrestrial environments began as
early as zone P19 (Berggren et al., 1995) and
continued into zone P22. Evidence of Late
Oligocene transgression is seen in strati-
graphic sections, dredge samples, drill cores,
and seismic lines recovered from many parts
of the Caribbean region and the Florida
Block. Stratigraphic sections consistently re-
cord mid-Late Oligocene marine deposits
overlying older rocks. In the more distal sed-
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imentary basins of the Caribbean sea floor,
the rate of sediment accumulation increases
at this time and deeper water environments
upwardly dominate Oligocene sections. The
amount of land-derived debris in such sec-
tions is substantially reduced, with fine-grain
and biogenic deposits dominating. Neverthe-
less, heights-of-land remained persistently
subaerial along the axis of GAARIandia, as
shown by the existence of rocks formed in
nonmarine environments, presence of land-
derived sediments and plant remains in prox-
imate marine basins, and depositional hiatus-
es in sections. These results suggest that, in
an area such as the Caribbean region, in
which vertical motions have been marked,
the amount of terrestrial exposure or inun-
dation cannot be simply read out from sea-
level curves (e.g., Haq et al., 1987).

EARLY MIDDLE MIOCENE (16-14 Ma)

The early Middle Miocene paleogeogra-
phy (zones M5-M7 of Berggren et al., 1995)
of the Caribbean region shows the effects of
disruption of the deformed foldbelt bounding
the Caribbean Plate (fig. 1; table 4). The pro-
cess of Neogene disruption, the tectonic
characteristics of which have been extensive-
ly investigated (Mann et al., 1990; Pindell
and Barrett, 1990; Pindell, 1994; Macellari,
1995), is recorded east of Cuba along the
plate’'s northern boundary, and within the
Netherlands and Venezuelan Antilles to Trin-
idad and Tobago along its southern bound-
ary. Localized extension occurred along both
boundaries as grabens, pull-apart basins, and
trenches began to form. This, combined with
continuing marine transgression, served to
further isolate fault-bounded block-terranes
from one another along plate boundaries. Ex-
amples of extensional features formed or ac-
tivated at this time in the central Caribbean
Basin include the Cayman Trench between
Cuba and Hispaniola, the Anegada Trough
between the northern Virgin Islands and St.
Croix/Aves Ridge, the Puerto Rico Trench
(Mann and Burke, 1984; Mann et al., 1990),
and the Tortuga Basin (fig. 1). Significantly,
extension also took place along the axis of
the Nicaragua Rise (Droxler et al., 1989)

Figure 8 shows Puerto Rico and Hispan-
iola as being connected by a neck of land
into the Miocene. The existence of this con-
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TABLE 3
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Land and Marine Indicators for Selected Geological Units of Caribbean Region,
Late Oligocene (27-25 Ma, Zones P21b-22)

Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Florida Block

Bahamas Platform

Mexican terranes

Maya Block

Chortis Block

Nicaragua Block

Western Jamaica
Block

Southern Central
American Volcanic
Arc

Atrato Basin

Northwestern South
American foldbelts
and basins (NWSA
Microcontinent)

Cordillera del Caribe
Thrust Belt

Aruba/Tobago Belt

Greater Antilles
Foldbelt (Cuban
blocks)

Florida Peninsula

Bahamas

Southern Mexico

Yucatan Peninsula

Northemn Central
America

Nicaragua Rise

Western Jamaica

Southern Central
America

Northwestern South
America

Northwestern South
America

Caribbean Mountains

Aruba to Tobago

Cuba

(1) Galloway et al., 1991; Hine, 1997,
Randazzo and Jones, 1997

(1—local hiatus) Ravenne et al., 1985

(1, 3) Lépez-Ramos, 1975

(1) Butterlin and Bonet, 1966

(1, 2) Lépez-Ramos, 1975; Galloway
etal., 1991

(1) Donnelly et al., 1990; Maurrasse,
1990

(1) Holcombe et al., 1990; Sigurdsson
et al., 1997 [Hole 1001]

(1, 2) Waterford Touche-1, Colombia
Berta-1 wells: Holcombe et al., 1990;
Maurrasse, 1990; Donnelly et al.,
1990

(1) Eva and McFarlane, 1985;
Montadert et al., 1985; Robinson,
1994

(3) Escalante, 1990; Kolarsky et al.,
19935a

(1, 2, 3) Gonzilez de Juana et al.,
1980; Balkwill et al., 1995; Macellari,
1995; Lugo and Mann, 1995; Pammaud
et al., Cooper et al., 1995

(1) Gonzélez de Juana et al., 1980;
Macellari, 1995

(1) Hunter, 1978; Gonzdlez de Juana
et al., 1980; Jackson and Robinson,
1994; Donovan, 1994; Macellari,
1995

(1, 2, 3) Iturralde-Vinent, 1972, 1988a;
MacPhee and Iturralde-Vinent, 1995

(1) Galloway et al., 1991; Hine, 1997,
Randazzo and Jones, 1997

(1, 2) Meyerhoff and Hatten, 1974;
Buffler and Hurst, 1995

(1, 2) Lépez-Ramos, 1975

(1, 2) Butterlin and Bonet, 1966;
Lépez-Ramos, 1975

(1) Donnelly et al., 1990; Maurrasse,
1990

(1) Oligocene rocks dredged from
Cayman Trench walls: Perfit and
Heezen, 1978

(1, 2) Eva and McFarlane, 1985;
Montadert et al., 1985; Robinson,
1994

(1, 2) Escalante, 1990; Kolarsky
etal., 1995a

(2, 3) Duque Caro, 1990

(1, 2) Gonzilez de Juana et al., 1980;
Balkwill et al., 1995; Macellari, 1995;
Lugo and Mann, 1995; Parnaud et al.,
1995; Cooper et al., 1995

(1) Interpreted as shallow water re-
gime; patches of Miocene rocks occur
in mountains: Gonzélez de Juana et
al., 1980; Mills, 1994; Hoorn et al.,
1995

(1, 2) Algar and Erikson, 1995;
Gonzdlez de Juana et al., 1980;
Jackson and Robinson, 1994;
Donovan, 1994; Macellari, 1995

(1, 2) Tturralde-Vinent, 1972, 1988a;
MacPhee and Iturralde-Vinent, 1995
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TABLE 3
(Continued)
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Greater Antilles
Foldbelt (Blue
Mountains Block)

Greater Antilles
Foldbelt
(Hispaniolan
block-terranes)

Greater Antilles
Foldbelt

(Puerto Rico/

Virgin Islands Block)

Lesser Antilles
Volcanic Arc

Aves Foldbelt

Grenada Backarc
Basin®

Beata Block

Cayman Ridge

Cayman Trench?

Mona Canyon and
Basin¢

Anegada Basin?

Caribbean oceanic
crust

Yucatan Basin and
Cayman Rise

Eastern Jamaica

Hispaniola

Puerto Rico/
Virgin Islands

Lesser Antilles

Aves Ridge

Grenada Basin

Beata Ridge

Cayman Islands and
Cayman Ridge

Cayman Trough

Mona Passage

Anegada Passage

Colombia and
Venezuela Basins

Yucatan Basin and
Cayman Rise

(1, 3) Eva and McFarlane, 1985;
Robinson, 1994; Montadert et al.,
1985

(1, 2, 3) Butterlin, 1960; Maurrasse,
1982; Mann et al., 1991; Iturralde-
Vinent, 1991; lturralde-Vinent and
MacPhee, 1996

(1, 2, 3) Meyerhoff, 1933; Monroe,
1980; MacPhee and Iturralde-Vinent,
1995

(1) St. Croix: MacLaughlin et al., 1995

(1) Westercamp et al., 1985; Maury
etal., 1990

(3) Nagle, 1972; Bock, 1972; Bouysse
et al., 1985; Pinet et al., 1985

(1) Probably due to submarine erosion
and poor core recovery: Edgar et al.,
1973; Maurrasse 1990; Sigurdsson

et al., 1997

(1, 2) Eva and McFarlane, 1985;
Robinson, 1994

(1, 2) Butterlin, 1960; Maurrasse,
1982; Mann et al., 1991; Iturralde-
Vinent and MacPhee, 1996

(1) Meyerhoff, 1933; Monroe, 1980;
MacPhee and Iturralde-Vinent, 1995

(1, 3) Marine and subaereal volcanic
activity: Westercamp et al., 1985;
Maury et al., 1990

(1) Nagle, 1972; Bock, 1972; Nemec,
1980; Bouysse et al., 1985; Pinet
et al., 1985

(2) Nemec, 1980; Bouysse et al., 1985;
Pinet et al., 1985; Bird et al., 1993

(2) Mascle et al., 1985; Holcombe
etal., 1990

(1) Perfit and Heezen, 1978; Jones,
1994

(2) Edgar et al., 1973; Maurrasse,
1990; Sigurdsson et al., 1997
[Hole 999]

(1, 2) inferred from seismic lines:
Rosencrantz, 1990

(2) Sigurdsson et al., 1997 [Hole 998]

a Active at this time (Bouysse et al., 1985; Pinet et al., 1985; Bird, 1991; Bird et al., 1993).
b Trench still not present between Cuba and Hispaniola (Iturralde-Vinent, 1988a, 1991; Calais et al., 1992; MacPhee and

Iturralde-Vinent, 1995).

¢ Not completely opened (Mann et al., 1990; Larue and Ryan, 1990; Pindell and Barrett, 1990).
4 Not yet opened (Masson and Scanlon, 1991; Mann et al., 1990; Larue and Ryan, 1990; Jany et al., 1990).
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nection is indicated, although not proven, by
evidence that (1) the formation of the Mona
Passage was a neotectonic event (Larue et
al., 1990; Jany et al., 1990; Masson and
Scanlon, 1991), and (2) the first late Ceno-
zoic marine sediments to onlap eastern His-
paniola and western Puerto Rico were Pleis-
tocene limestones, implying the existence of
a barrier of some kind. Additional data from
the floor of the Mona Passage would help to
clarify the history of this connection.
Comparison of figures 7 and 8 reveals that
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the amount of land in the central part of the
Caribbean Basin was approximately the same
in the Late Oligocene and the early Middle
Miocene. However, by the Middle Miocene,
block-terranes fringing the Caribbean Plate
were dready widely separated; many of
these would never be reunited again, even
during the glaciations (low-stand events) of
the late Quaternary. Late in the Middle Mio-
cene, western Cuba finally achieved dryland
contact with central Cuba after the disap-
pearance of the Havana—Matanzas Channel.

BIOGEOGRAPHICAL HYPOTHESES AND CARIBBEAN
PALEOGEOGRAPHY

This section is not intended as a review of
the recent systematically oriented literature
on Caribbean biogeography. Such an under-
taking, if properly comprehensive, would be
amajor undertaking unto itself and therefore
requires separate treatment (MacPhee and
Iturralde-Vinent, in prep.). Our narrower pur-
pose in this paper is to examine specific
problems in light of the new paleogeograph-
ical reconstructions developed in preceding
sections, with an emphasis on **how they did
it"”" as opposed to ‘“who did it.”” We pursue
this by considering, in turn, three quite dif-
ferent models proposed by Rosen (1975,
1985), Hedges and co-workers (1992, 1994;
Hedges, 1996a, 1996b), and MacPhee and
Iturralde-Vinent (1994, 1995).

CONTINENT-ISLAND VICARIANCE:
MODEL OF ROSEN

Rosen’s (1975, 1985) continent—island vi-
cariance model was the earliest attempt to
create a cladistically oriented biogeography
of the Caribbean region with an emphasis on
vertebrates.* Rosen’s (1975) principal inno-

4As a matter of historical record, the first intuitive
model of Antillean vicariance was proposed by J. Issac
del Corral (1940) in order to explain the origin of the
Cuban mammal fauna by Wegenerian ‘‘continental
drift.”” According to this author, before the Late Miocene
the Greater Antilles were attached to northern South
America (Colombia and Venezuela), whence they re-
ceived their mammalian fauna. Later on, the islands
drifted northward to their current positions. Vandel
(1973) used Issac del Corra’s (1940) model to account
for the relationship of troglobytic faunas in Cuba and
northern South America

vation was to wed modern ideas concerning
the relationships of whole faunas and areas
(see Croizat, 1964; Nelson and Platnick,
1981; Humphries, 1992; Morrone and Crisci,
1995) to the emerging theory of plate tecton-
ics, for one of the world’'s most complicated
biological and geological regions. Vicariance
theory has been critically explored with spe-
cial reference to Antillean faunas in several
recent works (e.g., Guyer and Savage, 1987,
1992; Kluge, 1988, 1989; Page and Lydeard,
1994; Roughgarden, 1995). In the main,
however, cladistic biogeographers have not
concerned themselves with updating or re-
vising Rosen’'s (1975: 453-454) paleogeo-
graphical inferences, despite his exhortations
that they do so.

In Rosen’s model, the ‘‘Antillean archi-
pelago” or ‘‘proto-Antilles’—here under-
stood as the Cretaceous and Paleocene—Eo-
cene volcanic arcs, although he did not make
this distinction—were assumed to have orig-
inated as a series of closely spaced islands
on the leading edge of the Caribbean crustal
plate in roughly the position occupied by
present-day Central America. As these is
lands were tectonically transported eastward,
they interacted with adjacent continental
margins in such a manner that they were able
to receive the greater part of their biota in
essentially one event (Rosen, 1975: fig. 8).
As Perfit and Williams (1989) pointed out,
although Rosen (1975) described this com-
mon-cause event as vicariant in nature, he
was ultimately noncommittal as to how im-
migration actually occurred. (Rosen’s maps
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TABLE 4
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Land and Marine Indicators for Selected Geological Units of Caribbean Region,
Early Middle Miocene (16-14 Ma, Zones M5-7)

Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Florida Block

Bahamas Platform

Mexican terranes

Maya Block

Chortis Block

Nicaragua Block

Western Jamaica
Block

Southern Central
American Volcanic
Arc

Atrato Basin

Northwestern South
American foldbelts
and basins (NWSA
Microcontinent)

Cordillera del Caribe
Thrust Belt

Aruba/Tobago Belt

Greater Antilles
Foldbelt (Cuban
blocks)

Florida Peninsula

Bahamas

Southern Mexico

Yucatan Peninsula

Northern Central
America

Nicaragua Rise

Western Jamaica

Southern Central
America

Northwestern
South America

Northern South
America

Caribbean Mountains

Aruba to Tobago

Cuba

(1, 3) Galloway et al., 1991, Hine,
1997; Randazzo and Jones, 1997

(1—local hiatus) Ravenne et al., 1985

(1, 3) Loépez-Ramos, 1975

(1) Butterlin and Bonet, 1966

(1, 2) L6pez-Ramos, 1975; Galloway
etal., 1991

(1) Maurrasse, 1990; Donnelly et al.,
1990

(1) Eva and McFarlane, 1985; Robin-
son, 1994; Montadert et al., 1985

(3) Escalante, 1990; Kolarsky et al.,
1995a

(1, 3) Gonzélez de Juana et al., 1980;
Balkwill et al., 1995; Macellari, 1995;
Lugo and Mann, 1995; Parnaud et al.,
1995

(1, 2, 3) Cooper et al., 1995

(1) Gonzélez de Juana et al., 1980

(1, 3) Hunter, 1978; Gonzilez de Juana
et al., 1980; Jackson and Robinson,
1994; Macellari, 1995; Donovan, 1994

(1, 2, 3) Iturralde-Vinent, 1969,
1988a; MacPhee and Iturralde-Vinent,
1994, 1995

(1) Galloway et al., 1991; Hine, 1997;
Randazzo and Jones, 1997

(1, 2) Meyerhoff and Hatten, 1974;
Buffler and Hurst, 1995

(1, 2, 3) Lépez-Ramos, 1975

(1, 2) Butterlin and Bonet, 1966;
Lépez-Ramos, 1975; Galloway et al.,
1991

(1?, 3) Maurrasse, 1990; Donnelly
et al., 1990

(1) Perfit and Heezen, 1978; Holcombe
et al., 1990; Waterford Touche-1,
Colombia Berta-1 wells: Holcombe
et al., 1990; DSDP 152: Maurrasse,
1990; Donnelly et al., 1990

(2) Sigurdsson et al., 1997 [Holes
1000, 1001]

(1, 2) Eva and McFarlane, 1985; Mon-
tadert et al., 1985; Robinson, 1994

(1, 2, 3) Escalante, 1990; Kolarsky
et al., 1995a

(2, 3) Duque-Caro, 1990

(1, 2) Orinoco River basin: Gonzalez
de Juana et al., 1980; Cooper et al.,
1995; Algar and Erikson, 1995

(1) Interpreted as shallow water;
patches of Miocene rocks occur in
mountains: Gonzélez de Juana et al.,
1980; Mills, 1994; Hoorn et al., 1995

(1, 2) Trinidad: Algar and Erikson,
1995

(1, 2) Iturralde-Vinent, 1969, 1988a;
MacPhee and Iturralde-Vinent, 1995
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TABLE 4
(Continued)
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Geological unit

Current
geographical
location of the
geological unit

Land indicators

Marine indicators

(1) hiatuses; (2) red beds, alluvia,
paleosols, plant and animal fossils;
(3) nearshore conglomerates and/or
lagoonal sediments

(1) shallow-water environments;
(2) deep-water environments;
(3) arc/oceanic volcanic activity

Greater Antilles
Foldbelt (Blue
Mountains Block)

Greater Antilles
Foldbelt (Hispan-
iolan block-terranes)

Greater Antilles
Foldbelt

(Puerto Rico/

Virgin Islands Block)

Lesser Antilles
Volcanic Arc

Aves Foldbelt

Grenada Backarc
Basine
Beata Block

Cayman Ridge

Cayman Trench?

Mona Basin¢

Anegada Basin?

