Taxonomy and Phylogenetics of Nanometinae and Other Australasian Orb-Weaving Spiders (Araneae: Tetragnathidae)

Fernando Álvarez-Padilla, Robert J. Kallal, and Gustavo Hormiga

Bulletin of the American Museum of Natural History
TAXONOMY AND PHYLOGENETICS OF NANOMETINAES AND OTHER AUSTRALASIAN ORB-WEAVING SPIDERS (ARANEAE: TETRAGNATHIDAE)

FERNANDO ÁLVAREZ-PADILLA
Departamento de Biología Comparada,
Facultad de Ciencias,
Universidad Nacional Autónoma de México

ROBERT J. KALLAL
Department of Biological Sciences,
The George Washington University

GUSTAVO HORMIGA
Department of Biological Sciences,
The George Washington University
CONTENTS

Abstract ... 3
Introduction ... 3
Material and Methods ... 4
Results ... 9

Taxonomy

Nanometinae

- *Nanometa* Simon, 1908 .. 9
 - *Nanometa gentilis* Simon, 1908 ... 16
 - *Nanometa trivittata* (Keyserling, 1887), comb. nov. 20
 - *Nanometa sarasini* (Berland, 1924), comb. nov. 30
 - *Nanometa fea*, sp. nov. .. 34
 - *Nanometa tetracaena*, sp. nov. .. 35
 - *Nanometa lagenifera* (Urquhart, 1888), comb. nov. 39
 - *Nanometa tasmaniensis*, sp. nov. .. 41
 - *Nanometa purpurapunctata* (Urquhart, 1889), comb. nov. 51
 - *Nanometa dimitrovi*, sp. nov. .. 54
 - *Nanometa dutrorum*, sp. nov. .. 61
 - *Nanometa forsteri*, sp. nov. ... 62

Leucauginae

- *Harlanethis*, gen. nov. .. 66
 - *Harlanethis lipscombei*, sp. nov. 74
 - *Harlanethis weintrauborum*, sp. nov. 76

Incertae subfamiliae

- *Taraire*, gen. nov. .. 79
 - *Taraire rufolineata* (Urquhart, 1889), comb. nov. 82
 - *Taraire oculta*, sp. nov. .. 85
 - *Tawhai*, gen. nov. .. 90
 - *Tawhai arborea* (Urquhart, 1891), comb. nov. 93
 - *Iamarra*, gen. nov. ... 96
 - *Iamarra multitheca*, sp. nov. .. 98

Phylogenetics

Discussion ... 103
Acknowledgments ... 105
References ... 105
ABSTRACT

The spider family Tetragnathidae Menge is a cosmopolitan, relatively well-studied spider clade with some members readily identifiable by their elongate chelicerae and/or their horizontal orb webs. It has four recognized subfamilies—Tetragnathinae, Metaignae, Leucauginae, and the Australasian endemic Nanometinae—although many genera remain unassigned to subfamilial groups. Nanometinae alpha taxonomy is the least well understood of these lineages despite the inclusion of members of the subfamily in a number of phylogenetic analyses over the past decade. Here we describe 10 new species and revise seven additional tetragnathids from Australia, New Zealand, New Caledonia, and Papua New Guinea in the genera Nanometa, Taraire, gen. nov., Tawhai, gen. nov., Harlanethis, gen. nov., and Iamarra, gen. nov. These 17 species are: Nanometa gentilis Simon, 1908, N. trivittata (Keyserling, 1887), comb. nov., N. sarasini (Berland, 1924), comb. nov., N. lagenifera (Urquhart, 1888), comb. nov., N. purpurapunctata (Urquhart, 1889), comb. nov., N. fera, sp. nov., N. tasmaniensis, sp. nov., N. tetracaena, sp. nov., N. dimitrovi, sp. nov., N. dutorum, sp. nov., N. forsteri, sp. nov., Taraire rufolineata (Urquhart, 1889), comb. nov., Taraire oculta, sp. nov., Tawhai arboe (Urquhart, 1891), comb. nov., Harlanethis lipscombei, sp. nov., H. weintrauborum, sp. nov., and Iamarra multi-theca, sp. nov. We also synonymize Nediphya Musurik and Omelko, 2017, and the monotypic genus Eryciniolia Strand, 1912, with Nanometa, bringing the total number of species in the genus from one to 14. Using an expanded taxon sampling for prior studies based on six molecular markers—12S rRNA, 16S rRNA, 18S rRNA, 28S rRNA, cytochrome c oxidase subunit I, and histone H3—and both maximum likelihood and Bayesian methods, we place these taxa in the tetragnathid tree of life. Nanometinae and its constituent genera Nanometa and Pinkfloydia are reciprocally monophyletic. Harlanethis belongs to Leucauginae. The genera Taraire, Tawhai, and Iamarra defy robust phylogenetic placement and are not yet assigned to subfamily.

INTRODUCTION

The Australasian region is a hotspot of biodiversity, with much remaining to be described (Myers et al., 2000). Australia is home to thousands of spider species including dozens of members of the araneid family Tetragnathidae Menge (World Spider Catalog, 2019). Likewise, New Zealand has only eight described tetragnathids and six in New Caledonia (World Spider Catalog, 2019). Tetragnathidae is a family of orb-weaving spiders found on all continents except Antarctica, most of which typically build horizontal orb webs with open hubs (Álvarez-Padilla and Hormigá, 2011). Currently, the family is comprised of 48 genera and over 1000 species, with almost 50 of those described in the past five years (World Spider Catalog, 2019). Phylogenetic studies with broad taxon sampling indicate the closest relatives of the family are Arkyiidae and Mimetidae—two araneid families that do not spin capture webs; arkyiids are “sit and wait” predators while mimetids use aggressive mimicry to prey primarily on other araneoids (Hormiga and Griswold, 2014). Arkyiids and mimetids together with Tetragnathidae form the strongly supported tetragnathoid clade (Dimitrov and Hormiga, 2011; Dimitrov et al., 2012, 2017; Benavides et al., 2017; Hormiga, 2017; Wheeler et al., 2017; Fernández et al., 2018; Kallal and Hormiga, 2018).

