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ABSTRACT 

Parasites are ubiquitous, comprising a significant portion of biodiversity and 

occurring in host species across the tree of life.  Nonetheless, both parasites and the 

processes contributing to parasite diversification are, in general, poorly studied.  I attempt 

to shed light on parasite diversity and diversification by characterizing the malaria and 

pinworm parasite diversity in a model host group, the Caribbean Anolis lizards. 

I began with a study of malaria parasites (genus Plasmodium) in Hispaniolan 

Anolis lizards.  In the Caribbean, malaria parasite diversity is highest on this island, 

where six species were previously described using subtle and overlapping differences in 

morphology.   Fifty-five infections were identified in 677 Anolis lizards collected from 

across the island, but only 24 of these infections could be assigned to species using 

morphological criteria.  I tested these taxonomic hypotheses using a phylogenetic 

approach and both mitochondrial and nuclear loci.  Four reciprocally monophyletic 

clades that generally contradict the morphological hypotheses were recovered, and 

consequently several taxonomic changes were made.  Additionally, low average 

prevalence of these parasites among hosts was observed, as well as low genetic diversity 

in each of the parasite species.  
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I next attempted to explain the low intraspecific diversity of the malaria parasites 

in a study of the most common Caribbean species, Plasmodium floridense.  This is 

among the most widespread of the lizard malaria parasites, and is distributed throughout 

the Caribbean and in parts of North and Central America.  I predicted that low 

prevalence, in combination with the malaria parasite life cycle, shapes diversification in 

P. floridense through inbreeding.  Sixty-three samples were collected from across the 

parasite’s range, and were sequenced at seven independent loci.  I employed Bayesian 

species delimitation to identify 11 independently evolving lineages within P. floridense, 

each of which is characterized by very low within-lineage variation.  A molecular clock 

rate was used to infer very recent divergence among lineages, with some estimated to 

have diverged ~0.11 MYA.  These patterns are consistent with inbreeding – a condition 

favored by the malaria parasite life cycle and transmission dynamics – and may be 

common to malaria parasites generally. 

Lastly, I expanded on the effects of parasite transmission, asking whether 

differences in transmission among host species affect diversification.  Specifically, I 

examined the effect of host specificity on the diversification of two multi-host pinworm 

parasites on the Puerto Rican Bank and St. Croix, testing the hypothesis that higher host 

specificity is associated with greater differentiation among populations.  The pinworm 

parasites Spauligodon anolis and Parapharyngodon cubensis differ in host specificity; S. 

anolis infects Anolis lizards, whereas P. cubensis infects Anolis lizards and several other 

species of lizards and snakes.  I collected 651 lizards from across the Puerto Rican Bank 

and St. Croix, and dissected them for parasites.  A total of 233 pinworms were sequenced 

at both mitochondrial and nuclear loci, and, using a variety of phylogeographic 
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approaches, I showed that S. anolis exhibits greater differentiation among populations 

than does P. cubensis, particularly between populations permanently separated by ocean 

waters.  This suggests that transmission among host species affects parasite 

diversification.  I also provide evidence that P. cubensis may be a complex of several 

species. 

Two main conclusions can be drawn from this research.  First, parasite diversity 

in Caribbean Anolis lizards is largely underestimated, and molecular data are necessary to 

effectively delimit both malaria and pinworm parasites.  Second, parasite transmission – 

between host individuals and host species – affects parasite diversification, and 

differences in transmission may be among the most important factors shaping the 

diversity of parasites alive today. 
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CHAPTER I 
 

INTRODUCTION TO ANOLIS LIZARDS, THEIR PARASITES,  
AND PARASITE DIVERSIFICATION 

 
 

Parasites form a large diversity of life on earth.  
 - Peter Price, 1980 
 

Parasites are ubiquitous, and parasitologists are wont to say so (Bush et al. 2001; 

Roberts & Janovy 2010; Schmid-Hempel 2011). This ubiquity is apparent in the 

prominent role that parasites play in natural systems, where, for example, they contribute 

~75% of food web connectivity (Dobson et al. 2008).  Parasites pose obvious and major 

threats to the health of both human and wildlife populations (McCallum & Dobson 1995; 

Daszak et al. 1999; Daszak et al. 2000; Cunningham & Daszak 2001; Altizer et al. 2003; 

Skerratt et al. 2007), but can also be useful in guiding conservation efforts (Criscione & 

Blouin 2006; Whiteman & Parker 2006).  In some cases, the parasites are themselves 

threatened with extinction (Gompper & Williams 1998; Dunn et al. 2009).  Still, despite 

their importance and apparent omnipresence, we have a generally poor understanding of 

extant parasite diversity and which factors have contributed to this diversity (Poulin & 

Morand 2000).   

 Early efforts to explain parasite diversity were formulated into several “rules” 

(Brooks 1979, 1985; Brooks & McLennan 1991; Hoberg et al. 1997), which established a 

theoretical framework that provided parasitologists decades of hypothesis testing.  Among 

these is Fahrenholz’s Rule (Eichler 1948), which predicts that a parasite phylogeny will 

mirror the host phylogeny (i.e., strict co-speciation).  A number of methods were 
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developed to test this hypothesis, and a number of studies sought to detect host and 

parasite co-speciation (Hafner & Nadler 1988; Page 2003; Huyse & Volckaert 2005).  

Nonetheless, it eventually became apparent that strict co-speciation occurs only in some 

cases (Huyse et al. 2005), and parasitologists began to look elsewhere for explanations for 

the great diversity of parasites. 

 Population genetics and phylogeographic studies of parasite diversification are 

becoming more common (Nadler 1995; Criscione et al. 2005; Huyse et al. 2005; Barrett et 

al. 2008), and complement the aforementioned systematic approaches. Studies using this 

approach have shown that parasite dispersal depends on host dispersal (McCoy et al. 

2003), but also that parasite dispersal ability is negatively correlated with parasite 

population differentiation (Whiteman et al. 2007).  The population-level scale of these 

studies has facilitated hypothesis testing that would not have otherwise been possible in 

systematic datasets, and these are promising for untangling the many potential factors 

affecting parasite diversification. 

Potential Challenges 

There are several potential challenges in research on parasite diversity and 

diversification.  Some are not exclusive to parasitology, including a general a lack of 

funding and training (Brooks & Hoberg 2000, 2001, 2006).  But, parasitologists do 

encounter unique obstacles that are not shared among their non-parasitologist colleagues.  

Primary among these is that the parasites themselves are difficult to obtain.  Studies of 

parasite population genetics and systematics typically include just one parasite from each 

host individual (i.e., they include one parasite from each host infrapopulation), but 

parasite prevalence rarely reaches 100%.  This means that a parasitologist must collect 
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more host individuals for the same-sized dataset of parasites than a biologist asking 

similar questions in a study of the host taxon.  And, considering that adequate host 

sampling may be difficult or impossible to obtain (due to permitting, insufficient 

population sizes, or other practical reasons), acquiring even modestly sized datasets may 

not be possible for many parasites.  

Museum collections of host taxa may provide an additional resource for the 

parasitologist, but parasite specimens and tissues are often not appropriately preserved.  

For example, macroparasite specimens (e.g., helminths) may be present in preserved host 

specimens, but the necessary fixation protocols for hosts and parasites are different, and 

the morphological features necessary for parasite delimitation and identification may not 

be present.  Alternatively, some parasites simply cannot be detected after routine 

processing that is appropriate for the host.  Blood parasites, for example, require the 

preparation of blood films from a still-living host.  In many cases, traditional parasite 

recovery methods are destructive, meaning that host specimens are destroyed during 

dissection.  Finally, and perhaps most importantly, commonly employed preservation 

techniques for the host specimens (e.g., formalin-fixation) preclude DNA amplification of 

the parasites.   

Another major obstacle is the lack of genetic resources available many parasite 

taxa.  Genomic data are becoming cheaper and easier to generate, but they are not yet 

available for many taxa.  Nematodes, for example, are an ancient and diverse group, with 

an estimated one million species living today (Hugot et al. 2001).  Still, only 11 nematode 

genomes have been sequenced to-date (http://www.nematodes.org, accessed 12/14/12), 

and these are biased towards either laboratory models (e.g., three of the 11 are 
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Caenorhabditis sp.) or root-knot nematodes (e.g. two are Meloidogyne sp.).  Only three 

are animal parasites, and these all belong to the same clade (Clade III; Ascaris suum, 

Brugia malayi, and Dirofilaria immitis; Blaxter et al. 1998).  This phylogenetically biased 

genome availability precludes novel primer design for many parasite taxa.  And, 

molecular data are important in an integrative taxonomy (Hoberg 2002; Ferri et al. 2009), 

particularly as morphological crypsis may be more common in parasitic than non-parasitic 

taxa (de León & Nadler 2010; Perkins et al. 2011).  

Anolis lizards in the Caribbean 

Common and conspicuous, Anolis lizards are the dominant vertebrate fauna in the 

Caribbean, and have attracted a long history of attention by ecologists and evolutionary 

biologists. Early workers focused on Anolis taxonomy and systematics (Barbour 1930; 

Etheridge 1959; Williams 1976), and as phylogenetic theory and methodology expanded, 

so did knowledge of Anolis relationships (Gorman 1980; Guyer & Savage 1986; 

Nicholson et al. 2005).  Likewise, Caribbean anoles have been the focus of studies across 

multiple sub-disciplines, including thermal ecology, invasion biology, developmental 

biology, island biogeography, and genome evolution (see Losos 2009, and references 

therein).   Perhaps most notably, anoles on the large islands of the Greater Antilles have 

undergone a repeated pattern of adaptive radiation. These lizards have morphological, 

behavioral, and ecological adaptations to their microhabitat structure, and can usually be 

assigned into one of six “ecomorph” categories (Williams 1983; Losos 2009).  These 

categories are not monophyletic clades, as ecomorphs evolved independently on each 

island (Losos 1998).  Moreover, up to 12 anole species can co-occur at a single site.  The 

Anolis communities on the smaller, satellite islands of the Greater Antilles and those on 
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the Lesser Antilles are less diverse.  Many of these islands are populated by just one or 

two species, with species distributions often spanning several neighboring islands.  

Indeed, our understanding of Caribbean Anolis is considerable, and these lizards continue 

to be an excellent model system for studies in evolution and ecology.  

Parasites in Caribbean Anolis lizards 

Relatively little is known about the diversity and diversification of parasites in 

Caribbean anoles.  The preponderance of taxonomic work has been completed by just a 

few individuals and has focused on parasite species discovery and host associations.  

Stephen Goldberg and Charles Bursey have characterized the geographic and host ranges 

of many helmith parasites (Goldberg et al. 1997, 1998; Bursey et al. 1998, 2012).  

Likewise, Sam Telford Jr. has described several malaria parasite species in Anolis lizards 

and conducted many of the first blood parasite surveys in Caribbean anoles (Telford 1975; 

Telford et al. 1989, Telford 2008).   

The ecologist Jos Schall and his students have conducted a large number of 

ecological studies on the malaria parasites of anoles in the Lesser Antilles and in El 

Yunque Forest in Puerto Rico (Schall & Vogt 1993; Staats & Schall 1996a, 1996b; Schall 

& Staats 1997; Schall et al. 2000).  In a classic study, he showed that on St. Maarten the 

competitively inferior Anolis wattsi co-occurs with the dominant Anolis gingivinus only 

when the latter is infected with the malaria parasite Plasmodium azurophilum (Schall 

1992).  A later study did not find P. azurophilum in these populations, however (Perkins, 

2001), and host individuals on other islands exhibit little-to-no observable effects of 

malaria parasite infection (Schall & Pearson 2000; Schall et al. 2002), suggesting that the 

virulence of malaria parasites in anoles is minimal. 
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Of the few studies that address host/parasite ecology and evolution, most have 

been concerned with community composition and patterns of distribution.  Both helminth 

community richness (Dobson et al. 1992) and trombiculid mite prevalence (Zippel et al. 

1996) were found to be negatively correlated with increasing aridity in the Lesser Antilles 

and on Hispaniola, respectively.  Likewise, similarities among helminth communities in 

Jamaican anoles were correlated with habitat type, not host phylogeny or ecomorph 

(Bundy 1987).  Prevalence of malaria parasites (Plasmodium) showed no association with 

habitat in the Lesser Antilles, however (Staats & Schall 1996b).  Only two studies have 

made comparisons of host and parasite evolutionary history.  The phylogeography of two 

lizard malaria-parasite species were each compared to the biogeography of their Anolis 

hosts, and are only weakly correlated (Perkins 2001; Charleston & Perkins 2003).   

My dissertation is centered on understanding the diversity and diversification of 

two parasite groups in Caribbean anoles: malaria parasites and pinworm parasites.  I begin 

in Chapter II with a taxonomic revision of malaria parasite species on Hispaniola, and ask 

whether there are differences in parasite prevalence among anole ecomorphs.  In Chapter 

III, I make predictions about how the malaria parasite life cycle and transmission 

dynamics may shape malaria parasite diversification, and I test these predictions in the 

widespread species Plasmodium floridense.  Finally, in Chapter IV, I test the hypothesis 

that increased host specificity is associated in increased population structure in the multi-

host pinworm parasites Spauligodon anolis and Parapharyngodon cubensis. 
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CHAPTER II 

TREE-BASED DELIMITATION OF MORPHOLOGICALLY AMBIGUOUS TAXA: 
A STUDY OF THE LIZARD MALARIA PARASITES ON HISPANIOLA 

 
Adapted from: Falk, B.G., Mahler, D.L., Perkins, S.L. 2011. Tree-based delimitation of 
morphologically ambiguous taxa: A study of the lizard malaria parasites on the Caribbean 
island of Hispaniola. International Journal for Parasitology 41: 967-980. 
 
 

Abstract 
 

 Malaria parasites in the genus Plasmodium have been classified primarily on the 

basis of differences in morphology.  These single-celled organisms often lack 

distinguishing morphological features, which can encumber both species delimitation and 

identification.  Six saurian malaria parasites have been described from the Caribbean 

island of Hispaniola.  All six infect lizards in the genus Anolis, but only two of these 

parasites can be distinguished using morphology.  The remaining four species overlap in 

morphology and geography, and cannot be consistently identified using traditional 

methods. We compared a morphological approach to a molecular, phylogenetic tree-

based approach in assessing the taxonomy of these parasites.  We surveyed for blood 

parasites 677 Anolis lizards, representing 26 Anolis species from a total of 52 sites across 

Hispaniola.  Fifty-five of these lizards were infected with Plasmodium spp., representing 

several new host records, but only 24 of these infections could be matched to five of the 

six previously described species using traditional morphological criteria.  We then 

estimated the phylogeny of these parasites using both mitochondrial (cytb and coxI) and 

nuclear (EF2) genes, and included carefully selected GenBank sequences to confirm 

identities for certain species.  Our molecular results unambiguously corroborated our 
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morphology-based species identifications only for the two species previously judged to 

be morphologically distinctive.  The remaining infections fell into two well-supported 

and reciprocally monophyletic clades, which contained the morphological variation 

previously reported for all four of the morphologically ambiguous species.  One of these 

clades was identified as Plasmodium floridense, and the other as Plasmodium fairchildi 

hispaniolae.  We elevate the latter to Plasmodium hispaniolae comb. nov. because it is 

polyphyletic with the mainland species Plasmodium fairchildi fairchildi, and we 

contribute additional morphological and molecular characters for future species 

delimitation.  Our phylogenetic hypotheses indicate that two currently recognized taxa, 

Plasmodium minasense anolisi and Plasmodium tropiduri caribbense, are not valid on 

Hispaniola.  These results illustrate that molecular data can improve taxonomic 

hypotheses in Plasmodium when reliable morphological characters are lacking. 

Introduction 

 The taxonomy of the malaria parasites in the genus Plasmodium has for the most 

part followed the morphological species concept.  As single-celled organisms, 

Plasmodium morphology is simple, and many species descriptions of these parasites rely 

on a handful of physical characteristics and measurements.  In general, these characters 

are continuous (e.g., length measurements or ratios), and overlapping character variation 

among parasite species can encumber species delimitation. Reliable morphological 

characters are undoubtedly useful, but distinguishing traits may be rare or absent in many 

Plasmodium species, such that even the identification of previously described taxa is 

occasionally problematic.  Among the reptile parasites, which account for approximately 

half of the roughly 200 species in the genus Plasmodium, the problem is particularly 
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acute as most species assignments have been made based only on the morphologies of the 

stages found in the circulating blood of the vertebrate host, which is just one part of the 

parasite’s life cycle.  The lack of diagnostic characters further confounds species 

delimitation and identification when the parasites also exhibit overlap in host preference 

and geographic distribution. 

 The saurian malaria parasites of Hispaniola, the Greater Antillean island 

comprised of the countries Haiti and the Dominican Republic, are exemplars of 

Plasmodium taxonomic uncertainty.  Six species have been reported from this Caribbean 

island, all in Anolis lizard hosts.  The first five are: Plasmodium azurophilum Telford, 

1975; Plasmodium fairchildi hispaniolae Telford et al., 1989; Plasmodium floridense 

Thompson and Huff, 1944; Plasmodium minasense anolisi Telford et al., 1989; and 

Plasmodium tropiduri caribbense Telford et al., 1989 (Telford et al., 1989; Telford, 

2009).  Plasmodium azurophilum was originally described as a single species capable of 

infecting both erythrocytes (red blood cells) and leucocytes (white blood cells) of its 

hosts (Telford, 1975).  A subsequent analysis showed that these two forms are 

reciprocally monophyletic lineages, one infecting red blood cells and other infecting 

white blood cells (Perkins, 2000).  A new name was given to the form infecting white 

blood cells, Plasmodium leucocytica Telford, 2009; this is the sixth saurian malaria 

parasite on Hispaniola. Plasmodium azurophilum and P. leucocytica are widely 

distributed in the Caribbean, and P. fairchildi hispaniolae, P. minasense anolisi, and P. 

tropiduri caribbense are endemic Hispaniolan subspecies of species otherwise found in 

Central and South America.  Plasmodium floridense has a broad distribution that includes 

Florida, the Greater and Lesser Antilles in the Caribbean, and mainland Central America. 
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 Each of these parasites is assumed to have a life cycle that is typical for any 

Plasmodium species.  The parasite first infects a lizard in the form of a sporozoite, which 

is transmitted from the saliva of an infected, blood-feeding fly, usually a mosquito.  It 

undergoes schizogony (i.e., merogony), a form of asexual reproduction, in the liver, and 

these stages eventually reach the blood stream.  Asexual reproduction continues within 

the blood cells, and male and female gametocytes develop.  A blood-feeding fly then 

takes up these gametocytes during a meal, the parasites undergo sexual reproduction, and 

the cycle begins anew.  While the mosquito Culex erraticus was demonstrated to transmit 

P. floridense in Florida (Klein et al., 1987), it is unknown whether the parasite retains this 

vector in the Greater Antilles.  The identities of the vectors of the remaining parasite 

species on Hispaniola are unknown.  Species identification and delimitation in these 

parasites has relied exclusively on the stages found circulating in the blood of their Anolis 

hosts.   

 Both P. azurophilum and P. leucocytica can be readily distinguished from the 

other Hispaniolan lizard malaria species, because both lack hemozoin pigment but each 

are found in different host cells.  Discriminating between the remaining four co-occurring 

species based on fixed morphological differences is not possible. These species were 

described based upon minor morphological dissimilarities, and all four overlap in their 

physical appearance, host preference, and cell preference (Telford et al., 1989).  

Nonetheless, distinctions can be made in three instances.  First, the schizonts (i.e., 

meronts) of P. tropiduri caribbense sometimes exhibit an elongate cytoplasmic 

projection not observed in the other species.   Second, both the schizonts and gametocytes 

of P. minasense anolisi are sometimes smaller in size than the other parasite species.  
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Third, and similarly, the schizonts and gametocytes of P. floridense are sometimes larger 

than the other species (Telford et al., 1989).  These size features for P. minasense anolisi 

and P. floridense are almost completely eclipsed by the variation observed in the other 

species, however, diminishing their use in identification (Figure 2.1).  Moreover, any 

species identification that employs these features must assume that the size distributions 

of each of the four species are well characterized.  Generally speaking, a gametocyte that 

is moderate in size, oval in shape, containing hemozoin, and found in an Anolis lizard 

erythrocyte may belong to any one of these four species.  This ambiguity is additionally 

confounded by the low prevalence that characterizes this host-parasite system.  

Plasmodium fairchildi hispaniolae was described from a single blood smear, for 

example.   Furthermore, typical rates of parasitemia in Anolis are low enough that it is not 

uncommon to observe only a few parasites in an entire blood smear (Telford, 1975; 

Staats & Schall, 1996; Vardo et al., 2005), forcing taxonomic inferences to be grounded 

on only a few observations.  Even if many parasites are observed, representatives of 

trophozoite, gametocyte, and schizont stages may not be present.  In chronic infections, 

for example, schizonts are rare and might not be sampled.  Clearly, a morphological 

approach to species delimitation in this group is problematic. 

 When delimiting species that are poor in reliable morphological characters, 

molecular data can be used to inform species limits.  This approach been used for the 

malaria parasites of birds (e.g., Bensch et al., 2004; Sehgal et al., 2006; Bensch et al., 

2007; Martinsen et al., 2007; Valkiūnas et al., 2010) and mammals (e.g., Perkins et al., 

2007; Singh and Divis, 2009; Duval et al., 2010), but only rarely has it been applied to 

the alpha taxonomy of malaria parasites in reptiles. Perkins (2000) implemented a tree- 
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based approach – with a phylogeny estimated using the mitochondrial gene cytochrome b 

– to reveal the aforementioned cryptic species diversity in P. azurophilum.  Perkins and 

Austin (2009) used fixed molecular characters as part of their species descriptions of 

several lizard malaria parasites on New Guinea, explaining that such characters are 

particularly valuable when the sample sizes are small or not all life stages have yet been 

observed. These studies reveal the potential value of employing molecular data to inform 

species limits in saurian Plasmodium species. 

 When molecular data are analyzed in a phylogenetic framework, it allows a 

taxonomic assessment in concordance with the general lineage concept of species (GLC; 

de Queiroz, 1998; de Queiroz 2007).  Under the GLC, species are regarded as 

independently evolving metapopulation lineages, and any of the recognition criteria of 

other concepts (e.g., the potential interbreeding criterion, the niche criterion, etc.) can be 

used to delimit species boundaries (de Queiroz, 1998; de Queiroz 2007). Taxonomic 

classifications using phylogenetic methods are consistent with the GLC.  In this study, we 

use the recognition criterion of reciprocal monophyly in gene tree hypotheses.  Because 

reciprocal monophyly for many phylogenetic markers occurs late in the speciation 

process (Knowles and Carstens, 2007), this is a conservative approach to species 

delimitation. 

 Tree-based inferences of species limits have frequently been made using only 

mitochondrial DNA (e.g., Sperling and Harrison, 1994; Morando et al., 2003; Pons et al., 

2006; Monaghan et al., 2009).  This maternally inherited, haploid locus typically exhibits 

greater variation than that found in the nuclear genome, and thus offers greater power for 

resolving relationships among closely related species (Brown et al., 1979; Avise, 2000; 
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Wiens and Penkrot, 2002).  An approach that uses just one locus can be problematic, 

however.  Gene trees may not provide accurate estimates of the true species tree due to 

incomplete lineage sorting, horizontal gene flow, gene duplication, or incorrect gene tree 

estimation (Maddison, 1997; Funk and Omland, 2003; Wiens and Penkrot, 2002).  

Confidence in gene tree estimation can be inferred using character-resampling techniques 

such as the bootstrap (Felsenstein, 1985).   Estimating the phylogeny using additional loci 

can ameliorate potential problems arising from the remaining factors.  Except under 

certain conditions that cause statistical inconsistency (e.g., long branch attraction for 

parsimony analyses, and trees in the “anomaly zone” for maximum likelihood analyses), 

the addition of more loci can improve estimation of the species tree (Pamilo and Nei, 

1988; Wiens, 1998; Leaché and Rannala, 2010).   

 The purpose of this study was to evaluate the utility of a molecular-based, 

phylogenetic approach in assessing the phylogenetics and taxonomy of saurian malaria 

parasites on Hispaniola.  We employed a broad geographic and host species sampling in 

order to allow an adequate estimation of parasite diversity.  Morphology-based parasite 

identifications were made on the basis of previously reported differences, and we 

compared these results to those based on molecular data.  We estimated phylogenetic 

trees using nucleotide data from the mitochondrial genes cytochrome b (cytb) and 

cytochrome oxidase I (coxI), and the nuclear gene elongation factor-2 (EF2), with both 

maximum parsimony and maximum likelihood as optimality criteria.  We used the 

mitochondrial dataset to generate a taxonomic hypothesis, tested for congruence of the 

nuclear data, and then combined these loci.  We recommend several taxonomic changes 

based on our findings, and we also use molecular data to update the description of one of 
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these species.  The increased taxonomic resolution afforded by molecular data 

demonstrates its utility when assessing the taxonomy of this morphologically ambiguous 

group. 