Caribbean oceanic
crust

Yucatan Basin and
Cayman Rise

Eastern Jamaica

Hispaniola

Puerto Rico/
Virgin Islands

Lesser Antilles

Aves Ridge

Grenada Basin

Beata Ridge

Cayman Ridge and
Cayman Islands

Cayman Trough

Mona Passage

Anegada Trough

Colombia and
Venezuela Basins

Yucatan Basin and
Cayman Rise

(1, 3) Eva and McFarlane, 1985;
Montadert et al., 1985; Robinson,
1994

(1, 2, 3) Butterlin, 1960; Maurrasse,
1982; Mann et al., 1991; Iturralde-
Vinent and MacPhee, 1996; Graham,
1990

(1, 3) Monroe, 1980; MacPhee and
Iturralde-Vinent, 1995

(1) Westercamp et al., 1985;
Maury et al., 1990

(1) due to submarine erosion and/or
poor core recovery: Edgar et al.,
1973; Maurrasse, 1990

(1, 2) Eva and McFarlane, 1985;
Robinson, 1994

(1, 2) Butterlin, 1960; Maurrasse,
1982; Mann et al., 1991; Iturralde-
Vinent and MacPhee, 1996

(1) Monroe, 1980; MacPhee and
Iturralde-Vinent, 1995

(2) St. Croix: MacLaughlin et al., 1995

(1, 3) Westercamp et al., 1985;
Maury et al., 1990

(1, 2) Nagle, 1972; Bock, 1972;

Bouysse et al., 1985; Pinet et al.,
1985; Saba Bank: Nemec, 1980;
Pinet et al., 1985

(1, 2) Bouysse et al., 1985, Pinet et al.,
1985; Bird, 1991; Bird et al., 1993

(2) Mascle et al., 1985; Holcombe
et al., 1990

(1) Jones, 1994
(2) Perfit and Heezen, 1978

(1, 2) Perfit and Heezen, 1978;
Iturralde-Vinent, 1988a, 1991; Calais
et al., 1992; MacPhee and Tturralde-
Vinent, 1995

(1, 2) Mann et al., 1990; Larue and
Ryan, 1990; Larue et al., 1990

(1, 2) Mann et al., 1990; Larue and
Ryan, 1990; Jany et al., 1990

(2) Edgar et al., 1973; Maurrasse,
1990; Sigurdsson et al., 1997
[Hole 999]

(1, 2) inferred from seismic lines:
Rosencrantz, 1990

(2) Sigurdsson et al., 1997 [Hole 998}

a Active (see table 3).

& Open between Cuba and Hispaniola.

¢ Open between Puerto Rico and Hispaniola.

4 Open between northern Virgin Islands and St. Croix.
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imply that some short-distance, overwater
transport would have been required, which of
course muddies a primary distinction be-
tween vicariance and dispersal.) Subsequent
plate motions, Rosen argued, carried the is-
lands and their resident faunas to their cur-
rent locations. During this postvicariant in-
terval, amounting to all of the Cenozoic, the
faunas of the islands were further shaped by
extinction, local radiation, and, in a small
number of cases, by later overwater dispers-
als (Rosen, 1975: figs. 9-12). He ended this
section of his paper (pp. 453—454) with alist
of nine **general remarks’ on his**combined
vicariant and geophysical model,” remarking
that he incorporated ‘“ many provisional ideas
that urgently need independent testing.”

In assessing Rosen’s (1975) views in light
of modern tectonic theory, it should be ap-
preciated that the tectonic model that Rosen
utilized—Dbasically that of Malfait and Din-
kelmann (1972)—is not very different in its
conceptual framework from current models
of the evolution of the Caribbean Plate (e.g.,
Pindell, 1994). Instead, the essential problem
lies with Rosen’s paleogeographical scenar-
io: he simply assumed an identity relation-
ship between geological units and geograph-
ical entities in his discussion of the origin
and early history of the *‘ proto-Antilles,” as
becomes obvious when his maps are exam-
ined (on this point see also Rosen [1985] and
comments by Perfit and Williams [1989] and
Hedges [19964]). In short, he viewed the pa-
leoislands which existed in the position of
Central America in the Cretaceous as some-
how the ““same’” as the ones in existence to-
day, as the “‘transposed, original archipelago,
the Antilles” (Rosen, 1975: 432; see also
Rosen, 1985: 652).

This view of paleogeographical continuity
across 80 Ma or more of earth history is fun-
damentally flawed, because it does not take
into consideration the effects of tectonic pro-
cesses on Antillean biogeography between
the late Campanian and Recent (see Iturral-
de-Vinent, 1982). As noted above, the fold-
belt which constitutes the geological base-
ment of the present-day Greater Antilles was
created by complex phases of amalgamation
and deformation of rock units comprising the
Cretaceous and Paleogene arcs, together with
associated oceanic crust and continental mar-
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gin terranes (lturralde-Vinent et al., 1996a).
As we have emphasized, any islands then ex-
isting along the axis of the developing fold-
belt would have been intensely modified by
thrusting, folding, subsidence, and burial be-
neath thick tectonic nappes. Therefore, the
geography of the “proto-Antilles” (i.e., the
Cretaceous and Paleogene volcanic arcs)
probably has little or nothing to do with the
geography of the existing islands (Iturralde-
Vinent, 1982).

This point was also missed by Guyer and
Savage (1987, 1992), who in some respects
went even further than Rosen did in assum-
ing the permanency of islands. Guyer and
Savage (1987: 526) proposed that, with the
exception of avery few recent dispersals, the
ancestors of the anole faunas of the large is-
lands were emplaced all at once, and diver-
sified there on ‘‘the remnants of the once
more-or-less continuous land connection (the
proto-Greater Antillean block) that originally
lay between North and South Americaduring
late Cretaceous to early Tertiary.”

Although Rosen (1975) thought that fossil
evidence would prove to be of great impor-
tance for testing vicariance, at that time the
Antillean paleontological record was of little
value for testing hypotheses of vicariance be-
cause it was almost exclusively Quaternary
(MacPhee and Wyss, 1990). In the years
since Rosen wrote, the vertebrate fossil re-
cord has improved marginally, but not to the
extent that it can provide a critical test. As
noted by MacPhee and Wyss (1990), a strong
test of vicariance would require the discov-
ery of (1) numerous representatives of con-
tinental lineages (2) of the same or similar
age that are (3) not simply early members of
clades represented in the Antillean Quater-
nary.

Asto (1) and (2), the discovery that arhin-
ocerotoid perissodactyl (Hyrachyus sp.) lived
on an Early Eocene landmass now incorpo-
rated into present-day western Jamaica
(Domning et a., 1997) is certainly important
because it establishes that Rosen’s mecha-
nism (continent—island vicariance) may in-
deed occur. However, to date this discovery
remains the only fossil-based evidence for
Rosen-style vicariance in the Antillean ver-
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tebrate record.> However fascinating its dis-
covery may be on other grounds, one Eocene
rhinocerotoid from Jamaica is of limited ex-
planatory significance. If this species lived
on aterrane that was part of Central America
prior to the latter’'s separation and amalgam-
ation with other terranes represented in mod-
ern Jamaica—as is indeed possible, given its
substantial age—then it qualifies as a vicar-
iantly emplaced taxon in the very sense that
Rosen (1975) intended. There may be more
such taxa; the only way to find out isto pros-
pect in the correct contexts on other islands.

Other mammalian fossil discoveries made
in recent years include a ?megaonychid
sloth femur from an Early Oligocene context
in southwestern Puerto Rico (MacPhee and
Iturralde-Vinent, 1995), a possible insecti-
vore in Early Miocene Dominican amber
(MacPhee and Grimaldi, 1996; see also Itur-
ralde-Vinent and MacPhee, 1996), and vari-
ous remains attributable to a platyrrhine pri-
mate, a capromyid rodent, and another me-
galonychid from Early Miocene Domo de
Zaza, central Cuba (MacPhee and Iturralde-
Vinent, 1994, 1995). Although these discov-
eries significantly extend the insular records
of several higher-level mammalian taxa to
the early Neogene/late Paleogene, all of them
lie within clades that survived into the An-
tillean Quaternary and are therefore not un-
ambiguously representative of a ‘‘ continen-
tal” faunal aliquot. Reptile fossils have been
found in Tertiary contexts on the islands, but
few have been adequately published.

PASSIVE OVER-WATER DISPERSAL:
MODEL OF HEDGES AND
CO-WORKERS

In several recent papers, Blair Hedges and
his colleagues (Hedges et al., 1992, 1994;
Hedges 1996a, 1996b) have argued that anal-
ysis of immunological distances among ava-
riety of reptiles and amphibians reveals that
overwater dispersal has been by far the most

5 Additional, albeit nonvertebrate, fossil evidence for
vicariance is provided by the diverse ant faunarecovered
from Early Miocene Dominican amber. This fauna has
amore continental character than the extant Hispaniolan
fauna and includes forms never known to occur on oce-
anic islands (see commentary by Mayer and Lazell,
1988: 1477).
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important mechanism of faunal formation in
the West Indies. A centerpiece of their ar-
gument is that “‘al groups examined had
lower estimates of divergence than would be
predicted by proto-Antillean vicariance, sug-
gesting an origin by over-water dispersal in
mid- to late Cenozoic”’ (Hedges, 1996a: 97).
Although hypotheses other than Rosen-style,
mid-Cretaceous vicariance are briefly refer-
enced (e.g., that of MacPhee and Iturralde-
Vinent, 1994, 1995), discussion is otherwise
essentially bipolar: if classic continent—island
vicariance can be rejected, it seems, over-
water dispersal must be correct. With respect
to historical arguments no such certainty is
ever possible, and this is decidedly the case
with Antillean vertebrate colonizations. The
later papers in the series by Hedges and co-
workers introduce minor updates of the al-
bumin data and their interpretation. Graphic
representations of times of origin also differ
in various, sometimes subtle ways (cf. Hed-
ges et al., 1992: fig. 1; Hedges et al., 1994:
fig. 2; Hedges, 1996a: fig. 2).

Page and Lydeard (1994) have compre-
hensively discussed a number of systematic
and interpretative issues raised by Hedges et
al. (1992); Hedges et al. (1994) should be
consulted for repliesto their criticisms. Much
of the discussion in these papers is beyond
the scope of the present investigation and
will not be summarized here. However, other
points are clearly pertinent. These may be
grouped under three headings: (1) prelimi-
nary issues, (2) sources of error in estimating
times of lineage origins, and (3) passive
transport and Cenozoic surface—current pat-
terns.

PRELIMINARY |SSUES

Hedges basic database is impressive, but
partitioning it in different ways brings out
some of the underlying uncertainties and am-
biguities in his presentation of the informa-
tion. Some of these are detailed in the fol-
lowing paragraphs, but others would require
a larger investigation than we have the com-
petence to pursue.

(1) Number of lineages analyzed. Hedges
(1996a: 113) concluded that the ‘* major find-
ing of this analysisis that all but one or two
of the 77 independent lineages of amphibians
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and reptiles. . . [sampled for] the West Indies
apparently originated by dispersal in the Ce-
nozoic.” In fact, age-of-origin estimates are
specifically made for only 72 lineages, not
77; we use the corrected figure in computing
proportions in subsequent paragraphs. Line-
ages lacking such estimates are Hyla heilpri-
ni, Phyllodactylus wirshingi, Mabuya lineo-
lata, the Leptotyphlops bilineata group, and
Geochelone sp. (described as *“ unknown’ in
the text although his table 3 presents an es-
timate of *0-2?" Ma). Lineages that cannot
be dated as to origin cannot contribute to the
argument that their emplacement must have
been essentially random with respect to
time.®

(2) Mixture of morphological and immu-
nodiffusion data. Although Hedges et a.
(1992) presented ID evidence for divergence
time for a number of taxa, for many other—
more than 40 (56%) in Hedges' (1996a) most
recent analysis—ID data are not provided
and morphological divergenceis used instead
as a proxy measure. Although these latter
data are separately analyzed, their value
seems to us to be incidental to demonstrating
the validity of the main argument (i.e., that
Rosen-style vicariance is falsified by the lack
of temporal patterning in divergence times as
estimated by the ID data). Since there is no
linear clock that can be applied to rates of
morphological divergence, estimated times
of lineage origins can only be expressed in
the broadest terms. Thus Gymnophthalmus
pleei, an endemic Lesser Antillean teiid, is
viewed on morphological grounds as a close
relative of northern South American G. li-
neatus. Time of origin (by dispersal) is listed
as 0-45 Ma, the lower limit being based ex-
clusively on an estimate of the ‘** geologic or-
igin of the Lesser Antilles in the Eocene

6 Gregory C. Mayer (personal commun.) has called
our attention to three errors in enumerated entries in
Hedges' (1996a) table 3: (1) 11, Crocodylus intermedi-
us, known from only one or two vagrant individuals,
cannot be considered to be established in the West In-
dies; (2) 26, Iguana iguana does not occur on the Cay-
man Islands; and (3) 41, Mabuya bistriata is presumably
a lapsus for Mabuya mabuya; M. bistriata is a Brazilian
species that is unlikely to be conspecific with anything
in the West Indies. Dropping these taxa from the list will
also affect the count, but we have not made this correc-
tion here.
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(Pindell and Barrett, 1990)"" (Hedges, 1996a:
104). An analogous induction is made for the
teiid Cnemidophorus vanzoi of the Maria ls-
lands (St. Lucia). Origin bandwidths of this
magnitude—essentially equivalent to all of
the post-Pal eocene Cenozoic—could be con-
sistent with practically any biogeographical
hypothesis, not just dispersal.

(3) Taxa are not discriminated in terms of
interpretative significance. Even if it were
accepted that the leading cause of faunal for-
mation in the West Indies was overwater dis-
persal, this phrase as usually understood cov-
ers severa quite different mechanisms. The
majority of lizards, for example, would pre-
sumably not be capable of dispersing by
long-distance swimming (i.e., self-powered
overwater dispersal, unassisted by rafting,
pam ‘“boot” transport, or other classically
invoked means). By contrast, species of croc-
odilians (Crocodylus) and chelonians (Geo-
chelone, some pelomedusids) that are able to
tolerate saltwater conditions could have at-
tained their known distributions under their
own power, whether their swimming was di-
rected or not. Their propagules could have
dispersed by rafting as well, but including
taxa that are inherently ambiguous as to
probable method of dispersal adds nothing to
resolution of the debate. The pertinence of
this point becomes obvious when viewed in
light of the problems with Hedges' (1996a)
evaluation of surface-current flow in the Ca-
ribbean Sea (see below).

(4) Overrepresentation and ambiguous
significance of nonendemics. The bulk of
Hedges (1996a) taxon list (37/72 = 51%)
consists of lineages that are defined as *‘ non-
endemics’ (species having populations on
the mainland as well as one or more West
Indian islands). Hedges assumed that the ex-
istence of allopatrically distributed popula-
tions of single species is good evidence that
some island colonizations occurred so re-
cently that source populations have not dif-
ferentiated from colonizing ones. From a di-
versity standpoint, the number of recent (O—
2 MQ) lineagesis certainly overstated relative
to their importance. However, from a mech-
anism standpoint, if each colonization were
an event separate from every other, the rate
of dispersal must have been higher in the re-
cent past (assuming that extinctions can be
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ignored; see below). Even so, the mechanism
of emplacement need not have been always
the same. For example, although continent—
island vicariance can be excluded from con-
sideration, for very recent introductions de-
termining whether range extensions were due
to natural dispersal or to anthropogenic trans-
port cannot be settled merely by observing
that the latter is assumed to be less likely.
Hedges (1996a: 99) noted that lineages ** that
clearly are the result of human introduction
are mentioned but not treated in the analy-
ses.”” However, taxa that are ambiguous in
this regard, such as Gonatodes albogularis,
Hemidactylus haitianus (= H. brookii haiti-
anus of other authors), and H. mabouia, are
nevertheless included by implication in var-
ious statements to the effect that ‘‘nearly
al,”” “99%,” and ‘“‘virtually all”’ lineages
originated by natural overwater dispersal.
The degree of human involvement in pro-
ducing some herp distributions will probably
never be known except by determining from
fossil evidence that the taxon existed in the
West Indies well before the earliest presumed
date of human arrival (ca. 7000 yrbp; Burney
et al., 1994). Currently, however, the pale-
ontological record is of little assistance in
this regard as few of the herp taxa listed by
Hedges as having a Quaternary origin have
independent, associated radiometric dates
from sites in the West Indies (cf. Morgan and
Woods, 1986; MacPhee et al., 1989). Al-
though it can be argued, trivialy, that in-
stances of anthropogenic dispersal still count
as dispersals, in a paper designed to test sce-
narios of faunal formation it is surely prob-
lematic to overrepresent such taxa in the da-
tabase.

(5) Low number of nonendemic lineages
in the Greater Antilles. According to the data
presented by Hedges, the great magjority of
nonendemic herp lineages live on islands
other than the Greater Antilles. Setting aside
crocodiles and tortoises, only 6 of 33 Qua-
ternary nonendemic lineages listed by Hed-
ges (1996a) have distributions that include a
continental mainland and one or more of the
Greater Antilles (Gonatodes albogularis,
Hemidactylus haitianus, H. mabouia, Iguana
iguana, Mabuya ‘‘bistriata,”” and Nerodia
clarki). Of these, at least three are of ques-
tionable pertinence given the ambiguity of
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their method of transport to the Greater An-
tilles (see above). However, in terms of his-
torical biogeography, the real issue is the
comparative lack of nonendemic populations
in the Greater Antillesin contrast to the Less-
er Antilles and islands on the fringe of the
Caribbean Sea. How can this pattern be ex-
plained?