Tetragnathidae includes four widely acknowledged subfamilies—Tetragnathinae, Leucaugi- nae, Metaignae, and Nanometinae—in addition to a host of rogue and difficult to place lineages. The latest of these to be formally acknowledged is Nanometinae, first as a clade (Álvarez-Padilla 2007) based on morphological and behavioral data, then as the “Nanometa Clade” (Álvarez-Padilla et al., 2009) based on morphological, behavioral, and nucleotide sequence data. For- ster and Forster (1999) had informally proposed the family Nanomatidae for this group, but they did not provide a proper diagnosis. Álvarez-
Padilla and Hormiga (2011: 802) formalized this taxon group at the subfamilial rank. Additional data supporting the *Nanometa* Clade were introduced in when the genus *Pinkfloydia* Hormiga and Dimitrov was placed as sister taxon to all other members of that clade (Dimitrov and Hormiga 2011). Subsequent analyses all supported the monophyly of the subfamily Nanometinae, with more and more taxa falling into this clade without formal taxonomic treatment (Dimitrov et al., 2012, 2017; Wheeler et al., 2017, Kallal and Hormiga, 2018), and a number of new genera and species have also recently been described in the subfamily (Hormiga, 2017; Marusik and Omelko, 2017). Most recently, phylogenomic analyses have placed nanometines as either sister to Tetragnathinae or Metainae + Leucauginae with mixed support (Fernández et al., 2018), with the caveat that each subfamily was represented by a single taxon.

Morphologically, nanometines are most similar in appearance to metaines (as their name implies) in that they lack the femoral trichobothria found in tetragnathines and leucauginines and the elongate chelicerae of tetragnathines. Álvarez-Padilla et al. (2009) characterized the synapomorphies of nanometines, which were further revised by Dimitrov and Hormiga (2011) and Hormiga (2017) to include the conductor originating centrally on the tegulum, a solid conductor-tegulum attachment, tubular embolus, and absence of macrosetae on the male palpal patella. *Pinkfloydia* lacks the stridulatory ridge on the male booklung cuticle and the branched median tracheal trunks found in *Nanometa* Simon, 1908 (Dimitrov and Hormiga, 2011).

Nanometines are known exclusively from the Australasian region, here including Australia, New Zealand, New Caledonia, and Papua New Guinea. Despite collection work over decades in these areas, the number of undiscovered and undescribed taxa has made the taxonomy of lineages in these places a difficult problem. Raymond Forster (1922–2000) had dozens more putative nanometine morphspecies for description, suggesting the treatment of nanometine spiders in that region includes a vast number of taxa that remain to be described and understood. Beyond the nanometines, the Australasian region is very diverse in other tetragnathids as well. The descriptions of some of these species are limited in scope and detail by modern standards, and incorporation of DNA sequence data has pointed to the nonmonophyly of some genera, including the metaine *Meta* C.L. Koch and the leucaugine *Orsinome* Thorell, 1890.

This revision seeks to highlight the members of the subfamily Nanometinae and formally describe a number of nanometine and other Australasian tetragnathids. Foremost among these is *Nanometa* (figs. 1–3, 7–37). Four new genera outside Nanometinae are erected: *Harlanethis*, gen. nov. (figs. 38–44, 60), *Taraire*, gen. nov. (figs. 4–5, 45–50, 55), *Tawhai*, gen. nov. (figs. 5, 51–55), and *Iamarra*, gen. nov. (figs. 6, 56–60). Among these are descriptions and redescriptions of 17 species, 11 of which belong to the genus *Nanometa*. Using an expanded nucleotide sequence matrix including 85 taxa, we discuss an updated Nanometinae and provide a framework for further studies of Australasian tetragnathids.

MATERIAL AND METHODS

Specimens were examined using a Leica MZ16A or a Leica M205 stereomicroscope (Wetzlar, Germany). Photographs were taken with Leica DFC500 and DFC425 digital microscope cameras. Habitus and genitalic morphology pictures were taken by placing the specimens in white sand immersed in 95% ethanol. Multifocus images were taken at different focal lengths with the package Leica Application Suite (LAS) v. 3.8 and stacked using Helicon Focus (ver. 6.7.1; www.heliconsoft.com) from Helicon Soft Ltd (Kharkiv, Ukraine). Most hairs and macrosetae are usually not depicted in the final palp and epigynum drawings. Illustrations were completed using an Olympus BX51 microscope with camera lucida (Tokyo, Japan) or Leica stereoscope as above. Epigyna were transferred to methyl salicylate for examination of sclerotized structures (Holm, 1979). Scan-
Table 1

Taxon sampling and associated NCBI GenBank accession numbers

Values in bold are new for this study.