Materials and Methods 

Sampling 

We captured a total of 677 Anolis lizards, representing 26 of 39 Hispaniolan 

species, by noose or hand across 35 sites in the Dominican Republic (August 2008 & 

January 2010) and 17 sites in Haiti (August 2009; Figure 2.2 and Table 2.1). These 

included at least one locality where each of the six parasite species had been previously 

sampled (see Telford et al., 1989; Telford, 2009).  From each lizard, we clipped a toe 

from the hind leg to obtain blood samples. We made blood smears for morphological 

analysis, first air-drying and then fixing the slides in 95% methanol. For molecular 

analysis, we applied 3-6 drops of blood to filter or FTA paper, and let them air-dry.  We 

humanely euthanized most captured lizards and preserved them as voucher specimens 

using 95% ethanol or 10% buffered formalin, and we also preserved a sample of liver 

tissue from each lizard in 95% ethanol. Voucher host specimens and tissues are 

permanently stored at the Museum of Comparative Zoology at Harvard University.  A 

subset of lizards, roughly 20% of all those captured, were not retained as vouchers and 

after sampling were released at the site of capture. 

Morphological characterization 

To determine whether a lizard was infected with malaria parasites, we stained the 

thin blood smears with Giemsa and searched for parasites using light microscopy under 

oil immersion at 1000x magnification for 3 – 6 minutes.  When possible, we identified 
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malaria parasites to species, following Telford et al. (1989) and Telford (2009).  

Specifically, we identified species as either P. azurophilum or P. leucocytica if hemozoin 

was absent (based on host cell type; Figure 2.3A-D), as P. tropiduri caribbense if a 

schizont with a cytoplasmic projection was observed (Figure 2.3E-F), as P. minasense 

anolisi if parasite size was smaller than reported for the other three species (Figure 2.1 

and Figure 2.3G), or as P. floridense if larger than reported for the others (Figure 2.1 and 

Figure 2.3H).  Parasites lacking any of these distinguishing characters were left 

unidentified (Figure 2.3I-P). 

Molecular characterization 

Sequence data were amplified from all parasitized samples to confirm parasite 

identity.  We extracted DNA using the QIAGEN DNeasy Animal Tissue Extraction kit 

(Valencia, California) following the manufacture’s instructions, except with two final 

DNA elutions each using just 50µl AE buffer.  A partial fragment of the mitochondrial 

gene cytb was amplified using the primer pair DW2 (5’ – TAA TGC CTA GAC GTA 

TTC CTG ATT ATC CAG – 3’) and 3932R (5’ – GAC CCC AAG GTA ATA CAT 

AAC CC – 3’).  At least one representative of each unique haplotype at this locus was 

selected for further amplification and sequencing of additional gene regions.  For these 

samples, the remainder of cytb was amplified using the primer pair 3932F (5’ – GGG 

TTA TGT ATT ACC TTG GGG TC – 3’) and DW4 (5’ – TGT TTG CTT GGG AGC 

TGT AAT CAT AAT GTG – 3’).  The mitochondrial gene coxI was amplified using a 

nested reaction following Perkins et al. (2007).  First, an initial outer reaction was 

performed using the primers coxIF (5’ – CTA TTT ATG GTT TTC ATT TTT ATT TGG 

TA – 3’) and coxIR (5’ – GTA TTT TCT CGT AAT GTT TTA CCA AAG AA – 3’).  
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Product from this reaction was used as template for two nested reactions, the first using 

the primer pair coIinF (5’ – ATG ATA TTT ACA RTT CAY GGW ATT ATT ATG – 

3’) and coImidR (5’ – CTG GAT GAC CAA AAA ACC AGA ATA A – 3’), and the 

second with coImidF (5’ – TTA TTC TGG TTT TTT GGT CAT CCA G – 3’) and 

coIinR (5’ – GTA TTT TCT CGT AAT GTT TTA CCA AAG AA – 3’).  A fragment of 

the nuclear gene EF2 was also amplified using a nested reaction, first using the primer 

pair EF2F (5’ – CAR GTT CGT GAR ATC ATG AAC A – 3’) and EF2R (5’ – AAT 

GCC CAD CCT TGT AA CCW GAA CC – 3’), and followed by a second with 

LizMalEF2F (5’ – CAT GGA AAA TCA ACA TTA ACA GAT TCT – 3’) and 

LizMalEF2R (5’ – CAG GAT ATA CTT GAA TAT CAC CCA T – 3’).  PCR products 

were cleaned with AMPure (Agencourt, Beverly, Massachusetts) and sequenced in both 

directions using BigDye v.3.0 (Applied Biosystems, Foster City, California).  Sequences 

were edited in GENEIOUS v.4.8.3 (Biomatters, Auckland, New Zealand). 

We obtained cytb and coxI sequences from GenBank for several potential ingroup 

taxa to corroborate parasite species identity.  Each of these was previously identified, 

sequenced, and submitted to GenBank by one of the authors (SLP), and were collected in 

regions outside Hispaniola, minimizing confusion about parasite identity.  These 

sequences were: P. azurophilum (Dominica: AY099055, EU254575), P. leucocytica 

(Dominica: AY099058, EU254576), P. fairchildi fairchildi (cytb only; Costa Rica: 

AY099056), and P. floridense (Florida: NC_009961).  Sequences of the mammal 

parasites Plasmodium berghei (AF014115) and Plasmodium knowlesi (AY598141) were 

also downloaded from GenBank and included as outgroup taxa.  These were also used as 

outgroups for the locus EF2 (P. berghei: XM_673005; P. knowlesi: XM_002260326). 
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Multiple sequence alignments were generated using MUSCLE (Edgar, 2004), 

with 1000 iterations and default gap opening cost of -1. Leading and lagging ends were 

trimmed to remove any missing data at the alignment edges. Phylogenetic analyses were 

conducted under both maximum parsimony (MP) and maximum likelihood (ML) 

optimality criteria.  MP analysis was done in PAUP* v. 4.0 (Swofford, 2003), using 

random addition sequence and tree-bisection-reconnection (TBR).  Gaps were treated as 

missing data.  ML was implemented in RAxML (Stamatakis et al., 2005), using default 

settings and partitioning by gene in concatenated analyses. The best-fit model of 

nucleotide substitution was selected using the Akaike Information Criterion in 

FINDMODEL (http://www.hiv.lanl.gov/content/sequence/findmodel/findmodel.html), a 

web-based implementation of MODELTEST (Posada and Crandall, 1998).  For both 

mitochondrial genes cytb and coxI the model GTR was selected, and GTR + Γ was 

selected for the nuclear gene EF2.  For all analyses, bootstrap proportions (BP; 

Felsenstein 1985) were calculated to provide relative measures of nodal support, using 

1000 replicates in each analysis. 

We first inferred phylogenetic trees of the mitochondrial and nuclear datasets 

separately, then combined.  We used the topology generated from the mitochondrial 

dataset to infer species boundaries of the parasites.  We then assessed corroboration of 

those taxonomic hypotheses with the nuclear dataset.  Finally, we combined the two loci 

and tested for conflicting signals using the incongruence length difference (ILD) test 

(Farris, 1994; see Dolphin et al., 2000, and Darlu & Lecointre, 2002, for a discussion on 

the utility of this test).  This was implemented in PAUP* (“partition heterogeneity test”) 

using 1000 ILD replicates, random addition sequences and TBR.   
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Species identifications from the morphological analysis were compared to results 

from the phylogenetic analyses.  Because one clade recovered in the molecular analyses 

could not be identified using morphology or the GenBank sequence data, the blood 

smears were reexamined to further assess species identity.  We quantified several 

morphological characters: length (as determined by the longest axis of the parasite cell); 

width (maximum width, measured perpendicular to the length axis); parasite area; host 

cell area; and host nucleus area (taken from the nearest uninfected host cell). All 

measurements were taken with a SPOT InTouch® digital camera and software.  Area 

calculations were made by tracing the area of interest.  We calculated three additional 

metrics: parasite length x width (LW), the ratio of parasite area to host cell area, and the 

ratio of parasite area to host nucleus area. For each metric, we present the whole range of 

observations as well as sample means and standard deviations. 

 We identified molecular characters to supplement these morphological characters 

(Desalle et al., 2005; and following Perkins & Austin, 2009).  We aligned cytb and coxI 

sequences of this clade with homologous sequences of other Plasmodium species 

parasitizing reptile and birds, and used the protein coding sequences for Plasmodium 

falciparum (NC_002375) as reference for nucleotide position. We included the following 

species and GenBank accession numbers: Plasmodium mexicanum (NC_009960), P. 

floridense (NC_009961), Plasmodium gallinaceum (EU254535 and EU254578), 

Plasmodium relictum (AY733090), Plasmodium azurophilum (EU254532 and 

EU254575), Plasmodium leucocytica (EU254533 and EU254576), Plasmodium 

giganteum (EU254534 and EU254577), Plasmodium chiricahuae (cytb only, 

AY099061), Plasmodium elongatum (cytb only, AF069611), Plasmodium fairchildi 
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fairchildi (cytb only, AY099056), Plasmodium agamae (cytb only, AY099048), 

Haemoproteus kopki (cytb only, AY099062) and Haemoproteus ptyodactylii (cytb only, 

AY099057).  

Results 

Sampling and Morphology 

Microscopic scans revealed that 55 of the 677 lizards were infected with malaria 

parasites.  Of these, we identified 12 as P. azurophilum and three as P. leucocytica using 

morphological criteria (including the absence of hemozoin).  Among the remaining 40 

infections with parasite species containing hemozoin, we were able to distinguish nine of 

the infections based on previously reported physical differences.  Two infections were 

identified as P. tropiduri caribbense, due to the observation in each of a single schizont 

with a cytoplasmic projection.  Another six infections were characterized by the small 

sizes reported for P. minasense anolisi, and one infection had a single large gametocyte 

as reported for P. floridense; these were identified as such.  We were unable to identify 

the remaining 31 infections using morphology.  

Phylogenetic Analyses 

Initial sequencing of parasite cytb (347 bp) from the blood samples of the 55 

infected lizards showed that 11 unique mitochondrial haplotypes were present.  Four 

samples had multi-allelic sequence chromatograms (i.e., clean sequences except at the 

segregating sites observed in the other samples), indicating infection by more than one 

parasite species.  These mixed samples were excluded from subsequent phylogenetic 

analysis, though the identity of the component haplotypes was determined by comparison 

with single-infection sequences.  
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The topological hypotheses generated by MP and ML phylogenetic analyses of 

the concatenated cytb and coxI genes (924 bp and 848 bp, respectively, and 1772 bp 

combined) are similar, with the MP hypothesis generally showing greater resolution and 

support (Figure 2.4).  Each of the sequences from parasites containing hemozoin fall into 

one of two well-supported clades.  One of these clades (30 infections and two haplotypes; 

Groups A & B in Figure 2.4) contains all six samples that had been identified as P. 

minasense anolisi, the single P. floridense sample with large gametocytes, and one of the 

P. tropiduri caribbense samples.  In fact, these three morphological species all share an 

identical mitochondrial haplotype (Group A).  We identified all members of this clade as 

P. floridense because the clade is monophyletic with the GenBank sequence of P. 

floridense, because it contains the one sample we identified as P. floridense, and because 

the morphological identifications of P. minasense anolisi and P. tropiduri caribbense are 

not monophyletic.   Members of the other clade (seven infections and three haplotypes; 

Groups C, D, & E in Figure 2.4) are not monophyletic with any GenBank sequences. 

This clade does include the other sample identified as P. tropiduri caribbense, which 

shares a haplotype with four other infections that we were unable to identify using 

morphological characters (Group C).  We refer to all members of this clade as 

“Plasmodium sp.”  The clades containing P. floridense and Plasmodium sp. are 

reciprocally monophyletic.  The GenBank sequences for each of P. azurophilum and P. 

leucocytica are monophyletic with the samples we had identified as such in the MP 

analysis. In the ML analysis, however, P. azurophilum is paraphyletic to P. leucocytica.  

The relative position of P. fairchildi fairchildi to P. leucocytica and P. azurophilum is 

also poorly resolved, possibly because we did not have coxI sequence data for P. 
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fairchildi fairchildi.  When P. fairchildi fairchildi is removed, P. azurophilum and P. 

leucocytica are reciprocally monophyletic in the MP analysis, but their relationship 

remains poorly resolved in the ML analysis (not shown).  Thus, all of our Hispaniolan 

samples fell into one of four reciprocally monophyletic groups in our MP analysis (P. 

azurophilum, P. floridense, P. leucocytica, and Plasmodium sp.), and two reciprocally 

monophyletic groups in our ML analysis (P. floridense and Plasmodium sp.)  Hereafter 

we use these species identifications for our samples, unless we state otherwise. 

The phylogenetic hypotheses generated from the nuclear EF2 gene (410 bp; 

Figure 2.5) are similar to the mitochondrial hypotheses.  The same clades are recovered 

in these analyses, again with strong support for the reciprocal monophyly of P. floridense 

and Plasmodium sp.  Plasmodium azurophilum and P. leucocytica are reciprocally 

monophyletic in the nuclear MP tree (Figure 2.5A), though P. azurophilum is rendered 

paraphyletic in the ML analysis (Figure 2.5B).  The ILD test further corroborated the 

congruence between the mitochondrial and nuclear loci (P = 1.0).   

The phylogenetic hypotheses of the concatenated sequences of cytb, coxI, and 

EF2 (2182 bp) are topologically similar to the mitochondrial and nuclear datasets, but 

with increased support (Figure 2.6).  All four taxa described above are reciprocally 

monophyletic with strong support in the MP analysis, and with moderate support in the 

ML analysis. The reciprocal monophyly of these groups is consistent with our species 

delimitation criterion, particularly for the reciprocal monophyly observed for both P. 

floridense and Plasmodium sp. in the smaller, separate analyses of the nuclear and 

mitochondrial datasets. 
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Multiple lines of evidence suggest that the parasites forming the clade that 

belongs to Plasmodium sp. in our phylogenetic analyses are of the same that Telford et al. 

(1989) named P. fairchildi hispaniolae. Plasmodium fairchildi hispaniolae was described 

from a single Anolis distichus in Pedro Sanchez, in El Seibo Province of the Dominican 

Republic.  Six of the 10 parasites that form the Plasmodium sp. clade (including the three 

from mixed infections; see below) were from anoles collected at Pedro Sanchez, and 

three of these were found in the host A. distichus.  In addition, the morphological 

variation we observed in Plasmodium sp. overlaps significantly with the morphological 

variation reported for P. fairchildi hispaniolae.  Broadly speaking, both Plasmodium sp. 

and P. fairchildi hispaniolae are characterized by elongated gametocytes, slightly larger 

in size than the host nucleus.  Schizonts of these species are variable in shape, but are 

typically fan-shaped, and are also larger in size than host nuclei.  We did not observe any 

distinguishing morphological characters that belong to previously described species, 

except for the one sample that contained a schizont with a cytoplasmic projection that we 

previously noted. We had identified this sample as P. tropiduri caribbense in our 

morphological analysis, but both its mitochondrial and nuclear sequences are identical to 

those belonging to several other members of the Plasmodium sp. clade, and this sample is 

polyphyletic with the other sample identified morphologically as P. tropiduri caribbense.  

This suggests that a cytoplasmic projection is not a useful morphological character to 

distinguish between schizonts belonging to the lineages of P. floridense and Plasmodium 

sp., and we do not consider the presence of a cytoplasmic projection on a schizont to be 

sufficient evidence to justify identifying all members of the Plasmodium sp. clade as P. 

tropiduri caribbense.   
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Plasmodium fairchildi hispaniolae was originally described as a subspecies of the 

mainland form, P. fairchildi fairchildi, on account of morphological resemblances.   In 

the phylogenetic analysis, the Costa Rican form is polyphyletic with P. fairchildi 

hispaniolae.  Accordingly, we elevate P. fairchildi hispaniolae to P. hispaniolae comb. 

nov. to retain monophyly and consistency with the GLC.  

Taxonomic Summary 

Plasmodium hispaniolae (Telford et al., 1989) comb. nov.  

(Figure 2.3K-L,O-P and Figure 2.7A-P) 

 Main Diagnostic Characters: A Plasmodium (Lacertamoeba) species with ovoid-

to-elongate gametocytes and fan-shaped schizonts.  Vacuoles are present in fully-grown 

trophozoites and mature gametocytes, particularly macrogametocytes.  Mature 

gametocytes often have irregular and ragged cell margins. The largest gametocytes and 

schizonts are positioned laterally in the host cell, whereas others are positioned 

terminally. Pigment is greenish-yellow-to-black.  In schizonts, pigment granules form 

one or more clusters.  Pigment granules are uniform in size and dispersed in 

microgametocytes, and irregular in size and clustered at cell margins in 

macrogametocytes. 

 Trophozoites (Figure 2.7A-D) are irregular in shape, though lacking outgrowths.  

Pigment is present in fully-grown forms, and is marginally distributed.  Vacuoles are also 

sometimes present in fully-grown forms (Figure 2.7D, upper left). 

 Schizonts (Figure 2.3O-P; Figure 2.7E-J) are found in mature erythrocytes.  

Merozoite number ranges from 4 – 8 per schizont, with an average of 5 (±1.67). These 

are usually arranged in a fan shape, though they sometimes exhibit a rosette pattern 
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(Figure 2.7H) or are randomly distributed (Figure 2.7J).  Rarely, the schizont exhibits a 

cytoplasmic projection (Figure 2.3E). Schizonts occupy a terminal position in the host 

cell, with no distortion of host cell or displacement of nucleus (Figure 2.3O-P; Figure 

2.7E-J).  They do not usually possess vacuoles.  Pigment is clustered. Morphometric 

measurements are as follows (n = 20): length: 5.00 – 12.3 µm (

€ 

x  = 7.28 ± 1.51); width: 

2.27 – 5.60 µm (

€ 

x  = 4.16 ± 0.73); LW: 14.0 – 50.4 µm2 (

€ 

x  = 30.4 ± 8.53); parasite area: 

14.4 – 65.4 µm2 (

€ 

x  = 30.4 ± 10.0); parasite to host cell ratio: 0.12 – 0.47 (

€ 

x  = 0.216 ± 

0.071); and parasite to host nucleus ratio: 0.70 – 2.37 (

€ 

x  = 1.29 ± 0.367).  

Gametocytes (Figure 2.3K-L; Figure 2.7K-P) are typically elongate or ovoid, and 

immature forms are often wedge-shaped or with tapered ends (Figure 2.7K).  These 

usually have a polar position in the host cell (Figure 2.3K-L; Figure 2.7M,O), though 

elongate forms more often have a lateropolar or lateral position (Figure 2.7N,P).  The 

host cell is distorted only when gametocyte is very large (Figure 2.7P), and the nucleus is 

not displaced.  Pigment is clustered at cell margins in macrogametocytes, and is diffuse in 

microgametocytes.  Cell margins are often ragged or irregular in mature gametocytes 

(Figure 2.3L; Figure 2.7M,P), particularly macrogametocytes.  Microgametocytes and 

macrogametocytes are otherwise similar in size and shape.  Vacuoles are present in both 

immature (Figure 2.7L) and mature gametocytes (Figure 2.3L; Figure 2.7M-P), and tend 

to be smaller, numerous, and diffuse in the latter.  Some gametocytes do not have 

vacuoles (Figure 2.3K).  Morphometric measurements are as follows (n = 30): length: 

3.56 – 15.2 µm  (

€ 

x  = 8.14 ± 2.40); width: 2.19 – 5.76 µm (

€ 

x  = 3.70 ± 1.11); LW: 12.39 

– 73.0 µm2 (

€ 

x  = 31.6 ± 17.2); parasite area: 9.66 – 72.7 µm2 (

€ 

x  = 27.15 ± 15.3); parasite 



 31 

to host cell ratio: 0.08 – 0.41 (

€ 

x  = 0.194 ± 0.096); and parasite to host nucleus ratio: 0.51 

– 2.69 (

€ 

x  = 1.11 ± 0.583).  

 Molecular Characters:  These nucleotide characters in the cytochrome b gene are 

unique for P. hispaniolae comb. nov.: “C” at 121, “T” at 123, and “C” at 510.  These 

nucleotide characters in the cytochrome oxidase I gene are unique: “C” at 508, “C” at 

811, “C” at 981, and “C” at 1049.  Positions refer to those of the coding regions for either 

cytb or coxI as annotated in the complete mitochondrial genome of Plasmodium 

falciparum (NC_002375). 

 Type host: Anolis distichus ignigularis Mertens, 1939 (Sauria: Polychrotidae).  

 Other hosts:  Anolis cybotes Cope, 1862; Anolis distichus ravitergum Schwartz, 

1968; Anolis etheridgei Williams, 1962. 

 Type locality: Pedro Sánchez, El Seibo Province, Dominican Republic 

(18.87967°N, 69.11958°W). 

 Additional localities: Constanza, La Vega Province, Dominican Republic 

(18.84137°N, 70.70745°W), Jarabacoa, La Vega Province, Dominican Republic 

(19.14088°N, 70.63128°W), and Matadero Village, Peravia Province, Dominican 

Republic (18.38963°N, 70.43035°W). 

 Type material: Hapantotype slide deposited in the United States National Parasite 

Collections, Beltsville (no. 80470; Telford et al., 1989). 

 Site of infection:  Erythrocytes, rarely erythroblasts. 

 Prevalence: Telford et al. (1989) observed P. hispaniolae in 1/19 A. distichus in 

the Dominican Republic.  We observed the following prevalence data within the 

Dominican Republic: 3/15 of A. distichus ignigularis and 3/12 of A. cybotes collected at 
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Pedro Sanchez; 1/2 of A. etheridgei at Constanza; 1/3 of A. distichus ignigularis at 

Jarabacoa; and 1/2 of A. distichus ravitergum and 1/2 of A. cybotes at Matadero Village.  

 Synonyms: Plasmodium fairchildi hispaniolae Telford et al., 1989; Plasmodium 

tropiduri caribbense Telford et al., 1989. 

 Remarks:  Plasmodium azurophilum and P. floridense are also found in lizard 

erythrocytes in Hispaniola, and it is possible to distinguish P. hispaniolae from each of 

these if sufficient material is available (the fourth syntopic species on Hispaniola, P. 

leucocytica, is easily distinguishable because it is found only in white blood cells).  

Plasmodium azurophilum does not typically contain pigment, and the host nuclei are 

frequently displaced by its ovoid gametocytes (Figure 2.3A).  Plasmodium floridense has 

a very similar morphology, but its size variation exceeds that observed for P. hispaniolae. 

Very small and very large forms can be assigned to P. floridense (e.g., mature schizonts 

with an area of less than 14.4 µm2 or more than 65.4 µm2, and mature gametocytes less 

than 9.66 µm2 or more than 72.7 µm2; Figure 2.3G-H).  Additional sampling and 

characterization of P. hispaniolae might diminish the size differences between these 

species, however.  Additionally, the gametocytes of P. floridense often contain more 

pigment granules and fewer vacuoles than those of P. hispaniolae.  This vacuolization is 

perhaps the most useful morphological feature for discriminating P. hispaniolae from the 

other species, but note that this is not a fixed character and some gametocytes in this 

species lack vacuoles (Figure 2.3K). 

Prevalence, Host Records, and Mixed Infections 

Of the 677 lizards sampled, 55, or 8.1%, were infected with one or more 

Plasmodium parasites, as revealed by microscopic scans of the blood films and confirmed 
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with sequence data.  Thirty-seven of these hosts, or 67%, were A. cybotes.  This was the 

most frequently sampled host, and it had a relatively high overall prevalence of 37/220, 

or 17%.  In addition to A. cybotes, another eight species were infected: Anolis caudalis, 

Anolis chlorocyanus, Anolis christophei, Anolis coelestinus, Anolis distichus, Anolis 

etheridgei, Anolis insolitus, and Anolis marcanoi (Table 2.2).  This is the first record of 

any malaria parasite from A. caudalis, A. christophei, A. etheridgei, A. insolitus, and A. 

marcanoi.  We also report new host-parasite associations for several Anolis and 

Plasmodium species pairs (Table 2.2).   

Relative prevalence varied between parasite species and over the host species 

sampled.  Of the four species, P. floridense was the most abundant, comprising 33/55, or 

60%, of all infections. Not surprisingly, most P. floridense infections were found in the 

common host species A. cybotes (25/33, or 76%), as were the majority of P. azurophilum 

infections (8/12, or 67%), and all four of the P. leucocytica infections.  In contrast, only 

4/10, or 40%, of P. hispaniolae was found in A. cybotes.  One was observed in A. 

etheridgei (10%), and the remaining 5/10 were found in A. distichus.  Additional 

prevalence data are shown in Table 2.3. 