Not knowing whether the six Greater An-
tillean herp lineages noted by Hedges were
representative of many more that he could
have cited, we examined all distributions|ist-
ed by Schwartz and Henderson (1991) in
their exhaustive catalog. In addition to those
already discussed, and resolving cases of tax-
onomic doubtfulness in Hedges' favor, there
are only eight other apparent nonendemics
(all saurians) whose distribution includes a
mainland and one or more of the Greater An-
tilles (five species of Anolis and three of
Sphaerodactylus). We cannot comment on
whether any of these may qualify as addi-
tional “‘independent lineages”’; judging from
Hedges comments under individual genera,
he seems uncertain as well. However, it
seems reasonable to conclude that the num-
ber of “Quaternary dispersals’ to the Great-
er Antilles counted according to Hedges
methodology amounts to only a fraction of
those that can be enumerated for the other
islands, even though the Greater Antilles
comprise 90% of the land area in the West
Indies. It may be that the herpetofaunas of
small islands, with their low endemism, in-
dicate that dispersal is possible; but the fau-
nas of the larger islands, with their very high
rates of endemism, show that colonization is
hard. But the cays of Cuba do not seem to
have gained unusual numbers of nonendem-
ics by comparison to the main island, despite
the fact that some of the cays are also close
to a continental margin (e.g., Archipielago de
Sabana-Camaguey; fig. 1).

(6) Unknown shaping influence of extinc-
tion. Finally, if, as Hedges' interpretation of
his data implies, it were possible for many
continental taxa to emit successful propa-
gules during the past 2 Ma, then it should
have been possible throughout the Cenozoic.
That is, it should have been possible if, at
any and all times during the last 65 Ma, the
likelihood of passive dispersal was equipo-
tential. Hedges (1996a: 116) addressed this
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point indirectly, noting only that, for the
West Indies in general, the *‘large number of
[Quaternary] lineages amost certainly is an
artifact due to fewer extinctions expected for
recent lineages.” Once again, we suggest,
fossil evidence will turn out to be critically
important for determining whether massive
faunal turnovers or taxon cycles occurred on
these islands.

SOURCES OF ERROR IN ESTIMATING
TIMES OF LINEAGE ORIGINS

Hedges et al. (1992, 1994; see also Hedg-
es, 1996a, 1996b) allowed that their estima-
tions of divergence timesfor investigated lin-
eages could be subject to three sources of
error. The first two are concerned with the
interpretation of the immunological data
themselves,; they concern the effect of dif-
ferences in reciprocal estimations of 1Ds be-
tween taxa, and interclade variablity in rates
of abumin evolution. Hedges and co-work-
ers discounted the first on the ground that
errors (if any) would not lead to consistent
(unidirectional) underestimation of IDs
across many groups. In discounting the sec-
ond, they acknowledged that rate variability
exists, but at such a low level (they cite 10—
15% as a reptile maximum) that it would
have no effect on the kinds of interpretation
they pursued in their paper. Their certainty
that these potential sources of error affected
their conclusions only marginally is open to
challenge (Page and Lydeard, 1994), but we
are particularly interested in the underpin-
nings of their third source of potential error.
Hedges et a. (1992: 1910-1911) acknowl-
edged that

... the species used here may not be representative
of the most recent divergence event between the lin-
eages examined (i.e., amember of the mainland taxon
closest to the island taxon examined inadvertently
was nhot used); this type of error always will result in
an overestimation of the time of lineage divergence
for the taxa from different land masses. If this sys-
tematic error could be corrected, some distances re-
ported here could only be lower, further suggesting
dispersal as the primary mechanism for vertebrate
colonization of the West Indies.

We take this passage to mean that it is not
crucia that actual sister taxa (hereafter, ‘‘ ex-
act sisters”’) be used, so long as (by impli-
cation) the taxa compared are indeterminate-

ITURRALDE-VINENT AND MACPHEE: CARIBBEAN PALEOGEOGRAPHY 43

ly near relatives. To restate their main points,
and assuming the valency of their molecular
clock model, we are told that (1) ** systematic
error’” of this kind must always be unidirec-
tional (i.e., will always result in overestima-
tion of time since divergence), and (2) any
corrections resulting from the discovery and
utilization of exact sisters would only shorten
divergence times. We explore the implica-
tions of these points by means of simple phy-
logenetic scenarios superimposed on equally
simple biogeographical ones (fig. 9A, B).

In figure 9A, imaginary taxa A-F are
known to be phylogenetically related in the
manner indicated in the small cladogram in-
set on the lower right. The groups of mono-
phyletic terminal taxa are holophyletic; there
are no unknown (undiscovered) taxa above
the lowermost node. Taxa A, C, and F are
extant (solid stems). Taxa B, D, and E are
extinct (outline stems). The main cladogram
is superimposed on two landmasses (‘‘Main-
land,” *Island’”) separated by an expanse of
water (suggested by double-headed arrow).
The same conventions are followed in figure
9B, except that the distribution of taxa on the
landmasses is different.

In figure 9A, one major clade, of which A,
B, and C are the terminal taxa, was always
resident on Mainland. (The sense of time is
toward top of page, as indicated by vertical
time line on right.) At a specific point in
time, the other major clade, of which D, E,
and F are the terminal taxa, came to be iso-
lated on Island. The diagram is purposely
ambiguous as to whether the basal split oc-
curred though dispersal or vicariance. All
that is assumed is that a barrier separated
populations of the last common ancestor of
al terminal taxa, interrupting gene flow. As-
sume now that albumins of A and F (taxain
boxes outlined in heavy black) are compared
within the same analytical framework as the
one followed by Hedges et al. (1992) and
yield an ID of 100, for the sake of this ex-
ample. In this case, the geological age of the
basal split between the branches ending in A
and F, as estimated by ID (open circle on
time line), is for certain the same as the ap-
pearance of the stipulated water barrier be-
tween populations of the last common an-
cestor (closed circle). Such a situation, in
which ID time, cladogeny, and the event of
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Fig. 9. Splitting lineages vs. splitting lands: Limitations on interpretation (see text).

interest all intersect on the same graph
(dashed line on inset cladogram), may be de-
scribed as one of congruence.

In figure 9B, dll initial factors are the
same, except that extinct taxa D and E were
Mainland residents. Only the branch repre-
sented by terminal taxon F was isolated on
Island. If the extinct taxa were not known, it
would be assumed that taxa A and C consti-
tute the sister group of F. Measured 1D
would still be 100 (between A and F or C
and F), but it would not date the appearance

of the barrier between F and its closest exact
sister, the clade terminating in taxa D and E
(hence *“?1D’"). The method is blind to later
splits (including the one that installed the an-
cestor of F on Island) because the critical
taxa are extinct and cannot therefore be sam-
pled. The result is one of incongruence.

In answer to criticisms by Page and Ly-
deard (1994), Hedges et al. (1994: 48) stated
that errors in taxonomic sampling do not
matter, because overestimates are always uni-
directional, and furthermore ‘‘whether the
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IDs coincide or not would not affect that
conclusion.” However, it actually does mat-
ter, because filling a matrix with overesti-
mates can obscure whatever pattern—includ-
ing any concentration of splits—that may ex-
ist within the phylogeny (or sets of compared
phylogenies). In their original figure illus-
trating times of origin (Hedges et al., 1992:
fig. 1), for example, the ** West Indies-Main-
land” row is filled with a flock of ID mea-
surements distributed across the range 55-32
Ma. Some cluster fairly tightly around 28—
24 Ma, while others group at approximately
18 and 11 Ma. In alater version of thisfigure
(e.0., Hedges et al., 1994: fig. 2), which in-
cludes errors of the estimates, no pattern is
evident, and the lack thereof (i.e., apparent
randomness) is taken to be evidence for over-
water dispersal of relevant taxallineages.
However, this conclusion is also unjustified,
because they do not know (as they acknowl-
edge) whether they are judging distances be-
tween exact sisters, i.e., whether congruence
obtains. In the context of the present paper,
it would be especially important to know if
there was a concentration of splits during the
earlier part of the Oligocene, when we think
paleogeographical conditions were especially
favorable for overland colonization (see
GAARlandia Landspan and Island-Island
Vicariance). And indeed there could be, if
the pre-28 Ma splits represent overestimates
of just the sort Hedges et al. (1992) deem
unimportant.

We take the point that validly identified
post-Oligocene splits cannot be explained by
either continent—island vicariance or the
landspan hypothesis (see below), although
some intra-Caribbean splits could be related
to island-island vicariance events in the Ear-
ly and Middle Miocene. Some post-Oligo-
cene lineage origins were probably occa-
sioned by overwater dispersals, although for
their identification using Hedges' methodol-
ogy, much would depend on whether all of
their molecular clocks ticked true al the
time. Nevertheless, the timing of splits esti-
mated from albumin divergences cannot be
taken as proxies for dating actual coloniza-
tion events unless one knows the true branch-
ing sequence of a phylogeny (cf. Hedges et
a., 1994: fig. 1).
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PassiVE TRANSPORT AND CENOZOIC
SURFACE-CURRENT PATTERNS

SURFACE-CURRENT PATTERNS AND FLOTSAM
DisPersaL: Hedges (1996b: 186) contended
that ““an overwhelming majority (99%)" of
al “‘independent lineages” of Antillean ver-
tebrates originated from dispersants arriving
as passively transported ‘‘ flotsam,”” and that,
furthermore, this “‘dispersal pattern can be
explained by the nearly unidirectional current
flow [in the Caribbean Sea] from the south-
east to the northwest, bringing flotsam from
the mouths of South American rivers (e.g.,
Amazon, Orinoco) to the islands of the West
Indies.” Within the Caribbean itself, taxic
similarity among nonvolant faunas of differ-
ent islands is to be explained by subsequent
interisland dispersals occurring in the same
manner, i.e., passive dispersal by surface cur-
rents.

It is critical to note that Hedges' (199643,
1996b) argument implicitly requires that the
modern surface-current pattern, in which av-
erage flow isindeed ** almost unidirectionally
from southeast to northwest,” obtained for
the whole period in which the Antillean fau-
nawas being formed (i.e., virtually the entire
Cenozoic acording to Hedges' own analysis).
The only causative mechanism for the “*al-
most unidirectional’”’ flow that Hedges
(19964, 1996b) refers to, however, is the Cor-
iolis effect, i.e., the tendency for the trajec-
tories of moving objects on the earth’'s sur-
face to be deflected either to the right (north-
ern hemisphere) or the left (southern hemi-
sphere). He gives little attention to the
influence of varying paleogeographical con-
figurations of the Caribbean region on cur-
rent flow. Aswe show in this section, present
evidence supports the conclusion that the ex-
isting pattern of surface currents within the
Caribbean Sea is characteristic only of the
last 4 million years. Before that, other pat-
terns predominated. Some of these, we argue,
are incompatible with the history of faunal
emplacement in the Caribbean region as en-
visaged by Hedges (1996a, 1996bh).

SURFACE-CURRENT PATTERNS AND PALEO-
GEOGRAPHY: Figure 10 compares reconstruct-
ed patterns of marine surface currents for the
Late Eocene-Oligocene (35-32 Ma), Late
Oligocene/Middle Miocene (30-14 Ma),
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Fig. 10. Paleoceanography of Caribbean region for selected intervals between latest Eocene and
Recent, modified from Mullins et al. (1987), Dugue-Caro (1990), and Droxler et al. (in press). The
purpose of these reconstructions is to depict possible effects of GAARIlandia and other features on
surface-current patterns during the latter part of the Cenozoic (MacPhee and Iturralde-Vinent, 1995;
Iturralde-Vinent et al., 1996a). Since the latest Eocene the course of westward-flowing currents in the
mid-Atlantic and Caribbean area has been greatly affected by the appearance and disappearance of
various land barriers. Thus, the Circumtropical Current, which originally passed into the western Pacific,
was temporarily disrupted in the latest Eocene and Early Oligocene by the emergence of GAARIandia,
and was permanently disrupted by the completion of the Isthmus of Panama in the Late Pliocene. This
current has played a leading role in mediating climate in the Caribbean region during the Cenozoic.
Gulf coast of North America not intended to be paleogeographically accurate.
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Late Miocene (6-5 Ma), and Pliocene—Ho-
locene (4-0 Ma) (see aso figs. 6-8). These
reconstructions, slightly modified from those
developed by Mullins et al. (1987), Duque-
Caro (1990), and Droxler et a. (1998), at-
tempt to consider the effects of GAARIandia
and other recently described pal eogeograph-
ical features on surface currents (MacPhee
and Iturralde-Vinent, 1995; Iturralde-Vinent
et al., 1996a).

Latest Eocene to Early Oligocene (35-32
Ma): During thisinterval, the surface-current
pattern in the Caribbean region would have
differed radically from patterns that obtained
before or after this time. There are two pa-
leogeographical reasons for this: the exis
tence of the Panamanian Seaway, connecting
the Caribbean Sea with the Pacific Ocean;
and the conformation of GAARIandia, then
at its subaerial maximum. The effect of these
two features would have been to enhance
communication with the Pacific while im-
peding it with the equatorial Atlantic (Don-
nelly, 1989b). Connection with the Atlantic
would have continued at higher latitudes, via
the Yucatan and Havana—Matanzas Chan-
nels. However, throughput from the Carib-
bean Seato the Atlantic viathe Strait of Flor-
ida seems to have been rather low (Iturralde-
Vinent et al., 19964a). Because of the config-
uration of land masses, the Gulf Stream
would have been fed mostly by the north-
westerly current flowing parallel to Bahamas.
In South America, the early Magdalena and
Orinoco Rivers would have flowed directly
into the the Caribbean Sea (Hoorn et a.,
1995).

Under such conditions of at least partid
isolation, there was probably a very low rate
of water circulation across different portions
of the Caribbean Sea. Sub-basins such as the
Gulf of Mexico may have behaved as large,
semi-independent embayments, in which cy-
clonic circulation patterns dominated, with
seasonal changes in direction of flow. These
interpretations are supported by two major
lines of evidence. Seismostratigraphic studies
(Mullins et a., 1987; Denny, 1992; Hine,
1997; Denny et a., 1994) carried out in the
southern part of the Strait of Florida indicate
that the West Florida ramp was in an aggra-
dational regime from the Late Eocene to the
Late Oligocene, with little winnowing and no
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evidence of erosional surfaces. Also, the rate
of pelagic sedimentation in this period was
extremely low. (See description of Holes 998
and 999, Leg 165, by Sigurdsson et al.
[1997]; Oligocene sediments are absent in
some DSDP cores [Edgar et al., 1973].)

Late Oligocene to Middle Miocene (30-14
Ma): Water circulation patterns were sub-
stantially altered by paleogeographical
changes during mid-Oligocene/Middle Mio-
cene highstands. The seaways to the Pacific
and northern Atlantic persisted, and the Oiri-
noco and Magdalena still drained into the
Caribbean Sea (Hoorn et al., 1995). At the
beginning of this period, communication be-
tween the Pacific and equatorial Atlantic
would have been greatly improved following
the subsidence and inundation of much of the
Aves Ridge, as indicated by the existence of
shared foraminiferal assemblages on the Pa-
cific and Caribbean sides of the Panamanian
seaway (Duque-Caro, 1990). Warm water de-
rived from the equatorial Atlantic would
have been more widely distributed by the
Circumtropical Current (Mullins et al., 1987;
Droxler et al., 1998), now no longer pre-
vented by southern GAARIlandia from fully
communicating with the Caribbean Sea. In-
fusion of warm Atlantic water may have in-
fluenced regional climate, as it did elsewere
(Tsuchi, 1993). Within the Caribbean Sea it-
self, a minor current headed northwest to
push warm water through the Havana—Ma-
tanzas Channel and Yucatan Channel, there-
by contributing to the early Loop surface
current in the Gulf of Mexico (Iturralde-Vi-
nent et al., 1996a). However, flow in the ear-
ly Loop was not as strong as that of the mod-
ern system (Mullins et al., 1987; Hine, 1997).
These new water masses had a pronounced
sedimentological effect in the southern part
of the Strait of Florida: the West Florida
ramp began to prograde from the east, as il-
lustrated by west-dipping clinoforms.

Later, in the Middle Miocene, rejuvenation
of tectonism modified the pattern of water
circulation by redistributing the flow carried
by the Circumtropical Current (lturralde-Vi-
nent et al., 1996a). In the Late Miocene, up-
lift of the Andes drastically altered the fluvial
pattern of northern South America, eventu-
aly causing the Orinoco to empty into the
Atlantic (Hoorn et al., 1995). Foraminiferal
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assemblages in sediments of late Middle to
Late Miocene age in the Atrato Basin on the
Pacific side of Colombia exhibit an over-
whelmingly *‘Californian” aspect (Duque-
Caro, 1990), suggesting that at thistime there
was little throughput from the Caribbean side
of the Panamanian seaway. Nevertheless, im-
pairment of circulation across the seaway
was evidently short-lived, because Late Mio-
cene to Pliocene rocks in the Atrato basin
contain assemblages having a mixed Pacific/
Caribbean aspect (Duque-Caro, 1990).

Late Miocene (6-5 Ma): In the Late Mio-
cene (fig. 10), water circulation within the
Caribbean Sea may have been diverted to the
northwest as a result of (1) reduction in the
width of the Panamanian seaway as the isth-
mus advanced southwards; (2) extension and
subsidence of the Nicaragua Rise, which had
previously impeded flow into the Yucatan
Channel (Mullins et al., 1987; Droxler,
1995); and (3) closure of the Havana—Matan-
zas Channel, thereby forcing all northwest-
bound flow into the Yucatan Channel (Itur-
ralde-Vinent et al., 1996a). The increased
volume of water diverted into the Loop Cur-
rent modified depositional conditions in the
Strait of Florida. Erosion took place on the
Pourtales Terrace (Gomberg, 1974) and the
Miami Terrace (Mullins and Newmann,
1979), and there was a 50% decrease in the
rate of sediment accumulation in the south-
ern Strait of Florida (Austin et a., 1988). The
modern Loop Current/Gulf Stream circula-
tion was initiated and carbonate deposition
changed drastically, becoming a pelagic
slope-front-fill system (Mullins et a., 1987).