<table>
<thead>
<tr>
<th>Taxon</th>
<th>12S</th>
<th>16S</th>
<th>18S</th>
<th>28S</th>
<th>COI</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Allende nigrohumeralis</td>
<td>EU003271</td>
<td>EU003368</td>
<td>EU003370</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allende sp. GH889</td>
<td>GU129557</td>
<td>GU129635</td>
<td>GU129649</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antillognatha lucida</td>
<td>GU129576</td>
<td>GU129603</td>
<td>GU129631</td>
<td>GU129647</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arkys sp. GH1250</td>
<td>KM486216</td>
<td>KM486277</td>
<td>KM486129</td>
<td>KM486344</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arkys sp. GH1107</td>
<td>KM486220</td>
<td>KM486281</td>
<td>KM486348</td>
<td>KM486423</td>
<td>KM486475</td>
<td></td>
</tr>
<tr>
<td>Arkys sp. GH1252</td>
<td>KM486221</td>
<td>KM486282</td>
<td>KM486132</td>
<td>KM486349</td>
<td>KM486424</td>
<td>KM486477</td>
</tr>
<tr>
<td>Arkys sp. GH1586</td>
<td>KM486217</td>
<td>KM486278</td>
<td>KM486130</td>
<td>KM486345</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arkys cornutus</td>
<td>FJ607448</td>
<td>FJ607482</td>
<td>FJ607521</td>
<td>FJ607556</td>
<td>FJ607595</td>
<td></td>
</tr>
<tr>
<td>Australomimetus sp. GH1115</td>
<td>KP271530</td>
<td>KP271653</td>
<td>KP271728</td>
<td>KP271798</td>
<td>KP271855</td>
<td></td>
</tr>
<tr>
<td>Azilia guatemalensis</td>
<td>EU003232</td>
<td>EU003262</td>
<td>EU003371</td>
<td>EU003372</td>
<td>EU003373</td>
<td></td>
</tr>
<tr>
<td>Azilia sp. GH0834</td>
<td>GU129570</td>
<td>GU129581</td>
<td>GU129606</td>
<td>GU129624</td>
<td>GU129641</td>
<td></td>
</tr>
<tr>
<td>Azilia sp. GH0838</td>
<td>GU129582</td>
<td>GU129607</td>
<td>GU129625</td>
<td>GU129642</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chrysometa alboguttata</td>
<td>MF668699</td>
<td>MF663665</td>
<td>EU003389</td>
<td>EU153160</td>
<td>EU003400</td>
<td></td>
</tr>
<tr>
<td>Chrysometa poas</td>
<td>MF668700</td>
<td>MF663663</td>
<td>MF668716</td>
<td>MF668708</td>
<td>MF674516</td>
<td>MF681788</td>
</tr>
<tr>
<td>Chrysometa zelotypa</td>
<td>MF668701</td>
<td>MF663664</td>
<td>MF668717</td>
<td>MF668709</td>
<td>MF674516</td>
<td>MF681789</td>
</tr>
<tr>
<td>Chrysometa espanola</td>
<td>EU003344</td>
<td>EU153162</td>
<td>EU003402</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtognatha sp. GH0773</td>
<td>GU129609</td>
<td>GU129630</td>
<td>GU129645</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtognatha sp. GH0774</td>
<td>GU129610</td>
<td>GU129629</td>
<td>GU129646</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cyrtognatha sp. ATOL GH12</td>
<td>KY015599</td>
<td>KY016146</td>
<td>KY016735</td>
<td>KY017394</td>
<td>KY017951</td>
<td>KY018453</td>
</tr>
<tr>
<td>Diphy a spinifera</td>
<td>GU129584</td>
<td>GU129585</td>
<td>GU129611</td>
<td>GU129626</td>
<td>GU129643</td>
<td></td>
</tr>
<tr>
<td>Dolichognatha incanescons</td>
<td>MF668702</td>
<td>MF663667</td>
<td>MF668710</td>
<td>MF674518</td>
<td>MF681790</td>
<td></td>
</tr>
<tr>
<td>Dolichognatha longiceps</td>
<td>MF668703</td>
<td>MF663666</td>
<td>MF668719</td>
<td>MF668711</td>
<td>MF681791</td>
<td></td>
</tr>
<tr>
<td>Dolichognatha pentagona</td>
<td>MF668704</td>
<td>MF663669</td>
<td>MF668720</td>
<td>MF668712</td>
<td>MF674519</td>
<td>MF681792</td>
</tr>
<tr>
<td>Ero sp. GH1092</td>
<td>KP271604</td>
<td>KP271663</td>
<td>KP271663</td>
<td>KP271738</td>
<td>KP271804</td>
<td></td>
</tr>
<tr>
<td>Gelanor sp. GH1605</td>
<td>KP271552</td>
<td>KP271678</td>
<td>KP271750</td>
<td>KP271817</td>
<td>KP271881</td>
<td></td>
</tr>
<tr>
<td>Nanometa trivittata, comb. nov.</td>
<td>KM486314</td>
<td>KM486170</td>
<td>KM486382</td>
<td></td>
<td>KM486501</td>
<td></td>
</tr>
<tr>
<td>Glenognatha mendezi</td>
<td>GU129586</td>
<td>GU129612</td>
<td>GU129627</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1 continued