As stated earlier, four of the 55 infected lizards were parasitized by more than one 

parasite species.  Two of these were mixed P. floridense and P. hispaniolae infections.  

The third lizard was infected with P. azurophilum and P. leucocytica, and the fourth was 

infected with three parasite species: P. floridense and P. hispaniolae, and P. leucocytica.  

All four of these mixed infections occurred in A. cybotes, two of which occurred at the 

same locality (Pedro Sánchez, Dominican Republic; Table 2.3).  All of these mixed 

infections were detected using sequence data, and were confirmed by repeated PCR and 
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sequencing.  We re-examined the entire blood smears for the third and fourth infections, 

which were the only two that contained a species that could be unambiguously identified 

by morphology (P. leucocytica).  In scanning each of these two blood films in their 

entirety, we were only able to visually identify P. leucocytica in one of them. 

Discussion 

The taxonomy of saurian Plasmodium spp. on Hispaniola 

 We observed significant discrepancies in the taxonomic hypotheses generated 

from our morphological and molecular phylogenetic data, and most discordance 

concerned the previously described species P. minasense anolisi and P. tropiduri 

caribbense.  The phylogenetic analyses indicated that the morphology attributed to P. 

minasense anolisi on Hispaniola is contained wholly within the variation in P. floridense, 

and we consider the former subspecies to be a junior synonym of the latter species on 

Hispaniola.  Outside of Hispaniola, P. minasense anolisi has been reported in Anolis at 

two localities in Panama (including its type locality) where P. floridense also occurs, with 

other subspecies of P. minasense occurring throughout Central America and northern 

South America in other host genera (Telford, 1979; Telford et al., 1989; Telford, 2009).  

Further study is needed to determine whether P. floridense and P. minasense are 

synonymous across their range.  Similarly, the molecular phylogenetic data suggest that 

the distinguishing character reported for P. tropiduri caribbense on Hispaniola – a 

schizont with a cytoplasmic projection  – is not useful, as this morphology was observed 

in both P. floridense and P. hispaniolae.   Like P. minasense anolisi, P. tropiduri 

caribbense was described as one of many subspecies of a form originally described from 

Panama, although the cytoplasmic feature was described as unique to P. tropiduri 
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caribbense.  We consider P. tropiduri caribbense, originally described from Hispaniola, 

to be a junior synonym of both P. floridense and P. hispaniolae.  Further work is required 

to assess the validity of P. tropiduri across its range, above all because P. floridense and 

P. tropiduri are morphologically similar, and their assignment as separate species stems 

merely from their distinct geographic distributions (Garnham, 1966). 

 It is certainly possible that despite our broad geographic and host sampling, we 

did not fully sample the malaria parasite diversity of Hispaniola. Prevalence of 

Plasmodium species is variable between years in other populations of lizards (Schall & 

Marghoob, 1995; Staats and Schall, 1996; Schall et al., 2000) and birds (Bensch et al., 

2007).  Few data exist in regards to how this variability might be affected by the 

relatively high host and parasite diversity on Hispaniola; in some cases of fluctuating 

prevalence in more than one parasite species, the relative proportions of each species 

changes (Schall et al., 2000), whereas as in other cases it remains constant (Bensch et al., 

2007).  It is conceivable that P. minasense anolisi and P. tropiduri caribbense are valid 

species and have gone extinct on Hispaniola or that they have become so rare that we did 

not observe them.  Nonetheless, neither low (i.e., unobserved) prevalence nor extinction 

of these parasites on Hispaniola would reject the hypotheses we presented for P. 

floridense and P. hispaniolae.  The morphological variation attributable to P. floridense 

and P. hispaniolae has been expanded here to include that described for P. minasense 

anolisi and P. tropiduri caribbense, and if these taxa are indeed valid and extant on 

Hispaniola, a molecular-based approach will be required to confirm this.  
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Prevalence and Host Records 

 The prevalence of Plasmodium infection, among all anole species sampled as well 

as in the most commonly infected host A. cybotes was low (8.1% and 17%, respectively) 

compared to other studies of Plasmodium in Caribbean Anolis (e.g., 22 – 32% in Anolis 

gundlachi on Puerto Rico (Schall et al., 2000) and 47% in Anolis sabanus on Saba (Staats 

& Schall, 1996)).  Although we consider it unlikely, it is possible that this difference is 

attributed to our microscopy protocol.  We scanned each slide for 3 – 6 minutes, whereas 

each of the above studies scanned each slide for six minutes.  Very light infections with 

0.01-0.02% of host cells infected might not have been be detected by our protocol, but 

could possibly have been observed with longer scanning times.  In their study of parasite 

prevalence in A. sabanus, Staats and Schall (1996) measured an average parasitemia of 

single infections for P. azurophilum, P. floridense, and P. leucocytica at 0.8%, and 0.4% 

for mixed infections.  Thus, our protocol may be expected to yield false negatives only 

when parasitemia falls below 2.5% of the average parasitemia rates found in that system 

for single infections, and below 5% for mixed infections.   This suggests that the effect of 

our microscopy protocol on our prevalence estimates is unlikely to account for the 

observed differences from other studies in Caribbean Anolis lizards. 

 Studies of mixed species infections of malaria parasites in birds show that PCR 

can preferentially amplify one species over others (Valkiûnas et al., 2006), which is 

another potential source error in our prevalence data.  We detected four mixed infections 

using sequence data.  Two of these samples were infected with an unambiguous species – 

P. leucocytica – but we observed this species in only one of two blood films.  This 

suggests that in some cases, PCR does identify mixed species infections when 
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microscopy does not, though amplifications that are not confirmed with microscopy 

could be derived from circulating sporozoites, which are not true infections (Valkiūnas et 

al., 2009).  Additionally, the total scanning time was ultimately longer than 3 – 6 minutes 

for many smears that we initially identified as infected.  When we characterized the 

morphology of P. hispaniolae (after both the initial scans and phylogenic analyses), we 

reexamined all the blood films belonging to P. floridense and P. hispaniolae.  We did not 

observe any other co-infections in those smears, further suggesting that we did not 

underestimate the number of mixed infections.     

 Another possible explanation for the low prevalence that we observed is our 

sampling scheme.  We sampled several new localities – sometimes very heavily – where 

Plasmodium spp. were absent or present in very low numbers (e.g., 1/41 or 2.4% in Las 

Galeras, and 7/287 or 2.4% in La Cienaga).  Other localities had relatively high 

prevalence (e.g., 13/28 or 46% in Pedro Sanchez).  The large differences in prevalence 

among these localities suggest that the distributions of these parasites are patchy, which is 

consistent with other malaria parasite systems (Garnham, 1963; Greiner et al., 1975; 

Schall & Marghoob, 1995; Staats & Schall, 1996; Fallon et al., 2005). 

 Several anole species were consistently and conspicuously uninfected, and this 

could be because of host lineage effects (i.e., a genetically based resistance to malaria has 

evolved in some clades) or because of host ecology (e.g., the lizards perch in areas that 

are inaccessible to the parasite’s vector).  Oftentimes the uninfected Anolis species 

belonged to the same “ecomorph” category.  Most Caribbean Anolis may be categorized 

into one of six ecomorph classes on the basis of their ecology, morphology, and 

behavior.  Among islands, ecomorph classes do not form monophyletic groups, but 
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within islands, members of a particular ecomorph class sometimes do form a clade 

(reviewed in Losos, 2009). In our Hispaniolan sample, none of the species belonging to 

the crown-giant (n = 11) or grass-bush (n = 123) ecomorphs were infected, despite the 

presence of other infected anoles at the same localities.  For example, eight uninfected 

crown-giant anoles (Anolis baleatus) were collected at Matadero Village, whereas three 

of the four other Anolis individuals from other species and ecomorphs at the same site 

were infected (we confirmed this by exhaustively examining the blood smears and with 

PCR).  All the crown-giant anoles on Hispaniola form a clade, however, so we cannot 

distinguish between common ancestry versus host ecology as potential causes for the 

apparent absence of parasite infection (of course, additional sampling of Hispaniolan 

giant anoles will be required to test whether this is simply due to sampling artifact).  

Members of the grass-bush ecomorph on Hispaniola fall into two separate clades, and 

though we did not observe malaria parasites in the clade containing Anolis olssoni and 

Anolis semilineatus (n = 110), or the clade containing Anolis bahorucoensis, Anolis 

dolichocephalus, and Anolis hendersoni (n = 13), these lizards were largely sampled from 

localities with low overall prevalence of Plasmodium species.   These data are 

insufficient to resolve whether the observed absence of infection in Hispaniolan grass-

bush anoles is due to host ecology or to insufficient sampling.  Moreover, malaria 

parasites have been reported in grass-bush anoles on other islands, for example P. 

floridense in Anolis pulchellus of Puerto Rico (Telford, 1975).  Other studies have found 

generally poor evidence of cospeciation between malaria parasites and their vertebrate 

hosts (e.g., Bensch et al., 2000; Charleston & Perkins, 2003; Ricklefs et al., 2004), 

suggesting that there is minimal correlation between vertebrate host lineages and 
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parasitism among the malaria parasites. In any case, our data suggest patterns of malaria 

parasitism in Caribbean Anolis may be partially attributed to host ecology or correlated 

with host phylogeny, two possibilities that deserve further study. 

 Many of the host/parasite associations observed were new, largely because this 

was the first time that most of these host taxa had been sampled for malaria parasites.  

Some new associations were not unexpected, as infection had been previously reported in 

their ecomorph category and/or in a closely related species.  For example, A. marcanoi is 

not surprising as a new host record for P. floridense; it is closely related to A. cybotes, 

and both are members of the trunk-ground ecomorph.  Likewise, the trunk-crown 

ecomorph A. chlorocyanus, although exhibiting low prevalence (1/19 or 5%), is a new 

host record for P. floridense; this parasite had previously been reported in the closely 

related trunk-crown species A. coelestinus (Telford, 2009).  In contrast, other novel 

associations were unexpected.  Some new records (e.g., A. christophei for P. azurophilum 

and P. floridense, and A. etheridgei for P. azurophilum and P. hispaniolae) belong to 

lizards that are typically considered “unique” anoles, meaning that these species do not fit 

into any of the six traditional Greater Antillean ecomorph categories (Losos, 2009).  

These are the first records of any Plasmodium infections for any unique anoles. Perhaps 

most interesting is the presence of P. floridense in the twig anole A. insolitus.  These 

diminutive lizards perch cryptically on twigs and thin branches, and can be found from 

just above the forest floor to the uppermost regions of the canopy.  This is the first record 

of malaria parasite infection for any of 15 twig anole species found in the Caribbean. 
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Molecules and morphology in the malaria parasites 

A number of the malaria parasites have a rich history of scientific research, and 

we have a good understanding of the morphological variation in both their vector and 

vertebrate hosts for many of these (Garnham, 1966; Valkiūnas, 2005; Telford, 2008).  

Molecular studies have corroborated the taxonomic hypothesis for several of these 

species (e.g., Hellgren et al., 2007; Palinauskas et al., 2007; Perkins et al., 2007).  Many 

other Plasmodium spp., particularly those parasitizing reptiles, were described using only 

morphological features of the forms found in the circulating blood of the vertebrate host.  

Some, like P. fairchildi hispaniolae, are known only from a single blood film (e.g., Ball 

& Pringle, 1965; Telford & Landau, 1987), with a few species descriptions even 

originating from mixed infections on a single blood film (e.g., Telford, 1988).   

For the taxonomist, these rare observations are problematic because accurate 

descriptions and identifications are confounded by a scarcity of informative characters.  

This should not be unexpected for malaria parasites, considering that these parasites are 

single-celled organisms, smaller in size than their hosts’ erythrocytes, and that 

morphological observations are made using smeared – and potentially distorted – blood 

films.  Morphological traits observed over a few blood smears may not always be 

translated into a truly diagnostic species description, and mixed infections can be 

misleading.  The morphological description presented here for P. hispaniolae, for 

instance, does not clearly distinguish it from other Plasmodium species.  It includes the 

modifiers “usually” and “sometimes,” and the measurements overlap with the syntopic 

parasite P. floridense. These nebulous descriptions are the norm, unfortunately, and are 

impossible to avoid in organisms for which observable morphological features are very 
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few.  We identify variation unique to P. hispaniolae in our taxonomic summary, but 

some infections remain in morphological crypsis.  For example, the gametocytes in 

Figure 2.3, I-J fall within the variation reported for both P. hispaniolae and P. floridense. 

An approach that incorporates molecular characters, like the one employed here, 

represents an improvement for species delimitation and identification in the malaria 

parasites. Placing molecular data in a phylogenetic framework allows taxonomic 

inference based on estimates of the evolutionary history of the organisms.  Fixed 

differences – in the form of molecular characters – can be included in the species 

description (but see Fujita and Leachè (2011) for a discussion on why fixed characters 

might not be necessary for species descriptions). While a phylogeny from any single 

locus represents but one hypothetical estimate of the history of divergence for a group of 

organisms, the confidence that may be placed in such an estimate increases to the extent 

that it is corroborated by independent estimates from additional loci.  To summarize, 

incorporating molecular data in a phylogenetic framework facilitates unambiguous 

species descriptions based on the evolutionary history of these parasites. 

Nonetheless, we strongly advocate the continued collection of morphological and 

other types of data in these organisms.  Vector information may be particularly valuable, 

as vector identities and vector switches have been associated with malaria parasite 

diversification (Martinsen et al., 2008).  Taxonomic hypotheses based on parasite 

morphology may be tested with molecular data, and we suspect these will be 

corroborated in many cases. When not taxonomically informative, these data can be used 

to test other hypotheses, such as those related to convergence (e.g., Pérez-Losada et al., 

2009) and phenotypic plasticity (e.g., Steinauer et al., 2007).  Perhaps most importantly, 
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the description of morphological data in molecular taxonomic studies allows such studies 

to be smoothly integrated into more than 100 years of taxonomic research on saurian 

malaria parasites that was based primarily on morphology.  
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Table 2.1.  Locality information for sites where Plasmodium spp. were observed.  
Numbers correspond with areas in Figure 2.2 and prevalence data in Tables 2.2 and 2.3.  
Exact GPS coordinates are given in decimal degrees and are associated with nearby place 
names (e.g., town, province, country) provided for geographical reference; these names 
are shared when more than one site is nearest the same place. 
 

Number Name Latitude Longitude Dates 

1 Duchity, Sud, Haiti 18.36653°N 73.87885°W Aug. 2009 
2 Deloge, Artibonite, Haiti 18.96772°N 72.72537°W Aug. 2009 
3 Marotte, Oest, Haiti 18.82718°N 72.57038°W Aug. 2009 
4 Aubry, Oest, Haiti 18.72392°N 72.37355°W Aug. 2009 
5 San Juan, San Juan, Dominican Republic 18.77687°N 71.19923°W Aug. 2008 
6 La Cienaga, Barahona, Dominican Republic 18.05758°N 71.11297°W Jan. 2010 
7 Luperon, Puerto Plata, Dominican Republic 19.86266°N 70.96433°W Aug. 2008 
8a Constanza, La Vega, Dominican Republic 18.91442°N 70.72942°W Aug. 2008 
8b Constanza, La Vega, Dominican Republic 18.84137°N 70.70745°W Aug. 2008 
9a Constanza, La Vega, Dominican Republic 18.86048°N 70.68315°W Aug. 2008 
9b Constanza, La Vega, Dominican Republic 18.83973°N 70.69693°W Aug. 2008 
10 Jarabacoa, La Vega, Dominican Republic 19.14088°N 70.63128°W Aug. 2008 
11 Sabana Quéliz, La Vega, Dominican Republic 18.69602°N 70.59167°W Aug. 2008 
12 La Palma, La Vega, Dominican Republic 19.03310°N 70.54298°W Aug. 2008 
13 Matadero Village, Peravia Province, Dominican Republic 18.38963°N 70.43035°W Aug. 2008 
14 Recodo Road, Azua, Dominican Republic 18.38190°N 70.32977°W Aug. 2008 
15 Las Galeras, Samaná, Dominican Republic 19.30035°N 69.17233°W Aug. 2008 
16 Pedro Sanchez, El Seibo, Dominican Republic 18.87967°N 69.11958°W Aug. 2008 
17 Bayahibe, La Altagracia, Dominican Republic  18.37087°N 68.83145°W Aug. 2008 
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Table 2.2.  Observed prevalence of Plasmodium spp. in Anolis lizards sampled on 
Hispaniola. The total number of host individuals sampled is noted parenthetically after 
the host name, and the number of these individuals that were infected by each parasite 
species is listed in each column. 
 
 Parasite species 

Host species Plasmodium 
azurophilum 

Plasmodium 
floridense 

Plasmodium 
hispaniolae 
comb. nov. 

Plasmodium 
leucocytica 

Anolis aliniger (1) 0 0 0 0 
Anolis armouri (4) 0 0 0 0 
Anolis bahorucoensis (8) 0 0 0 0 
Anolis baleatus (8) 0 0 0 0 
Anolis barahonae (2) 0 0 0 0 
Anolis caudalis (15) 0 1a 0 0 
Anolis chlorocyanus (19) 0 1a 0 0 
Anolis christophei (16) 1a 1a 0 0 
Anolis coelestinus (93) 0 1 0 0 
Anolis cybotes (220) 8 25 4a 5 
Anolis distichus (130) 2 2 5 0 
Anolis dolichocephalus (1) 0 0 0 0 
Anolis etheridgei (17) 1a 0 1a 0 
Anolis fowleri (1) 0 0 0 0 
Anolis hendersoni (4) 0 0 0 0 
Anolis insolitus (8) 0 1a 0 0 
Anolis marcanoi (4) 0 1a 0 0 
Anolis marron (1) 0 0 0 0 
Anolis olsoni (95) 0 0 0 0 
Anolis ricordi (1) 0 0 0 0 
Anolis rimarum (2) 0 0 0 0 
Anolis shrevei (2) 0 0 0 0 
Anolis semilineatus (15) 0 0 0 0 
Anolis sheplani (5) 0 0 0 0 
Anolis singularus (1) 0 0 0 0 
Anolis websteri (4) 0 0 0 0 

Total (677) 12 33 10 5 

a New parasite/host association. 
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Table 2.3.  Relative prevalence among localities where Plasmodium spp. were 
observed.  Locality numbers refer to areas and localities in Figure 2.2 and Table 2.1, 
respectively.  The number of individuals sampled is given in parentheses after the host 
names. 
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Table 2.3. 
 

  Plasmodium species 

Locality Host Species Plasmodium 
azurophilum 

Plasmodium 
floridense 

Plasmodium 
hispaniolae 
comb. nov. 

Plasmodium 
leucocytica 

1 Anolis cybotes (1) 0 0 0 100% 
2 Anolis chlorocyanus (1) 

Anolis cybotes (2) 
Anolis websteri (4) 

0 
0 
0 

0 
50% 
0 

0 
0 
0 

0 
0 
0 

3 Anolis caudalis (5) 
Anolis chlorocyanus (2) 
Anolis cybotes (2) 
Anolis olssoni (1) 

0 
0 
0 
0 

0 
50% 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

4 Anolis caudalis (6) 
Anolis chlorocyanus (2) 
Anoli  cybotes (3) 
Anoli  olssoni (1) 

0 
0 
0 
0 

17% 
0 
67% 
0 

0 
0 
0 
0 

0 
0 
0 
0 

5 Anolis chlorocyanus (1) 
Anolis cybotes (7) 
Anolis distichus (12) 

0 
0 
0 

0 
86% 
0 

0 
0 
0 

0 
0 
0 

6 Anolis coelestinus (93) 
Anolis cybotesa (99) 
Anolis olssoni (91) 

0 
5% 
0 

1% 
1% 
0 

0 
0 
0 

0 
1% 
0 

7 Anolis cybotes (1) 
Anolis distichus (5) 

0 
0 

100% 
20% 

0 
0 

0 
0 

8a Anolis cybotes (10) 
Anolis distichus (8) 

30% 
0 

10% 
0 

0 
0 

10% 
0 

8b Anolis cybotes (1) 
Anolis distichus (8) 
Anolis etheridgei (4) 

0 
13% 
0 

0 
0 
0 

0 
0 
25% 

0 
0 
0 

9a Anolis etheridgei (4) 
Anolis insolitus (2) 

25% 
0 

0 
0 

0 
0 

0 
0 

9b Anolis aliniger (1) 
Anolis christophei (1) 
Anolis fowleri (1) 

0 
0 
0 

0 
100% 
0 

0 
0 
0 

0 
0 
0 

10 Anolis chlorocyanus (2) 
Anolis cybotes (3) 
Anolis distichus (4) 

0 
0 
0 

0 
33% 
0 

0 
0 
25% 

0 
0 
0 

11 Anolis insolitus (1) 0 100% 0 0 
12 Anolis christophei (5) 

Anolis etheridgei (1) 
20% 
0 

0 
0 

0 
0 

0 
0 

13 Anolis baleatus (8) 
Anolis cybotesa (2) 
Anolis distichus (2) 

0 
0 
0 

0 
50% 
0 

0 
50% 
50% 

0 
50% 
0 

14 Anolis cybotes (2) 
Anolis distichus (1) 
Anolis marcanoi (4) 

0 
0 
0 

0 
0 
25% 

0 
0 
0 

50% 
0 
0 

15 Anolis cybotes (22) 
Anolis distichus (15) 
Anolis chlorocyanus (4) 

0 
0 
0 

5% 
0 
0 

0 
0 
0 

0 
0 
0 

16 Anolis chlorocyanus (1) 
Anolis cybotesa (12) 
Anolis distichus (15) 

0 
0 
7% 

0 
67% 
0 

0 
25% 
20% 

0 
0 
0 

17 Anolis chlorocyanus (1) 
Anolis cybotes (3) 
Anolis distichus (8) 

0 
0 
0 

0 
33% 
13% 

0 
0 
0 

0 
0 
0 

a One or more of these host individuals was infected with more than one parasite species.   
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Figure 2.1.  Previously reported gametocyte size variation among the four 
pigmented Plasmodium species (according to Telford et al., 1989) in the Hispaniolan 
anoles Anolis cybotes and Anolis distichus.  Bars represent total size variation, with the 
mean represented by a hollow circle.  Grey shading indicates where two or more parasite 
species overlap in gametocyte length x width, precluding unambiguous identification of 
these species by this metric over much of its observed range.
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Figure 2.2.  Sampling sites on Hispaniola. Localities where Plasmodium spp. were 
observed have numbers corresponding to GPS coordinates given in Table 2.1. 
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Figure 2.3. Morphological variation previously described for lizard malaria 
parasites from Hispaniola.  Images A-H show parasites with features that allow 
confident identification (see text for explanation).  These are: Plasmodium azurophilum 
gametocyte (A) and schizont (B), Plasmodium leucocytica gametocyte (C) and schizont 
(D), Plasmodium tropiduri caribbense schizonts (arrow indicates cytoplasmic projection; 
E-F), Plasmodium minasense anolisi schizont (G) and Plasmodium floridense gametocyte 
(H). Images I-P show parasites that cannot be confidently assigned to any species using 
previously reported morphological variation.  These gametocytes (I-L) and schizonts (M-
P) could belong to any of the pigmented species (i.e., Plasmodium fairchildi hispaniolae, 
P. floridense, P. minasense anolisi, or P. tropiduri caribbense).  Molecular analyses (see 
text and Figures 2.4-6) identified all forms as either P. floridense (F-J, M-N) or 
Plasmodium hispaniolae comb. nov. (K-L, O-P; “Plasmodium sp.” in Figures 2.4-6).  
Scale bar = 10 µm.