Pliocene to Holocene (4-0 Ma): The last
map in this series illustrates the modern pat-
tern of water circulation (Atlas Nacional de
Cuba, 1970; Emery and Uchupi, 1972). This
pattern was initiated around the Miocene—
Pliocene boundary, following the complete
closure of the Panamanian waterway and the
termination of the Circumtropical Current.
Its successor, the Caribbean Current, is fed
directly by the Atlantic equatorial current;
surface currents are now mostly directed to-
ward the northwest. Like other changes dis-
cussed in this section, this final series of cur-
rent reorganizations must have had profound
effects on terrestrial climates as well (Frakes,
1979).
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SURFACE-CURRENT PATTERNS AND PrROXY
DATA: A current’s average vector is not the
only influence operating on material passive-
ly carried along the sea surface, as experi-
mental data from free-floating objects illus-
trate. Molinari et al. (1979) and Kinder
(1983) employed satellite telemetry to track
23 free-drifting buoys released from stations
in the Lesser Antilles (fig. 11A). After wan-
dering widely, often for several months,
bouys ended up not only along or near the
coasts of Jamaica, Cuba, Hispaniola, Puerto
Rico, and several other Caribbean islands,
but also those of Central America, Yucatan,
and the Gulf of Mexico. The point here is
not that the free-floating buoys achieved a
certain distribution, but instead that the av-
erage gross direction of surface currents pro-
vided only the most general guide to the
probable movement of any given buoy. Fur-
ther, the path followed by each buoy was
substantially affected by local eddies, deep
cyclonic water circulation, storms, and other
events (see Molinari et al., 1979; Kinder,
1983; Kinder et al., 1985; Sou et a., 1996).
Significantly, such forces generally acted to
increase rather than decrease trip length, an
important consideration in evaluating the
likelihood of successful overwater dispersal
for animals that are not physiologically
adapted for temporally lengthy sea journeys
(such as land mammals).

Brucks (1971) drift bottle study yielded
broadly similar results. Brucks released bot-
tles at various locations off the Windward |Is-
lands (southern Lesser Antilles), Gulf of
Honduras, and southwestern Caribbean
(northern coast of Panama). In the Windward
Islands release area, bottle recovery records
indicated that surface currents are cyclonic,
but with a definite northward trend (instead
of a due westward trend as stipulated in pre-
vious literature). Bottles came ashore in the
northern Windward Islands and a wide vari-
ety of other locations (fig. 11B, table 5) dis-
tributed throughout the Caribbean Sea and
Gulf of Mexico. Of interest is the fact that
the greatest number of reports (38% of total)
were from Central America; only 15% were
from the Greater Antilles (as much as Yu-
catan alone). Calculated minimum speeds of
bottles varied from 0.1 to 2.0 knots, with
faster rates of movement in summer and mid-
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Fig. 11. Surface-current patterns in the Caribbean Sea and nearby waters, as revealed by bouy and
drift bottle experiments. A. Tracks of bouys released by Molinari et al. (1979) between October 1975
and June 1976 (redrawn from original). Arrows have been added to pinpoint last recorded positions of
selected bouys. Results of this experiment demonstrate that ** average’” marine-current patterns, as rou-
tinely depicted on oceanographic maps, fail to capture substantial variance in surface-water movement
in the Caribbean Sea. B. Surface-current pattern derived from drift bottle experiments conducted by
Brucks (1971, modified from original). Bottles were released from sites in the eastern Caribbean. The
majority of returned bottles transported to points west of the Lesser Antilles were deposited along the
east coast of Central America, Gulf of Mexico, and Florida. Relatively few bottles were returned from
the Greater Antilles. These results strongly imply that, given existing surface-current patterns, flotsam
emitted from the Orinoco and Amazon Rivers is much more likely to end up in southeastern North
America or Central America than in the Greater Antilles.
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TABLE §
Reported Recoveries of Drift Bottles Released East
of Windward Islands in February-March 1967«

Number of Percentage
bottles recovered, of total

Reporting areas by area recovered
Central America 24 375
Yucatan 9 14.5
Florida Peninsula 8 13
Gulf Coast 7 11.2
South America 5 8
Hispaniola 3 4
Puerto Rico 2 3
Isle of Pines 2 3
NW Cuba 1 1
Jamaica 1 1
Total, Greater Antilles 9 14.5
Total, Central America/

Yucatan 33 53

a Calculated from results presented by Brucks (1971 fig. 3).
Total bottles released not recorded, but recovery rate (i.e.,
reports returned) for entire study was 9.6%.

winter than in spring and fall. These results
are in good agreement with work on the dy-
namic sea-surface topography of the Carib-
bean Current, which subdivides into a faster-
moving southern current and a slower north-
ern one (Duncan et al., 1982).

The relatively slow speed at which pas-
sively transported objects move under aver-
age conditions in the West Indies is further
illustrated by recent work on passively dis-
persed pelagic larvae (e.g., Roberts, 1997).
These investigations indicate that distances
actually or potentially travelled by such lar-
vae during one- and two-month ‘‘transport
envelopes’ are relatively small. For exam-
ple, the two-month envelope for larvae dis-
persing in the northeastern Caribbean spans
only the distance from Anguilla to eastern
Puerto Rico. A route crossing the entire Ca-
ribbean Sea from southeast to northwest, as
envisaged in Hedges' model, would presum-
ably take much longer. Except under unusual
circumstances, therefore, it would appear that
modern surface currentsin the Caribbean Sea
do not flow rapidly enough to ensure the sur-
vival of terrestrial amniotes dispersing by
rafting (with the possible exception of some
reptiles).

This limitation might be overcome by hur-
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ricane transport, and there is at least one re-
cent case in which this is the only feasible
explanation for a dispersal event. A number
of individuals of Iguana iguana, a species
which does not occur in Anguilla, were con-
clusively identified on that isand in the
month following the passage of Hurricane
Luis across the northern Lesser Antilles in
August, 1995 (Censky et a., 1998). It is
probable but not demonstrated that the dis-
persants came from Guadeloupe or one of the
other islands south of Anguilla that support
Iguana iguana. Although northward trans-
port of propagules by hurricanes might ex-
plain some aspects of Lesser Antillean sau-
rian biogeography, modal hurricane tracks
may well have differed in previous epochs.
Before the completion of the Panamanian
isthmus, for example, storm tracks may have
been deflected relatively southward by the
warm Circumtropical Current flowing into
the Pacific. Whether this occurred or not has
not been properly modelled, but any south-
ward deflection of high-energy storms would
have reduced the chances of successful dis-
persal to the Greater Antilles.

Tracking studies provide another body of
relevant proxy data. Mean sediment concen-
trations in sea water can be tracked and mea-
sured using satellite imagery. In one such
study (Richardson, 1996), it was found that
water discharged by the Amazon does not
always move northwestward into the Lesser
Antilles, but is sometimes forced to flow
east—southeast. This finding is in agreement
with the fact that the North Equatorial Coun-
tercurrent carries much of the Amazon'’s out-
flow eastward into the central Atlantic (Rich-
ardson, 1996). Interestingly, sediment track-
ing studies have also shown that outflow
from the Orinoco is normally directed to the
northwest, where it can be detected as far
north as Puerto Rico. By contrast, outflows
from the Magdalena and Lake Maracaibo
quickly become disorganized after entering
the Caribbean Sea: pigment can be traced for
only a short distance before becoming dilut-
ed (Richardson, 1996: fig. 21-12).

OTHER CoONSTRAINTS. Hedges' (1996a) 1D
data indicate that two surviving herp lineages
(Eleutherodactylus and Cricosaura typica)
could have been established on landmasses
in the Caribbean Sea as early as the latest
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Cretaceous or early Paleogene (see also
Hedges et al., 1992, 1994). In his view, em-
placement at this early date could have oc-
curred through either continent—island vicar-
iance or overwater dispersal. However, dur-
ing the latest Eocene and Early Oligocene,
circulation within the Caribbean Sea was
limited, and, as discussed above, in any case
the patterns then existing would not have
uniformly favored the movement of water
masses toward the northwest (figs. 6, 10).
Further, given the paleoposition of the
mouths of the Magdalena and Orinoco, flot-
sam issuing from these rivers would have
been much more likely to end up on the is-
lands that then comprised much of southern
Central America and the Nicaraguan Rise
than, say, the Cuban/Hispaniolan end of
GAARIlandia

The same constraints would have contin-
ued into the subsequent period (30-14 Ma)
that we have modelled. In our view, itislike-
ly that any natural rafts coming out of large
northwestern South American rivers would
have been sent into the Pacific (figs. 8, 10;
see adso Frakes, 1979; Kennett, 1985; Mul-
linset al., 1987; Droxler et a., 1998). At that
time part of the present Amazon Basin was
occupied by a large marine embayment
(Hoorn et al., 1995). Drainage off the Guy-
ana Shield would have been the only signif-
icant source of flotsam directed into the At-
lantic; however, from this source any pas-
sively transported material would have been
as likely to drift toward Africa as the West
Indies (cf. Richardson, 1996). Similar con-
ditions would have existed during the sub-
sequent 10 Ma. However, it is necessary to
observe that increasing amounts of water
would have been directed toward the north-
west as Central America grew southward in
the Late Miocene. From this it follows that
Hedges (1996a) emplacement scenario
would increase in likelihood the closer one
comes to the present. The trouble is that, if
emplaced by overwater dispersal, the speci-
fied ““overwhelming majority”’ of indepen-
dent insular lineages would have to have
originated 4 million years ago or less. Hedg-
es (1996a) table 3 may be said to underline
this very possibility, since no fewer than 55
investigated origins (76% of total) are dated
to, or overlap with, the period 4-0 Ma,
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which may explain the acknowledged recen-
cy of so many relatively undifferentiated
South American herps in the southern Lesser
Antilles. Yet if these figures were truly rep-
resentative of the vertebrate fauna as a
whole, then it would be necessary to conclude
that either (1) the idlands had a taxically mi-
nuscule vertebrate fauna prior to the Plio-
Pleistocene, or (2) there was a virtualy com-
plete faunal turnover in the latter part of the
Neogene. At least for mammals, the first point
is flatly contradicted by fossil finds made in
the Greater Antilles in the last decade: every
major taxon of land mammals known from
the Antillean Quaternary now has a minimum
origin date of Early Miocene or earlier
(MacPhee and lturralde-Vinent, 1994, 1995;
MacPhee and Grimaldi, 1996). The possibility
of high faunal turnover, however, is not di-
rectly tested by this evidence as no *‘unex-
pected”’ taxa other than Hyrachyusin Jamaica
have been recovered (see MacPhee and Wyss,
1990). For lizards the data are also unhelpful,
inasmuch as recent dispersals (as eval uated by
Hedges) have added very little to the faunally
rich Greater Antilles, even though there may
have been many independent events (G. May-
er, personal commun.).

The proxy data for the effect of surface-
current flow as a dispersal agent suggest that,
on the basis of existing current patterns, the
Orinoco is more likely to release flotsam that
finds its way into the central Caribbean Sea
than is the Amazon. Whether this pattern was
always the rule in earlier times is moot, but
it issurely relevant that the Amazon has been
an Atlantic coastal river only since the Late
Miocene (Hoorn et al., 1995). If rivers acted
as potential sources of animal-bearing flot-
sam in the manner contemplated by Hedges
for geologically long periods of time, then it
is the basins of northwestern South America,
rather than the Amazon itself, that should be
under consideration.

A final occasion of lack of fit between
Hedges' model and the paleogeographical re-
constructions offered here concerns the avail-
ability of lands in the Caribbean Sea at pur-
ported times of land vertebrate colonization.
The data of Hedges and co-workers suggest
that 6 to 11 herp lineages originated earlier
than the Eocene-Oligocene transition. Al-
though the number of such “early” lineages
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is obviously small and therefore does not
bear much analysis, the fact that any lineages
may go back to the earlier Paleogene con-
flicts with our view that the islands that now
exist in the Caribbean are post-Middle Eo-
cene in origin (lturralde-Vinent, 1982;
MacPhee and lturralde-Vinent, 1994, 1995).
Hedges (1996b: 166) resolved this conflict
by stating that ‘‘the recent suggestion that
there were no permanently subaerial land-
masses in the Greater Antilles prior to [the
end of the Middle Eocene] is speculative; it
can neither be refuted nor supported with
current evidence.” We interpret the nature of
the current evidence differently, but, notwith-
standing that, we pose the following conun-
drum. If evanescent islands existed in the Ca-
ribbean Sea before the Middle Eocene—and
it is highly probable that they did—then any
resident faunas must have either perished at
the time of inundation or subsidence, or they
found a means to transfer to newly risen
landmasses elsewhere. Hedges (1996a) men-
tioned the former possibility in relation to the
sterilizing effects of giant tsunamis generated
by the K/T bolide impact, but speculated that
there were, nevertheless, some places where
faunal elements could have persisted into the
Cenozoic. As we have repeatedly asked in
this paper, if such places existed, where were
they, and what is their paleogeographical his-
tory?

GAARLANDIA LANDSPAN AND
ISLAND—-ISLAND VICARIANCE:
MODEL OF MACPHEE AND
ITURRALDE-VINENT

LANDSPANS, VICARIANCE, AND
DIVERSITY SCENARIOS

A “landspan’ is here defined as a subaer-
ial connection (whether continuous or punc-
tuated by short water gaps) between a con-
tinent and an off-shelf island (or island arc).
Although few continuous landspans exist at
present (e.g., Kamchatka), during Pleistocene
glaciations several significant ones were cre-
ated during phases of lowered sea level.
Among these were the Greater Palawan land-
span connecting Bulabac-Palawan-Calami-
ans with Borneo (and therefore with south-
eastern Asia; Heaney and Regalado, 1998)
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and the Southern Ryukyu landspan extending
from Taiwan at least as far as Okinawa (and
therefore joining these islands with continen-
tal eastern Asia; Ota, 1998). This usage
stands in contrast with that favored for
“landbridge,” here restricted to mean land
linkages between continental regions (e.g.,
DeGeer, Panamanian, Beringian landbrid-
ges). It should also be noted that on-shelf (or
‘““continental’’) islands are simply extensions
of continents that may function as submerged
margins, islands, or peninsulas (or often as
al three over time), and they are always
broadly affected by the same tectonic and
isostatic regimes as their mainlands. Off-
shelf islands are not by any useful definition
extensions of continents, even if they incor-
porate continental fragments (e.g., Madagas-
car). Off-shelf islands may be affected by
major tectonic events that also affect nearby
continents, but they may otherwise evolve
quite independently.

We introduce this terminological refine-
ment in order to differentiate between two
quite dissimilar contexts in which faunal dis-
tributions can be influenced by the appear-
ance of aland connection. In general, trans-
fers from one faunal area to the other across
a newly developed land connection will be
controlled by a host of factors (i.e., filters)
that affect the likelihood that any given spe-
cies will complete the journey successfully.
However, the outstanding feature of land-
bridgesisthat they connect areas having con-
tinental-scale faunal diversity. At least in the-
ory, the entire diversity of each areais avail-
able for interchange (although in practice the
actual number of transfers in either direction
is usually much less than the theoretical max-
imum). That flow actually occurs bidirection-
aly is amply demonstrated by relevant pa-
leontological records (cf. Webb, 1976), even
if it occurs predominantly in one direction.
Landspans are markedly different because
one terminus lacks continental-scale diversi-
ty (and, indeed, may initially have no fauna
at all). Although in principle any number of
continental faunal elements might cross a
newly created landspan to colonize an island
or island chain, long-term survival after ini-
tial colonization will be highly correlated
with the availability of appropriate habitat in
what are, after all, absolutely small places. In
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contrast, continent-sized areas are much
more likely to support a great diversity of
habitat types, increasing the chances of suc-
cess of a substantial variety of immigrants.
The two-part landspan/vicariance model of
MacPhee and lturralde-Vinent (1994, 1995,
this paper) attempts to infer mechanisms of
faunal formation in the Greater Antilles from
detailed paleogeographical reconstructions,
fossil evidence, and species/area relation-
ships. Central to the hypothesis is the argu-

ment, sustained at length in this paper, that
the Cenozoic paleogeography of the Carib-
bean region strongly favored emplacement
over land (as opposed to over water) only
once in the past 65 Ma. (Details of Cenozic
connections among lands is schematically
presented in figure 12.)

The first component of the model seeks to
explain how land mammals might have
reached the northern Greater Antilles from
northwestern South America by dispersing
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across a short-lived landspan during a re-
stricted period in the mid-Cenozoic (ca. 33—
35 Ma according to our current estimate).
Specifically, it is hypothesized that, during
the Eocene-Oligocene transition, the Aves
Ridge became subaerial for a short interval,
possibly as short as one or two million years.
At that time the islands on the northern part
of the Greater Antillean Ridge (central and
eastern Cuba, north-central Hispaniola,
Puerto Rico, Virgin Islands) were in a close-
packed array; they either constituted asingle,
large island, or a series of islands separated
by very narrow water gaps. By connecting
proximally with the eastern end of the Great-
er Antilles Ridge and distally with north-
western South American microcontinent, the
subaerial Aves Ridge completed the GAAR-
landia landspan. As in the case of the north-
ern connection, the linkage between GAAR-
landia and northwestern South America
would have existed for only a short time (i.e.,
between major occurrences of postmagmatic
arc uplift in latest Eocene and general sub-
sidence in Oligocene).