<table>
<thead>
<tr>
<th>Taxon</th>
<th>12S</th>
<th>16S</th>
<th>18S</th>
<th>28S</th>
<th>COI</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Harlanethis lipscombae, sp. nov. GH1144</td>
<td>MK841587</td>
<td>MK840828</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hispanognatha guttata</td>
<td>GU129587</td>
<td>GU129613</td>
<td>GU129633</td>
<td>GU129652</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iamarra multitheca, sp. nov. ATOL GH59</td>
<td>KY015600</td>
<td>KY016147</td>
<td>KY016736</td>
<td>KY017395</td>
<td>KY017952</td>
<td></td>
</tr>
<tr>
<td>Iamarra multitheca, sp. nov. GH1142</td>
<td>KM486271</td>
<td>KM486334</td>
<td>KM486202</td>
<td>KM486412</td>
<td>KM486524</td>
<td></td>
</tr>
<tr>
<td>Leucauge argyra</td>
<td>EU003264</td>
<td>EU003364</td>
<td>EU003427</td>
<td>EU003290</td>
<td>EU003339</td>
<td></td>
</tr>
<tr>
<td>Leucauge blanda</td>
<td>JN816495</td>
<td>JN816717</td>
<td>JN816926</td>
<td>JN817129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leucauge magnifica</td>
<td>AY164672</td>
<td>HQ441966</td>
<td>JN816718</td>
<td>JN816927</td>
<td>HQ441946</td>
<td></td>
</tr>
<tr>
<td>Leucauge venusta</td>
<td>EU003238</td>
<td>FJ525356</td>
<td>EU003350</td>
<td>EU153169</td>
<td>EU003291</td>
<td>EU003322</td>
</tr>
<tr>
<td>Leucauge sp. ATOL GH9</td>
<td>KY016738</td>
<td>KY017397</td>
<td>KY017953</td>
<td>KY018455</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mecynometra sp. GH0850</td>
<td>JN816718</td>
<td>GU129614</td>
<td>GU129639</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mesida sp. GH0535</td>
<td>GU129589</td>
<td>GU129590</td>
<td>GU129615</td>
<td>GU129650</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta manchurica</td>
<td>JN816499</td>
<td>JN816721</td>
<td>JN816930</td>
<td>JN817133</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Meta menardi</td>
<td>KC849121</td>
<td>EU003353</td>
<td>EU153173</td>
<td>EU003295</td>
<td>EU003325</td>
<td></td>
</tr>
<tr>
<td>Meta ovalis</td>
<td>FJ607460</td>
<td>FJ607497</td>
<td></td>
<td>FJ607571</td>
<td>FJ607609</td>
<td></td>
</tr>
<tr>
<td>Meta sp. ATOL GH47</td>
<td>KY016148</td>
<td>KY016739</td>
<td>KY017398</td>
<td>KY017954</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metabus ebanoverde</td>
<td>EU003265</td>
<td>EU003354</td>
<td>EU153174</td>
<td>EU003296</td>
<td>EU003326</td>
<td></td>
</tr>
<tr>
<td>Metellina mengei</td>
<td>MF668706</td>
<td>MF663668</td>
<td>MF668722</td>
<td>MF668714</td>
<td>MF674520</td>
<td></td>
</tr>
<tr>
<td>Metellina merianae</td>
<td>EU003270</td>
<td>EU003356</td>
<td>EU153176</td>
<td>EU003297</td>
<td>EU003328</td>
<td></td>
</tr>
<tr>
<td>Metellina ornata</td>
<td>JN816498</td>
<td>JN816720</td>
<td>JN816929</td>
<td>JN817132</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metellina segmentata</td>
<td>FJ607461</td>
<td>FJ607498</td>
<td>FJ607536</td>
<td>FJ607572</td>
<td>FJ607610</td>
<td></td>
</tr>
<tr>
<td>Metleucauge banksi</td>
<td>GU129599</td>
<td>GU129621</td>
<td>GU129636</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Metleucauge yunohamensis</td>
<td>JN816500</td>
<td>JN816722</td>
<td>JN816931</td>
<td>JN817134</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimetus sp. GH891</td>
<td>KP271633</td>
<td>KP271702</td>
<td>KP271774</td>
<td>KP271838</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mimetus sp.</td>
<td>FJ607463</td>
<td>FJ607500</td>
<td>FJ607538</td>
<td>FJ607574</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mollemeta edwardsi</td>
<td>GU129575</td>
<td>GH129623</td>
<td>GU129634</td>
<td>EU003330</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanometra forsteri, sp. nov. GH1137</td>
<td>KM486245</td>
<td>KM486317</td>
<td>KM486175</td>
<td>KM486387</td>
<td>KM486458</td>
<td></td>
</tr>
</tbody>
</table>
TABLE 1 continued

<table>
<thead>
<tr>
<th>Taxon</th>
<th>12S</th>
<th>16S</th>
<th>18S</th>
<th>28S</th>
<th>COI</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nanometa forsteri, sp. nov. GH1139</td>
<td>KM486246</td>
<td>KM486318</td>
<td>KM486176</td>
<td>KM486388</td>
<td>KM486459</td>
<td></td>
</tr>
<tr>
<td>Nanometa dutrorum, sp. nov. GH0128</td>
<td></td>
<td></td>
<td>GU129595</td>
<td>GU129619</td>
<td>GU129639</td>
<td></td>
</tr>
<tr>
<td>Nanometa gentilis GH0114</td>
<td>KM486247</td>
<td>KM486319</td>
<td>KM486177</td>
<td>KM486389</td>
<td>KM486460</td>
<td>KM486505</td>
</tr>
<tr>
<td>Nanometa lagenifera, comb. nov. GH1172</td>
<td>KM486315</td>
<td>KM486171</td>
<td>KM486383</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanometa purpurapunctata, comb. nov. FAPDNA066</td>
<td></td>
<td></td>
<td>EU003391</td>
<td>EU153179</td>
<td>EU003331</td>
<td></td>
</tr>
<tr>
<td>Nanometa purpurapunctata, comb. nov.</td>
<td>KM486295</td>
<td>KM486146</td>
<td>KM486362</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanometa sarasini, comb. nov. FAPDNA067</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>EU003299</td>
<td></td>
</tr>
<tr>
<td>Nanometa tasmaniensis, sp. nov. GH0124</td>
<td></td>
<td></td>
<td>GU129529</td>
<td>GU129617</td>
<td>GU129618</td>
<td></td>
</tr>
<tr>
<td>Opadometa sp. FAPDNA047</td>
<td></td>
<td></td>
<td>EU003361</td>
<td>EU003423</td>
<td>EU003304</td>
<td>EU003336</td>
</tr>
<tr>
<td>Opadometa TL-2013</td>
<td>KC848936</td>
<td>KC849142</td>
<td>KC849057</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Orisnome lorentzi</td>
<td>EU003267</td>
<td>EU003362</td>
<td>EU153181</td>
<td>EU003424</td>
<td>EU003305</td>
<td>EU003337</td>
</tr>
<tr>
<td>Orisnome megaloverpa</td>
<td></td>
<td></td>
<td>KM486203</td>
<td>KM486413</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachygnatha degeeri</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachygnatha ATOL GH31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pachygnatha ATOL GH34</td>
<td>KY015602</td>
<td>KY016150</td>
<td>KY016741</td>
<td>KY016740</td>
<td>KY017956</td>
<td>KY018457</td>
</tr>
<tr>
<td>Pararchaea alba</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinkfloydia harveii</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pinkfloydia rixi</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Taraire occulta, sp. nov. GH1133</td>
<td>MK841590</td>
<td>MK841586</td>
<td>MK841588</td>
<td>MK841584</td>
<td>MK840830</td>
<td></td>
</tr>
<tr>
<td>Taraire rufolineata, comb. nov.</td>
<td>MK841585</td>
<td>MK841583</td>
<td>MK840829</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tawhai arborea, comb. nov. GH1117</td>
<td>MK841585</td>
<td>MK841583</td>
<td>MK840829</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tawhai arborea, comb. nov. ATOL CG103</td>
<td>KY015597</td>
<td>KY016143</td>
<td>KY016734</td>
<td>KY017393</td>
<td>KY017950</td>
<td>KY018452</td>
</tr>
<tr>
<td>Tetragnatha acuta</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragnatha mandibulata</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ning electron microscopy (SEM) images were captured using the LEO 1430VP at the Department of Biological Sciences of the George Washington University (GWU). Specimens were critical point dried, sputter-coated in a gold-palladium alloy, and mounted as described in Álvarez-Padilla and Hormiga (2007). Male palp sclerite homologies and nomenclature follow Álvarez-Padilla and Hormiga (2011). All measurements are in millimeters.