 56 

 
 

0.03 substitutions/site

Plasmodium azurophilum (5)

Plasmodium azurophilum (2)

Plasmodium azurophilum (1)

Plasmodium leucocytica (2)

Plasmodium leucocytica (1)

Plasmodium azurophilum (4)

Group C (5)
[P. tropiduri (1),
unidentified (4)]

Group D (1)
[unidentified (1)]

Group A (29)
[P. floridense (1), P. minasense (6), 
P. tropiduri (1), unidentified (21)]

Group B (1) 
[unidentified (1)]

Plasmodium knowlesi

60 stepsA. B.
Plasmodium berghei

Group E (1)
[unidentified (1)]

Plasmodium leucocytica (GB)

Plasmodium azurophilum (GB)

Plasmodium fairchildi (GB)

Plasmodium floridense (GB)

100

100

100

100
100

100

96

99

75

85

74

70
69

100

100

99

100
100

62

100

100
100

x

Plasmodium floridense 
Plasmodium sp.
Plasmodium leucocytica
Plasmodium azurophilum

 
Figure 2.4.  Phylogenetic hypotheses of Hispaniolan Plasmodium spp. inferred by 
the analysis of concatenated mitochondrial genes cytB and coxI. Tree tip labels reflect 
identifications made on the basis of previously described morphological features, or, 
where indicated, pre-existing GenBank accession identifications (GB).  For haplotypes 
for which we were unable to identify species using morphological means, tree tips are 
given provisional labels indicating shared hapotype (e.g., “Group A”).  When 
morphological identifications were made to some members one of these haplotype 
groups, these are indicated in brackets.  The number of individuals that share a haplotype 
is noted parenthetically after the species or group name.  Vertical bars show the species 
hypotheses inferred from this study (Plasmodium sp. is identified and described as 
Plasmodium hispaniolae comb. nov.; see text).  (A).  Strict consensus of 2 most 
parsimonious trees with a length of 598 steps and with 288 parsimony-informative 
characters.  (B).  ML tree (lnL = -5268.9) generated under a GTR model and partitioned 
by gene. 
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Figure 2.5.  Phylogenetic hypotheses of the nuclear gene EF2.  Tree tip labels and 
vertical bars representing taxonomic hypotheses correspond to those assigned in the 
mitochondrial DNA analysis (Figure 2.4).  Numbers above branches indicate bootstrap 
support. (A).  Strict consensus of 3 most parsimonious trees from a maximum parsimony 
analysis with a length of 152 steps and with 72 parsimony-informative characters.  (B).  
ML tree (lnL = -1306.9) generated under a GTR + Γ model.
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Figure 2.6.  Phylogenetic hypotheses of the concatenated cytB, coxI, and EF2 genes. 
Tree tip labels and vertical bars representing taxonomic hypotheses correspond to those 
assigned in the mitochondrial DNA analysis (Figure 2.4).  Numbers above branches 
indicate bootstrap support. (A).  Strict consensus of 3 most parsimonious trees from a 
maximum parsimony analysis with a length of 724 steps and with 359 parsimony-
informative characters.  (B).  ML tree (lnL = -6453.7) partitioned by gene and generated 
under a GTR+ Γ model. 
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Figure 2.7.  Morphology of Plasmodium hispaniolae comb. nov.  Variation in 
trophozoites (A-D), schizonts (E-J), immature gametocytes (K-L), microgametocytes (M-
O), and macrogametocytes (O-P) of Plasmodium hispaniolae comb. nov.  Scale bar = 10 
µm. 
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CHAPTER III 
 

LIFE CYCLE AND TRANSMISSION SHAPE DIVERSIFICATION  
IN THE LIZARD MALARIA PARASITE PLASMODIUM FLORIDENSE 

 
 

ABSTRACT 
 

Malaria parasites in the genus Plasmodium all share the same life cycle wherein 

they alternate between invertebrate and vertebrate hosts.  This life cycle, in combination 

with potentially common patterns of moderate-to-low prevalence, may shape the parasite 

populations through inbreeding.  Inbreeding brings about a decrease in the effective 

population size (Ne), which in turn causes rapid divergence among populations and 

minimal within-population variation.  We test these predictions in the lizard malaria 

parasite Plasmodium floridense.   This is among the most widespread of the lizard 

malaria parasites, ranging from southeastern North America, throughout the Caribbean, 

and in parts of mainland Middle America.  We collected, identified, and sequenced 63 

single-infection samples from across the parasite’s range for two mitochondrial, one 

apicoplast, and five nuclear genes.  We employed Bayesian species delimitation to 

identify 11 independently evolving lineages within P. floridense.  As predicted, both Ne 

and within-lineage variation are low, and the majority of polymorphisms are fixed 

between lineages.  We observed very recent divergence estimates; some lineage pairs are 

estimated to have diverged ~110,000 years ago.  These results are consistent with the 

predictions given the parasite life cycle and transmission patterns, and we suggest that 

these patterns may be common to malaria parasites generally.   
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Introduction 

The first malaria parasite in the genus Plasmodium was described in 1885, and the 

genus has grown to contain nearly 200 species at present (Levine 1988; Valkiūnas 2004; 

Telford 2008).  These parasites can be found on every continent except Antarctica, and in 

hundreds – possibly thousands – of reptile, bird, and mammal host species.  The 

phylogenetic relationships are reasonably well characterized for many of these parasite 

species (Perkins & Schall 2002; Martinsen et al. 2008), but the patterns of diversification 

within species remain unknown for most.  

 Plasmodium falciparum – the causative agent of malignant malaria – is the 

exception.  It has been the focus of numerous population genetics studies from which we 

can make several generalizations.  Many mitochondrial and nuclear loci contain minimal 

variation that result in estimates of small population size (Ne) and recent diversification 

(Rich & Ayala 2000; Volkman et al. 2001; Joy et al. 2003; Hartl 2004).  Reproduction is 

clonal (i.e., highly inbred) under conditions of low-moderate transmission 

(Razakandrainibe et al. 2005; Nkhoma et al. 2013), although this is not always the case 

(Mzilahowa et al. 2007; Pumpaibool et al. 2009).  Similarly, genetic variation is limited 

in the other human parasites P. malariae and P. vivax (Lecerc et al. 2004; Tazi & Ayala 

2011; Neafsey et al. 2012).  Nonetheless, it is unclear whether these patterns (e.g., low 

variation and recent divergence) uniquely result from the exceptional population history 

of their vertebrate host and associated selection regimes, or whether they are common to 

all malaria parasites.  

All Plasmodium species share a life cycle that may engender common patterns of 

within-species diversification.  The life cycle can be divided in two ways that are largely 
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congruent: it can be split by host class or by ploidy.  The invertebrate host (i.e., vector), 

which is often a mosquito but is always a dipteran, takes a blood meal from a vertebrate 

host, and injects haploid sporozoites that make their way into the new host’s bloodstream.  

The parasite undergoes asexual reproduction first in the host’s organs (e.g., the liver) and 

later in circulating blood cells, and eventually produces haploid gametocytes.  A vector 

takes a blood meal from the vertebrate host and ingests blood cells containing the 

gametocytes.  These blood cells burst in the vector’s gut, releasing parasite gametes, 

which exflagellate and fuse to form a diploid zygote.  The zygote develops into an 

ookinete – this is when meiosis and recombination occurs – and this in turn develops into 

an oocyst in the gut wall.  These diploid oocysts produce haploid sporozoites that invade 

to the vector’s salivary glands, and, if the vector survives, are ready infect another 

vertebrate host.  

This life cycle may have the capacity to profoundly affect parasite population 

genetics: when parasite prevalence is moderate or low, selfing rates will be high.  This is 

because as prevalence decreases, the proportion of host individuals infected with more 

than one clone nears zero, as does the probability of a vector taking an infected blood 

meal from more than one host.  The Ne of diploid loci is reduced by half in populations 

that are 100% inbred, reducing variation within populations while increasing variation 

among populations (Hartl & Clark 2007; Wakeley 2009).  It also reduces the incidence of 

incomplete lineage sorting (Funk & Omland 2003), leading to greater congruence 

between mitochondrial and nuclear gene trees.  Inbreeding also brings about observable 

changes in homozygosity.  While this cannot be measured from the haploid samples 

collected from the vertebrate hosts, allelic diversity among parasites in the same host 
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population will be low.  So, given the malaria parasite life cycle, we predict that all 

malaria populations subsisting at moderate or low prevalence will exhibit the same 

characteristics as the primate parasites: low Ne, low variation within populations but high 

variation among populations, and recent divergence among populations.  

There is some evidence that the populations of non-primate parasites are shaped 

by their life cycle.  Bensch et al. (2004) sequenced a multitude of avian parasite samples 

at both the mitochondrial gene cytb and the nuclear gene DHFR-TS, and found that most 

mitochondrial lineages also had unique nuclear sequences.  Similarly, Falk et al. (2011) 

observed strict congruence between the mitochondrial genes cytb and coxI with the 

nuclear gene EF2 in their phylogeny containing multiple parasite species.  Both of these 

studies meet the expectations of rapid coalescent times of nuclear loci and complete 

lineage sorting.  Nonetheless, the scope of both of these studies extended across several 

parasite species – rather than within species – and each included just two independent 

loci.   

In order to better understand the population genetics of malaria parasites in 

wildlife, we studied the population genetics of the lizard parasite Plasmodium floridense 

Thompson & Huff, 1944.  Plasmodium floridense is among the most widely distributed 

of the lizard malaria parasites.  It is reported from southeastern North America, from the 

Caribbean throughout the Greater Antilles and parts of the northern Lesser Antilles, and 

from parts of mainland Middle America from Panama northwards to Mexico (Figure 3.1; 

Telford, 2008).  The mosquito Culex erraticus (Diptera: Culicidae) is a competent vector 

of P. floridense in Florida (Klein et al. 1987, 1988).  This mosquito is distributed 

throughout the Americas (Mendenhall et al. 2012), and though its distribution exceeds 
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the distribution of P. floridense, it is unknown whether the parasite retains this same 

vector throughout its range.  The vertebrate hosts of P. floridense are primarily anole 

lizards; of its 34 reported host species, 31 are Anolis spp. (Squamata: Dactyloidae) 

whereas three are Sceloporus spp. (Squamata: Phrynosomatidae) (Telford 2008; Falk et 

al. 2011).  

Generation time in P. floridense depends on the average time spent in each its 

vertebrate and invertebrate hosts.  In the mosquito, the time from blood meal to 

sporogony is determined by the infection intensity (i.e., how many parasites it consumes 

with its blood meal). If the blood meal is heavily infected, sporogony occurrs 11-14 days 

later (Klein et al. 1987).  If the infection is light, sporogony may take longer than 20 

days, if it happens at all (Klein et al. 1987).  The time spent in the vertebrate host is also 

variable.  In experimental infections of Anolis carolinensis, gametocytes were present on 

blood films as early as two weeks following inoculation, and parasitmemia peaked in 4-6 

weeks following inoculation (Klein et al. 1987).  Each of these benchmarks was 

prolonged when the animals experienced cooler temperatures (Thompson & Winder 

1947; Klein et al. 1987).  Still, it is unknown for how long lizards maintain their 

infections in the wild, or whether the infections are fatal.  Infected lizards do not typically 

live longer than 1-3 months in the laboratory (Thompson & Huff 1944; Thompson & 

Winder 1947; Klein et al. 1987), but this may be an artifact of frequent blood sampling 

and/or poor husbandry.  Wild-caught Anolis lizards with natural infections typically 

exhibit low parasitemia of primarily gametocytes (Falk, pers. obs.), suggesting long-term 

infections.  And, there are no observable differences in body condition, tail breakage, and 

male-male competitive success between infected and uninfected wild-caught Anolis spp. 
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(Schall & Pearson 2000; Schall & Staats 2002), providing further evidence that virulence 

of P. floridense is low many of its hosts, and that lizards may maintain low-level 

infections for a long time under natural conditions.   

Average prevalence of P. floridense in its lizard hosts is generally low, and varies 

over space and time.  In a survey of Puerto Rico, for example, P. floridense was observed 

in El Yunque National Forest, but was absent from eight other localities throughout the 

island (Guerrero & Pickering 1984).  Within El Yunque, prevalence in the most-

commonly infected host Anolis gundlachi ranged 10-30% over a nine-year period (Schall 

et al. 2000).  Similarly, 92 of 554 (17%) Anolis sagrei from 28 localities in Florida were 

infected, but 89 of these infections were reported from 270 lizards at two localities 

(33%), with prevalence at 1% for the remaining 284 lizards from 26 localities (Perkins et 

al. 2007).  In a recent sample of 677 anoles from 19 localities on Hispaniola, just 4.8% 

were infected with P. floridense, with the parasite absent or in very low numbers in many 

host populations (Falk et al. 2011).  These rates contrast with those observed on Saba in 

the Lesser Antilles; approximately 21% of Anolis sabanus were infected with P. 

floridense (Staats & Schall 1996a).  Observed prevalence of P. floridense in subsequent 

years has dropped to ~5%, however (Falk & Perkins unpublished).  Overall, these 

patterns are consistent with the conditions that may favor inbreeding in P. floridense. 

  Our aim was to answer two general questions relating the effect of the malaria 

parasite life cycle and transmission to diversification in P. floridense.  First, what is the 

lineage diversity in P. floridense?   Second, do the lineages exhibit population genetics 

parameters consistent with the life cycle / transmission predictions?  Specifically, do 

these populations exhibit low Ne, low within-lineage variation, and recent divergence?  In 
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order to answer these questions, we collected samples of P. floridense from across its 

range, developed several new nuclear markers, sequenced our samples using these 

markers, and analyzed these data using a variety of population genetic and 

phylogeographic methods. 

Methods 

Parasite Sampling, Identification, and Sequencing 

We collected lizards by noose or hand along roads and trails in Cuba (July-

August, 2002), Florida (March, 2002; December, 2002; April, 2006), Hispaniola (June, 

2006), Jamaica (May, 2012), the Puerto Rican Bank (Puerto Rico and the Virgin Islands: 

August, 2011; October, 2011), Saba (May, 2005; May, 2009), and Las Tuxtlas in Mexico 

(January, 2011).  From each of these lizards (except those collected in Cuba – see below), 

we clipped the distal portion of one toe to obtain blood samples.  One drop was used to 

make a thin blood smear, and these were fixed in absolute methanol immediately after 

drying.  We applied 3-6 additional drops to Whatman filter paper for molecular analysis.  

Once dry, each paper was individually placed in a coin envelope and these were stored 

together in a sealed plastic bag along with silica beads.  The blood-dot papers were kept 

at room temperature for up to four weeks while in the field and at -20°C thereafter.  In 

preparation for microscopic analysis, blood smears were fixed in methanol a second time, 

stained with phosphate-buffered Geimsa stain for 50-60 minutes, rinsed with tap water, 

and let air-dry.  We scanned each smear under oil immersion at 1000x magnification for 

3-6 minutes to identify positive infections. 

We extracted DNA of each positive sample from a single, dried blood dot that 

was cut from the filter paper.  We used Qiagen DNeasy Animal Tissue Extract kits 
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(Valencia, CA, USA), following the manufacturer’s instructions except with two 

modifications: (1) we did not transfer the piece of cut filter paper to the spin column after 

the digestion step, and (2) we used two elutions of 50µl each (as opposed to 200µl each) 

in the final step so that the parasite DNA would not be too diluted.  We had liver tissues 

of 42 lizards from Cuba, and because we did not have blood smears to identify positive 

samples, we extracted DNA from all of these using the Qiagen kits – this time following 

the manufacture’s instructions – and screened them for infections using PCR. 

Plasmodium floridense and P. hispaniolae are co-occurring, morphologically 

cryptic species that cannot be distinguished using blood smears alone (Falk et al. 2011).  

We used a phylogenetic approach to confirm the identity of the positive infections 

detected through microscopy and to identify P. floridense infections in our Cuban 

samples. We sequenced the mitochondrial gene cytochrome b (cytb) because this is the 

most commonly sequenced locus in studies of haemosporidian parasites in wildlife 

(Escalante et al. 1998; Bensch et al. 2000; Perkins & Schall 2002; Ricklefs & Fallon 

2002; Valkiūnas et al. 2010), and because it allows discrimination between P. floridense 

and P. hispaniolae.  We amplified this gene (along with a small portion of the gene 

cytochrome C oxidase subunit I [coxI]) in two reactions using the primers DW2 / 3932R 

and 3932F / DW4 (Perkins & Austin 2009; primer information in Supplementary Table 

S3.1,) and Illustra PuReTaq Ready-To-Go™ PCR Beads (GE Healthcare, Pittsburg, PA, 

USA).  We cleaned PCR products with AMPure (Agencourt, Beverly, MA, USA), 

sequenced them in both directions using BigDye v.3.0 (Applied Biosystems, Foster City, 

CA, USA), and edited them in GENEIOUS v.5.4.6 (Biomatters, Auckland, New 

Zealand). We combined these with sequences of previously identified samples of P. 
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floridense and P. hispaniolae, along with the lizard parasites P. azurophilum, P. 

fairchildi, P. leucocytica, and P. mexicanum, and the mammal parasites P. berghei and P. 

knowlesi as outgroup taxa (GenBank accession numbers in Supplementary Table S3.2). 

Multiple sequence alignments were generated using the MUSCLE plugin (Edgar 2004) in 

GENEIOUS using default parameters.  Mixed infections of more than one parasite 

species (i.e., those with clean chromatograms except with double peaks at segregating 

sites between species) were identified and discarded from this and subsequent analyses.  

We estimated a phylogeny using Bayesian inference in MrBayes v.3.2.1 (Ronquist et al. 

2012).  We ran two analyses simultaneously for 10 million generations, sampling every 

1000 generations, and discarding the first 25% as burn-in.  In each analysis we used three 

hot chains, one cold chain, and employed a GTR + Γ substitution model.  We assessed 

performance and convergence of the MCMC chains by checking that the average 

standard deviation of split frequencies was < 0.01 and that the effective samples sizes 

(ESS) were > 200 in TRACER v1.5 (Rambaut & Drummond 2007).  We also assessed 

convergence in AWTY (Nylander et al. 2008), paying attention to the “split frequency of 

run 1 vs. run 2” and the “cumulative split frequency.”  We used this phylogeny, along 

with the molecular characters provided in the species description of P. hispaniolae (Falk 

et al. 2011), to distinguish P. floridense from P. hispaniolae. 

 We sequenced all positive, single-infection samples of P. floridense, including 

four Hispaniolan samples that we previously identified and included in the above analysis 

as GenBank data (Falk et al. 2011), at an additional seven loci using new primers that we 

designed for this study.  We also sequenced one P. hispaniolae sample at these loci for 

use as an outgroup taxon.  These additional loci consisted of one mitochondrial gene: 



 69 

cytochrome C oxidase subunit I (coxI); one apicoplast gene: caseinolytic protease C 

(clpC); and five nuclear genes: adenylosuccinate lyase (Adsl), alpha-tubulin I (Atub), 

elongation factor 2 (EF2), histone H3 (HisH3), and heat shock protein (HSP70).  We 

employed nested PCR for all of these loci, using degenerate outer primers and specific 

internal primers to avoid amplifying non-target DNA and also to increase the amount of 

starting template.  We attempted PCR using the internal, specific primers with the DNA 

extractions as template (instead of the PCR product resulting from the outer primers), but 

were unsuccessful for all except coxI (where greater success was observed using the 

nested protocol), suggesting that the quantity of starting non-mitochondrial parasite DNA 

in these extractions is too low (i.e., parasitemia in these lizards is too low).  Primer 

information and thermocycler protocols are given in Supplementary Table S3.1, and 

sequencing methods were the same as those for cytb.  

 We evaluated each locus for evidence of selection, evidence of clock-like 

evolution, and established the best-fit model of sequence evolution for use in downstream 

analyses. We tested for evidence selection using both the McDonald-Kreitman test 

(McDonald & Kreitman 1991) and Tajima’s D (Tajima 1989) in DnaSP v5.10.01 

(Librado & Rozas 2009).  The McDonald-Kreitman test compares the proportion of 

synonymous to non-synonymous fixed substitutions, relative to the number of 

polymorphic sites, between species (i.e., P. floridense and P. hispaniolae).  A significant 

difference in the fixation rate between synonymous and non-synonymous substitutions is 

interpreted as evidence of selection.  Tajima’s D infers deviations from neutrality under a 

standard coalescent model by comparing the estimate of the population mutation rate (θ) 

generated using the number of segregating sites versus the estimate generated using the 
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average number of pairwise mismatches.  These deviations result from relatively high or 

low numbers of polymorphisms, and are interpreted to be the result of demographic 

changes and/or selection pressures.  We estimated Tajima’s D at each locus using all P. 

floridense samples.  We tested for non-clocklike evolution of each locus of our ingroup 

taxon using likelihood ratio tests in MEGA v.5.05 (Tamura et al. 2011). Substitution 

models were chosen for each locus using Bayesian information criterion (BIC) scores in 

jModelTest v0.1.1 (Posada 2008).  

Lineage Identification 

We employed a three-step procedure to delimit lineages within P. floridense that 

centers on the species-delimitation program BPP (Rannala & Yang 2003; Yang & 

Rannala 2010).  BPP employs a reversible-jump MCMC to estimate the probability of 

alternative species delimitation models, conditioned on the probabilities of population 

size and time since divergence among species in the various possible delimitations.  It 

accommodates the species phylogeny and incomplete lineage sorting via a coalescent 

model.  The BPP algorithm samples a user-defined, strictly-bifurcating guide tree of 

putative lineages, so we first identified putative lineages and then inferred the 

relationships among those lineages.  Following that, we used BPP to infer which of the 

lineages are independently evolving. 

We initially inferred putative lineages using Discriminant Analysis of Principal 

Components (DAPC; Jombart et al. 2010).  DAPC is a multivariate analysis that uses 

sequential K-means clustering of principal components to identify groups of individuals, 

and then employs discriminant analysis to maximize variation between groups.  DAPC 

was run using the ADEGENET package (Jombart 2008) in R (R Development Core 
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Team 2010).  We first extracted SNP data from the concatenated multiple sequence 

alignments of P. floridense samples.  We attempted to choose the optimal cluster number 

(K) of this dataset using each of the five available criteria (e.g., “diffNgroup” and 

“goodfit”) and BIC scores in ADEGENET.  The optimal K was variable over several 

runs with every criterion, however, with ≥ 10 clusters identified in every run.  For 

example, the “goodfit” criterion was the most stable, but inferred 11-18 clusters over 10 

runs.  Six clusters were reliably inferred over all analyses that generally correspond to 

samples collected in each area, so we chose to infer additional clusters within those six 

clusters using an interactive approach.  We first divided the dataset into the six sets. Next, 

we grouped the samples from each of these sets into 1-4 clusters, used discriminant 

analysis of just one principal component (to avoid over-fitting), and chose the greatest 

cluster number that maximized the membership of each sample to just a single cluster.  

We also identified putative lineages using cytb sequences sensu Bensch et al. 

(2004).  We trimmed the cytb alignment to be homologous with the region that would 

have amplified with the avian malaria primers HAEMF and HAEMR2 (Bensch et al. 

2000).  This resulted in 459-bp fragments, which is slightly shorter than the 479-bp 

fragment that these primers amplify because we extracted 20-bp of our primer sequences 

from the samples.  We assigned samples to lineages based on shared haplotype identities 

at this locus. 

We employed a species tree approach in *BEAST v1.6.2 (Drummond & Rambaut 

2007; Heled & Drummond 2010) to infer the relationships among putative lineages to use 

as a guide tree in the BPP analyses.  *BEAST is a Bayesian MCMC method that uses a 

multi-locus coalescent model to estimate the species tree, with a species defined as an 
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interbreeding, metapopulation lineage (i.e., the general lineage concept of species, or the 

GLC; de Queiroz 1998; 2007).  We chose substitution models based on the results of 

JModelTest.  We used a relaxed clock with a lognormal prior for Adsl (Drummond et al. 

2006) and a strict clock for all other loci (based on the tests for clock-like evolution – see 

Results).  We chose a birth-death tree prior and a piecewise-linear-and-constant-root 

population size prior.  We ran the analysis several times and adjusted the prior 

distributions for several parameters until we observed appropriate sampling for all 

parameters (i.e., unimodal distributions that pull away from the prior). The final analysis 

was set to run for 4.0×108 generations, sampled every 3.0×104 generations, with the first 

10% discarded as burn-in.  We assessed convergence in TRACER, checking that the ESS 

values for every parameter were ≥ 200.  Anticipating the assumptions of the BPP 

analyses, we made a final modification once the *BEAST analysis finished.  The BPP 

algorithm can collapse and resolve previously collapsed nodes on the guide tree, but it 

cannot move branches on the tree or incorporate phylogenetic uncertainty into its 

estimations.  Accordingly, we took a conservative approach and collapsed any terminal 

nodes on the species tree with < 95% posterior probability.  We gave each putative 

lineage an arbitrary name according to where the samples were collected (e.g., 

“Hispaniola 1”). 

We estimated the probability that putative lineages are reproductively isolated 

using BPP v2.1. We employed algorithm 0 with multiple values of the fine-tuning 

parameter ε (5, 10, 20) to ensure adequate performance of the rjMCMC (following 

Burbrink et al. 2011).  Prior distributions for ancestral population mutation rate (θ) and 

root age (τ0) may affect the posterior probabilities of the species models (Yang & 
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Rannala 2010).  Consequently, and similar to Leaché & Fujita (2010), we used three 

different – but still diffuse – prior combinations to evaluate the sensitivity of our dataset 

to these priors.  These priors are assigned a gamma (Γ) distribution (α, β), with a mean m 

= α/β and standard deviation s = (α/β2)1/2.  In order to inform our prior combinations, we 

estimated θ of each putative lineage and all lineages together using the per-site number of 

segregating sites (i.e., Watterson’s estimator of θ; Watterson 1975) from the concatenated 

dataset and using DnaSP.  The mean estimates ranged 1.3×10-4 – 7.8×10-3.  The first prior 

combination assumes small ancestral population sizes and shallow divergences between 

species: θ ~ Γ (1, 5000) and τ0 ~ Γ (1, 5000); m = s = 2.0×10-4 for both θ and τ0.  The 

second prior combination assumes much larger population sizes and deep divergences 

between species: θ ~ Γ (1, 100) and τ0 ~ Γ (1, 100); m = s = 0.01 for both θ and τ0.  The 

third prior combination assumes large population sizes and shallow divergences between 

species: θ ~ Γ (1, 100) and τ0 ~ Γ (1, 5000); m = s = 0.01 for θ; m = s = 2.0×10-4 for τ0.  