The second component seeks to explain
how certain distributions of faunal elements
might have been produced via island—island
vicariance, due to the subdivision of the is-
lands themselves. Mid-Oligocene and Mio-
cene marine transgressions and neotectonics
(Mann and Burke, 1984; Mann et al., 1990)
substantially affected the disposition and pa-
leogeography of the Greater Antilles Ridge.
Several pull-apart basins and related features
opened or expanded along the northern Ca-
ribbean plate boundary (Cayman Trough,
Mona Canyon, Sombrero Basin/Anegada
Passage), creating deep-water channels and
basins between tectonic units. Paleogeo-
graphically, the end result was the gradual
subdivision of the subaerial parts of the
Greater Antilles Ridge. For example, eastern
Cuba and northern Hispaniola, physically
connected during the Early Oligocene, were
sundered by the expansion of the Windward
Passage later in that epoch (lturralde-Vinent
and MacPhee, 1996); by contrast, the con-
nection between central Hispaniola and
Puerto Rico probably lasted until late in the
Miocene (figs. 6-8, 12). These subdivisions
would have divided the ranges of terrestria
faunal elements previously emplaced by dis-
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persal. The ‘“orderly,” multi-island distribu-
tion of lower level monophyletic units of
land mammals (particularly sloths and insec-
tivores) possibly supports this inference of
island—-island vicariance and ought to be test-
able cladistically (MacPhee and Iturralde, in
prep.; White and MacPhee, in prep.).

This model has major implications for An-
tillean vertebrate paleontology. As noted ear-
lier, Hedges (1996a, 1996b) ID data appear
to show that a large proportion of the West
Indian herpetofauna originated extremely re-
cently (although much of its diversity is due
to Tertiary colonizations, as his data also
show). By contrast, Rosen’'s (1975) and
MacPhee and Iturralde-Vinent’s (1994, 1995)
models require that the Antillean fauna was
formed much earlier (Late Cretaceous or
Late Eocene/Early Oligocene, respectively).
If the overwater dispersal model is a gener-
aly accurate narrative of faunal formation in
the West Indies, it follows that the fauna
must have formed in an episodic, accretion-
ary manner. Accordingly, one would not ex-
pect to find a faunal assemblage that was
markedly different or systematically more di-
verse than the modern one at any point in the
past (low diversity scenario). On the other
hand, if either Rosen-style vicariance or the
landspan hypothesis were correct, it would
be expected that diversity would be much
greater at the crucial times during which the
fauna was being emplaced (high diversity
scenario). Figure 13 explores how features of
a good paleontological record might be able
to help distinguish between high-diversity
and low-diversity scenarios.

In the figure, taxa a—p (left column) are
the initiators or founding species of a series
of different imaginary clades. T1, T2, and
T3 are three different time transects (for the
sake of this example, T1 represents Late Eo-
cene; T2, Early Oligocene, T3, Pleistocene/
Holocene boundary). The cartouches, repre-
senting the separate clades, are each por-
trayed as having a “‘lifespan’ in relation to
the time axis.

This example permits models of supposed
initial faunal diversity to be compared (see
box in upper right for shading conventions).
The light gray shading represents possible
expectations under the high initial diversity
model (taxa = 16). Dark gray represents ex-
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Fig. 13. Speculating on the faunal history of the Greater Antilles: Significance of fossils, *‘ ghosts,”

and incomplete evidence (see text).

pectations under the low initia diversity
model (taxa = 4). Gradient-shaded dots rep-
resent fossil discoveries; single dots repre-
sent isolated finds, numerous dots many
finds. To make comparisons redlistic, taxa
surviving beyond T3 are shown as having
very good late Quaternary fossil records (m,
n, o, and p; n and o now extinct).

Scenario 1 (high initial diversity, few or
no dispersals to augment original composi-
tion): At about T1 a fauna of high diversity
(taxa a—p, light grey cartouches) is emplaced
essentially simultaneously through operation

of some common cause (e.g., vicariance,
landspan). (Prior to T1, it is assumed that
there was no fauna at all.) Later on, faunais
reduced by extinctions. By time T2, taxa a—
c are already extinct; at various times there-
after, taxa d- also disappear. Taxa m—p sur-
vive into the late Quaternary as the much-
diminished remnants of a once-diverse fauna.

Scenario 2 (low initial diversity, fauna
gradually augmented by new dispersals stag-
gered over a long period): In this example,
taxa a- were never part of the faung; the
entire complement at any time derives from
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taxa represented by dark gray cartouches
(m—p), whose initiators arrive at different
times (asterisks). Faunal diversity (by clade)
was never more extensive than it was in the
Quaternary.

Scenarios 1 and 2 cannot be distinguished
merely by inspection of the neontological
fauna. However, they can be critically eval-
uated with fossil evidence. Recovery of sub-
stantial numbers of ‘‘unexpected” fossils
(i.e., evidence of clades not represented in
the Quaternary) would tend to favor the high
initial diversity model. Failure to find such
fossils would imply that the known, latest
Cenozoic level of diversity is all there ever
was, and that the low initial diversity sce-
nario is correct.

As noted above, recent paleomammalogi-
cal discoveries in the northern Greater An-
tilles (Cuba, Hispaniola, and Puerto Rico)
have significantly extended the records of
several clades (MacPhee and Iturralde-Vi-
nent, 1994, 1995; MacPhee and Grimaldi,
1996). Nevertheless, all Tertiary taxa recov-
ered to date from these islands appear to be
closely related to clades known from the
Quaternary, which favors the low initial di-
versity model. At present any firm conclu-
sion would be premature, as there are as yet
no fossil vertebrate sites that date to the cru-
cial period in the Late Eocene when perma-
nent land environments were first established
in the northern Greater Antilles. Since the
paleogeographical history of Jamaica has
been markedly different from that of the oth-
er Greater Antilles, it would be equally pre-
mature to read anything into the remarkable
discovery of Hyrachyus on that island
(Domning et al., 1997). There may be more
such taxa, in Jamaica and elsewhere; the only
way to find out is through intensive pros-
pecting.

Specific colonization timetables are al-
ways subject to refutation paleontologically,
because fossils provide minimum dates of
occupation. Thus discovery of an ‘‘early”
fossil attributable to taxon m outside the tem-
poral limits of its cartouche (dark gray shad-
ing) is evidence that the colonization time
originally inferred for m is incorrect. Fossils
dating first appearances are also of great sig-
nificance if they represent numerous clades
(whether expected or unexpected) and occur
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within a narrow time dlice (e.g., first-appear-
ance fossils of taxa m—p). Multiple first ap-
pearances at a specific time could be evi-
dence of the operation of a common cause.
(For specific examples of the use of these
criteria in analyzing the Antillean mamma-
lian colonization record, see MacPhee and
Iturralde-Vinent, 1995).

Discussion

Most of the topics that require discussion
in relation to the geology and paleogeogra-
phy of the landspan hypothesis have been
dealt with at length in earlier sections of this
work. Our purpose here is to summarize
what we consider to be the oustanding prob-
lems with this hypothesis, as a guide to fur-
ther work.

(1) As noted in earlier sections, we cannot
yet offer detailed geological and paleogeo-
graphical reconstructions of the Caribbean
area during the Mesozoic/early Paleogene,
and therefore we are unable to settle whether
landspans/landbridges existed in this region
before the mid-Cenozoic (but see fig. 12 and
point 3 below).

(2) Although geographically a member of
the Greater Antilles, Jamaica has had atectonic
history quite different from that of the other
isands in the group. The only tectonic unit
currently incorporated into Jamaica that might
have had some relationship to evolving
GAARIandia is the Blue Mountains Block. If,
as some evidence indicates, the Blue Moun-
tains Block lay relatively close to the northern
Greater Antilles during the Cenozoic, it may
have received immigrants directly from
GAARIlandia, either over water or over aland
connection with southern Hispaniola (fig. 12).
Collision of Western Jamaica with the Blue
Mountains Block—if such an event actualy
took place—would not have occurred earlier
than the Miocene.

(3) In principle, some propagules could
have reached Caribbean landmasses from the
mainlands either before or after the landspan
period, if colonizations occurred by over—
water dispersal or continent—island vicari-
ance. However, in our view, earlier coloni-
zations (if they occurred) were ultimately
doomed to failure (no permanent landmasses
before Late Eocene), and later colonizations
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would have become increasingly difficult
(owing to the disappearance of landspans and
tectonic dismemberment of GAARIlandia).
Nevertheless, two herp lineages identified by
Hedges (1996a, 1996b) may be examples of
early emplacement, although there is no fos-
sil evidence relating to these taxa. Jamaican
Hyrachyus does not constitute a counterex-
ample: perched on its Viking funeral ship, it
remains a Central American/North American
taxon, despite its allochthonous presence in
the Greater Antilles (Domning et al., 1997).

Very late originations, as apparently oc-
curred in the Lesser Antilles among many
herp groups (Hedges, 1996a, 1996b) and per-
haps some mammals (e.g., sigmodontine ra-
diation of northern Lesser Antilles and Ja-
maica) cannot be explained by the Greater
Antilles landspan model. They are the result
of the operation of some other mechanism,
evidently natural dispersal (or, in some cases,
possibly human transport).

(4) Although island-island vicariance may
provide a neat solution for the distributions of
severa tightly related Quaternary taxa, we
cannot account for all cases. For example, the
presence of apparently endemic species of
capromyid rodents and Nesophontes in the
Quaternary of the Cayman Islands (Morgan,
1994) cannot currently be explained as a con-
sequence of idand-island vicariance, inas-
much as the Cayman Idands are probably
very recent geographical entities that are un-
likely to have had any land connection with
either Cuba or Jamaica during the Eocene—
Oligocene transition (figs. 6-8). A very late
land connection between the Cayman Islands
and Cuba might have occurred during the up-
lift of the Sierra Maestra during the Flio-Pleis-
tocene, as these mountains are located in the
same trend and geological unit as the Cay-
mans (Perfit and Heezen, 1978; Case et al.,
1984; Sigurdsson et a., 1997). However, this
possibility would require a substantial amount
of subsidence during the last 5 Ma, as sea
floor depths between Cayman Brac and Cabo
Cruz (western end of Sierra Maestra) are in
excess of 1000 m (G. Morgan, personal com-
mun.). It may also be noted that colonizations
by lineages that were evidently not proxi-
mately South American (e.g., solenodontids,
with proximate ancestry in North America or
possibly the Old World), not well constrained
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by this or any other model, will have to be
elucidated by additional geological, paleogeo-
graphical, and paleontological research.

(5) Detailed paleogeographical reconstruc-
tions of the now-submerged Aves Ridge are
not currently possible. However, as noted in
appendix 1, there is evidence that portions of
this ridge must have been subaerially elevat-
ed at one time (e.g., regional pattern of post-
magmatic phase uplift in the late Paleogene,
thin Cenozoic sedimentary cover, presence of
Oligocene and Early Miocene land-derived
conglomerates on ridge). The critical issueis
whether the uplifted, emergent Aves Ridge
could have formed a corridor of some sort
between the Greater Antilles and northwest-
ern South America. Wells drilled along the
ridge’s structural highs might provide the late
Paleogene record still needed to meaningful -
ly constrain the corridor hypothesis, although
it cannot be predicted whether such data will
be detailed enough to determine if GAAR-
landia constituted a single subaerial entity at
any given time. Transitory water gaps, for
example, may have intervened for short pe-
riods of time between land masses situated
on the Aves Ridge or between segments of
the Greater Antilles. Importantly, however,
none of them would have had the duration
or depth of the Havana—Matanzas Channel
between western and central Cuba. Alterna-
tively, faunal elements might have dispersed
in a pulsed manner within the confines of a
single event, if uplift and subsidence affected
different parts of GAARIlandia at different
times. Episodic movements of this kind, if
they occurred, might have increased the
chance of extinction of faunal elements un-
able to transfer to the next landmass on the
chain, further diminishing overall diversity.

(6) The degree to which the NWSA mi-
crocontinent was physically separated from
the rest of the continent by marine barriers
has not been fully clarified. From the Eo-
cene-Oligocene transition, the Middle Mio-
cene, and especially during high sea-level
stands in the Late Miocene, Pliocene, and
Quaternary alarge marine embayment in the
location of the present-day Orinoco River ba-
sin isolated the microcontinent from the
Guyana highlands to the east (figs. 2—4; Nu-
tall, 1990; Webb, 1995; Rasanen et al., 1995;
Cooper et al., 1995; Kay and Madden, 1997).
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Prior to the rise of the Andes in southern
Colombia and Ecuador, the microcontinent
may or may not have been bounded by an-
other water gap or lowland to the southwest
at the location of the Guayaquil Portal
(Domning, 1982; Hoorn et al., 1995; Webb,
1995). Thus, to a greater or lesser degree, the
northwestern and eastern parts of the conti-
nent were at least partially isolated from one
another for long periods of time, until com-
paratively recently. These points raise an in-
teresting issue. If the northwestern microcon-
tinent was substantially isolated from the rest
of South America during the late Paleogene
to early Neogene by marine and orogenic
barriers, then only that fraction of the South
American biota occupying the northwestern
corner of the continent would have been in
a position to cross over the evanescent land-
span into GAARIlandia. Unfortunately, we
know very little about the faunal composi-
tion of northwestern South America at the
end of the Paleogene (Marshall, 1985; Kay
and Madden, 1997). Nevertheless, the fact
that the Antillean fauna has apparently al-
ways lacked representatives of many South
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American groups that ‘‘should” have made
the journey (Simpson, 1956) may have
something to do with the relative paleogeo-
graphical isolation and faunal diversity of the
source area as well as the nature and duration
of the landspan.

(7) The Late Miocene occurrence of two
sloth taxa in North America and the equally
early presence of procyonids (Cyonasua) and
now a ?cuvieroniine gomphothere in South
America (Webb, 1985; Frailey et a., 1996)
may indicate that these continents experi-
enced limited biotic interchange prior to the
formation of the (last) Panamanian bridge in
the late Neogene. The mechanism that per-
mitted this limited interchange—if that is
what it was—is obscure; a possible dryland
connection is signalled by the 12.9-11.8 Ma
hiatus in the Atrato Basin during the late
Middle Miocene (fig. 12; Duque-Caro,
1990), but its existence is unconfirmed. We
doubt that the sloths swam the distance, al-
though we note that at least one extinct phyl-
lophage (Thalassocnus) is thought to have
been highly aquatic (cf. de Muizon and
McDonald, 1995).

CONCLUSIONS

(1) Number of intercontinental landbrid-
ges. The last time that western Laurasia
(North America) and western Gondwana
(South America) were physically connected
as continental areas was during the Middle
Jurassic, ca. 170 Ma. Terrestrial connections
between these continental areas since then
can only have occurred via landbriges. In the
Cretaceous, three major uplift events, record-
ed as regional unconformities, may have pro-
duced intercontinental landbridges involving
the Cretaceous Greater Antillean island arc.
The late Campanian/early Maastrichtian up-
lift event is the one most likely to have re-
sulted in a landbridge, as it would have been
coeval with uplift of the dying Cretaceous
arc. However, the evidence is too limited for
any certainty on this point.

Whether the Cretaceous island arc was in-
volved in the formation of a late Mesozoic
landbridge between North and South Amer-
ica carries no necessary biogeographical im-
plications. As we have stated, it is not un-

likely that there were islands in the Carib-
bean Sea from the time of its opening in the
Jurassic onward. On the other hand, it isvery
unlikely that any of the early islands contin-
uously remained as such (i.e., as subaerial
geographical entities) into later times, due to
repeated transgressions, subsidence, and, not
incidentally, the K/T bolide impact and as-
sociated mega-tsunamis (cf. Hedges et al.,
1992).

Since the close of the Mesozoic, any land-
bridge between North and South America
would have to have involved Central Amer-
ica. The existing bridge (Panamanian isth-
mus) was completed only in the Plio-Pleis-
tocene. Evidence for a precursor bridge late
in the Middle Miocene is ambiguous at this
time.

(2) Role of GAARIandia landspan. There
is evidence that northwestern South America
was briefly connected during the Eocene—Ol-
igocene transition with large landmasses
emergent on the Greater Antilles Ridge and
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Aves Ridge. The massive uplift event that
apparently permitted these connections was
spent by 32 Ma; a general subsidence fol-
lowed, ending the landspan phase. Thereaf-
ter, Caribbean neotectonism resulted in the
subdivision of remaining land areas, possibly
causing multiple instances of true vicariance
among vertebrate species then present.

(3) Modes of faunal formation in the
Greater Antilles. Currently, there are three
main models of faunal formation in the West
Indies of interest to vertebrate biogeogra-
phers: strict dispersal, strict continent—island
vicariance, and one that combines dispersal
and vicariance in a two-phase process. This
paper reviews recent contributions to theory
relevant to each of these major modalities.
Continent—island vicariance in the classic
sense of Rosen (1975, 1985) appears to be
excludable for any period since the mid-Ju-
rassic; even if vicariance occurred at that
time, its relevance for understanding the or-
igin of modern Antillean faunas is minimal.
Hedges and co-workers (Hedges et al., 1992,
1994; Hedges, 1996a, 1996b) have strongly
espoused overwater dispersal as the major
and perhaps only method of vertebrate faunal
formation in the Caribbean region. Notwith-
standing their well-argued case, surface-cur-
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rent dispersal of passively transported prop-
agules seems to us to be an ineffective ex-
planation of observed patterns of faunal dis-
tribution in the Greater Antilles. Even though
a genera tendency exists for Caribbean sur-
face currents to flow northward with respect
to the South American coastline, experimen-
tal evidence indicates that it is highly unpre-
dictable where passively floating objects
caught in these currents will be deposited.
Prior to the Pliocene, regional paleogeogra-
phy was such that current-flow patterns from
major rivers should have delivered most
South American waifs to the Central Amer-
ican coast, not to the Greater or Lesser An-
tilles. Since at least three (capromyid rodents,
pitheciine primates, and megalonychid
sloths) and possibly four (solenodontid in-
sectivores) lineages of Antillean mammals
were aready on one or more of the Greater
Antilles by the Early Miocene (MacPhee and
Iturralde-Vinent, 1995), Hedges' inference as
to the primacy of overwater dispersal appears
to be at odds with the facts.