Taxon sampling for this work includes 85 taxa from a number of previous works (Arnedo et al., 2004; Blackledge and Gillespie; 2004; Álvarez-Padilla et al., 2009; Blackledge et al., 2009; Dimitrov and Hormiga, 2011; Gregorič et al., 2015; Dimitrov et al.; 2017; Hormiga, 2017; Wheeler et al., 2017; Kallal and Hormiga, 2018), with novel sequences for the following taxa: *Tawhai arborea* (Urquhart, 1891), (GH1117), *Taraire oculta* (GH1133), and *Harlanethis lipscombae* (GH1144). These are summarized in Table 1. The majority of nanometine taxa with sequence data examined have been included in previous analyses, but are treated here for the first time taxonomically. For clarity, these are: *Meta rufolineata* GH 1136 = *Taraire rufolineata*; *Meta* sp. 01 GH1133 = *T. oculta*; *Allende* CG103 = *Tawhai arborea*; *Metainae* sp. GH0123 = *Nanometa tasmaniensis*; *Metainae* sp. GH0124 = *N. tasmaniensis*; *Metainae* sp. GH0128 = *N. dutrorum*; *Nanometa* sp. FAPDNA066 = *N. purpurapunctata*; *Nanometa* sp. FAPDNA067 = *N. trivittata*; *Nanometa* sp. GH1152 = *N. trivittata*; *Nanometa* sp. GH1137 = *N. forsteri*; *Nanometa* sp. GH1139 = *N. forsteri*; *Nanometa* sp. GH1172 = *N. lag-enifera*; *Dolichognatha* GH59 = *Iamarra multitheca*; and *Orsinome* cf. *vethi* FAPDNA052 = *O. lorentzi* Kulczyński, 1911.

Six genetic markers were amplified from leg tissue using the Qiagen DNEasy kit. These markers were the mitochondrial ribosomal markers 12S rRNA (~400 bp) and 16S rRNA (~550 bp), nuclear ribosomal markers 18S rRNA (~1800 bp) and 28S rRNA (~2700 bp), nuclear protein-coding gene histone H3 (~327 bp) and mitochondrial protein-coding gene cytochrome c oxidase subunit I (COI; 771 bp). PCR was completed using the Promega GoTaq kit. Amplified products were sent to Macrogen in Rockville, MD, for sequencing. Contigs were formed using Geneious 6.0.6, and then submitted to the NCBI BLAST database to check for contamination. Multiple sequence alignments were completed using MAFFT v. 7 (Katoh and Standley, 2013). Alignments of 12S and 16S were completed using L-INS-i, which is ideal for samples with a single conserved domain. For the more problematic 18S and 28S, the E-INS-i method was used. The protein-coding genes COI and H3 were aligned using MACSE

<table>
<thead>
<tr>
<th>Taxon</th>
<th>12S</th>
<th>16S</th>
<th>18S</th>
<th>28S</th>
<th>COI</th>
<th>H3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tetragnatha versicolor</td>
<td>EU003446</td>
<td>EU003394</td>
<td>EU153185</td>
<td>EU003308</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetragnatha sp. ATOL GH19</td>
<td>KY016151</td>
<td>KY016743</td>
<td>KY017958</td>
<td>KY018459</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylorida striata</td>
<td>EU003365</td>
<td>EU153186</td>
<td>EU003309</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylorida striata</td>
<td>KY016745</td>
<td>KY017403</td>
<td>KY018461</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylorida ventralis</td>
<td>KM486207</td>
<td>KM486417</td>
<td>KM486470</td>
<td>KM486526</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tylorida ventralis</td>
<td>KU836923</td>
<td>KU836889</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhinu manniaoyangi</td>
<td>MF668707</td>
<td>MF663662</td>
<td>MF668723</td>
<td>MF668715</td>
<td>MF674521</td>
<td>MF681794</td>
</tr>
</tbody>
</table>
v.2 (Ranwez et al., 2018), which can detect frameshifts and stop codons in alignments accounting for the translation codes. To account for missing data and poor alignment, trimAl v.1.2 was used with the gappyout setting (Capella-Gutiérrez et al., 2009).