This latter prior combination of large populations and shallow divergences is 

conservative in that it is biased towards lumping species together (Leaché & Fujita 2010).  

We parameterized our model to accommodate rate variation among loci, imposing a 

Dirichlet prior distribution with vector α = 2.  We also used α = 10, which corresponds to 

greater variation among loci, over all prior combinations for ε = 10 to check the 

sensitivity of our dataset to this prior.  Each analysis was run for 150,000 generations and 

sampled every three generations, with the first 10% discarded as burn-in.  We adjusted 

the step proposals of the fine-tune parameters and allowed the program to automatically 

adjust these during burn-in, and these were satisfactory for all analyses, remaining in the 

interval (0.2, 0.6).  Each analysis was run twice with different starting seeds to confirm 
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consistency among runs, and the effective sample size (ESS) values of all parameters in 

all runs were ≥ 200.  We considered lineages to be independently evolving when the 

posterior probabilities were ≥ 95% in all nine parameterizations (three values of ε under 

three prior combinations). 

Lineage Characterization – Diversity, Dating, and Demography 

We estimated several population genetics parameters of the BPP-identified 

lineages to assess whether these were consistent with our predictions from the parasite 

life cycle and transmission dynamics.  For each lineage separately and combined, we 

used DnaSP to measure the nucleotide diversity (π), haplotype diversity (Hd), and the 

number of haplotypes in each locus (NH).   

 We employed a species-tree approach in *BEAST to infer an ultrametric, dated 

phylogeny of the BPP-identified lineages in order to test the prediction that independently 

evolving lineages have recently diverged.  We incorporated a molecular clock rate for 

malaria parasites as estimated by Ricklefs & Outlaw (2010).  They compared a 

phylogeny of malaria parasites to a phylogeny of their avian hosts, and used the 

proportional differences between host sister taxa and parasite sister taxa, conditioned on 

the relative age of host-switching events and the molecular clock rate of birds, to estimate 

a mean parasite per-lineage cytb rate of 0.6% per million years.  This clock-rate estimate 

places the most recent common ancestor of the human parasite P. falciparum with its 

sister taxon P. reichenowi at 2.49 million years ago (Mya) [95% CI: 1.93-3.79 Mya] 

(Ricklefs & Outlaw 2010), which is roughly congruous with an estimate using host-fossil 

and biogeographic calibrations (2.96 Mya [95% CI: 1.75-4.71] or 3.42 Mya [95% CI: 

2.25-4.67], depending on methodology; Pacheco et al. 2011).  We used this cytb rate, but 
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otherwise this analysis employed the same parameterizations and priors as in the 

abovementioned guide-tree inference.  The ESS values for every parameter were ≥ 200.   

We compared the extent of divergence among the most recently diverged lineage 

pairs.  We used DnaSP to measure the number of polymorphic sites, the number of fixed 

sites, and the average number of nucleotide substitutions per site (Dxy).  We employed an 

analysis of molecular variance (AMOVA) to estimate Φst among these closely related 

lineage pairs in ARLEQUIN v.3.5.1.3 (Excoffier & Lischer 2010).  Φst is an Fst analog, 

and measures the extent of variation that is partitioned among versus within populations 

(Excoffier et al. 1992).  We utilized FaBox v.1.35 (Villesen 2007) to convert our files 

into the ARLEQUIN format.  

We estimated Ne of each lineage using the species tree inferred in *BEAST and 

the Python script “starbeast_demog_log” available in the package BIOPY v.0.1.7 (Heled 

2011) in Python v2.7 (http://www.python.org).  This extracts from the phylogeny both 

ancestral and descendant Ne estimates for each branch, allowing for a crude assessment of 

both current and historical demography while also incorporating uncertainty from the 

phylogeny.  Estimates are scaled to generation time, and we transformed these into Ne 

values (i.e., the number of “breeders”) by assuming generation times of each 3- and 12-

months, which we believe represent the lower and upper range, respectively, for 

generation times in P. floridense.  Thus, for each extant lineage we obtained two 

alternative estimates – each using two different generation times – for both current and 

ancestral Ne.  ESS values for Ne estimates of all extant lineages were ≥ 200. 
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Results 

Parasite Sampling, Identification, and Sequencing 

We initially identified 64 blood smears with parasite infections characterized by 

morphology consistent with P. floridense, P. hispaniolae, or other members of the 

Lacertamoeba subgenus. We used PCR to confirm that 62 of these were infected with a 

single parasite species.  Another seven of the Cuban samples that we screened using PCR 

had single-species infections, resulting in a total of 69.  We sequenced a 1189-bp 

fragment containing part of coxI and all of cytb for all of these. 

We inferred a phylogeny using these data and several GenBank sequences to 

identify the 69 samples (Figure 3.2; Supplementary Table S3.3).  All the samples are 

contained in one of three major clades.  Both P. floridense GenBank sequences are 

monophyletic with 59 samples, and we identified these as P. floridense.  Both P. 

hispaniolae GenBank sequences are monophyletic with nine samples.  These nine 

samples – all collected on the Puerto Rican Bank – also share two of the three fixed 

nucleotide characters in cytb reported in Falk et al. (2001) for Hispaniolan P. hispaniolae 

infections: “C” at positions 121 and 510, but contained a “G” instead of a “T” at position 

123, (where the position refers to the annotated cytb region of P. falciparum on GenBank 

[NC_022375]).  We identified these nine samples as P. hispaniolae.  The single sample 

from Mexico is monophyletic with P. fairchildi, and these belong to a larger clade that 

also contains P. azurophilum and P. leucocytica.  We identified this mainland sample as 

P. fairchildi.   

We successfully sequenced all eight genes for the 63 P. floridense samples – 

including the 59 newly sequenced samples and the four GenBank samples we previously 
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collected on Hispaniola – and one P. hispaniolae sample.  All combined, this resulted in 

4202-bp of data, and the alignments contained no missing data or gaps.  We could not 

reject neutral evolution for any locus using the McDonald-Kreitman test or Tajima’s D, 

and a molecular clock was not rejected for any locus except Adsl.  Sequence lengths and 

best-fit substitution models are shown in Table 3.1. 

Lineage Identification 

 We identified almost twice as many putative lineages using DAPC than cytb 

haplotypes.  We inferred a total of 17 genetic clusters using DAPC (Figure 3.3A), and 

recovered nine unique haplotypes of 459-bp cytb (Figure 3.3B).  In four instances the 

DAPC and cytb haplotype cluster inferences are congruent, and the remaining 13 DAPC 

clusters are contained within five cytb haplotypes.   

We inferred a guide tree of 15 putative lineages using the DAPC results and 

*BEAST (Figure 3.3C).  There were four DAPC-inferred lineages on the Puerto Rican 

Bank, and the relationships among three of these – corresponding to samples collected on 

Puerto Rico, St. Thomas / St. John, and Virgin Gorda – are unresolved.  We collapsed 

these nodes for the guide tree.  Except for two nodes near the base of the tree, all the 

remaining nodes are well supported with ≥ 95% posterior probability.  

Of the 15 putative lineages, 11 were recovered as being reproductively isolated in 

each of the nine BPP analysis run under three different prior combinations and three 

different values for fine-tune parameter ε (Figure 3.4).  In all analyses, “Hispaniola 2” 

and “Hispaniola 3” are collapsed into a single lineage, as are “Cuba/Florida 2” and 

“Florida 2.”  In six of the nine analyses, “Cuba 1” and “Cuba 2” are collapsed into a 

single lineage, as are “Jamaica 2” and “Jamaica 3.”  These results were consistent 
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between the two independent runs, and were unchanged in analyses using α = 10 instead 

of α = 2 for the Dirichlet prior on locus rate variation. 

Lineage Characterization – Diversity, Dating, and Demography 

 Genetic variation within the BPP-inferred lineages is low.  The number of 

haplotypes, haplotype diversity, and nucleotide diversity at each locus for each lineage 

are summarized in Table 3.2.  We observed just 30 unique 4202-bp sequences among the 

63 samples, and many lineages contained just one haplotype at each locus (e.g., all 

lineages except “Puerto Rican Bank 2” possess just one haplotype at clpC).  Likewise, 

where a lineage contains more than one haplotype per locus, nucleotide diversity is very 

low.  

Estimates of Ne are low for all lineages (Table 3.3).  These range ~13,000-47,000 

for extant populations (assuming a 1-year generation time; estimates that assume a 3-

month generation time are 4x larger).  For every lineage except “Jamaica 2,3” and 

“Saba,” estimates for the extant population are higher than ancestral populations, 

suggesting a general pattern of population growth, although in every case the mean 

estimates for the extant populations are contained in the 95% CI for the ancestral 

populations. 

  We observed recent divergence between lineages using the species tree approach 

and the molecular clock rate in *BEAST (Figure 3.5).  The crown age of our samples is 

estimated at 0.89 Mya [95% CI: 0.58-1.2 Mya].  Divergence dates and summary statistics 

of the four most recently diverged population pairs are shown in Table 3.4.  These pairs 

diverged ~0.11-0.27 Mya [95% CI: 0.038-0.41 Mya], and differ by just ~0.2-1%. But, the 

majority of polymorphic sites are fixed between populations, and the Φst estimates 
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indicate that most variation is between – rather within – lineages.  These are significant 

for all except those on the Puerto Rican Bank (P=0.0567), which may be because one of 

these lineages is comprised of a single sample. 

Discussion 

 We hypothesized that populations of malaria parasites are shaped by both 

transmission rates and their life cycle.  We predicted that lineages would be characterized 

by small Ne estimates, that most variation would be between lineages, and that lineages 

would achieve reproductive isolation over short timescales.  We tested these predictions 

in the lizard parasite P. floridense using a multi-locus dataset of samples collected from 

throughout the parasite’s range.  We identified 11 evolutionary independent lineages with 

characteristics that are consistent with our predictions. 

Understanding diversification in malaria parasites  

 The patterns of diversification among P. floridense lineages are remarkably 

similar to those observed in the human parasites: low Ne, minimal variation, and recent 

divergence.   We contend that these shared patterns are a result of a common life cycle, 

particularly since the parasites have little else in common, and that research on human 

and wildlife hosts may be reciprocally informative.  Information from human parasites 

can be used to guide studies of wildlife parasites, as we did here.  Likewise, and 

remarkably, information gleaned from studies of malaria parasites in wildlife may be 

transferrable to the human parasites, and these may serve as models for the study of 

human disease.  

 We assert that untangling the factors that contribute to differences in parasite 

prevalence is fundamental to understanding malaria parasite diversification, because 
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prevalence rates determine transmission rates, which in turn may determine the extent of 

inbreeding within populations.  Malaria parasite prevalence varies between species, and 

over time and space within species (Staats & Schall 1996b; Schall et al. 2000; Perkins et 

al. 2009).  Already, we have information on some of the factors that contributed to these 

differences.  For example, year-round transmission, as opposed to seasonal transmission, 

is associated with higher prevalence rates among avian parasites (Pérez-Tris & Bensch 

2005).  Similarly, generalist parasites reach higher prevalence rates in their avian hosts 

than parasites specializing on fewer species (Hellgren et al. 2009).  Also, transmission 

success may depend on differences in virulence among clones in multi-clonal infections 

(Mackinnon & Read 1999), and sex ratio dynamics in monoclonal versus multi-clonal 

infections (Schall 2000).  Still, many questions remain, including, for example, how 

differences between the vector’s feeding preferences and the parasite’s vertebrate host 

specificity affect prevalence. 

We did not directly measure transmission rates in P. floridense, but our data are 

consistent with low transmission among hosts.  None of our samples are mixed with more 

than one P. floridense lineage (although two samples were mixed with P. floridense and 

another species).  But, this pattern may be artifactual if the single-infection sequences we 

observed are the result of PCR bias (Valkiūnas et al. 2006).  We think this is unlikely, 

however, because: 1) each of the nine different PCRs was clean for every sample; and 2) 

most lineages share the same haplotype at each locus.  Thus, we believe the apparent 

absence of multi-clonal infections to be real, and that there is limited opportunity for 

outcrossing between lineages. 
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Spatial and temporal diversification in Plasmodium floridense 

 Generally speaking, the distribution of lineages makes geographic sense, and 

suggests that allopatry is important in diversification of P. floridense.  With two 

exceptions, all lineages contain samples collected from the same island or area.  

Additionally, the samples in “Puerto Rican Bank 2” form a polytomy of three clusters 

that were identified in DAPC, and correspond to three distinct haplotypes contained in 

the lineage.  Each of these haplotypes is geographically associated with Puerto Rico, St. 

Thomas / St. John, or Virgin Gorda.  These islands formed one continuous landmass 

during the glacial maxima of the Pleistocene, and rising sea levels contributed to the 

separation of the Virgin Islands from each other and from Puerto Rico most recently 

~7000 years ago (Pregill & Olson 1991).  Thus, the P. floridense populations on these 

islands may be at an early stage of speciation in response to recent allopatry.  Another 

interesting pattern emerged on Jamaica.  The lineage “Jamaica 1” is distributed in the 

extreme eastern end of Jamaica, and is non-overlapping with “Jamaica 2,3”, which is 

distributed throughout the remainder of the island.  This biogeographic boundary 

coincides with a pattern observed in birds (e.g., Trochilis polytmus and Trochilis scitulus) 

and reptiles (e.g., Anolis grahami aquarum and Anolis grahami grahami), and is 

hypothesized to be the effect of the northern Rio Grande Valley and the southern Morant 

River Valley acting in concert as a barrier to gene dispersal (Gill et al. 1973; Schwartz & 

Henderson 1991; McCormack et al. 2012).  Barriers to dispersal for some lineages are 

less clear, for example those on Hispaniola.  Many Hispaniolan taxa are distributed on 

either side of Mertens’ Line (Schwartz & Henderson 1991; Glor & Warren 2010), but we 
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did not find evidence for this – or any other pattern – in the Hispaniolan P. floridense 

lineages.  Incidentally, the divergence dates between these lineages are among the oldest 

of the within-island pairs (Table 3.4), making it possible that any causal evidence has 

been obscured by time.  Biogeographic patterns at a larger scale (e.g., colonization 

to/from the mainland) remain unclear until more data are available. 

 We inferred very recent divergence dates among lineages, with those on Jamaica 

and Cuba having diverged ~0.11 Mya.  These estimates are much more recent than the 

most recent divergence dates reported for the Anolis host spp. (e.g., Anolis desechensis 

~1.3 Mya, Brandley & de Queiroz 2004; Anolis fuscoauratus ~3 Mya, Glor et al. 2002), 

and are more similar to the rapid divergence times observed in selfing organisms (e.g., 

0.010-0.065 Mya in the plant Clarkia xantiana; Pettengill & Moeller 2012).  While there 

are numerous assumptions in the clock rate and unincorporated uncertainty in our 

estimates (Pulquerio et al. 2007), we contend that diversification events in P. floridense 

were almost certainly “recent” for two reasons.   First, the 0.6% per-lineage-per-million-

years rate is less than the ~1.0% cytb rate commonly employed for vertebrates (Bromham 

2002; Weir & Schluter 2008) and the 1.0-1.2% rate employed for invertebrates (Bower 

1994).  And, it is less than or similar to the 0.5-1.0% rate previously used for the 

parasite’s Anolis lizard hosts (Glor et al. 2002; Thorpe et al. 2005).  This is contrary to 

the assertion that parasites evolve faster than their hosts, owing to the parasites’ faster 

generation times (Hafner et al. 1994).  Rates that are more similar to or faster than these 

other rates would make the diversification date estimates in P. floridense more recent.  

Second, observed substitution rates often increase among closely related species because 
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of the coalescent process (Hickerson et al. 2003), providing further evidence that our 

estimates may be biased to be older than they actually are.   

There are two possible biogeographic calibrations that we could have used to 

calibrate our phylogeny, but these were not useful.  First, Jamaica may have completely 

submerged in the Eocene and re-emerged in the late Miocene (Graham 2003), providing a 

maximum calibration of 10 million years for Jamaican endemics (Burbrink et al. 2012).  

Alternatively, the Blue Mountain region of Jamaica may have been continuously 

emergent for the last 33-35 million years (Iturralde-Vinent & MacPhee 1999; Iturralde-

Vinent 2006).  Even if we ignore the Blue Mountain possibility, placing a 10 million-year 

maximum calibration on our Jamaican lineages provides a lower bound on the per-

lineage cytb rate of ~ 0.0066%, which is too low to be informative.  A second possible 

calibration is for the Lesser Antillean island of Saba.  The age of oldest rocks on Saba are 

estimated to be ~ 0.4 million years old (Defant et al. 2001), suggesting that all extant 

fauna arrived after a volcanic eruption at that time.  Unfortunately, we cannot confidently 

place this calibration anywhere in our phylogeny.  All five Saba samples are genetically 

identical, and parent node is the hypothetical ancestor of every sample in our study 

except those from Hispaniola.  It is a very strong assumption that this hypothetical 

ancestor existed on Saba, so we do not place our calibration on that node.  Generally 

speaking, biogeographic calibrations such as these on Saba and Jamaica are problematic 

because both the timing and comprehensiveness of geologic events are largely equivocal, 

and they assume that the taxon did not survive on a nearby island and subsequently go 

extinct (Heads 2011). Again, since we are only interested in inferring whether divergence 
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events in P. floridense are recent, and not associating them with any particular causal 

event, we believe the clock rate to be sufficient. 

Independently evolving lineages  

We inferred 11 independently evolving lineages (i.e., species) contained within P. 

floridense.  We are not able to formally revise P. floridense at this time, however, 

because we do not have morphological specimens for the samples collected on Cuba, and 

do not expect the availability of such material in the near future.  The International Code 

of Zoological Nomenclature requires a designated type for each nominal taxon (Article 

16.4; ICZN 1999), making invalid any descriptions of the two Cuban species without 

types.  An alternative is to leave the Cuban samples in P. floridense, along with the 

Florida samples to which the name belongs, while also naming the remaining lineages as 

species.  This would render P. floridense polyphyletic, however.  For now, P. floridense 

remains a complex of several species. 

 The only Middle American sample in our study was one that we collected from a 

population where P. floridense was previously reported as the only malaria parasite 

species (21-41% prevalence in Anolis sp.; Lowichik et al. 1988).  We identified the 

parasite as P. fairchildi, however.  Plasmodium hispaniolae was originally described as a 

subspecies of P. fairchildi, and all of these species – P. fairchildi, P. floridense, and P. 

hispaniolae – belong to the subgenus Lacertamoeba.  Members of this group are 

characterized as being average in size and average in shape (Telford 1988), making 

species delimitation and identification using morphological criteria particularly difficult 

(Rand et al. 1983).  The systematics of the Middle American lizard malaria parasites will 

remain equivocal until assessed with molecular data. 
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We were moderately successful inferring lineages using DAPC, although we were 

forced to use an interactive, and potentially subjective, approach to determine the optimal 

cluster number.  But, in concert with *BEAST and BPP, we were able to test these 

lineage hypotheses.  Some previous studies of primate malaria parasites have used 

methods that optimize Hardy-Weinberg Equilibrium (HWE) to infer genetic clusters from 

samples collected from vertebrate hosts [e.g., STRUCTURE (Pritchard et al. 2000); Mu 

et al. 2005; Neafsey et al. 2008; Gupta et al. 2012].  Nonetheless, HWE is an 

inappropriate criterion for samples of malaria parasites from their vertebrate hosts.  These 

parasite stages are always haploid at all loci, and any heterozygous samples must be the 

result of multiple sporozoite inoculations (i.e., a sample from a single host that contains 

multi-allelic loci is a population that may be of mixed ancestry).  DAPC – or other 

methods that can handle haploid data and do not optimize HWE – are better suited for 

inferring clusters among samples of malaria parasites collected from their vertebrate 

hosts.   

Bensch et al. (2004) showed that samples with unique cytb haplotypes are 

potentially cryptic species, suggesting that current numbers of malaria parasite diversity 

are gross underestimates.  We inferred 11 evolutionarily independent lineages from 

samples that share nine cytb haplotypes in P. floridense.  (Note that this relationship is 

not perfectly nested - the samples collected on Cuba belong to lineages that are 

incongruous with their cytb haplotypes.) This suggests that there may be more 

Plasmodium spp. than Plasmodium cytb haplotypes, and that the latter approach is a 

conservative one that may slightly underestimate species diversity.  MalAvi is a database 

of avian malaria parasite cytb sequences (Bensch et al. 2009), and it currently contains 
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over 330 Plasmodium sequences (http://mbio-serv4.mbioekol.lu.se/avianmalaria/, 

accessed 11/2/12).  Given that the avian parasites are perhaps the best studied malaria 

parasites in wildlife, and that at present, only about 40 Plasmodium species have been 

described from birds (Valkiūnas 2005), we can surmise that malaria parasite systematists 

have plenty of work ahead.   

We believe that the methods employed here will be useful in malaria parasite 

systematics.  Species delimitation in malaria parasites traditionally employs a three-

pronged approach that makes use of differences in morphology, host preference, and 

geographic range to infer species limits (Garnham 1966).  If we consider a species to be 

an independently evolving, metapopulation lineage (i.e., the GLC), then the traditional 

criteria may grossly underestimate species diversity. We show that reproductive isolation 

can evolve in just a short period of time, potentially outpacing morphological change.  

Moreover, neither host nor geographic information is consistently useful to identify 

lineages in our study.  Approaches that combine molecular and traditional techniques in 

species delimitation are becoming more common (Perkins et al. 2009; Valkiūnas et al. 

2010; Falk et al. 2011).  But, notably, molecular characters alone are sufficient to satisfy 

The Code’s requirements of a character-based description (Article 13.1.1), allowing for 

the description of truly cryptic species.  While we advocate the continued use of the 

traditional criteria, we contend that molecular diagnostics are necessary to effectively 

describe any new malaria parasite species.   
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Table 3.1.  Summary information for each locus.  The best-fit substitution models 
were selected using BIC scores, both with and without P. hispaniolae as an outgroup 
taxon. 
 

Locus Length (bp) Polymorphic sites 
Substitution model 
(with outgroup) 

Substitution model 
(no outgroup) 

Adsl 580 47 GTR + Γ GTR + Γ 
Atub 541 25 HKY + I HKY 
clpC 419 14 HKY + I HKY + I 
coxI 553 19 TrN + I TrN + I 
cytb 1187 32 HKY HKY 
EF2 351 8 F81 HKY 
HisH3 304 5 TrN + I HKY + I 
HSP70 267 5 HKY + I HKY 
All 4202 155 n/a n/a 
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Table 3.2.  Locus-by-locus summary statistics for each lineage.  Haplotype and 
nucleotide diversity is generally low for all lineages, with many sharing just one 
haplotype per locus.  All 63 samples share 30 unique haplotypes, and these contain low 
nucleotide diversity. 
 