The landspan model is consistent with
most aspects of Antillean land-mammal bio-
geography as now known (MacPhee and
Iturralde-Vinent, 1995); whether it is consis-
tent with the biogeography of other groups
remains to be seen.
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APPENDIX 1: RECONSTRUCTING CARIBBEAN PALEOGEOGRAPHY:
AN ANALYTICAL GUIDE

This appendix presents additional maps, tables,
stratigraphic columns, and other information rel-
evant to interpreting the geological history of the
Caribbean region and the Late Tertiary pal eogeo-
graphical reconstructions presented elsewhere in
this paper. Information in the appendix is linked
to tables 1—4, which analytically summarize rel-
evant geological data and literature. Each table
covers a particular temporal interval, organized by
geologica units (first column). These units, de-
fined in terms of their current location on the ge-
ode (second column), are the entities traced on the
paleogeographic maps. The third and fourth col-
umns synthesize the evidence available for spe-
cific environmental indicators, as preserved in
rock-stratigraphic records.

Age of each entity was verified according to

stratigraphic position and fossil context (where
applicable) in light of the new chronostratigraphic
framework provided by Berggren et al. (1995).
Use of this new scale necessitated modification of
published time-stratigraphic positions of several
formations. Paleoenvironmental interpretations of
each unit were assessed using data and interpre-
tations in the literature as well as the results of
our own fieldwork.

Yucatan Peninsula

The Yucatan Peninsula (Maya Block or MB;
fig. 14) has been part of the North American plate
since the late Cretaceous (Marton and Buffler,
1993). Tectonic activity has been largely concen-
trated in the southwestern part of MB, far from
the areas immediately relevant to this study. Nev-
ertheless, there is considerable information on this
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unit and its Caribbean borderland (Butterlin and
Bonet, 1966; Case, 1975; Lopez-Ramos, 1975;
Weidie et al., 1979; Viniegra, 1981; Mascle et al.,
1985; see also the paleogeographical maps com-
piled in papers edited by Salvador, 1991).

Stratigraphic data indicate that MB was prob-
ably uplifted from Jurassic through Barremian
time (early Cretaceous). The block was covered
by shallow seas from late Aptian through Late
Eocene, athough small islands probably existed
on it from time to time (Salvador, 1991; Mc-
Farlane and Menes, 1991). Brief emergence of
MB may have occurred around 88-90 Ma, as a
hiatus has been reported within the Turonian (Lo-
pez Ramos, 1975; Weidie et al., 1979; Viniegra,
1981). This correlates well with a Turonian hiatus
represented in rock sequences in the northern Ca-
ribbean and Gulf of Mexico (Meyerhoff and Hat-
ten, 1968; Schlager et al., 1984; Pszczolkowski
and Flores, 1986; Iturralde-Vinent, 1994a).

Seismic refraction studies of the Chicxulub bo-
lide crater on the NW corner of the Yucatan Pen-
insula indicate that islands produced by impact
debris might have had a brief existence there dur-
ing the early Paleocene, before they vanished and
were covered by younger marine carbonate de-
posits (Buffler et al., 1995). Unfortunately, there
is not enough information available on these
structures to offer a plausible reconstruction of
their position or duration.

Several geologic units in western and central
Cuba (Guaniguanico, Pinos, and Escambray ter-
ranes) are allochthonous (Iturralde-Vinent, 1994a,
1994b). These terranes were detached from their
original location along the Yucatan borderland
(Pszczolkowski, 1987; Rosencrantz, 1990) be-
tween the Late Paleocene and the Middle Eocene,
during the formation of the Greater Antilles Fold-
belt (fig. 5; Bralower and lturralde-Vinent, 1997).
However, the tectonic processes involved (intense
folding, thrust faulting, metamorphism) took place
at significant depth, and it is quite improbable that
any of these terranes include units from MB that
were actually emergent at the time of their incor-
poration into Cuba.

According to Butterlin and Bonet (1966) and
Galoway et al. (1991), parts of MB have been
permanently subaerial since Late Eocene. How-
ever, latest Eocene to Early Miocene deposits are
rare and have been found only in the northern and
northwestern parts of the Yucatan Peninsula. In
the Oligocene and Miocene, the northeastern sec-
tion of the peninsula was covered by water, as was
the westernmost extremity of Cuba and Isla de la
Juventud during the Miocene (lturralde-Vinent,
1969). Furthermore, data from offshore seismic
lines clearly indicate that the Yucatan Channel is
an ancient feature that was in existence long be-
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fore the Late Eocene (probably since the Maas-
trichtian; Case, 1975; Mascle et al., 1985; Rosen-
crantz, 1990, 1996). Therefore, for most of the
Cenozoic, if not longer, the Cuban terranes (wher-
ever they were then stationed) and MB have been
separated by a significant water barrier (see also
discussion in MacPhee and Iturralde-Vinent,
1995).

Northern Central America, Nicaragua Rise, and
Western Jamaica

Geologically, northern Central America (com-
prising Nicaragua, Honduras, Guatemaa, and
southern Mexico) consists of a single tectonic ter-
rane, the Chortis Block (CB; fig. 15). In most cur-
rent plate tectonic models, CB is assumed to have
originated off Mexico on the Pacific margin of
North America, and to have been rotated into its
present position late in the Cenozoic (Malfait and
Dinkelmann, 1972; Donnelly et al., 1990). The
Monagua—Polochic deformed system, the hinge
zone between CB and terranes farther north in
Mexico, was particularly active from Middle Eo-
cene through Middle Miocene (Pindell, 1994;
Moran-Zenteno et al., 1996). Emplacement of CB
is generally correlated with the evolution of the
Cayman Trench system (Pindell, 1994; Rosen-
crantz, 1995; Moran-Zenteno et al., 1996). Ap-
preciable parts of CB have been uplifted for most
of the Cenozoic (Maurrasse, 1990; Donnelly et
a., 1990).

Geographically, the Nicaragua Rise (NR) is the
prolongation of CB into the Caribbean Sea. Geo-
logically, however, these units are quite different
(Holcombe et al., 1990; Donnelly et al., 1990).
Stratigraphic data for NR are spotty, but isolated
wells, dredge hauls, and seismic stratigraphy are
sufficient to create a broad-brush picture. Most
importantly, these data confirm that NR and the
Western Jamaican Block (WJ) have shared a con-
siderable amount of geological history.

Assuming that the Cretaceous basement of WJ
can be correlated with basement rocks of NR (also
known to be Cretaceous [Holcombe et al., 1990]),
it appears that this terrane (i.e., Western Jamaica
and Nicaragua Rise together) was the site of vol-
canic arc activity in the last part of the Mesozoic,
under mostly submarine conditions. Local hiatus-
es in the Albian and Turonian suggest bouts of
temporary uplift of the terrane in the Late Creta-
ceous (Case, 1975; Mascle et al., 1985; Perfit and
Heezen, 1978; Holcombe et al., 1990; Maurrasse,
1990). Although different marine environments
dominate the Paleocene and Eocene section (Hol-
combe et a., 1990; Robinson, 1994), occurrence
of at least one terrestrial vertebrate in Early Eo-
cene rocks of WJ indicates the local occurrence
of land (Domning et al., 1997). Perhaps, therefore,
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CB, NR, and WJ were terrestrially connected to
North America for a short time in the Early Eo-
cene. (Eastern Jamaica, comprising the Blue
Mountains Block, has had a different and more
complex history; see below.) NR was nearly at
ambient sealevel during the latest Eocene, and
positive areas were partly or completely uplifted
during most of the Oligocene. Miocene to Recent
marine rocks are found throughout, suggesting
that the NR became once again a submarine fea-
ture by the Late Miocene.

Two types of late Tertiary sedimentary environ-
ments can be defined for WJ (Eva and McFarlane,
1985; Robinson, 1994). One environment is in-
dicated by shallow marine carbonate rocks, re-
sembling those of NR. The other environment is
indisputably deep water, suggesting that Jamaica
was located at the eastern edge of the Rise. The
possible existence of a short-lived hiatus at the
base of the shallow-water Oligocene section in
WJ (Eva and McFarlane, 1985; Robinson, 1994)
correlates well with Oligocene uplift postulated
for NR. Fina uplift of WJ, to create most of the
idand as it is known today, probably occurred
during the important tectonic deformation that
took place during the Middle Miocene (Eva and
McFarlane, 1985; Mann et al., 1990, 1995; Rob-
inson, 1994).

Southern Central America

According to data compiled by Escalante
(1990) and Kolarsky et al. (19953, 1995b), South-
ern Central America (SCA) is underlain by Me-
sozoic oceanic crustal rocks and late Campanian—
Eocene oceanic crust and volcanic arc suites. The
Late Eocene to Recent section is summarized in
figure 16 (after Escalante, 1990; see also Kolarsky
et al., 1995a, 1995b). The Eocene-Oligocene
boundary interval (35—-33 Ma) is marked by local
uplift and deposition of angular, poorly sorted
conglomerates, derived from a local source. As
elsewere in the Caribbean region, the Late Oli-
gocene of SCA is transgressive and features ma-
rine rocks indicative of shallow- and deep-water
environments. An important event occurred late
in the Middle Miocene, as elsewhere in the Ca-
ribbean region, when strong volcanic activity and
genera uplift were initiated (see Dengo and Case,
1990; Duque-Caro, 1990). According to Duque-
Caro (1990), late in the Middle Miocene, SCA
may have been sufficiently uplifted to serve as a
connector between Central and South America.
The existence of late Neogene deformation and
thrust faulting recorded at the hinge zone between
Panama and South America (Mann and Kolarsky,
1995) tends to support this inference, although it
is far from demonstrated.
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Northwestern South America

The geology of this region has been investiga-
ted by many authors (fig. 17); key references in-
clude Gonzalez de Juana et al. (1980) Bonini et
al. (1984), Duque-Caro (1990), Dengo and Case
(1990), and Tankard et al. (1995). The regional
geological picture is too complicated for useful
summary here, but some general points need to
be briefly canvassed for the purposes of this paper.
Detailed paleogeographic reconstruction of north-
western South America (NWSA Microcontinent)
prior to the latest Eocene is beyond the scope of
this report (but see Tankard et al., 1995).

During most of the late Tertiary, the NWSA
Microcontinent has moved predominantly east-
ward with respect to the motion of the rest of
South America (Gonzélez de Juana et a., 1980;
Case et a., 1990; Bartok, 1993; Pindell, 1994;
Balkwill et al., 1995). Also, this region has been
strongly affected by vertical movements since the
latest Eocene. Marine sediments corresponding to
the P17-18 zones (35-33 Ma) of Berggren et al.
(1995) are not known on the microcontinent prop-
er, indicating that most of the area was uplifted
during that time (tables 1, 2). However, mid-Oli-
gocene (P19 zone) and younger marine deposits
have been found in several basins (Gonzélez de
Juana et al., 1980; Duque-Caro, 1990; Cooper et
al., 1995), indicating that uplift was followed fair-
ly rapidly by subsidence or higher sea stands (or
both). This must have been accompanied by con-
siderable modification of the pattern of river
drainage (Hoorn et al., 1995). The epicontinental
seaway that apparently converted northwestern
South Americainto alargeisland wasin existence
from the latest Eocene (fig. 17; Cooper et al.,
1995; Kay and Madden, 1997).

Aruba/Tobago Belt

The structure and history of the Aruba/Tobago
Belt (ATB) has to be considered separately (fig.
18). The basement of these islands consists of
Mesozoic oceanic crust and Cretaceous volcanic
arc units. Equivalent rocks are also found allo-
chthonously in the Caribbean Mountains, above
continental margin sediments, all partially meta-
morphosed (Gonzélez de Juana et al., 1980; Beets
et al., 1984; Mascle et a., 1985; Jackson and
Donovan, 1994). The deformation of ATB took
place when the Caribbean Plate interacted with
the South American continental margin (Beets et
al., 1984; Erikson and Pindell, 1993; Macellari,
1995). Between 35 and 33 Ma this interaction
produced general uplift of the Belt (see above), as
well as progressive subsidence of local basins
along the continental margin (Macellari, 1995; Er-
ikson and Pindell 1993; Stockhert et al., 1995). In
Trinidad, sedimentation in deep-water conditions
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began in the Late Oligocene and persisted until
late in the Miocene (Algar and Erikson, 1995).
Similarly, in the Orinoco River basin, marine sed-
iments of Eocene to Recent age occur as outcrop-
ping or subsurface deposits (Gonzélez de Juana et
al., 1980; Cooper et al., 1995). Stratigraphic se-
quences in ATB and several basins in the NWSA
Microcontinent present a record of the same crit-
ical events in late Tertiary geological history that
have already been described for other parts of the
Caribbean region, such as the 35-33 Ma hiatus
and subsequent Oligocene transgression (Gonzéa-
lez de Juana et al., 1980). In some areas, the hi-
atus seems to have involved long-lasting subaerial
exposure, with shorter intervals of marine inun-
dation in the Late Oligocene and the late Early
Miocene. For example, this interpretation seems
to apply to the exceptional hiatus between the

Late Eocene and Late Miocene seen in sections
from Aruba and Margarita. This areais provision-
aly regarded as the zone in which the inferred
land connection between the Aves Ridge and con-
tinent was formed during the Eocene-Oligocene
transition.

Greater Antilles

The Greater Antilles have been the subject of
detailed geological research for most of this cen-
tury. Key modern sources include Khudoley and
Meyerhoff (1971), Dengo and Case (1990), Mann
et al. (1991), Donovan and Jackson (1994), and
Iturralde-Vinent (1996a). The unusual complexi-
ties of this region militate against easy paleogeo-
graphical reconstruction, and it is recognized that
much more field and laboratory work will have to
be undertaken before paleomapping projects will
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Fig. 18. Late Tertiary stratigraphic columns
for selected basins on NWSA Microcontinent
(northwestern South America) and Aruba/Tobago
Belt (compiled from many sources; appendix 1).
Batuco Fm (Aruba—Bonaire) was originally dated
as Eocene—Early Oligocene, but age markers are
ambiguous and suggest Late Oligocene to Early
Miocene age (Lepidocyclina, Heterostegina, Par-
arotalia, Antiguastrea cellulosa [sensu Gonzéalez
de Juanaet al., 1980]). Lithology asin figure 20A.

achieve the needed level of detail and authorita-
tiveness. However, thanks to recent investigations
some headway has been possible (see Paleoge-
ography of the Caribbean Region: Evidence and
Analysis).

The basement of the Greater Antilles Foldbelt
(GAF) consists of old continental-margin suites,
Mesozoic oceanic crustal units, Cretaceous/Paleo-
gene volcanic arcs, and latest Cretaceous to Re-
cent sedimentary basins—all partly metamor-
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phosed, deformed, and jumbled together under the
pervasive effects of tectonic forces (Fig. 5; Dengo
and Case, 1990; Iturralde-Vinent, 1994a). Widely
varying opinions concerning the plate tectonic
evolution of these elements can be found in the
literature (cf. Pindell, 1994; Iturralde-Vinent,
1994a; Hay and Wold, 1996). Most aspects of the
tectonic history of GAF prior to the latest Eocene
lie outside the special concerns of this paper (but
see fig. 5 and main text for background).

From the literature we have compiled strati-
graphic data (figs. 19, 20) pertinent to interpreting
the post-Eocene paleogeography of the Greater
Antilles (Cuba: Bronnimann and Rigassi, 1963;
Nagy et al., 1983; Albear and Iturralde-Vinent,
1985; Iturralde-Vinent, 1969, 1972, 1996a,
MacPhee and lturralde-Vinent 1994, 1995; His-
paniola: Butterlin, 1960; Van den Bold, 1981;
Eberle et al., 1982; Maurrasse, 1982, 1990; Saun-
ders et al., 1986; Garcia and Harms, 1988; Mann
et a., 1991; Heubeck et al., 1991; Toloczyki and
Ramirez, 1991; Iturralde-Vinent and MacPhee,
1996; Blue Mountains Block: Robinson, 1965,
1994; Eva and McFarlane, 1985; Maurrasse,
1990; Geddes, 1994; Puerto Rico: Meyerhoff,
1933; Pessagno, 1963; Monroe, 1980; Frost et al.,
1983; MacPhee and lturrade-Vinent, 1995; Vir-
gin Islands: Larue, 1994; MacLaughlin et a.,
1995).

Eastward shift of tectonic activity has been a
marked trend in the evolution of the Greater An-
tilles since the end of the Eocene. Thus, in west-
ern and central Cuba, vertical movements, with
limited sinistral strike-dlip faulting, has been the
rule since latest Eocene (Iturralde-Vinent, 1978).
By contrast, east of the Guacanayabo—Nipe fault
in eastern Cuba, sinistral faulting and transpres-
sional tectonics have been dominant. This has re-
sulted in strong deformation and subdivision of
GAF into a series of block-terranes correlated
with the opening of trenches, grabens, and pull-
apart basins (Ladd et al., 1981; Larue et a., 1990;
Larue and Ryan, 1990; Jany et al., 1990; MacPhee
and Iturralde-Vinent 1995; Mann et al., 1990; Ca-
lais et a., 1992). These disrupted block-terranes
have to be returned to their original, latest Eocene
position in order to reconstruct Greater Antillean
paleogeography (figs. 3, 6).

Figure 3 is a palinspastic reconstruction of a
critical area in the northern Greater Antilles that
encompasses present-day eastern Cuba, northern
Hispaniola, and Puerto Rico. Offsets along major
strike-slip faults have been calculated for some
faults (lturralde-Vinent, 1981; De Zoeten and
Mann, 1991); these figures are used where avail-
able. Our reconstruction is based strictly on con-
cordances between identical or strongly correlat-
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able geological units (particularly those of Late
Eocene age or older), as follows:

(1) ?Neocomian—Campanian Cretaceous Vvol-
canic-arc complexes: These rocks outcrop from
west-central Cuba across Hispaniola into Puerto
Rico and the Virgin Islands.