The sequence data were divided a priori by marker, and for the protein-coding markers, further divided by codon position, resulting in 10 possible partitions. These were used as the partitions for RAxML v. 8 (Stamatakis, 2014), and were further tested using PartitionFinder 2 (Lanfear et al., 2017) for MrBayes (Ronquist and Huelsenbeck, 2003) using CIPRES (Miller et al., 2010). For partitioning for analysis using IQ-TREE (Nguyen et al., 2015), the best scheme was tested for using ModelFinder (Kalyaanamoorthy et al., 2017), a partitioning module integrated into IQ-TREE.

Maximum likelihood analysis in RAxML was conducted on CIPRES (Miller et al., 2010) using the GTRGAMMA model, with results evaluated using 1000 bootstrap pseudoreplicates. IQ-TREE results were evaluated with bootstrap support using UFBoot2 (Hoang et al., 2018). Relaxed-clock Bayesian analyses were conducted using the high-performance cluster Colonial One at GWU. We used the fossilised birth-death prior for undersampled lineages and the independent gamma rates model with broad speciation priors (exp[10]), extinction (b[1,1]) and fossilization (b[1,1]) following Zhang et al. (2016) and Pyron (2017). The tree age prior was set to 118–170 million years ago (Ma) based on analyses by Fernández et al. (2018). The clock rate prior is set by log-normalizing the estimated substitution rate of COI (Bidegaray-Batista and Arnedo, 2011). In total, 16 chains (four cold, 12 heated) were run for 100 million generations with the first 10% discarded as burn-in. Convergence was considered achieved when the standard deviation of split frequencies were below 0.01, estimated sample sizes (ESS) were above 200, and traces from log files examined in Tracer v.1.6 (Rambaut et al., 2014) had reached stationarity as indicated by a plateau of likelihood values. All trees were rooted using the taxon Pararchaea alba Forster, 1955, based on recent prior studies showing Malkaridae Davies, 1980, is a close relative of the tetragnathoids (Dimitrov et al., 2017; Wheeler et al., 2017; Fernández et al., 2018; Kallal et al., 2018).

Anatomical abbreviations: AC, aciniform gland spigot; AME, anterior median eyes; BEA, basal embolic apophysis; C, conductor; CDBP, cymbium dorso-basal process; CEBP, cymbial ecto-basal process; CD, copulatory duct; CEMP, cymbial ecto-median process; CO, copulatory opening; CY, cylindrical gland spigot; Cy, cymbium; E, embolus; FD, fertilization duct; FL, flagelliform gland spigot; MAP, major ampullate gland spigot; mAP, minor ampullate gland spigot; P, paracymbium; PI, piri-form gland spigot; PLE, posterior lateral eye; S, spermatheca; ST, subtegulum; T, tegulum.

Institutional abbreviations: AM, Australian Museum, Sydney, New South Wales, Australia; AMNH, American Museum of Natural History, New York; CMNZ, Canterbury Museum, Christchurch, New Zealand; GWU, the George Washington University, Washington, DC; MNHN, Muséum National d’Histoire Naturelle, Paris, France; MONZ, Museum of New Zealand Te Papa Tongarewa, New Zealand; NMV, National Museum of Victoria, Melbourne, Victoria, Australia; QM, Queensland Museum, Brisbane, Queensland, Australia; QVMAG, Queen Victoria Museum, Launceston, Tasmania, Australia; WAM, Western Australian Museum, Perth, Western Australia, Australia.

RESULTS

Taxonomy

Family Tetragnathidae Menge, 1866

Subfamily Nanometinae Forster and Forster, 1999

Type genus: Nanometa Simon, 1908.

Diagnosis: Male nanometines are diagnosed from other tetragnathids by their cymbial ecto-basal process shaped as relatively large spine
FIGURE 1. *Nanometa tasmaniensis* from Tasmania (Australia). **A.** Adult female in web with the typical resting posture (DSC_0244). **B.** Adult female (DSC_1599). **C.** Web of adult female (DSC_0304). **D.** Web of adult female (DSC_0249). **A, C, D:** Cradle Mountain National Park; **B:** near Marakoopa Cave (photos: G.H.).
FIGURE 6. *Iamarra multitheca*, adult female webs at the base of trees from Crater Lakes National Park, Queensland, Australia.

A. Finished web (DSC_8086).

B. Unfinished web (several turns of the nonsticky temporary spiral remain in the web; DSC_8070; photos: G.H.).
attached to the cymbium (e.g., figs. 7B, 8C, 10E, 23E). This process is smaller in Taraire (figs. 46D, 48E, F, 49C, 50C) and Chrysometa (Salgueiro-Sepúlveda and Álvarez-Padilla, 2018: 308, fig. 4A–C), long and flattened in Tawhai (figs. 52D, 54A–C), and bearing small teeth in Allende Álvarez-Padilla, 2007 (Álvarez-Padilla, 2007: 295, fig. 5C). The conductor originates from the center of the tegulum; it is shaped either as a flat disk in Nanometa (figs. 10C, F, 13C) or projects apically in Pinkfloydia (Dimi-
trov and Hormiga, 2011: 759, fig. 14A). Although the branched median tracheae (figs. 11D, 30D) and the booklung-coxae stridulatory apparatus (figs. 20F, 30C) are found in most nanometines, these two features are absent in Pinkfloydia. Female nanometines present two types of genital anatomy. One is found in Pink-
floydia, with a protruding epigynal plate (relative to Nanometa) bearing numerous pores opening on its ventral surface (Dimitrov and Hormiga, 2011: 761, fig. 15G) (similar to those of Tawhai), soft-walled spermathecae, and cop-
ulatory and fertilization ducts short, parallel, and well sclerotized (Dimitrov and Hormiga, 2011: 761, figs. 15F–H). The other is a flat epig-
ynal plate, without conspicuous pores and four receptacles, two of which are the spermathecae shared by all Nanometa as well as Taraire (figs. 9H, 11C, 13E, 47F, 48C, 50E).