Locus Lineage N Nh Hd π Locus Lineage N Nh Hd π 
Adsl All 63 18 0.901 0.02393 EF2 All 63 10 0.856 0.00646 
 Cuba 1, 2 4 1 0 0  Cuba 1, 2 4 3 0.833 0.00285 
 Cuba/Florida 1 3 1 0 0  Cuba/Florida 1 3 1 0 0 
 Cuba/Florida 2, Florida 2 6 4 0.867 0.00218  Cuba/Florida 2, Florida 2 6 1 0 0 
 Florida 1 1 1 0 0  Florida 1 1 1 0 0 
 Hispaniola 1 5 3 0.700 0.00138  Hispaniola 1 5 1 0 0 
 Hispaniola 2, 3 8 2 0.250 0.00043  Hispaniola 2, 3 8 2 0.536 0.00153 
 Jamaica 1 3 1 0 0  Jamaica 1 3 1 0 0 
 Jamaica 2, 3 12 1 0 0  Jamaica 2, 3 12 1 0 0 
 Puerto Rican Bank 1 1 1 0 0  Puerto Rican Bank 1 1 1 0 0 
 Puerto Rican Bank 2 15 2 0.248 0.00043  Puerto Rican Bank 2 15 1 0 0 
 Saba 5 1 0 0  Saba 5 1 0 0 
Atub All 63 13 0.855 0.01165 HisH3 All 63 6 0.640 0.00410 
 Cuba 1, 2 4 2 0.500 0.00092  Cuba 1, 2 4 2 0.500 0.07031 
 Cuba/Florida 1 3 2 0.667 0.00016  Cuba/Florida 1 3 1 0 0 
 Cuba/Florida 2, Florida 2 6 3 0.600 0.00123  Cuba/Florida 2, Florida 2 6 2 0.333 0.00219 
 Florida 1 1 1 0 0  Florida 1 1 1 0 0 
 Hispaniola 1 5 2 0.400 0.00074  Hispaniola 1 5 1 0 0 
 Hispaniola 2, 3 8 2 0.250 0.00046  Hispaniola 2, 3 8 1 0 0 
 Jamaica 1 3 1 0 0  Jamaica 1 3 1 0 0 
 Jamaica 2, 3 12 1 0 0  Jamaica 2, 3 12 1 0 0 
 Puerto Rican Bank 1 1 1 0 0  Puerto Rican Bank 1 1 1 0 0 
 Puerto Rican Bank 2 15 1 0 0  Puerto Rican Bank 2 15 1 0 0 
 Saba 5 1 0 0  Saba 5 1 0 0 
clpC All 63 10 0.874 0.00703 HSP70 All 63 8 0.796 0.00089 
 Cuba 1, 2 4 1 0 0  Cuba 1, 2 4 2 0.500 0.07031 
 Cuba/Florida 1 3 1 0 0  Cuba/Florida 1 3 1 0 0 
 Cuba/Florida 2, Florida 2 6 1 0 0  Cuba/Florida 2, Florida 2 6 1 0 0 
 Florida 1 1 1 0 0  Florida 1 1 1 0 0 
 Hispaniola 1 5 1 0 0  Hispaniola 1 5 1 0 0 
 Hispaniola 2, 3 8 1 0 0  Hispaniola 2, 3 8 2 0.250 0.00094 
 Jamaica 1 3 1 0 0  Jamaica 1 3 1 0 0 
 Jamaica 2, 3 12 1 0 0  Jamaica 2, 3 12 1 0 0 
 Puerto Rican Bank 1 1 1 0 0  Puerto Rican Bank 1 1 1 0 0 
 Puerto Rican Bank 2 15 2 0.514 0.00245  Puerto Rican Bank 2 15 1 0 0 
 Saba 5 1 0 0  Saba 5 1 0 0 
mtDNA All 63 16 0.901 0.00813 Complete  All 63 30 0.958 0.01005 
(coxI  &  Cuba 1, 2 4 1 0 0 dataset Cuba 1, 2 4 4 1.0 0.00071 

cytb) Cuba/Florida 1 3 2 0.667 0.0038  Cuba/Florida 1 3 2 0.667 0.00016 
 Cuba/Florida 2, Florida 2 6 3 0.600 0.00057  Cuba/Florida 2, Florida 2 6 6 1.0 0.00086 
 Florida 1 1 1 0 0  Florida 1 1 1 0 0 
 Hispaniola 1 5 1 0 0  Hispaniola 1 5 4 0.900 0.00029 
 Hispaniola 2, 3 8 1 0 0  Hispaniola 2, 3 8 4 0.786 0.00031 
 Jamaica 1 3 1 0 0  Jamaica 1 3 1 0 0 
 Jamaica 2, 3 12 3 0.621 0.00040  Jamaica 2, 3 12 3 0.621 0.00017 
 Puerto Rican Bank 1 1 1 0 0  Puerto Rican Bank 1 1 1 0 0 
 Puerto Rican Bank 2 15 1 0 0  Puerto Rican Bank 2 15 3 0.648 0.00030 
 Saba 5 1 0 0  Saba 5 1 0 0 
N = number of samples 
Nh = number of haplotypes 
Hd = haplotype diversity 
π = nucleotide diversity, or average number of differences per site 
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Table 3.3.  Estimates of per-lineage Ne in P. floridense inferred using the *BEAST 
species tree and BIOPY.  We transformed these estimates using two different generation 
times, 1 year and 3 months, which we believe are on the opposite ends of the range of 
possible generation times in P. floridense.  Both mean estimates and 95% confidence 
intervals are provided. 
 

Lineage 
Population size (generation = 1 year) Population size (generation = 3 months) 

Extant Ancestral Extant Ancestral 

Cuba 1, 2 40,264  
[10,809 – 76885] 

23,130 
[692 – 51,265] 

161,056 
[43,236 – 307,540] 

92,520  
[2528 – 205,060] 

Cuba/Florida 1 24,951 
[3298 – 51,111] 

14,266 
[571 – 35,473] 

99,804 
[13,190 – 204,444] 

57,064 
[2286 – 141,892] 

Cuba/Florida 2, Florida 2 47,435 
[17,195 – 84,060] 

17,524 
[571 – 41,141] 

189,740 
[68,780 – 336,240] 

70,096 
[2284 –164,564] 

Florida 1 32,923 
[3414 –70,483] 

24,917 
[716 –56,370] 

131,692 
[13,356 – 251,932] 

99,668 
[2863 – 225,480] 

Hispaniola 1 25,145 
[6870 – 47,171] 

16,301 
[199 – 38,395] 

100,580 
[27,480 – 188,684] 

65,204 
[797 – 153,580] 

Hispaniola 2, 3 29,088 
[7384 – 58,577] 

15,161 
[772 – 36,395] 

116,352 
[29,536 – 234,308] 

60,644 
[3091 – 145,580] 

Jamaica 1 22,050 
[2343 – 48,756] 

15,784 
[263 – 38,117] 

88,200 
[9374 – 195,024] 

63,136 
[1050 – 152,468] 

Jamaica 2, 3 12,974 
[118 – 30,744] 

18,975 
[4029 – 37,767] 

51,896 
[471 – 122,976] 

75,900 
[16,117 – 151,068] 

Puerto Rican Bank 1 33,280 
[4371 – 73,604] 

17,650 
[311 – 42,456] 

133,120 
[17,483 – 294,416] 

70,600 
[1244 – 169,824] 

Puerto Rican Bank 2 21,770 
[5162 – 42,830] 

15,229 
[314 – 35,705] 

87,080 
[20,648 – 171,320] 

60,916 
[1255 – 142,820] 

Saba 15,640 
[2318 – 33,133] 

17,404 
[1635 – 39,468] 

62,560 
[9270 – 132,532] 

69,616 
[6540 – 157,872] 
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Table 3.4.  Differentiation among the four most closely related sister lineages.  
Lineages diverged in the last ~0.27 million years, exhibit low variation, and almost all 
variation is contained between lineages.  Likewise, most polymorphic sites are fixed 
between lineages. 
 
Lineage X Lineage Y Polymorphic  

sites 
Fixed  
differences dxy 

AMOVA tMRCA  ϕst significance 

Cuba 1, 2 Cuba/Florida 
2, Florida 2 53 42 0.01111 

(0.00365) 0.769 p = 0.0342 0.1101 
[0.0382-0.2009] 

Hispaniola 1 Hispaniola 2, 3 19 12 0.00357 
(0.00102) 0.916 p = 0.0000 0.2080 

[0.0951-0.3510] 

Jamaica 1 Jamaica 2, 3 10 8 0.00203 
(0.00087) 0.932 p = 0.0196 0.1117  

[00447-0.1931] 

Puerto Rico 1 Puerto Rico 2 18 15 0.00380 
(0.00230) 0.912 p = 0.0567 0.2695 

[0.1357-0.4055] 
dxy = pairwise nucleotide difference between lineages X and Y, reported as mean and standard deviation 
ϕst = proportion of variation portioned among (vs. within) populations, scaled 0-1. 
tMRCA = time to most recent common ancestor, reported as mean per million years [95% CI] 
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Figure 3.1.  Putative distribution for Plasmodium floridense.  Areas from where the 
parasite is previously reported are labeled, and the hypothesized distribution is shown in 
green. 
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Figure 3.2.  Phylogeny used for malaria parasite identification.  The tree was inferred 

in MrBayes from 69 unidentifiable samples and 16 GenBank samples, sequenced at 
1189-bp mtDNA (partial coxI and all of cytb).  Based on their monophyly with GenBank 
samples, we identified 59 of the unidentified samples as P. floridense, nine samples as P. 
hispaniolae, and one sample as P. fairchildi (black arrow).  Nodal support is shown for 
nodes with ≥ 0.90 posterior probability.  The scale bar represents the average number of 

substitutions per site.
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Figure 3.3.  Putative lineage identification and guide tree.  A) Results of DAPC 
showing the 17 identified clusters.  Each bar represents a single sample and color 
represents inferred cluster identity.  B) Nine shared haplotypes (459-bp cytb) among 
samples, as indicated by each continuous grey bar.  C) Guide tree of 15 putative lineages 
for BPP analyses, inferred using a species tree approach in *BEAST.  Each of the 17 
DAPC clusters was initially included as a species, and any unsupported terminal nodes 
were collapsed until posterior probabilities reached 95%. 



 103 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

0.50 0.03 0.13
0.18 0.08 0.19
0.49 0.06 0.15 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

“Hispaniola 1” [n=5]

“Hispaniola 2” [n=4]

“Hispaniola 3” [n=4]

“Saba”  [n=5]

“Puerto Rican Bank 1”
  [n=1] 

“Puerto Rican Bank 2” 
  [n=15] 

“Cuba/Florida 1” [n=3]

“Cuba 2” [n=1]

“Florida 1” [n=1]

“Jamaica 1” [n=3]

“Jamaica 2” [n=5]

“Cuba/Florida 2” [n=4]

“Cuba 1” [n=3]

“Florida 2” [n=2]

“Jamaica 3” [n=8]

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

0.60 0.32 1.00
1.00 0.93 0.70
1.00 0.71 0.28 

0.65 0.20 0.38 
0.45 0.29 0.50
0.67 0.37 0.20 

0.96 0.66 0.92
0.95 0.62 0.94
0.96 0.60 0.88 

1.00 1.00 1.00
1.00 1.00 1.00
1.00 1.00 1.00 

ε
5    10    20

    -       -       -
    -       -       -
    -       -       -

Prior 
Combination

1
2
3

 
 
Figure 3.4.  Posterior probabilities of reproductive isolation between lineages, as 
inferred from nine BPP analyses.   Node labels represent the probability that 
descendent lineages are reproductively isolated, given the model parameters and priors.  
Of the 15 putative lineages, 11 are inferred to be reproductively isolated in every 
analysis. 
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Figure 3.5.  Chronogram of P. floridense lineages inferred using a species-tree 
approach in *BEAST and a molecular clock rate for malaria parasites.  Nodes are 
labeled with posterior probability / mean divergence time, and node bars indicate the 95% 
CI for the age of that node. 
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CHAPTER IV 

HOST SPECIFICITY SHAPES POPULATION STRUCTURE OF PINWORM 
PARASITES IN CARIBBEAN REPTILES  

 
 

Abstract 
 
 Among the potential factors affecting parasite diversification is variation in host 

specificity, because gene flow may be facilitated or constrained by the number of host 

species that a parasite can exploit. We test this hypothesis in two co-distributed pinworm 

parasites – Parapharyngodon cubensis and Spauligodon anolis – on the Puerto Rican 

Bank and St. Croix in the Caribbean.  Each of these parasites occurs in several host 

species and can be classified as a generalist, but each has a different host range.  

Spauligodon anolis specializes on Anolis lizards, whereas P. cubensis parasitizes Anolis 

lizards as well as many other species of lizards and snakes.  We sampled 651 lizards from 

across the Puerto Rican Bank and St. Croix.  We extracted DNA from 60 S. anolis and 

195 P. cubensis individuals, and sequenced them at the mitochondrial gene coxI and the 

nuclear ribosomal gene 18s.  We used the 18s dataset to detect any cryptic diversity, and 

show that P. cubensis is comprised of several operational taxonomic units (OTUs).  We 

used a phylogeographic approach and the coxI dataset to demonstrate that – consistent 

with our predictions – S. anolis exhibits greater variation among populations than the P. 

cubensis OTUs.  We also provide evidence that the distribution of P. cubensis OTUs is 

maintained by competitive exclusion, and, in contrast to previous theoretical work, these 

parasites with the greatest number of hosts reach the highest prevalence rates.  Overall, 
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our results confirm that host specificity shapes parasite diversification, and that 

differences in host specificity are important even among multi-host parasites. 

Introduction 

Parasitism is a predominant life mode among metazoans, and it is estimated that 

30-50% of all extant species are parasitic (Price 1977; de Meeûs & Renaud 2002).  Still, 

the factors contributing to parasite diversification remain unclear (Poulin & Morand 

2000).  Metazoan parasites are taxonomically disparate, belonging to several phyla, and 

are united by just one feature: each relies on a host for at least part of its life cycle.  

Accordingly, most research on parasite diversification has focused on correlating patterns 

of host and parasite differentiation in a search for evidence of cospeciation.  The notion 

that diversification in parasites should mirror that of their hosts is known as Fahrenholz’s 

Rule (Eichler 1948), and for decades this was a dominant hypothesis of how parasites 

diversify (Brooks 1979; Hafner & Nadler 1988; Page & Charleston 1998).  We now 

know that strict cospeciation of hosts and their parasites occurs in only some cases (see 

Huyse et al. 2005).  A major exception is when host specificity extends beyond one host 

species (i.e. when the parasite is a generalist), and many parasites fall into this category 

(Woolhouse et al. 2001). 

Nadler (1995) generated several hypotheses about which factors may influence 

parasite diversification, and among these is host specificity.  He predicted that multi-host 

parasites would exhibit reduced population structure, because additional hosts allow for 

additional opportunities for parasite dispersal.  While Nadler’s hypothesis has been 

restated in the literature (Huyse et al. 2005; Barrett et al. 2008), and has been used to 

explain the minimal population structure in multi-host parasites (Hillburn & Sattler 1986; 
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Archie & Ezenwa 2011), empirical tests are few.  Most support comes from studies 

showing that parasite dispersal depends on host dispersal (Blouin et al. 1995; McCoy et 

al. 2003; Criscione & Blouin 2006).  Ideally, tests of the effects of host specificity on 

parasite diversification would compare diversification among co-distributed parasites that 

vary only in their host range. 

Such an approach was used to evaluate the relationship between population 

structure and host specificity in the ectoparasites of birds.  Johnson et al. (2002) used 

379-bp of mitochondrial DNA and nested-clade analysis to compare the population 

genetics of two feather lice taxa – Physconelloides spp. and Columbicola spp. – that 

differ in host specificity.  They showed that Physconelloides spp. are very host specific, 

exhibiting genetic differences among host species, and that these parasites also exhibit 

greater genetic differentiation among localities than the Columbicola spp., which exhibit 

little host specificity.  These differences were extended to higher taxonomic levels; the 

host-specific Physconelloides spp. have more tightly coevolved with their hosts, 

consistent with Fahrenholz’s Rule, than the generalist Columbicola spp. (Clayton & 

Johnson 2003).  But, because these studies made comparisons between parasites that 

exhibit extreme differences in host specificity (i.e. those with a one-to-one host/parasite 

relationship vs. those parasitizing many hosts), it is unknown whether the same 

population differences may be observed among parasites with moderate differences in 

host specificity.  Indeed, differences in host range among generalist parasites may be so 

minor that their population structure remains unaffected.   

We compared the population structure of two generalist parasite species that 

differ in host range, in order to infer the effect of differences in host specificity on 
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diversification of multi-host parasites.  These two parasites - Parapharyngodon cubensis 

and Spauligodon anolis – both belong to the family Pharyngodonidae, and their host 

ranges are well characterized (Table 4.1; Bursey et al. 2012).  Both of these parasites live 

in the large intestine of their hosts.  Both are assumed to share the common oxyurid 

patterns of direct transmission between hosts (via fecal-oral contact) and haplo-diploidy 

(Anderson 2000).  Both are distributed throughout the Caribbean and in parts of Central 

America.  Their differences lie primarily in their host specificity.  Spauligodon anolis 

infects Anolis lizards, a group that is among the most abundant and conspicuous of the 

Caribbean vertebrate fauna (Losos 2009).  Parapharyngodon cubensis infects Anolis 

lizards as well as other many species of non-herbivorous lizards and snakes.   

We focused our study in Puerto Rico and the surrounding islands because these 

islands have a unique geography and host composition that makes them well suited for 

testing hypotheses about parasite dispersal.  The Puerto Rican Bank (hereafter “PRB”) 

islands – including those belonging to Puerto Rico, the U.S. Virgin Islands, and the 

British Virgin Islands  – comprise what was once a continuously emergent landmass 

during the lowered sea levels of the Pleistocene glacial maxima (Pregill & Olson 1991; 

Siddall et al. 2003).  The islands were separated by rising sea levels into their current 

physiography approximately 7,000 years ago (Pregill & Olson 1991).  St. Croix is the 

exception.  It is near these other islands, and politically part of the U.S. Virgin Islands, 

but has not been connected to another landmass since at least the early Oligocene (33–35 

MYA), if ever (Iturralde-Vinent & MacPhee 1999).  The pattern of reptile diversity in 

these areas reflects the islands’ history.  The PRB islands share many of the same reptile 

species (e.g. Anolis cristatellus, Anolis pulchellus, and Anolis stratulus), but the species 
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found on St. Croix are typically endemics with sister taxa on the PRB (e.g. Anolis 

acutus).  Both P. cubensis and S. anolis are reported from the PRB and St. Croix, and if 

we assume that they can infect any extant species belonging to the same family as a 

previously reported host species, then S. anolis has 11 available hosts and P. cubensis has 

41 available hosts on the PRB and St. Croix (Table 4.2). 

We tested the hypothesis that higher host specificity would be associated with 

greater population structure in S. anolis, relative to P. cubensis.  We collected lizards 

from throughout the PRB and St. Croix, and dissected them for pinworm parasites.  We 

extracted DNA from specimens of S. anolis and P. cubensis, and sequenced from them 

both nuclear and mitochondrial loci.  We tested our predictions using summary statistics, 

AMOVA, Mantel tests for isolation-by-distance, and topology-based tests. 

Methods 

Sampling, DNA sequencing, and identification of OTUs 

 We captured 641 Anolis lizards, comprising six of 11 species on the PRB and St. 

Croix, by noose or hand from 30 sites on Puerto Rico and Vieques (October 2011), from 

seven sites on St. John and St. Thomas in the U.S. Virgin Islands (August 2011), from six 

sites on Anegada, Jost van Dyke, Tortola, and Virgin Gorda in the British Virgin Islands 

(August 2011), and from three sites on St. Croix in the U.S. Virgin Islands (August 2011; 

Figure 4.1 and Table 4.3).  We focused our sampling on Anolis lizards because these are 

among the most abundant host species on the islands, and are possible to collect in 

sufficient numbers.  For example, populations of several potential hosts for P. cubensis 

(e.g. Ameiva exsuul and Borikenophis portoricensis) are nearly extinct on many islands 

due to predation from the introduced mongoose (Pimentel 1955; MacLean 1982).  We 
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also collected three Hemidactylus mabouia individuals (Squamata; Gekkonidae) and 

seven Sphaerodactylus macrolepis individuals (Squamata; Sphaerodactylidae) to look for 

evidence of cryptic host specificity, because it is possible that the P. cubensis specimens 

reported from non-Anolis host taxa are morphologically cryptic species (i.e. that host 

specificity in P. cubensis and S. anolis is the same; Poulin & Keeney 2008).  We 

humanely euthanized each lizard using tricaine methanesulfonate (i.e. MS-222; Conroy et 

al. 2009), and preserved the entire gastrointestinal (GI) tract, the heart, the lungs, the 

liver, and the gall bladder in a vial containing absolute ethanol.  We later separated each 

of these tissues and sections of the GI tract (i.e. stomach, small intestine, large intestine), 

and dissected them under a Nikon SMZ800 stereomicroscope (Nikon Inc., Mellville, NY, 

USA).  We preserved parasite specimens in absolute ethanol at -20°C, and set aside a 

subset of P. cubensis and S. anolis specimens in DNA buffer for immediate DNA 

extraction.   

 We extracted DNA from whole, individual nematodes using QIAGEN DNeasy 

Animal Tissue Extraction kits (Valencia, CA, USA), following the manufacture’s 

instructions except using two final DNA elutions of just 50 µl AE buffer each (as 

opposed to 200 µl each) so that the DNA would not be too diluted.  We used Illustra 

PuReTaq Ready-To-Go™ PCR Beads (GE Healthcare, Pittsburg, PA, USA) to amplify 

the small subunit ribosomal gene 18s using the primers MN18F (5’-CGC GAA TRG 

CTC ATT ACA AC AGC-3’) and Nem_18sR (5’-GGG CGG TAT CTG ATC GCC-3’; 

Bhadury et al. 2006) and the mitochondrial gene cytochrome oxidase I (coxI) using the 

primers Ent_coxIF (5’-AGA GAA CAA GAC ATA AAG ATA TTG G-3’) and 

Ent_coxIR (5’-TAA ACC TCA GGA TGA CCA AAA AAT CA-3’; this study).  We re-
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attempted any amplification failures for each sample for each locus at least twice.  We 

cleaned PCR products with AMPure (Agencourt, Beverly, MA, USA), sequenced them in 

both directions using BigDye v.3.0 (Applied Biosystems, Foster City, CA, USA), and 

edited them in GENEIOUS v.5.4.6 (Biomatters, Auckland, New Zealand).  Multiple 

sequence alignments were generated using the MUSCLE plugin (Edgar 2004) in 

GENEIOUS using default parameters.  Gaps were treated as missing data in all analyses. 

We used the 18s sequences to detect any cryptic diversity.   We chose this locus 

because of the availability of primers that amplify universally across nematodes, and also 

because it is commonly used in nematodes to identify molecular operational taxonomic 

units, or (M)OTUs (Floyd et al. 2002; Blaxter 2004; Blaxter et al. 2005). We visualized 

the relationships among groups of 18s sequences, along with a GenBank sequence for the 

human pinworm Enterobius vermicularis (JF934731), using a haplotype network inferred 

via the Neighbor-Net algorithm (Bryant & Moulton 2004) in SplitsTree v.4.12.6 (Huson 

& Bryant 2005).  We regarded each group of samples that share a single 18s sequence to 

be an OTU.  

Population structure 

We characterized the structure of variation among populations using the coxI 

datasets of each OTU separately.  We considered each sampling locality on Puerto Rico 

to be a population, but, owing to their close geographic proximity, we grouped together 

localities 9 and 12 as well as localities 10 and 11 (Figure 4.1; Table 4.3).  We also 

grouped together all samples from each of the smaller Virgin Islands, for a total of 26 

“populations.”  We acknowledge that these may or may not represent true populations 

(i.e. panmictic groups).  Instead, we use this population assignment scheme to compare 



 112 

the relative extent of geographic variation in each P. cubensis and S. anolis over the same 

landscape.  When applicable and for OTUs that occur on both the PRB and St. Croix, we 

conducted analyses using all samples and also restricting the dataset to PRB samples 

only. 

We characterized the genetic diversity of each OTU via several summary 

statistics inferred in DnaSP v.5 (Librado & Rozas 2009): the number of haplotypes, 

haplotype diversity, the average number of nucleotide differences per site (π), and the 

population mutation rate (θ) inferred using the number of segregating sites (i.e. θS; 

Watterson 1975).  We also estimated Tajima’s D, which uses differences between θ 

estimates that are derived using segregating sites (θS) and from those using the average 

number of nucleotide differences (θN) to infer selection or demographic changes (Tajima 

1989).   

We tested the null hypothesis that the coxI sequences of each OTU are panmictic 

using an exact test of sample differentiation (Raymond & Rousset 1995) in ARLEQUIN 

v.3.5.1.3 (Excoffier & Lischer 2010).  This test uses a Markov chain method to explore 

contingency tables of haplotype frequencies among populations, and estimates the 

probability that haplotypes are not randomly distributed among populations (i.e. that 

populations are not panmictic).  Following that, we employed an analysis of molecular 

variance (AMOVA) of the coxI datasets in ARLEQUIN to estimate the extent of 

variation that is partitioned within versus among populations (i.e. Φst, Excoffier et al. 

1992).  We converted our files into the ARLEQUIN format using FaBox v.1.35 (Villesen 

2007). 
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In order to compare range-wide dispersal patterns among the parasites, we tested 

for isolation-by-distance (IBD) among populations using Mantel tests via ADEGENET 

(Jombart 2008) in R (R Development Core Team 2012).  A Mantel test – in the context of 

IBD in ADEGENET – measures the correlation between a genetic and a geographic 

distance matrix, and significance is estimated using the proportion of 999 random 

permutations that infer a positive correlation coefficient (Mantel 1967; Jombart 2008).  