(2) Maastrichtian massive conglomerates, dom-
inated by ophiolite pebbles and overlain by Pa-
leocene/Early Eocene white tuffaceous rocks:
This suite of rocks only outcrops east of Holguin
in eastern Cuba and in a small area in northwest-
ern Hispaniola. This suite is of unique importance
for correlating terranes (Iturralde-Vinent, 1994b).

(3) Ophialite trend: Outcropping ophiolites in
Cuba follow the same trend as those in Hispan-
iola, especially when their paleoposition is recon-
structed palinspastically.

(4) Distinctive metamorphic rock units: This
series consists of four distinctive rock suites—
marble and schists of the Bahamas margin com-
plex, amphibolites (metaophiolites), serpentinites
with blocks of eclogite, and metamorphosed Cre-
taceous volcanic arc rocks. This combination of
metamorphics outcrops in easternmost Cuba and
northwestern Hispaniola (Puerto Plata—Samana).

(5) Paleogene volcanic arc rocks: Rocks de-
rived from the Paleogene volcanic arc outcrop in
eastern Cuba as well as the northern peninsula of
Haiti, central Hispaniola, and Puerto Rico.

(6) Latest Eocene/Oligocene sedimentary
rocks: Units of this age in the Guantanamo Basin
correlate precisely with those found in the the Ci-
bao-Altamira Basin of Hispaniola (Calais et al.
1992; Iturralde-Vinent and MacPhee, 1996).

The paleoposition of Puerto Rico/Hispaniolais
not so well constrained as that of Cuba/Hispan-
iola, although it is known that the Cretaceous vol-
canic arc complex outcropping in eastern Hispan-
iola also forms a large portion of the basement of
Puerto Rico. The most important correlatable
units are the Duarte complex of Hispaniola and
the Bermegja complex of Puerto Rico, which liein
the same trend. Also, outcrops of Paleogene rocks
on the eastern side of Hispaniola lie in the same
trend as their equivalents in Puerto Rico.

The close match between the main structural
fabric and compositional elements of eastern
Cuba, Hispaniola, and Puerto Rico/Virgin Islands
as illustrated in figure 3 is valid only for the in-
terval between the latest Eocene and the mid-Ol-
igocene (35-30 Ma). Before the latest Eocene, ov-
erthrusting and extensive superposition of terranes
took place in this area (Meyerhoff and Hatten,
1968; Pardo, 1975), indicating that a different pal-
eogeographic organization prevailed at that time
(see main text). Subsequent to the Late Oligocene,
movement along several sinistral faults has
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strongly disrupted the assemblage of block-ter-
ranes (cf. figs. 1-3).

Blue Mountains Block

A possible land connection between the south-
ern peninsula of Hispaniola (SH) and the Blue
Mountains Block (BM) of eastern Jamaica is il-
lustrated for the Eocene—Oligocene transition (fig.
6). The evidence for this connection is circum-
stantial at present, and therefore its inclusion in
paleogeographical reconstructions of the Greater
Antilles requires some elaboration.

It is generally accepted that Jamaica originated
as a single crustal unit in the Cretaceous arc (Pin-
dell, 1994). However, as previously noted, there
is evidence that Jamaica is structurally and litho-
logically divisible into two major terranes, con-
sisting of a large western block (Clarendon and
Hanover Blocks of Lewis et a., 1990) and a
smaller Blue Mountains Block. These two ter-
ranes differ radically in crustal composition, de-
gree of metamorphism, and stratigraphy (includ-
ing the span of temporally correlated units), asis
evident from several recent papers and mapping
projects (Geddes, 1994; Montadert et al., 1985;
Lewis et al., 1990; Robinson, 1994). It is true that,
after the Middle Eocene, resemblances between
coeval formations in different parts of Jamaica
greatly increase (e.g., Bonnie Gate Fm; Robinson,
1965, 1994). However, lithology by itself has lim-
ited correlation value in this case, as composition-
aly similar formations of late Tertiary age out-
crop widely in the Greater Antilles.

According to Pindell’s (1994) model of the or-
igin of Jamaica, the island’s basement as a whole
was originally part of the Cretaceous volcanic
arc located on the leading edge of the Caribbean
Plate. As the plate moved east during the late
Cretaceous, the basement rocks of Jamaica re-
mained attached to northern Central America. It
is assumed by necessity that these rocks were
carried to their present-day position when the
Nicaragua Rise (which originated in the Pacific)
was inserted into the Caribbean (Pindell, 1994:
fig. 2.6). If this were so, one would expect to
find strong similarities between the ophiolitic
and Cretaceous-arc suites of western Cuba and
Jamaica, since they were located side by side in
the original arc (sensu Pindell, 1994). Yet there
is virtually no similarity between relevant geo-
logical sections (cf. Iturralde-Vinent, 1996a,
1996b, 1996¢c and Robinson, 1994). By contrast,
there are evident resemblances in the ophiolitic
and metavolcanic sequences of the Eastern Cu-
ban Block and BM, suggesting that these ter-
ranes belong to the same geological province
(Iturralde-Vinent, 1995). Most importantly, the
geological composition of the Mesozoic rocks of
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Fig. 20. Greater Antilles: Late Tertiary stratigraphic columns for selected basins: A, Blue Mountains,
Cuba (this page); B, Hispaniola, Puerto Rico/Virgin Islands (compiled from many sources; see appendix

1; opposite page).

SH and BM are also remarkably similar. (Cf. de-
scriptions of southern Hispaniola by Butterlin
[1960] and Maurrasse [1982] with descriptions
of Blue Mountains by Robinson [1994] and
Montadert et al. [1985].)

These observations can be made concordant if
it is accepted that BM originated as part of the
northern Greater Antilles, while WJ evolved from
the leading edge of the Nicaragua Rise (sensu Pin-
dell, 1994). In this interpretation, these terranes
maintained a separate existence until the Middle
Miocene, when they were conjoined during tec-
tonic deformations recorded in the island (Mon-
tadert et al. 1985). We acknowledge that this dual-
origin hypothesis represents a break with the or-
thodox view, and that further substantiation is re-
quired (see also Stephan et a. 1990: pls. 8-10).

With regard to the possible presence of land on
the Blue Mountains unit during the early Tertiary,

one important piece of the puzzle is the identity
of the 33-35 Ma hiatus (corresponding to zones
P17-18) occuring in BM and SH. In SH, the
deep-water G. ampliapertura to G. kugleri zones
of the Jeremie Fm unconformably overlie older
rocks (fig. 20B). Rocks deposited in the time-slice
corresponding to zones P17-18 have not been re-
ported; this may indicate that SH was uplifted at
that time, as were many other terranes in the Ca-
ribbean (including blocks having similar oceanic
crustal structure, e.g., Beata Ridge).

Likewise, well-dated sediments of 35-33 Ma
age have not been recognized in the Blue Moun-
tains either. Eva and McFarlane (1985) identified
the Early Oligocene in Jamaica on the basis of an
assemblage including Dictyoconus cookei, Ar-
chaias angulatus, and several small species of Pe-
neroplis, but these taxa are ambiguous indicators
of this age, because A. angulatus and Peneroplis
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Fig. 20. Continued.

are extant taxa, while D. cookel is not restricted
to the Oligocene (see Bronnimann and Rigass,
1963; Albear and Iturralde-Vinent, 1985). Simi-
larly, Robinson (1965, 1994) identified the hemi-
pelagic Bonny Gate Fm from localities surround-
ing the central Blue Mountains as being Eocene
to Late Oligocene in age. However, he does not
list fossils consistent with a P17—18 zone alloca-
tion (sensu Berggren et al., 1995). In any case,
the use of benthic forams as index fossils to date
narrow time intervals is problematic, especially in

contexts like the Bonny Gate Fm in which allo-
chthonous biodetritus is frequently encountered
(Eva and McFarlane, 1985; Robinson, 1965,
1994).

The possibility that uplift occurred within BM
and SH 35-33 Ma is underscored by the ubiqui-
tous presence of a hiatus of that precise age in
existing positive structures almost everywhere in
the Caribbean, including the submarine Beata
Ridge. Absence of this hiatus in eastern Jamaica
would be completely anomalous.
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The nonpalinspastic maps of Eva and Mc-
Farlane (1985) indicate the occurrence of land in
the Blue Mountains during the Paleocene and Eo-
cene, and, much later, after the Middle Miocene.
Although this scenario, involving repeated emer-
gence and submergence of the Blue Mountains,
cannot be directly challenged on the basis of the
few facts available, we argue that it is more par-
simonious to hypothesize that the Blue Mountains
have been permanently subaerial since the latest
Eocene. This view is consistent with (1) the ab-
sence of Eocene and younger rocks from the core
of BM; (2) the lithological character of the Bonny
Gate Fm, in which the presence of coarse clastic
debris (olistostromes, sandstones, silts) in the bas-
a Lloyd member (Maurasse, 1990) indicates the
existence of land during the late Paleogene; and
(3) the occurrence of shallow-water biodetritus
throughout the Bonny Gate section (Eva and
McFarlane, 1985), suggesting shelf or coastal en-
vironments prevailing at the time of deposition.
Better evidence of the emergence of the Blue
Mountains and the nature of their connection with
Hispaniola is sorely needed.

Aves Ridge, Lesser Antilles, and Grenada Basin

In the last three decades, alarge amount of geo-
logical and geophysical data has been collected
concerning the Aves Ridge (AR), Lesser Antilles
(LA), and Grenada Basin (GB). For an overview
and additional references, the reader is referred to
papers by Fox et al. (1971), Bouysse et al. (1985),
Pinet et al. (1985), Holcombe et al. (1990), and
Maury et al. (1990). Here we concentrate on
physical paleogeography.

Cretaceous and Paleogene volcanic and pluton-
ic rocks of island arc affinities occur in AR (Bun-
ce et al., 1970; Fox et al., 1971; Nagle, 1972;
Bouysse et al., 1985; Westercamp et al., 1985;
Holcombe et al., 1990), as do Mesozoic and Eo-
cene volcanic rocks in LA (fig. 15). This basic
compositional similarity suggests that, from Cre-
taceous through Eocene time, AR and LA were a
single entity: the AR—LA Volcanic Arc (Pinet et
al., 1985; Bouysse et a., 1985). This arc was pre-
sumably linked geologically to the Aruba/Tobago
Belt in the south and the eastern Greater Antilles
in the north, because all of these landmasses pos-
sess a similar Cretaceous volcanic arc-ophiolite
basement.

If AR and LA once comprised a single arc, it
can be concluded that, at some time in the past,
the GB that now separates these two entities did
not exist. However, the age of this basin has not
been well constrained. Inconclusive seismic evi-
dence suggests that GB is filled by sedimentary
rocks of Paleocene(?) to Recent age (Pinet et al.,
1985; Bouysse et al., 1985; Bird, 1991), while
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dredge hauls from the basin’s margins consist of
mostly Eocene and younger sedimentary and vol-
caniclastic rocks (fig. 21).

According to Pindell (1994), GB opened be-
tween the Paleocene and Late Eocene, but we
postulate a somewhat younger date (Late Eocene
or younger) for the following reasons. If GB is
interpreted as a back-arc basin, the disjunction of
the AR—LA arc into two independent geological
units (Aves Ridge remnant arc and Lesser Antilles
active arc) would have probably been caused by
alocal change in the subduction regime (e.g., al-
teration of angle of dip of lower slab, or migration
of position of subduction zone). We hypothesize
that this event was correlated with Late Eocene
cessation of volcanic activity in AR (and a con-
committantly great increase in activity in LA) and
increased thickness of Oligocene and younger
sediments in GB (see seismic sections in Nemec
[1980] and Pinet et al. [1985]).

Figure 21 depicts islands and other features of
the eastern Caribbean as they appear today, to-
gether with simplified late Tertiary stratigraphic
columns for AR, GB, and LA. The thickness of
Tertiary sediments (Pinet et al., 1985) indicates
that AR and LA have been positive for most of
the Cenozoic. Positive topography is also indicat-
ed by the occurrence of shallow-water limestones
of Eocene to Lower Miocene age dredged from
ridge walls of these features. In addition, Early
Oligocene slope deposits have been recovered
from cores from Saba Well (Nemec, 1980); their
compositional character suggests that they were
derived from some nearby area (presumably AR)
that had been block-faulted and significantly up-
lifted (Pinet et al. 1985).

Calculations by Holcombe and Edgar (1990)
establish that, given certain assumptions, before
the Miocene most of the topographic highs on AR
may have been subaerial, or nearly so, and would
have formed a string of emergent lands along a
north—south axis. This inference is corroborated
by the frequent occurrence of conglomerates in
samples dredged from the Ridge (Nagle 1972;
Bouysse et al., 1985). These poorly sorted con-
glomerates contain rounded pebbles and cobbles
of andesite, up to 10 cm long and showing altered
(weathered?) cortices in a calcareous—tuffaceous
matrix. The matrix has yielded large benthic fo-
rams and algae, which Bock (1972) identified as
Oligocene, Early Miocene, or older (Nagle, 1972).

The existence of these conglomerates strongly
implies the existence of subaerial conditions just
before and at the time that they were being
formed. Observations on the effects of weathering
on granular igneous and sedimentary rocks in the
Greater Antilles (so-called “‘big boulder bed” of
Bronnimann and Rigassi [1963]; M. A. lturralde-
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NO. 238

Vinent [unpubl. data]) indicate that, under tropical
conditions, surface weathering of the cortices of
granular rocks causes material to be concentrical-
ly lost, eventually resulting in the formation of
rounded cobbles. Most rivers in the Greater An-
tilles are far too short to produce roundedness by
abrasion alone, which suggests that conglomerates
containing large, rounded cobbles may be diag-
nostic of highland conditions prevailing at the
time of deposition. Incorporation of rounded cob-
bles into a calcareous matrix is obviously second-
ary, the result of transport to marine environ-
ments. In our view, AR conglomerates are readily
correlatable with the Eocene-Oligocene conglom-
erate event recorded elsewere in the Greater An-
tilles and South America (MacPhee and lturralde-
Vinent, 1995).

These facts suggest that AR was a topographic
high (Donnelly, 1989b) from the Eocene to the
Lower Miocene, and was actually emergent for
some indefinite (but probably short) period within
the latest Eocene/Early Oligocene, after the ter-
mination of arc magmatism and related uplift in
the Greater Antilles and Aves Ridge. AR rapidly
subsided thereafter, and was already deeply sub-
merged by the Middle Miocene, as indicated by
seismic profiles and the occurrence of Middle
Miocene and younger deep-water sediments in
wells (DSDP 30, hole 148; Edgar et al., 1973) and
dredge hauls (Nagle 1972; Bock, 1972; Bouysse
et a., 1985).

Structurally, the southern portion of AR—LA is
part of the deformed and partly obducted volcanic
arc complex that also forms the basement of the
Caribbean Mountains and islands along the Aru-
ba/Tobago Belt (Gonzéalez de Juana et al., 1980;
Jackson and Robinson, 1994). That the NWSA
Microcontinent (Gonzlez de Juana et al., 1980;
Balkwill et a., 1995; Parnaud et al., 1995) shares
a significant portion of its Cenozoic geological
history with the southern AR—LA is aso indicated
by the fact that they were extensively and coter-
minously uplifted around the Eocene—Oligocene
boundary (35-33 Ma). The possibility that they
were physically connected by emergent land dur-
ing this time is strongly suggested by the absence
of marine sediments of this age in northwestern
South America, as well as in the Aruba/Tobago
Belt and AR—-LA arc.

The stratigraphic record of LA (Maury et d.,
1990) shows a history of activity in marine as
well as subaerial contexts since the Eocene. The
presence of late Tertiary marine sedimentary
rocks intercalated within volcanic sequences is
evidence that the islands have not been perma-
nently uplifted since the Eocene, but have had a
complex history involving emergence, subsi-
dence, and migration of topographic highs. In
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their present form the mgjority of them are cer-
tainly young (Pliocene to Recent).

Beata Ridge

The geological history of Beata Ridge (BR) has
been recently reviewed by Fox et al. (1970), Case
(1975), Mascle et a. (1985), Holcombe et al.
(1990), and Maurrasse (1990). According to Case
(1975) and Holcombe et a. (1990), BR was an
undifferentiated part of the Caribbean oceanic
crust until the onset of orogenic movementsin the
Late Cretaceous. Organizationally, BR consists of
a set of tectonic blocks (fig. 4, cross section, el-
evations considerably exaggerated) that have been
positive since the end of the Maastrichtian(?). BR
was markedly affected by uplift (up to 1000 m)
in both Middle Eocene/Oligocene and Middle
Miocene time, but there is no direct evidence that
it was actually emergent at any stage. In particu-
lar, the lack of conglomerates in wells and dredge
hauls speaks against the existence of high, dry
areas on BR (cf. discussion of Aves Ridge). Hi-
atuses do occur in the BR section, but none of
them shows an unequivocal signature of emer-
gence. For example, the Middle Miocene hiatus
observed in cores may be due to an interruption
in deposition or to the effects of submarine ero-
sion on BR (Mullins et al., 1987; Iturralde-Vinent
et al., 1996a). Beata Island, the only emergent part
of the ridge, probably became subaerial in the
Quaternary. Therefore, Beata Ridge is of no sig-
nificance for interpreting the history of land con-
nections in the Caribbean region, as it was evi-
dently never a structural or paleogeographical link
between a mainland and the Greater Antilles
(Heubeck and Mann, 1991) (figs. 6-8; tables 1-4).

Nevertheless, evidence that BR was subjected
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to latest Eocene/Early Oligocene uplift is impor-
tant, because it establishes that areas composed of
thick oceanic crust were affected in the same
manner as geological units composed of continen-
tal or island-arc crust, underlining the all-embrac-
ing character of this event (MacPhee and lturral-
de-Vinent, 1995).