Relationships: Putative morphological syn-
apomorphies of Nanometinae include the con-
ductor originating from the center of the tegulum, a flexible conductor-tegulum attach-
ment, tubular embolus, a basal ecto-basal pro-
cess shaped as relatively large spine; absence of macrosetae on the male palpal patella; presence of cheliceral denticles, and epigynal mating plug from secretions (Álvarez-Padilla and Hormiga, 2011; Dimitrov and Hormiga, 2011).

Composition: Two genera, Nanometa and Pinkfloydia. In favor of taxonomic stability, Taraire, Tawhai, Chrysometa, Allende and Metle-
cauge remain outside Nanometinae, because the nodes involving their placement lack strong consistent support (figs. 61–63).

Distribution: Nanometines are distributed in New Zealand, Australia, New Caledonia, and Papua New Guinea.

Genus Nanometa Simon, 1908
Nanometa Simon, 1908: 11. Type species: Nano-
meta gentilis Simon, 1908, by monotypy.
Eryciniolia Strand, 1912: 346. Type species:
Linyphia purpura-punctata Urquhart, 1889.
New synonymy.
Nediphya Marusik and Omelko, 2017. Type spe-
cies: Nediphya lehtineni Marusik and

Diagnosis: The internal epigynal structures of Nanometa are similar to those found in Taraire from New Zealand. The copulatory ducts of Nanometa are modified as membranous sacs and separated from the spermathecae, giving the appearance of four receptacles (figs. 9H, 11C, 13E). The accessory glands found in Nanometa and Taraire were used to homologize the spermathecae; however, these accessory glands were not discussed in the description of Nediphya (Marusik and Omelko, 2017). Nanometa species can have the eyes in two (fig. 9G, I) or three rows (Marusik and Omelko, 2017: 1–4, 6–8). The AME are slightly reduced in N. purpurapunctata (fig. 26G, I), but that arrangement differs considerably from Nanometa lehtineni in dorsal view, in which the PLE are enlarged (Marusik and Omelko, 2017: figs. 1–4). The posterior edge of the epigynum in Nanometa never extends below the epigastic furrow (fig. 10A, B), in contrast to Taraire, where the posterior edge extends beyond the epigastic furrow (fig. 47A, B). Nanometa cymbial processes can be easily homologized with those of Pinkfloydia, Taraire, and Tawhai, in addition to many tetragnathids, such as Chryso-
meta Simon, 1894, Meta C. L. Koch, 1836, Metel-
ina Chamberlin and Ivie, 1941, and Allende. The CEBP of Nanometa is basal to the paracymbium and usually bears one to several spines (figs. 7B, 8A, 10F, 23E, F), the CEMP is a cuticular fold distal to the CEBP either covered with normal
setae (figs. 7D, 10E), armed with modified structures as in *Pinkfloydia* (Dimitrov and Hormiga, 2011: figs. 8A, 13H) or as a tiny cuticular fold in *Nanometa lehtineni* (Marusik and Omelko, 2017: figs. 38, 39). *Nanometa* males can be separated from those of *Taraire, Tawhai*, and *Iamarra* by the absence of basal embolic apophyses (figs. 49A–C, 54A–C, 59C, D) and by the conductor formed by a flat coiled sclerite with sclerotized margins and translucent middle section (fig. 10C); this structure is folded in the latter two genera (figs. 46A, B, 49A, 50B). *Nanometa* males can be further separated from other tetragnathids by the presence of a stridulatory organ on the booklung cuticle that probably interacts with several cusps on the retrolateral surface of coxa IV (figs. 20F, 26F, 30C). The small size is no longer a useful diagnostic feature for *Nanometa* with the addition of some of these new species (2.7–9.5 mm).

Description: Female total length 2.3–8.8. Cephalothorax length 0.9–3.6, width 0.7–2.7. Carapace glabrous, background pale yellow to brown, cephalic region dark gray or brown, darker coloration tapering toward fovea, carapace margins outlined by the same pattern covering the cephalic region (figs. 9A, 18A, 36A). Fovea deep, triangular in shape or as a transverse line, carapace dorsal pits absent. Clypeus height 0.9–2.7 AME diameter, cuticle darker below median eyes and paler below lateral eyes (figs. 9G, 36I, J). AME slightly larger than PME; except in *N. purpurapunctata*, which has reduced AME. Lateral eyes juxtaposed on a tubercle (separated in *N. purpurapunctata*), one AME diameter apart from median eyes and approximately half that size. Chelicerae with few scattered setae, cuticle smooth, without ventral stridulatory ridges. Promargin with three teeth, retromargin with none to two, cheliceral denticles present. Endites longer than wide, dark brown, internal margins lighter in coloration. Labium rectangular, wider than long, colored as endites. Sternum yellowish to dark brown, trapezoidal in shape, wider between first two legs (figs. 9E, 18C, 21E). Abdomen dorsum covered with silvery guanine patches, background either brown or gray. Silvery guanine patches in small species cover the entire abdominal dorsum giving a shiny appearance; larger species' patches are isolated in spots giving a less shiny appearance when alive (figs. 9A, 14A, 36A). Venter with a central dark longitudinal rectangle flanked by two parallel lines of guanine patches (figs. 9E, 18C, 20E) (pattern less conspicuous in *Nanometa tasmaniensis*: fig. 21E). Lateral surfaces with either a complete longitudinal area of guanine patches, or this area interrupted with a reticulated pattern either dark gray or dark brown (figs. 9C, 26C, 36E). Booklung covers without stridulatory organs, except in *N. sarasini* (fig. 14H). Spinnerets pale gray to brown, lighter pattern on internal surfaces. Leg formula 1–2–4–3; femur I length 1.1–6.9; first pair considerably larger, all leg segments from pale yellow to dark brown, decorated with transverse dark-brown lines or dark spots, except in *N. fea* which has all legs entirely dark brown (fig. 15C). Femora with few setae, other segments increasingly hirsute after tibiae. Macrosetae few and present on all segments except tarsus. Epigynum flat, rectangular in shape and wider than long; copulatory openings visible in ventral view and located laterally on the epigynal plate (figs. 10A, B, 11A, B, 14D); size and shape of these openings are species diagnostic. Copulatory ducts modified as membranous sacs that connect to spermathecae via two longitudinal sclerotized ducts (fig. 13E). Spermathecae sclerotization variable, but differentiated from the “copulatory sacs” by a cluster of accessory gland ducts (figs. 20H, 23C, D). Fertilization ducts short, well sclerotized, and originating near the cluster of accessory gland ducts (figs. 13E, 23C).