We used ARLEQUIN-derived pairwise Fst estimates for our distance estimates.  We 

predicted that P. cubensis would exhibit less IBD due to greater number of hosts 

available to facilitate its dispersal across the landscape.   

We visualized the relationship between the genetic and geographic distances 

using scatterplots generated in R.  Significant IBD inferences can be made from a single 

population exhibiting clinal variation (i.e. classic IBD) or several discrete populations 

that differ along a gradient (i.e. an island model of differentiation; Handley et al. 2007).  

We used the pattern of relative densities in these plots to visually assess which of these 

patterns better explains our data (Jombart 2012), paying particular attention to the 

differences between datasets including the PRB and St. Croix and those including the 

PRB only.  For example, plots showing a single high-density nucleus suggest clinal 

variation, whereas multiple high-density nuclei suggest the population is evolving under 

an island model of differentiation.   

We visualized the relationships among haplotypes using both a phylogenetic and 

haplotype network approach.  We inferred a phylogeny using maximum-likelihood in 

RAxML (Stamatakis et al. 2005; Stamatakis 2006) via the raxmlGUI v.0.9 (Silvestro & 

Michalak 2010).  We employed a GTR + Γ substitution model and estimated nodal 



 114 

support with 1000 bootstrap replicates (Felsenstein 1985).  We inferred a median-joining 

haplotype network in SPLITSTREE.  We initially attempted to use the Neighbor-Net 

algorithm because these better represent the different possible connections in each 

network, but these networks contained so many potential paths that visualization was not 

possible. 

We wanted to know whether samples from the same population are similar 

because they share the same common ancestor, and so we applied an approximately 

unbiased (AU) test (Shimodaira 2002), a topology-based test, to infer whether sequences 

from samples collected from each island are monophyletic.  The AU test employs a 

multiscale bootstrap (Zharkikh & Li 1995) of likelihood values from a set of trees to 

create a set of expected log-likelihood values for a given dataset (i.e. a null distribution).  

For each tree it tests whether the likelihood is larger or equal to these expected values 

(i.e. it tests whether some or all trees are not equally good explanations of the data).  We 

tested whether a geographically constrained topology is not an equally good explanation 

of the data.  We first inferred a ML phylogeny of each OTU in RAxML, and resampled 

using 1000 bootstrap replicates.  We rooted each phylogeny using one sample from a 

different OTU.  Next, we inferred a ML tree from the same dataset while imposing a 

somewhat liberal constraint so that samples from each of the small island populations are 

monophyletic.  More specifically, groups of samples collected from each of the eight 

Virgin Islands (e.g. St. Croix, Vieques, Virgin Gorda, etc.) were constrained to be 

monophyletic, while those from Puerto Rico were allowed to fall anywhere in the tree.  

We inferred the per-site log-likelihoods for each of these 1002 trees (1000 bootstrap 

trees, the constrained ML tree, and the unconstrained ML tree), and used these data to 
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conduct the AU tests in CONSEL v.0.1k (Shimodaira & Hasegawa 2001), using 10,000 

multiscale bootstrap replicates.  We interpreted any p-values ≤ 0.05 as a rejection of 

geographically associated population structure, and that samples from the same island do 

not share a single common ancestor. 

Results 

Sampling, DNA sequencing, and identification of OTUs 

 Of the 641 Anolis lizards we collected, 100 were infected with S. anolis and 221 

with P. cubensis (Table 4.4).  Of the seven Sphaerodactylus macrolepis individuals, one 

– collected on St. Croix – was infected with a single P. cubensis pinworm. None of the 

three Hemidactylus mabouia individuals were infected with any pinworm parasite.   

We extracted DNA from 65 S. anolis and 195 P. cubensis.  Of the 65 S. anolis, we 

successfully sequenced 817-bp of 18s from 61 individuals and 641-bp of coxI from 55 

individuals.  Of the 195 P. cubensis, we successfully sequenced 819-bp of 18s from 172 

individuals and 640-bp of coxI from 178 individuals.  The 18s alignment contained a 

single 2-bp indel separating S. anolis and P. cubensis, and, similarly, the coxI alignment 

contained a single 1-bp indel separating S. anolis and P. cubensis.   

The Neighbor-Net haplotype network inferred from the 18s data is shown in 

Figure 4.2.  All S. anolis individuals share a single 18s sequence.  All P. cubensis 

individuals contain one of three unique sequences, and we arbitrarily named them P. 

cubensis A, P. cubensis B, and P. cubensis C.  The P. cubensis sample collected from the 

gecko S. macrolepis contained a P. cubensis B haplotype, confirming that P. cubensis is a 

squamate generalist.  We considered each of the three P. cubensis groups, as well as the 

group of S. anolis individuals sharing the single 18s sequence, to be an OTU. Because P. 
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cubensis C was comprised of just two individuals collected on St. Croix, we removed it 

from all downstream analyses.   

Population structure 

Locality sampling for each S. anolis, P. cubensis A, and P. cubensis B is shown in 

Table 4.5.  We observed at least one parasite species at each locality, and each parasite at 

a total of 16, 18, and 13 localities, respectively, where localities are grouped into 26 

populations as described above.  Notably, P. cubensis A was collected only on the PRB, 

while P. cubensis B and S. anolis were collected both on the PRB and St. Croix.  

Summary statistics for each of these parasites are shown in Table 4.6.  The haplotype 

diversity for all OTUs is high, and is slightly higher for the P. cubensis OTUs.  

Nucleotide diversity (π) is highest in S. anolis, as are estimates of the population mutation 

rate θS.  Estimates of Tajima’s D are negative for each of the P. cubensis OTUs and 

positive for S. anolis, though none are significant.   

Estimates of population divergence are also shown in Table 4.6.  We rejected the 

null hypothesis of panmixia for each of the OTUs using the exact test of sample 

differentiation.  Parapharyngodon cubensis A and P. cubensis B exhibit moderate 

population structure, with estimates of Φst (including all samples and also restricting to 

the PRB samples only) ranging 0.34-0.35.  Estimates for S. anolis indicate greater 

relative population differentiation and are different when the St. Croix samples are 

included, with Φst = 0.76 for all samples and Φst = 0.65 when restricting to samples from 

the PRB. 

 Isolation-by-distance correlations are significant for both S. anolis and P. cubensis 

B when including all samples and also when restricting to the PRB, with greater 
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correlation coefficients in S. anolis (Table 4.7).  There is no significant correlation 

between genetic and geographic distances in P. cubensis A.  The density plot for the S. 

anolis dataset from both the PRB and St. Croix contains more high-density nuclei than 

the PRB-only dataset (Figure 4.3), suggesting that dispersal between St. Croix and the 

PRB is not clinal (i.e. the open ocean water between St. Croix and the PRB presents a 

greater barrier than an equal distance within the PRB).  In contrast, the density plots for 

P. cubensis B are relatively uniform and unchanged between the two datasets.  This 

pattern is consistent with the aforementioned pattern in Φst estimates (Table 4.6), which 

were similar in P. cubensis B whether or not we included the St. Croix samples in the 

dataset. 

  The patterns in the phylogeny and the haplotype networks show greater 

geographically associated population structure in S. anolis than the P. cubensis OTUs. 

Spauligodon anolis samples from each of the small islands are monophyletic, often with 

strong nodal support (Figure 4.4).  In contrast, there is minimal monophyly of same-

island samples and generally poor nodal support in P. cubensis A and P. cubensis B, 

particularly in the former.  The haplotype networks (Figure 4.5) show that in S. anolis, 

samples from the same islands are clustered together, and when multiple individuals 

share the same haplotype, these are always from the same island.  Once again, the pattern 

is different for both P. cubensis A and P. cubensis B; haplotypes collected from the same 

area are scattered throughout the network, and, in many cases, identical haplotypes are 

shared among samples collected from different islands.  The AU tests confirmed these 

patterns.  We could not reject geographically associated population structure in S. anolis 
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(p = 0.841).  But, geographically associated population structure is rejected for both P. 

cubensis A (p = 3.0 × 10-4) and P. cubensis B (p = 6.0 × 10-6). 

Discussion 

 Consistent with Nadler’s prediction (1995), we show that differences in host 

specificity are associated with differences in population structure in S. anolis and P. 

cubensis.  We provide evidence that P. cubensis on the PRB and St. Croix is comprised 

of three OTUs, and two of these – P. cubensis A and P. cubensis B – are widely 

distributed, as is S. anolis.  Compared to the P. cubensis OTUs, a greater proportion of 

genetic variation in S. anolis is contained between populations, rather than within 

populations.  Populations of S. anolis exhibit greater isolation-by-distance than the P. 

cubensis OTUs, and the St. Croix and PRB populations are not clinally differentiated, in 

contrast to the P. cubensis B populations.  Finally, we reject the monophyly of 

populations occurring in each of the smaller islands for the P. cubensis OTUs, but not S. 

anolis. 

 The differences in population structure between S anolis and the P. cubensis 

OTUs suggest that many more dispersal opportunities are available to the latter.  Anolis 

lizards are remarkably good overwater dispersers (Williams 1969; Calsbeek & Smith 

2003; Glor et al. 2005; Nicholson et al. 2005), but dispersal is apparently infrequent 

enough that S. anolis exhibits relatively strong population structure.  Dispersal patterns 

and capabilities for other squamates – which may facilitate gene flow among populations 

of the P. cubensis complex – are not well known, though overwater dispersal is perhaps 

not uncommon in many animal taxa (de Queiroz 2005).  For example, amphisbaenians 

are hypothesized to have colonized the Americas via transatlantic dispersal in the Eocene 
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(Vidal et al. 2008), suggesting that overwater dispersal in these hosts is possible.  

Additionally, floating rafts of vegetation (i.e. flotsam) that are generated during 

hurricanes facilitate inter-island dispersal in several Caribbean animal species (Heatwole 

& Levins 1972; Censky et al. 1998; Hedges 2006), and this is a potential source of host 

dispersal for the P. cubensis complex.  In any case, movement of these parasites between 

the PRB and St. Croix cannot occur without overwater host dispersal, and our data 

suggest that this may not be infrequent among squamates.  

The prevalence we observed in S. anolis and the P. cubensis OTUs are in contrast 

with theoretical work that suggests that there may be some trade-off between host 

specificity and prevalence (Holt et al. 2003; Dobson 2004; Keesing et al. 2006).  This 

work uses the reasoning that because a specialist parasite is adapted to one or a few hosts, 

it is more efficient, and so will infect a greater proportion of those hosts than will a 

generalist parasite that is not so well adapted.  But, even though we did not sequence 

some P. cubensis individuals in order to assign them to an OTU (i.e. our observed 

prevalence data for the P. cubensis OTUs is slightly low), we observed a similar number 

of host species infected with either P. cubensis A or P. cubensis B than S. anolis in their 

Anolis lizard hosts (Table 4.1).  Moreover, if we include only the PRB samples (i.e. 

exclude Anolis acutus), prevalence of each of the P. cubensis OTUs is higher than the 

prevalence of S. anolis.  One possible explanation for this discrepancy is that pinworm 

infections are generally not considered harmful to their hosts (Lane & Mader 2005; 

Jacobson 2007), potentially diminishing the pervasiveness of host-specific adaptations 

and making more important other factors that may determine prevalence among host 

species.  Still, such a discrepancy was also found in malaria parasites of birds (Hellgren 
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et al. 2009), begging the question of whether host specificity plays a role in observed 

prevalence, and if yes, just what that role is. 

 Currently, P. cubensis is the only recognized species of Parapharyngodon 

reported from Caribbean squamates, though we provide evidence that it is a complex of 

several species.  Only two other species – Parapharyngodon garciae and 

Parapharyngodon osteopili – are described from Caribbean herpetofauna, but their hosts 

are frogs, not squamates (Schmidt & Whittaker 1975; Adamson 1981).  

Parapharyngodon cubensis is distinguished from these and other species by differences 

in the male spicule length, the number of papillae, and the characteristics of the cloacal 

lip (smooth or echinate; Barus & Coy Otero 1969; Bursey et al. 2005; Jiménez et al. 

2008).  Samples from Hispaniola and Saba provide further evidence of cryptic species 

diversity within P. cubensis (data not shown), and we expect that the taxonomy will 

remain uncertain until more molecular data are collected from throughout its range.   

We observed minimal co-occurrences of the P. cubensis OTUs within localities, 

suggesting the potential for competitive exclusion among these taxa.  For example, P. 

cubensis B was abundant on both Jost van Dyke and Anegada but was not observed on 

Virgin Gorda.  We observed the exact opposite in P. cubensis A; it occurs on Virgin 

Gorda but not Jost van Dyke or Anegada.  Similarly, the two co-occur at only three of the 

18 localities in Puerto Rico.  In contrast, in the 12 localities on Puerto Rico where S. 

anolis occurs, we also observed either P. cubensis A or P. cubensis B at 10 of them, and 

sometimes they co-occurred within a single host individual.  We suspect this pattern to be 

associated with another pattern – differences in infection intensity (i.e. the number of 

nematode individuals per host).  Intensity in P. cubensis is low; for example, intensity in 
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Anolis acutus ranges 1-4, with an average of 1.6 worms per host individual (Goldberg et 

al. 1997). Intensity of S. anolis in the same host species at the same locality is much 

higher, ranging 1-130, with an average of 21.3 worms per host individual (Goldberg et al. 

1997).   Given that autoinfection via asexual reproduction is possible in pinworms (i.e. 

production of haploid males via thin-shelled, autoinfective eggs; Anderson 2000), these 

data suggest that the maximum number of P. cubensis individuals in a single host is 

limited.  Thus, individuals from each P. cubensis OTU must compete for the same set of 

local host individuals, and these parasite populations may undergo periodic local 

extinctions and recolonizations. 

An open and interesting question remains regarding the conditions necessary to 

prevent gene flow among populations of multi-host nematode parasites, since we show 

that the open ocean waters between the PRB and St. Croix do not prevent dispersal in P. 

cubensis B.  Mayr (1963) hypothesized that allopatric speciation is predominant among 

nematodes, although it is unclear whether he was referring to either the parasitic or free-

living taxa, or both.  Inglis (1971) clarified Mayr’s arguments in the context of parasitic 

nematodes, proposing that allopatric speciation is chiefly responsible for species 

diversification among these parasites.  While there is some contention on the concept of  

“allopatry” in the context of parasites (e.g. among hosts, among localities, etc.), we 

consider allopatric speciation to be speciation in response to some extrinsic barrier to 

gene flow (McCoy 2003, 2004; Le Gac & Giraud 2004).  This hypothesis can be tested 

using a DNA-based, phylogeographic approach (Criscione et al. 2005; Huyse et al. 2005; 

Perkins et al. 2011), and already some evidence exists that geographic barriers – not host 

differences – prevent gene flow among nematode populations (Nieberding et al. 2008; 
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Wu et al. 2009).  Our study demonstrates that the strength of those barriers is labile 

according to a parasite’s host specificity, and that host specificity has a profound affect 

on parasite diversification. 
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Table 4.1.  Summary of known host taxa for Spauligodon anolis and 
Parapharyngodon cubensis.  Spauligodon anolis infects anole lizards, while P. cubensis 
infects anoles and many other squamate taxa.  Host reports are taken from the summary 
provided in Bursey et al. (2012), and higher taxa are as listed in the Reptile Database 
(http://www.reptile-database.org, accessed 11/15/12).   
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Table 4.1. 
 
Parasite species Common 

name 
(host) 

Higher taxa 
(host) 

N Species (host) 

Spauligodon anolis Anoles Polychrotidae 
(Dactyloidae), 
Iguania, Sauria  

17 Anolis acutus, Anolis bimaculatus, Anolis 
conspersus, Anolis cristatellus, Anolis ferreus, 
Anolis gingivinus, Anolis leachi, Anolis lineatopis, 
Anolis lividus, Anolis marmoratus, Anolis oculatus, 
Anolis richardii, Anolis sabanus, Anolis scriptus, 
Anolis stratulus, Anolis valencienni, Anolis wattsi 

Parapharyngodon 
cubensis 

Worm 
lizards 

Amphisbaenidae, 
Amphisbaenia  

1 Amphisbaena cubana  

Anoles Polychrotidae 
(Dactyloidae), 
Iguania, Sauria  

43 Anolis acutus, Anolis aeneus, Anolis allisoni, Anolis 
allogus, Anolis bartschi, Anolis bimaculatus, Anolis 
bremeri, Anolis brevirostris, Anolis chlorocyanus, 
Anolis coelestinus, Anolis cristatellus, Anolis 
distichus, Anolis eugenegrahami, Anolis extremus, 
Anolis ferrus, Anolis gingivinus, Anolis grahami, 
Anolis griseus, Anolis homolechis, Anolis jubar, 
Anolis leachii, Anolis lineatopis, Anolis lividus, 
Anolis luciae, Anolis lucius, Anolis luteogularis, 
Anolis marmoratus, Anolis maynardi, Anolis 
monticola, Anolis oculatus, Anolis olssoni, Anolis 
pogus, Anolis porcatus, Anolis quadriocellifer, 
Anolis richardii, Anolis sabanus, Anolis sagrei, 
Anolis schwartzi, Anolis scriptus, Anolis stratulus, 
Anolis valencienni, Anolis vermiculatus, Anolis 
wattsi 

Colubrid 
snakes 

Colubridae, 
Dipsadinae, 
Alsophiini, 
Serpentes  

1 Cubophis cantherigerus  

Curly-
tailed 
lizards 

Leiocephalidae, 
Iguania, Sauria  

3 Leiocephalus carinatus, Leiocephalus cubensis, 
Leiocephalus macropus 

Dwarf 
boas 

Tropidophiidae, 
Henophidia, 
Serpentes  

2 Tropidophis melanurus, Tropidophis semicinctus 

Geckos Gekkonidae, 
Sauria  

2 Cyrtopodion scabrum; Hemidactylus mabouia 

Geckos Sphaerodactylidae, 
Sauria  

5 Gonatodes albogularis, Sphaerodactylus cinereus, 
Sphaerodactylus fantasticus, Sphaerodactylus torrei, 
Sphaerodactylus vincenti 

Whiptail 
lizards 

Teiidae, Sauria  3 Ameiva auberi, Ameiva exsul*, Ameiva pleei 

*Ameiva exsul was reported to host Pharyngodon anolis Chitwood, 1934 (Acholonu 1976) in Puerto Rico, and the 
parasite’s identity remains equivocal. We place it in Parapharyngodon cubensis here.  Bursey and Goldberg (1998) 
examined the two available specimens from that study (USNPC73292), and found their morphology consistent with 
Spauligodon anolis.  But, given that this was the only pinworm taxon collected from the large intestines of 246 lizards 
on Puerto Rico, and that P. cubensis is a common parasite of the large intestine in squamates on the Puerto Rican Bank 
(Goldberg et al. 1998; Dyer et al. 2001; this study) we believe that the parasites termed “Pharyngodon anolis” in that 
study include both S. anolis and P. cubensis.  Following that, and in combination with the fact that S. anolis has been 
reported only in Anolis lizard hosts in every other study, we believe the parasites reported from Ameiva exsul in 
Acholonu (1976) are P. cubensis. 
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Table 4.2. Potential hosts available to Spauligodon anolis and Parapharyngodon 
cubensis on the Puerto Rican Bank and St. Croix.  Potential host species belong to the 
same family as previously reported host species for each parasite (Table 4.1), are extant, 
and occur on the Puerto Rican Bank and/or St. Croix.  Taxonomy and occurrence records 
are as listed in the Reptile Database (http://www.reptile-database.org, accessed 12/5/12), 
Rivero (1978), MacLean (1982), and Schwartz and Henderson (1991). 
 
Parasite species Common 

name 
(host) 

Higher taxa (host) N Species (host) 

Spauligodon anolis Anoles Polychrotidae 
(Dactyloidae), 
Iguania, Sauria  

11 Anolis acutus, Anolis cooki, Anolis cristatellus, 
Anolis cuvieri, Anolis evermanni, Anolis 
gundlachi, Anolis krugi, Anolis occultus, Anolis 
poncensis, Anolis pulchellus, Anolis stratulus  

Parapharyngodon 
cubensis 

Worm 
lizards 

Amphisbaenidae, 
Amphisbaenia 

5 Amphisbaena bakeri, Amphisbaena caeca, 
Amphisbaena fenestrata, Amphisbaena 
schmiditi, Amphisbaena xera 

 Anoles Polychrotidae 
(Dactyloidae), 
Iguania, Sauria  

11 Anolis acutus, Anolis cooki, Anolis cristatellus, 
Anolis cuvieri, Anolis evermanni, Anolis 
gundlachi, Anolis krugi, Anolis occultus, Anolis 
poncensis, Anolis pulchellus, Anolis stratulus  

 Colubrid 
snakes 

Colubridae, 
Dipsadinae, 
Alsophiini, Serpentes  

4 Borikenophis portoricensis, Borikenophis 
sanctaecrucis, Magliophis exiguum, Magliophis 
stahli 

 Dwarf 
boas 

Tropidophiidae, 
Henophidia, 
Serpentes  

6 Typhlops catapontus, Typhlops granti, 
Typhlops hypomethes, Typhlops platycephalus, 
Typhlops richardi, Typhlops rostellatus,  

 Geckos Gekkonidae, Sauria  2 Hemidactylus brooki, Hemidactylus mabouia 

 Geckos Sphaerodactylidae, 
Sauria  

10 Sphaerodactylus beattyi, Sphaerodactylus 
gaigeae, Sphaerodactylus klauberi, 
Sphaerodactylus levinsi, Sphaerodactylus 
macrolepis, Sphaerodactylus microlepis, 
Sphaerodactylus micropithecus, 
Sphaerodactylus nicholsi, Sphaerodactylus 
parthenopion, Sphaerodactylus roosevelti 

 Whiptail 
lizards 

Teiidae, Sauria  3 Ameiva exsul, Ameiva polops, Ameiva wetmorei 
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Table 4.3.  Locality information.  Localities have numerical labels that correspond to 
the map in Figure 4.1 and prevalence data in Table 4.5.  These are accompanied by both 
exact GPS coordinates in decimal degrees and nearby place or road names for 
geographical reference (names are shared when more than one site is nearest the same 
place). 
 

# Locality Name Latitude Longitude 
1 Mayagüez, Mayagüez, Puerto Rico 18.21339 -67.13757 
2 Isabela, Isabela, Puerto Rico 18.51195 -67.06575 
3 Parguera, Lajas, Puerto Rico 17.98195 -67.03824 
4 PR-119, Maricao, Puerto Rico 18.17595 -67.02090 
5 Lago de Guajataca, San Sebastián, Puerto Rico 18.37535 -66.92910 
6 Yauco, Guánica, Puerto Rico 18.00466 -66.85098 
7 PR-123, Arecibo, Puerto Rico 18.36646 -66.68867 
8 Ponce, Ponce, Puerto Rico 17.98140 -66.66600 
9 PR-143, Orocovis, Puerto Rico 18.16853 -66.49990 
10 Manatí, Manatí, Puerto Rico 18.38191 -66.49680 
11 Manatí, Manatí, Puerto Rico 18.38034 -66.48800 
12 PR-590, Orocovis, Puerto Rico 18.18846 -66.45745 
13 Rabo del Buey, Salinas, Puerto Rico 18.03267 -66.24347 
14 Represa de San Juan, Aguas Buenas, Puerto Rico 18.27778 -66.13858 
15 PR-184, Cayey, Puerto Rico 18.13538 -66.08157 
16 Loiza, Carolina, Puerto Rico 18.43764 -65.88540 
17 Yabucoa, Yabucoa, Puerto Rico 18.04458 -65.85477 
18 PR-186, Rio Grande, Puerto Rico 18.29482 -65.85041 
19 Rio Mar, Rio Grande, Puerto Rico 18.38813 -65.75592 
20 Naguabo, Naguabo, Puerto Rico 18.21836 -65.74065 
21 PR-994, Vieques, Puerto Rico 18.11591 -65.54987 
22 Laguna Playa Grande, Vieques, Puerto Rico 18.09369 -65.50729 
23 PR-200, Vieques, Puerto Rico 18.13345 -65.50548 
24 PR-201, Vieques, Puerto Rico 18.10911 -65.48299 
25 Esperanza, Vieques, Puerto Rico 18.09492 -65.47132 
26 PR-200, Vieques, Puerto Rico 18.14154 -65.46638 
27 Calle 10, Vieques, Puerto Rico 18.12784 -65.45504 
28 PR-997, Vieques, Puerto Rico 18.11494 -65.45106 
29 Puerto Ferro, Vieques, Puerto Rico 18.10081 -65.42842 
30 PR-200, Vieques, Puerto Rico 18.15762 -65.42194 
31 Fortuna Hill, St. Thomas, USVI 18.35126 -65.00710 
32 Bordeaux Rd., St. Thomas, USVI 18.36181 -65.00259 
33 Dorothea, St. Thomas, USVI 18.36852 -64.96253 
34 Hull Bay, St. Thomas, USVI 18.37065 -64.95063 
35 St. Peter Mtn. Road, St. Thomas, USVI 18.35664 -64.95004 
36 Creque Dam Rd, St. Croix, USVI 17.73820 -64.88882 
37 Old Mill, St. Croix, USVI 17.73550 -64.88696 
38 Creque Dam, St. Croix, USVI 17.74582 -64.87627 
39 Fish Bay, St. John, USVI 18.32669 -64.76401 
40 Great Harbour, Jost Van Dyke, BVI 18.44556 -64.74791 
41 Coral Harbour, St. John, USVI 18.34926 -64.72855 
42 Belmont Pond, Tortola, BVI 18.39614 -64.69241 
43 Fresh Gut Pond, Tortola, BVI 18.38927 -64.66298 
44 Sage Mountain, Tortola, BVI 18.41208 -64.65601 
45 Nail Bay, Virgin Gorda, BVI 18.49719 -64.40387 
46 Settlement Rd., Anegada, BVI 18.72728 -64.37234 
BVI = British Virgin Islands 
USVI = U.S. Virgin Islands 

 



 134 

Table 4.4.  Observed host prevalence for Spauligodon anolis and Parapharyngodon 
cubensis.  We list the total number of hosts (N) and the number of infected hosts for each 
parasite.  For P. cubensis, this includes the total number found, the number of host 
individuals infected with each OTU (Figure 4.2), and the number of infections that we 
did not identify. 
 