Cayman Islands and Cayman Ridge

Because of the small size of outcrops on the
Cayman Islands and difficulties in recovering suf-
ficient dredge samples from the walls of the Cay-
man Trench (CT), information is limited on these
units (Perfit and Heezen, 1978). The most recent
review of the geology of the Cayman Islands is
by Jones (1994); additional topics of interest are
covered by Case (1975), Holcombe et al. (1990),
and Rosencrantz (1990, 1995).

Stratigraphic columns (fig. 22) indicate that be-
tween 35 and 33 Ma the Cayman Ridge was cov-
ered by shallow water. Evidence of deeper water
environments occurs only in Early Miocene (and
later) rocks dredged from the walls of CT, indi-
cating that this is when the trench system began
to open (Perfit and Heezen, 1978). On the islands
themselves, shallow-water limestones of Oligo-
cene-Miocene and Middle Miocene age have
been documented, as has a hiatus within the Early
Miocene. These data underline the very recent
character of the islands on the Cayman Ridge.
However, they do not necessarily preclude the
possibility of a recent land connection between
the Cayman Islands and eastern Cuba, as both are
located along the same structural trend, i.e., the
Cayman Ridge (but see point [4] in discussion
section under GAARIandia Landspan and Island—
Island Vicariance).

APPENDIX 2: A PLATE TECTONIC MODEL OF THE CARIBBEAN
FROM LATEST EOCENE TO MIDDLE MIOCENE

Models of the plate tectonic evolution of the
Caribbean region tend to agree on the major is-
sues (Malfait and Dinkelmann, 1972; Ross and
Scotese, 1988; Pindell and Barrett, 1990; Pindell,
1994), but many details remain uncertain. Most
discrepancies among models concern tectonic de-
velopments prior to the latest Eocene, although
controversy attends several aspects of plate move-
ment in the crucia interval between the end of
the Eocene and the Middle Miocene. In order to
present new data and interpretations bearing on
late Tertiary tectonics, we constructed a tectonic
model for the interval 35-14 Ma (see figs. 23-26,
table 6). Basic assumptions underlying our recon-
struction are presented below and in the caption
of figure 23.

1. Crustal plates are deformable

Interactions between plates commonly result in
profound deformations of crustal blocks and ter-
ranes, not only along plate margins but also with-
in intraplate domains. Typical deformations in-
clude crustal shortening and superimposition of
units as a consequence of folding and thrust fault-
ing (see figs. 2 and 5) as well as the partial or
complete destruction of microplates, blocks, and
terranes at subduction zones. These processes op-
erate at all scales, resulting in modification of the
size and configuration of individual blocks as well
as entire plates. From this it follows that tectonic
models that purport to be realistic must take some
account of these processes; if not, results will be
interpretatively problematic. The recent tectonic
model for the Caribbean published by Hay and
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TABLE 6
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Computed Finite Poles of Rotation of South America, Caribbean Plate, and Smaller Units
with Respect to North America, 35 Ma to Recent?

Latitude Longitude Angle
Age © ©) ® Comment
. South America vs. 35 16.3 —53.6 5.92
North America 30 15.8 —539 5.24
25 15.1 —54.1 4.54
20 15.6 -539 393
15 13.8 -54.3 2.83
10 9.6 —553 1.71
5 9.0 —54.8 0.85
0 0.0 0.0 0.0 Units reach current relative position
. North America vs. Africa 47.0 75.30 —3.88 15.25 An21? (Mueller et al., 1993)
332 75.37 1.12 10.04 Anl13 (Mueller et al., 1993)
19.7 79.57 37.84 5.29 An6 (Klitgord and Schouten, 1986)
9.8 80.12 50.80 2.52 AnS (Mueller et al., 1993)
0 0.0 0.0 0.0 Unit reaches current relative position
. South America vs. Africa 42.5 57.62 —-32.07 17.58 An20 (Shaw and Cande, 1990)
331 56.63 —3391 13.38 Anl13 (Shaw and Cande, 1990)
25.8 57.16 —35.34 9.98 An8 (Shaw and Cande, 1990)
19.0 58.07 —-37.42 7.04 An6 (Shaw and Cande, 1990)
9.7 59.99 —38.89 3.13 An5 (Shaw and Cande, 1990)
0.0 0.0 0.0 0.0 Unit reaches current relative position
. Chortis Block/Nicaraguan 35 57.15 111.37 4.51 Sinistral motion in the Motagua/Swan
Rise vs. Maya Block fault system
. Western Cuban Block 35 0.0 0.0 0.0 Western Cuban Block N of Pinar fault
vs. Maya Block fixed to Maya Block at latter’s
present-day position
0 0.0 0.0 0.0 No further rotation
. West-Central Cuban Block 35 6.68 —72.56 0.86 Between 35 and 25 Ma, Cuban Block
vs. Maya Block slides NE along NE-SW sinistral
faults
25 0.0 0.0 0.0 No important relative motion of blocks
15 0.0 0.0 0.0 No important relative motion of blocks
. East-Central Cuban Block 35 7.85 —71.10 1.67 Cuban block slides to NE
vs. Maya Block 15 0.0 0.0 0.0 Low-amplitude sinistral motion along
La Trocha fault
0 0.0 0.0 0.0 Block reaches current relative position
. Eastern Cuban Block 35 6.03 —=71.16 2.52 Cuban Block slides NE closer to
vs. Maya Block Bahamas due to movement along
Guacanayabo—Nipe sinistral fault
0 0.0 0.0 0.0 Block reaches current relative position
. Northern Hispaniolan Block 35 0.42 —73.38 9.76 Northern and Central Hispaniolan
vs. Eastern Cuban Block blocks attached to each other
25 0.42 -73.38 9.76 Sinistral motion begins along Oriente
fault, Hispaniolan Block slides E
15 0.0 0.0 0.0 Northern Hispaniola Block nears
current position relative to eastern
Cuba
0 0.0 0.0 0.0 Block reaches current relative position
10. Central Hispaniolan Block 35 19.1 —66.3 —1.28 Hispaniolan blocks fixed between
vs. Northern Hispaniolan 35 and 15 Ma
Block 15 19.1 —66.3 —1.28 Northern Hispaniolan Block becomes
attached to Bahamas, central
Hispaniolan Block slides E
0 0.0 0.0 0.0 Unit reaches current relative position
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TABLE 6
(Continued)
Latitude Longitude Angle
Age ©) ©) ©) Comment
11. Puerto Rico/Virgin Islands 35 19.05 —67.94 —43.38 Puerto Rico/Virgin Islands Block fixed
Block vs. Central to Central Hispaniolan Block
Hispaniolan Block 15 19.05 —67.94 —43.38 Puerto Rico/Virgin Islands Block
starts rotation
0 0.0 0.0 0.0 Unit reaches current relative position
12. Chortis/Nicaraguan Rise/ 35 23.20 ~72.20 —9.38 Southern Hispaniolan Block slides NE
southern Hispaniola vs. 15 0.0 0.0 0.0 Southern Hispaniola collides with and is
Central Hispaniolan Block affixed to Central Hispaniolan Block
0 0.0 0.0 0.0 Unit reaches current relative position
13. Southern Central America 35 5290 —1245 -7.03 Southern Central America located SW
vs. Chortis Block of Chortis
15 52.90 —1245 -3.73 Southern Central America slides NE

due to sinistral movement of
Hess Escarpment fault

0 0.0 0.0 0.0 Unit reaches current relative position
14. Southern Nicaraguan Rise 35 30.00 —95.00 —-0.39 Hess Escarpment fault active,
vs. Chortis Block associated with alkali vulcanism in

southern Nicaraguan Rise; general
extension in Chortis Block and
Nicaraguan Rise

0 0.0 0.0 0.0 Units reach current relative position
15. Aves Ridge vs. South 35 5.61 —66.67 22.55 Aves Ridge/Lesser Antilles Arc line up
America with Caribbean Mountains
0 0.0 0.0 0.0 Units reach current relative position
16. Lesser Antilles Arc 35 19.83 —64.79 —4.51 Uneven extension at northern end of
vs. Aves Ridge Grenada Backarc Basin
0 0.0 0.0 0.0 Grenada Basin achieves current width
17. Southern part of Lesser 35 12.05 -61.70 27.96 Lesser Antilles Arc exhibits little
Antilles Arc vs. northern curvature
part of Lesser Antilles Arc 5 12.05 -61.70 27.96 Lesser Antilles Arc deformed, increases
curvature (5-0 Ma)
0 0.0 0.0 0.0 Lesser Antilles achieve current
configuration
18. Tobago Block vs. South 35 26.80 118.09 —17.60 Tobago Block slides E, ahead of
America Lesser Antilles Arc
0 0.0 0.0 0.0 Units reach current relative position
19. Beata Ridge Block vs. 35 28.4 —128.1 —-3.41 Beata Ridge Block is part of Caribbean
Hess Escarpment ocean crust
15 28.4 —128.1 —-3.41 Ridge starts to slide NE toward
Hispaniola
0 0.0 0.0 0.0 Units reach current relative position
20. NWSA Microplate vs. 35 1.5 117.8 -9.50 NWSA Microplate slides NE as
South America South America rotates
counterclockwise
0 0.0 0.0 0.0 Units reach current relative position

2 Column on far left lists geological units (in italics) whose positions are being compared to other such units (e.g., in first entry,
position of South America is being compared to that of North America). Central columns: Age, position at specific time, in mil-
lions of years; Latitude and Longitude, geographical coordinates of pole of rotation; Angle, rotation as calculated by the pro-
gram PLATES. North America includes Maya and Bahama Blocks. The position of South America relative to North America is
derived from poles of rotation for South America vs. Africa and North America vs. Africa.

b Magnetic anomaly number.
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Wold (1996) may be cited as an example of the
latter. In their model, tectonic blocks and terranes
move, but they do not deform, even after the
elapse of many millions of years (Hay and Wold,
1996: figs. 2-7). The resulting lack of realism is
evident in the evolution of Hispaniola (our Central
and Northern Hispaniolan Blocks, fig. 23). His-
paniola is depicted by these authors as suffering
no deformations or alterations from the late Me-
sozoic onward; to fit within the space available
per time dlice, it has to be sequentially moved
from a position within the Pacific realm (150—130
Ma) to the margin of the Chortis Block (100 Ma),
thence to the margin of the Maya Block (67.5
Ma), thence south of western Cuba (58.5 Ma),
thence south of eastern Cuba (49.5 Ma), finally
ending up east of Cuba at 24.7 Ma (Hay and
Wold, 1996: figs. 2—7). Further contortions are in-
troduced by unconstrained rotation of the terrane
along its major axis from N-S at 130 Mato ENE—-
WSW at 49.5 Ma. These proposed lateral dis-
placements and rotations find no support in the
geological composition or structure of central and
northern Hispaniola (in addition to main text, see
figs. 3 and 5 and appendix 1; Draper, 1989; Mann
et al., 1991).

2. Global phases of orogeny have had important
implications for Caribbean plate evolution

Many different bouts of orogeny, from regional
to global, have affected the Caribbean region and
surrounding areas during the past 170 Ma. The
most significant of these took place in the late
Aptian (120-110 Ma), late Campanian—early
Maastrichtian (75-70 Ma), and Middle Eocene
(45-40 Ma) and had worldwide effects. In the Ca-
ribbean, these effects included (1) modification of
the rates of plate movement, (2) rotation of major
stress axes, (3) modification of the orientation and
extension of volcanic arcs, (4) ateration of arc
magmatic geochemistry, and (5) consolidation of
foldbelts (fig. 5; Schwan, 1980; Mattson, 1984;
Pszczolkowski and Flores, 1986; Iturralde-Vinent,
1994c; lturralde-Vinent et a., 1996b; Bralower
and Iturralde-Vinent, 1997). The orogeny which
occurred in the Middle Eocene is especially note-
worthy. Correlated with this orogeny were (1) re-
duction in the relative motion of the North and
South American plates (Pindell, 1994: fig. 2.3),
(2) reorientation of the Caribbean Plate stress field
from mainly NE-SW to dominantly E-W, and (3)
formation of numerous microplates, blocks, and
terranes along plate margins (Case et al., 1984).
Many of the critical geological units discussed in
this paper (e.g., various Cuban blocks) were
formed after this event, as were many mgjor fault-
bounded structures such as the Windward and
Mona grabens, Cayman Trench, and the Provi-
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dencia and Muertos Troughs. In the Greater An-
tilles, the Middle Eocene orogeny was associated
with cessation of magmatic activity and uplift of
volcanic structures formed in the Paleocene
though early Middle Eocene. As magmatism end-
ed in the Greater Antilles, it aso terminated on
the Cayman and Aves Ridges, thereafter shifting
permanently to the Lesser Antilles arc (cf. figs. 5
and 6). This orogeny additionally led to deacti-
vation of the Yucatan Basin spreading center and
the shifting of ocean crust production to the Cay-
man center (Rosencrantz, 1990). Due to subse-
quent movements, crustal segments that were
originally part of the foldbelt created by this event
are now distributed in a broad circum-Caribbean
swath, involving southern Mexico, Greater Antil-
les, Aves Ridge, Aruba/Tobago Belt, Caribbean
Mountains, Columbian/Venezuelan Andes, and
Central America (fig. 23).

3. Island arc magmatic activity on the Caribbean
plate occurred in discrete stages and was not a
continuous process

The most important magmatic eventsin the his-
tory of the Caribbean area were (1) continental
margin magmatism (170-110 Ma) in association
with the break up of Pangaea (Maze, 1984; Bar-
tok, 1993; lturralde-Vinent, 1994a), (2) oceanic
magmatism (170110 Ma) related to the forma-
tion of the proto-Caribbean oceanic crust between
North and South America (Pindell, 1994), (3)
eruption of alkaline volcanoes related to intraplate
tectonic activity along major faults (Dengo and
Case, 1990), and (4) the evolution of the volcanic
arcs.

With respect to the last of these phenomena, arc
magmatic activity on the Caribbean plate, several
discrete stages are evident: (1) ?Neocomian to
Aptian (120-110 Ma), (2) Albian to Coniacian—
Santonian (10087 Ma), (3) Santonian to ?early
Maastrichtian (87—70 Ma), (4) mid-Paleocene to
early Middle Eocene (60-55 Ma), and (5) latest
Eocene to Recent (37-0 Ma). Each of these re-
gionally discrete magmatic stages exhibited a spe-
cific geological signature marked by structural un-
conformities due to tectonic deformation and up-
lift, hiatus formation related to erosion and non-
deposition, and deposition of coarse clastic and
carbonate sedimentary rocks (see Paleogeography
of the Caribbean Region: Evidence and Analysis,
Early Middle Jurassic to Late Eocene Paleoge-
ography). This conception of periodic arc mag-
matism, punctuated by nonvolcanic intervals,
contradicts the widely held view originaly for-
mulated by Malfait and Dinkelmann (1972), who
envisaged a single ““Great Arc”’ continuously de-
veloping on the leading edge of the Caribbean
plate from the Jurassic onward (see also Burke et
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al., 1984; Pindell, 1994). Recent supporters of the
continuous-development model include Mann et
al. (1995: fig. 36A—C), who argued that the con-
vergent front of the Caribbean Plate was active
with subduction deepening to the south from
Maastrichtian until Middle Eocene times. How-
ever, N0 magmatic activity subsequent to the late
Campanian is recorded in western and central
Cuba (Iturralde-Vinent, 1994a), Aruba/Tobago
Belt (Hunter, 1978; Jackson and Robinson, 1994),
or the Caribbean Mountains (Bonini et al., 1984;
Macellari, 1995). Additionaly, volcanic arc rocks
of mid-Paleocene to early Middle Eocene age in
eastern Cuba are structurally unconformable to
pre-Maastrichtian Cretaceous arc rocks (fig. 5).
The subduction zone of this arc was located to the
south and deepened to the north, rather than vice
versa (fig. 5; Iturralde-Vinent, 1994a, 1996d; Si-
gurdsson et a., 1997).

4. Stress fields have rotated eastward within the
Caribbean region

Stress-field rotation during the formation and
evolution of the Caribbean was first proposed by
Iturralde-Vinent (1975). This phenomenon is ev-
ident in the present-day N-S orientation of the
convergence front (island-arc subduction zone) of
the Lesser Antillean and Central American arcs,
and in the extension of arc magmatism southward
in Central America during the last 25 Ma. It is
also evident in the location of post-Eocene trans-
form faults and associated deformations along the
northern and southern margins of the Caribbean
Plate, and in the sequential shifting of plate
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boundaries along major faults (in the north, from
Nipe-Guacanayabo to Oriente to Septentrional; in
the south, from the Mérida/Bocono6 suture toward
the Oca—Pilar fault; fig. 23—26 and appendix 1).

Migration of volcanic activity and the other
phenomena noted above have been interpreted as
a consequence of the oblique collision and result-
ing ‘““escape to the east” (or ‘“‘escape to the
ocean’’) of the Caribbean plate asits leading edge
progressively collided with the Bahamas platform
(e.g., Mann et al., 1995). However, Bralower and
Iturralde-Vinent (1997) have rejected this inter-
pretation as it concerns Cuba, on the ground that
the Cuba-Bahamas collision is conventionally
dated to Early Eocene but arc extinction actually
occurred much earlier (15 Ma previoudly, in the
Late Cretaceous; see also lturralde-Vinent, 19943,
1994c). Earlier extinction of the Cretaceous arc is
also seen in the Caribbean Mountains (Bonini et
al., 1984; Macellari, 1995; Beccaluvaet al., 1996)
and the Aruba/Tobago belt (Jackson and Robin-
son, 1994), indicating that the Cuban case is not
anomalous (fig. 5).

The mechanism of stress-field rotation is not
understood. Speculatively, it might be assumed
that the phenomenon is driven by the same pro-
cess that also affects the movement of tectonic
plates. From this perspective, tectonic events re-
corded in the lithosphere may be thought of as a
consequence of interactions between individual
plates as they accommodate reorientations (rota-
tions) of the deep-seated source (mantle-core) of
the stress field.
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