Host N Spauligodon  
anolis 

Parapharyngodon cubensis 
Total A B C Unknown 

Anolis acutus 84 56 6 0 4 2 0 
Anolis cristatellus 421 40 179 53 98 0 28 
Anolis evermanni 18 2 5 4 0 0 1 
Anolis gundlachi 32 1 17 10 0 0 7 
Anolis krugi 7 0 0 0 0 0 0 
Anolis pulchellus 49 0 10 4 4 0 2 
Anolis stratulus 30 1 4 1 3 0 0 
Hemidactylus mabouia 3 0 0 0 0 0 0 
Sphaerodactylus macrolepis 7 0 1 0 1 0 0 

Total 651 100 222 72 110 2 38 
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Table 4.5.  Number of Spauligodon anolis and Parapharyngodon cubensis sequenced 
for coxI at each locality.  Parapharyngodon cubensis samples are identified by OTU 
(Figure 4.2).  Localities are identified by a number that corresponds with the map in 
Figure 4.1 and locality information in Table 4.3.  
 
 

Locality Island Spauligodon 
anolis 

Parapharyngodon 
cubensis 

A B 

1  Puerto Rico 2 2 0 
2 Puerto Rico 0 0 1 
3 Puerto Rico 4 0 0 
4 Puerto Rico 2 8 0 
5 Puerto Rico 4 0 0 
6 Puerto Rico 0 0 8 
7 Puerto Rico 3 3 1 
8 Puerto Rico 0 * 4 
9, 12 Puerto Rico 5 4 0 
10, 11 Puerto Rico 5 1 0 
13 Puerto Rico 0 0 5 
14 Puerto Rico 1 2 0 
15 Puerto Rico 2 2 0 
16 Puerto Rico 2 * 2 
17 Puerto Rico 1 2 0 
18 Puerto Rico 1 3 0 
19 Puerto Rico 0 1 0 
20 Puerto Rico 0 3 0 
21-30 Vieques 3 4 17 
31-35 St. Thomas 8 8 12 
36-38 St. Croix 11 0 6 
39, 41 St. John 1 14 5 
40 Jost Van Dyke 0 0 20 
42-44 Tortola 0 9 11 
45 Virgin Gorda 0 6 0 
46 Anegada 0 0 14 

 Total 55 72 106 

*Locality presence inferred using 18s sequence, but unable to amplify 
coxI. 
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Table 4.6.  Summary statistics and estimates of population divergence for 
Parapharyngodon cubensis A, Parapharyngodon cubensis B, and Spauligodon anolis 
using 640-bp of coxI.  Haplotype diversity is similar among OTUs, though nucleotide 
diversity (π) and the population mutation rate (θW) are highest in S. anolis.  A greater 
proportion of variation is between - rather than within - populations in S. anolis. 
 
 

OTU  N HN HD π θW Tajima’s D 
Exact Test  
of Non-
differentiation 

Φst 

P. cubensis A PRB only 72 47 0.977 0.01878 0.03063 -1.3151 ns P = 0 0.34, P = 0 
P. cubensis B All 106 85 0.996 0.02076 0.03581 -1.3845 ns P = 0 0.35, P = 0 
 PRB only 103 83 0.996 0.02117 0.03601 -1.3613 ns P = 0 0.35, P = 0 
S. anolis All 55 37 0.980 0.04941 0.04262  0.5629 ns P = 0 0.76, P = 0 
 PRB only 44 29 0.974 0.03951 0.03694  0.2518 ns P = 0 0.65, P = 0 
N = number of samples 
HN = number of haplotypes 
HD = haplotype diversity 
π = nucleotide diversity 
θW = population mutation rate (Watterson's estimator) 
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Table 4.7.  Isolation-by-distance results for Spauligodon anolis, Parapharyngodon 
cubensis A, and Parapharyngodon cubensis B.  All except P. cubensis A exhibit 
significant isolation-by-distance, with the highest observed coefficient values in S. anolis.  
Both S. anolis and P. cubensis B occur on both the PRB and St. Croix, and each exhibit a 
lower correlation coefficient when the datasets are restricted to the PRB only. 
 
 

 PRB + St. Croix PRB only 
OTU Coefficient P-value Coefficient P-value 
S. anolis 0.3334 0.001 0.3019 0.01 
P. cubensis A n/a n/a 0.003843 0.45 
P. cubensis B 0.2426 0.013 0.2040 0.04 
 

 
 
 



 138 

!

!

!

!

!

!

!

!

!

!!

!

!

!

!

!

!

!

!

!

!!
!
!!
!!!!

!

!!!!!

!!!

!

!

!
!!!

!

!

100
Kilometers

Puerto Rico

St. John

St. Thomas

Vieques

Jost van Dyke

Anegada

Virgin Gorda

Tortola

St. Croix

=  Sampling locality•
Kilometers

N

1

2

3

4

5
7

6 8

9 12

10 11

13

14

15

16

18

17

20
21-30

36-38

31-35
39, 41

40
42-44 45

46

19

 
 
 
Figure 4.1.  Map of sampling localities on the Puerto Rican Bank and St. Croix.  The 
estimated emergent areas of the Puerto Rican Bank and St. Croix during the Pleistocene 
glacial maxima are delimited by the ~120m bathymetric level.  Sampling localities are 
labeled with numbers that and correspond to locality information in Table 4.2 and 
prevalence data in Table 4.3. 
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Figure 4.2.  Neighbor-Net haplotype network inferred from 233 18s sequences of 
Parapharyngodon cubensis and Spauligodon anolis, along with a GenBank sample of 
Eutrombicula vermicularis.  All S. anolis samples share a single haplotype.  All P. 
cubensis samples share one of three haplotypes, and these are arbitrarily named A, B, and 
C.  Scale bar shows the number of differences per site. 
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Figure 4.3.  Density scatterplots of isolation-by-distance.  Geographic distance 
between localities is on the X-axis, and genetic distance (Fst estimates) between localities 
is on the Y-axis.  Color represents the relative density of points, with warmer colors 
indicating higher densities.  A single high-density nucleus indicates clinal variation, and 
multiple high-density nuclei indicate an island model of differentiation.  The dotted line 
shows the correlation between the two distance matrices.   
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Figure 4.4.  ML phylogenies of Spauligodon anolis, Parapharyngodon cubensis A, 
and Parapharyngodon cubensis B inferred using 640-bp of coxI and a GTR + Γ 
substitution model in RAxML.  Samples of S. anolis collected from each of the smaller 
islands generally form well supported, monophyletic groups.  In contrast, within-island 
samples for each of the P. cubensis OTUs are scattered throughout the phylogeny, and 
few clades are well supported. 
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Figure 4.5.  Median-joining haplotype networks of Spauligodon anolis, 
Parapharyngodon cubensis A, and Parapharyngodon cubensis B inferred using 640-
bp of coxI in SPLITSTREE. Spauligogodon anolis haplotypes collected from each of 
the smaller islands are clustered together, and when more than one individual shares a 
single haplotype, these are always from the same island.  Within-island samples in the P. 
cubensis OTUs are generally not clustered together, and in many cases, individuals from 
different islands share a single haplotype. 
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CHAPTER V 
 

CONCLUSION 
 
 

 The primary goal of my dissertation research was to characterize the malaria and 

pinworm parasite diversity of Caribbean Anolis lizards. I compared taxonomic 

hypotheses in malaria parasites using morphological vs. molecular data (Chapter II), 

made predictions about malaria parasite diversification and tested them (Chapter III), and 

tested the hypothesis that host range in multi-host parasites influences population 

structure (Chapter IV).  My general conclusions are: 

• Traditional morphological criteria fail to delimit lizard malaria species on 

Hispaniola.  This casts doubt on the validity on many lizard malaria parasite 

species that are delimited using these morphological characters, particularly in the 

Neotropics.  Molecular data, on the other hand, are consistently useful in malaria 

parasite species identification and delimitation. 

• Several taxonomic changes are made for malaria parasite species.  Plasmodium 

fairchildi hispaniolae is elevated to Plasmodium hispaniolae, and this species is 

in general morphologically indistinguishable from Plasmodium floridense, with 

which it co-occurs on Hispaniola and the Puerto Rican Bank.  Plasmodium 

minasense anolisi and Plasmodium tropiduri caribbense are not valid.   

• Prevalence of lizard malaria parasites on Hispaniola is variable among species.  

Anolis lizards belonging to the crown-giant and grass-bush ecomorphs were not 

infected, suggesting that host ecology or phylogeny may play a role in parasite 

infection.   
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• Prevalence of lizard malaria parasites is generally low in Caribbean Anolis lizards, 

and is variable over the landscape.  For example, overall prevalence of P. 

floridense on Hispaniola is ~5%, but it exceeds 50% prevalence in several 

localities. 

• Diversification in P. floridense is shaped by the malaria parasite life cycle and 

transmission dynamics, where low prevalence favors inbreeding.  It contains at 

least 11 independently evolving lineages in the Caribbean and southeastern North 

America.  These lineages are characterized by low population sizes, have 

diverged very recently (some diverged ~0.11 million years ago), and most 

variation is contained between lineages (e.g., most polymorphic sites are fixed 

between lineages).  This pattern is shared with human malaria parasite species, 

and may be common to all malaria parasites. 

• Three operational taxonomic units (OTUs) are identified in the pinworm 

Parapharyngodon cubensis, suggesting it may be a complex of several species. 

• Two P. cubensis OTUs are distributed on the Puerto Rican Bank, but these rarely 

co-occur at the same locality. This suggests that their distributions are mediated 

by competition, and are consistent with patterns of low-intensity among hosts.  

• Transmission is important in shaping the population structure in the pinworms 

Spauligodon anolis and P. cubensis on St. Croix and the Puerto Rican Bank.  

Both are multi-host parasites found in Anolis lizards, but whereas S. anolis is 

found only in anoles, P. cubensis is found in anoles and many other squamate 

species.  Spauligodon anolis exhibits greater population structure and isolation-

by-distance than each of two P. cubensis OTUs. 
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APPENDIX: 
 

 SUPPLEMENTARY MATERIAL FOR CHAPTER III 
 

(LIFE CYCLE AND TRANSMISSION SHAPE DIVERSIFICATION  
IN THE LIZARD MALARIA PARASITE PLASMODIUM FLORIDENSE) 
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Table S3.1.  Primer information and PCR conditions used to generate sequence data 

in this study.  All PCRs are nested and have a 25µl volume.  Initial reactions use 2µl 

template (DNA extraction), and nested reactions use 1µl template (product from first 

reaction).  All thermocyler protocols begin with a 90°C melting step for 4-minutes, then 

40 cycles of a 90°C melting step for 30-seconds, an annealing step for 30-seconds, and a 

68°C extension step with time depending on fragment length.  Step-up protocols use the 

first temperature for the first five cycles, and the second temperature for the remaining 35 

cycles.  All protocols finish with a 10-minute, 68°C extension step. 

 



 147 

Table S3.1. 
 
Name Locus 5’-Sequence-3’ PCR conditions 

aslF 
aslR Adsl AGAGTGAAAAAAATTGAAGAAGAGAC 

GCTAAATGTAAATTACCTTCTGCATTTTC 
46°C anneal 
60-sec extension 

aslFin 
aslRin 

Adsl – 
nested 

AAGAGACAAATCACGATGTGAAAGC 
ACCTTCTGCATTTTCAAAATCAATAGG 

49°C anneal 
60-sec extension 

TubAF 
TubAR Atub CAGTCGGGCGTCATCAGGATTACAAGGATTTTTGATGTTTa 

GGAAACAGCTATGACCATCAGCTCTCATAACTTTTGCTAAATCa 
44/55°C step-up  
60-sec extension 

TubAFin 
TubARin 

Atub – 
nested 

AGGAGGAGGTACTGGAAGCG 
ATCCGGTAGGGCACCAATCA 

53/56°C step-up  
60-sec extension 

coxIF 
coxIR coxI CGAATCTTACTCATTCATATCCAAGCC 

GTATTTTCTCGTAATGTTTTACCAAAGAA 
50°C anneal 
90-sec extension 

coxIF 
Pf.coxImR 

coxI –  
nested 1 

CGAATCTTACTCATTCATATCCAAGCC 
CTGGATGACCAAAAAACCAGAATAA 

50°C anneal 
60-sec extension 

Pf.coxImF 
coxIR 

coxI – 
nested 2 

CAACATTTATTCTGGTTCTTTGGACATC 
GTATTTTCTCGTAATGTTTTACCAAAGAA 

50°C anneal 
60-sec extension 

DW2 
DW4 cytb TAATGCCTAGACGTATTCCTGATTATCCAG 

TGTTTGCTTGGGAGCTGTAATCATAATGTG 
52°C anneal 
60-sec extension 

DW2 
3932R 

cytb –  
nested 1 

TAATGCCTAGACGTATTCCTGATTATCCAG 
GACCCCAAGGTAATACATAACCC 

50°C anneal 
60-sec extension 

3932F 
DW4 

cytb – 
nested 2 

GGGTTATGTATTACCTTGGGGTC 
TGTTTGCTTGGGAGCTGTAATCATAATGTG 

50°C anneal 
60-sec extension 

clpCF 
clpCR clpC GTTGGATTTTATGTGGDCCTAGTGG 

AAWGGACGWGCWCCATATAAAGG 
49°C anneal 
60-sec extension 

clpCFin 
clpCRin 

clpC – 
nested 

TCTATTTCTAGATTAATAGG 
AAGGATTATAAGATAATTTAG 

37/40°C step-up  
60-sec extension 

EF2F 
EF2R EF2 CATGGAAAATCAACATTAACAGATTCT 

CAGGATATACTTGAATATCACCCAT 
46°C anneal 
60-sec extension 

EF2Fin 
EF2Rin 

EF2 – 
nested 

AGACAAGATGAACAAGAAAGATGT 
TCACCCATTAATTTATCTGTGTATGT 

47°C anneal 
60-sec extension 

HH3F 
HH3R HisH3 CAGTCGGGCGTCATCATTATGATCTTTCTCCACGa 

GGAAACAGCTATGACCATGAAAATCCACMGGAGGAa 
41/55°C step-up  
60-sec extension 

HH3Fin 
HH3Rin 

HisH3 – 
nested 

AGCCCCAAGAAAGCAATTAG 
GATCTTTCTCCCAGAATACGTC 

47/50°C step-up  
60-sec extension 

HSP70F 
HSP70R HSP70 GGAACTATTGAACCATGTGAAAAAT 

TTAATACTAACTTGTGTTTGATTATCAGC 
46°C anneal 
60-sec extension 

HSP70Fin 
HSP70Rin 

HSP70 
–nested 

CTTGTGTTTGATTATCAGCTGCTG 
CCATGTGAAAAATGCATTAAAGATGC 

49°C anneal 
30-sec extension 

a Contains CAG/UNI tag to facilitate annealing 
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Table S3.2.  GenBank accession numbers and collecting localities for samples 

included in the identification phylogeny. 

 
Species Collecting locality GenBank Number 
Plasmodium azurophilum Dominica AY099055 
Plasmodium azurophilum Hispaniola JN187894 
Plasmodium berghei n/a AF014115 
Plasmodium fairchildi Costa Rica AY099056 
Plasmodium floridense Dominica AY099059 
Plasmodium floridense Florida NC_09961 
Plasmodium floridense Hispaniola, sample “DR401” JN187899a 
Plasmodium floridense Hispaniola, sample “DR453” JN187902a 
Plasmodium floridense Hispaniola, sample “DR522” JN187916a 
Plasmodium floridense Hispaniola, sample “M1064” JN187935a 
Plasmodium hispaniolae Hispaniola JN187914 
Plasmodium hispaniolae Hispaniola JN187890 
Plasmodium knowlesi n/a AY598141 
Plasmodium leucocytica Dominica AY099058 
Plasmodium leucocytica Hispaniola JN187938 
Plasmodium mexicanum Southwestern USA NC_09960 
aPlasmodium floridense samples for which we previously identified and submitted 
partial cytb sequences to GenBank.  We sequenced the remainder of the locus and 
partial coxI for this analysis. 
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Table S3.3.  Host and locality information for the samples included in this study.  

Parasite species identification is as inferred using the phylogeny of cytb and partial coxI 

data.  General collecting region is noted along with exact GPS coordinates (in decimal 

degrees) of the collecting locality. 

 



 150 

Table S3.3. 
 

Species Sample Region Host Latitude Longitude 

Plasmodium 
fairchildi 

MX12 Mexico Anolis uniformisa 18.5851 -95.07451 

Plasmodium 
floridense 

REG2223 Cuba Anolis sagrei 22.4012 -81.4277 
REG2251 Cuba Anolis sagrei 22.1668 -81.1375 
REG2611 Cuba Anolis sagrei 19.9144 -77.2011 
REG2840 Cuba Anolis sagrei 21.8128 -78.1381 
REG2939 Cuba Anolis sagrei 22.4994 -79.4574 
REG2940 Cuba Anolis sagrei 22.4994 -79.4574 
REG2941 Cuba Anolis sagrei 22.4994 -79.4574 
FL1101 Florida Anolis sagrei 27.04453 -82.27919 
FL1111 Florida Anolis sagrei 27.04453 -82.27919 
FL1181 Florida Sceloporus undulatus 30.33554 -84.44075 
FL179 Florida Anolis sagrei 27.04453 -82.27919 
FL509 Florida Anolis sagrei 26.68313 -81.91175 
FL513 Florida Anolis sagrei 26.68313 -81.91175 
FL519 Florida Anolis sagrei 27.04453 -82.27919 
DR158 Hispaniola Anolis distichus 18.05374 -71.2898 
DR159 Hispaniola Anolis cybotes 18.05374 -71.2898 
DR171 Hispaniola Anolis cybotes 18.05374 -71.2898 
DR199 Hispaniola Anolis cybotes 18.91468 -70.72939 
DR216 Hispaniola Anolis cybotes 18.8801 -69.11956 
DR221 Hispaniola Anolis cybotes 18.8801 -69.11956 
DR232 Hispaniola Anolis cybotes 18.51567 -68.36947 
DR233 Hispaniola Anolis cybotes 18.51567 -68.36947 
DR235 Hispaniola Anolis cybotes 18.51567 -68.36947 
DR401 Hispaniola Anolis cybotes 19.86266 -70.96433 
DR453 Hispaniola Anolis cybotes 19.30035 -69.17233 
DR522 Hispaniola Anolis cybotes 18.77687 -71.19923 
M1064 Hispaniola Anolis cybotes 18.96772 -72.72537 
JA.004.01 Jamaica Anolis lineatopis 18.08762 -76.31215 
JA.042.05 Jamaica Anolis lineatopis 18.08121 -76.31284 
JA.059.06 Jamaica Anolis valenciennia 18.07865 -76.31339 
JA.082.08 Jamaica Anolis lineatopis 18.38966 -77.05101 
JA.084.10 Jamaica Anolis lineatopis 18.38966 -77.05101 
JA.122.15 Jamaica Anolis grahami 18.45763 -77.27183 
JA.123.16 Jamaica Anolis lineatopis 18.45763 -77.27183 
JA.124.17 Jamaica Anolis lineatopis 18.45763 -77.27183 
JA.125.18 Jamaica Anolis lineatopis 18.45763 -77.27183 
JA.126.19 Jamaica Anolis lineatopis 18.45763 -77.27183 
JA.128.20 Jamaica Anolis lineatopis 18.45763 -77.27183 
JA.130.21 Jamaica Anolis grahami 18.45763 -77.27183 
JA.219.22 Jamaica Anolis grahami 18.04946 -77.85984 
JA.220.23 Jamaica Anolis valenciennia 18.05033 -77.87384 
JA.222.24 Jamaica Anolis lineatopis 18.05033 -77.87384 
PR.022.279 Puerto Rican Bank 

(Puerto Rico) 
Anolis cristatellus 18.36646 -66.68867 

PR.024.280 Puerto Rican Bank 
(Puerto Rico) 

Anolis cristatellus 18.36646 -66.68867 
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PR.133.288 Puerto Rican Bank 
(Puerto Rico) 

Anolis cristatellus 18.16853 -66.49990 

VI.037.51 Puerto Rican Bank 
(St. John) 

Anolis cristatellus 18.32669 -64.76401 

VI.045.52 Puerto Rican Bank 
(St. John) 

Anolis cristatellus 18.32669 -64.76401 

VI.047.53 Puerto Rican Bank 
(St. John) 

Anolis cristatellus 18.32669 -64.76401 

VI.360.93 Puerto Rican Bank 
(St. John) 

Anolis cristatellus 18.34926 -64.72855 

VI.333.89 Puerto Rican Bank 
(St. Thomas) 

Anolis cristatellus 18.37065 -64.95063 

VI.338.90 Puerto Rican Bank 
(St. Thomas) 

Anolis cristatellus 18.37065 -64.95063 

VI.352.92 Puerto Rican Bank 
(St. Thomas) 

Anolis cristatellus 18.35664 -64.95004 

VI.227.82 Puerto Rican Bank 
(Virgin Gorda) 

Anolis cristatellus 18.49719 -64.40387 

VI.234.83 Puerto Rican Bank 
(Virgin Gorda) 

Anolis pulchellus 18.49719 -64.40387 

VI.242.84 Puerto Rican Bank 
(Virgin Gorda) 

Anolis cristatellus 18.49719 -64.40387 

VI.245.85 Puerto Rican Bank 
(Virgin Gorda) 

Anolis cristatellus 18.49719 -64.40387 

VI.249.86 Puerto Rican Bank 
(Virgin Gorda) 

Anolis cristatellus 18.49719 -64.40387 

VI.252.87 Puerto Rican Bank 
(Virgin Gorda) 

Anolis cristatellus 18.49719 -64.40387 

SAB1344 Saba Anolis sabanus 17.63337 -63.22742 
SAB1361 Saba Anolis sabanus 17.63354 -63.22411 
SAB6120 Saba Anolis sabanus 17.63037 -63.25434 
SAB6123 Saba Anolis sabanus 17.64001 -63.25322 
SAB6133 Saba Anolis sabanus 17.63039 -63.25255 

Plasmodium 
hispaniolae 

PR.146.290b Puerto Rican Bank 
(Puerto Rico) 

Anolis cristatellusa 18.13538 -66.08157 

PR.179.295 Puerto Rican Bank 
(Puerto Rico) 

Anolis cristatellusa 18.03267 -66.24347 

PR.234.298 Puerto Rican Bank 
(Puerto Rico) 

Anolis cristatellusa 18.38813 -65.75592 

PR.243.299 Puerto Rican Bank 
(Vieques) 

Anolis cristatellusa 18.15762 -65.42194 

PR.245.300 Puerto Rican Bank 
(Vieques) 

Anolis cristatellusa 18.15762 -65.42194 

PR.266.301 Puerto Rican Bank 
(Vieques) 

Anolis cristatellusa 18.09369 -65.50729 

PR.268.302 Puerto Rican Bank 
(Vieques) 

Anolis cristatellusa 18.10911 -65.48299 

PR.269.303 Puerto Rican Bank 
(Vieques) 

Anolis cristatellusa 18.10911 -65.48299 

PR.271.304 Puerto Rican Bank 
(Vieques) 

Anolis cristatellusa 18.10911 -65.48299 

aNew host/parasite record. 
bPR.146.290 (P. hispaniolae) was sequenced at all loci and used as an outgroup taxon when applicable. 

 
 