Male same as female except as noted. Total length 2.0–8.1. Cephalothorax length 1.0–3.2, width 0.8–2.0. Carapace dorsal coloration lighter than female. Clypeus height 1.0–1.5 AME diameter. Chelicerae slightly longer and narrower apically, dorsal cuticle smooth, becoming rugose toward ectal and apical surfaces (figs. 9I, 14I, 26I); ventral cuticle without stridulatory organs (fig. 21H). Abdomen pattern as in female but

Composition: Nanometa gentilis, N. trivittata, N. lagenifera, N. sarasini, N. purpurapunctata, N. tasmaniensis, N. fea, N. tetracaena, N. dutrorum, N. forsteri, and N. dimitrovi (all presented in the current paper), as well as the taxa formerly included in Nediphya: Nanometa hippocomb nov., N. lehtineni comb. nov., N. lyleae comb. nov., and N. padillai comb. nov. Several small sized Nanometa species remain undescribed; the species diversity of the smaller species seems to exceed that of the larger (perhaps more conspicuous and frequently collected) taxa.

Systematics: The monophyly of Nanometa is supported by the following morphological synapomorphies: branched median tracheal trunks (figs. 11D, 30D); males with a sclerotized ridge on the anterior part of the booklung cover, presumably part of a stridulatory organ with a plectrum on the fourth coxae consisting of small teeth (figs. 20F, 30C) (Forster and Forster, 1999; Álvarez-Padilla and Hormiga, 2011); absence of embolic apophysis; conductor morphology as a curved, flattened translucent disk, with an enlarged and folded margin that covers the embolus distal part (figs. 10C, D, 11E, F, 13C); and copulatory ducts modified as sacs (figs. 9H, 11C, 13E). Kallal and Hormiga’s (2018) recent phylogenetic analysis included both large and small Nanometa species and supported the monophyly of the genus. These authors also found Pinkfloydia to be sister to a clade with remaining nanometines, with good support (Kallal and Hormiga, 2018). The analysis of Dimitrov et al. (2017) suggested that Taraire (see description below) is sister to Nanometinae but with low support. Our analysis elaborates on that latter work, focusing on Nanometa and other tetragnathid taxa found in Australia, New Zealand, New Caledonia, and Papua New Guinea.

Etymology: Simon did not explain this genus name, but very likely it means the dwarf Meta, a common etymological root in Tetragnathidae referencing the genus Meta.

Distribution: Nanometa species are distributed throughout Australasia, and many seem to be endemic to the islands included in this region. Nanometa trivittata and N. dimitrovi are found only in eastern Australia; N. tasmaniensis is found only in Tasmania; Nanometa tetracaena and N. dutrorum are found in Tasmania and mainland Australia (fig. 37). Nanometa sarasini is endemic to New Caledonia; N. purpurapunctata, N. lagenifera, and N. dimitrovi are found only in New Zealand; and species from Papua New Guinea include N. fea, N. hippocomb, N. lehtineni, N. lyleae and N. padillai.

Natural History: Nanometa species build horizontal or vertical orb webs with open hubs in humid habitats, sometimes close to or over water bodies, such as streams. When resting, the front legs are stretched forward in a characteristic posture while the rear legs are directed caudally (figs. 1A, C, D, 2B, C, 3C, D) (Forster and Forster, 1999; and all authors personal obs.). They occur in climates ranging from equatorial tropics to temperate forests.

Remarks: The genus Nanometa was erected by Simon (1908) to include a small tetragnathid species from Western Australia; until now, the genus has remained monotypic. In an unpublished manuscript, the late Ray F. Forster planned to describe at least 40 additional species from eastern Australia, New Zealand and New Caledonia among other Australasian islands, but he passed away before his work was finished. Urqu-
hart (1891: 1951) erected the genus Erycina to accommodate a single species (Erycina violacea Urquhart, 1891) unaware that he had already described two conspecifics under two different names (Linyphia purpurapunctata Urquhart, 1889, and Linyphia nitidulum Urquhart, 1889). Urquhart’s new genus name was preoccupied in Linyphia nitidulum 1889, and Urquhart, 1889). Names (described two conspecifics under two different Urquhart, 1891) unaware that he had already phylogy (2017) assessment that the genitalia of Nediphya, the genitalia morphology clearly suggests that this genus is part of the Nanometa clade. The eye arrangement of Nediphya in three rows with nonjuxtaposed lateral eyes is unusual in the genus Nanometa, but it should be noted that Nanometa purpurapunctata also has an atypical ocular arrangement (Bryant, 1933: fig. 33), with distantly separated lateral eyes. The eye pattern of the nanometine genus Pinkfloydia is also unusual, due to the enlarged PMEs on conspicuous tubercles (Dimitrov and Hormiga, 2011; Hormiga, 2017). Despite the unusual eyes, both Nediphya and Nanometapurpurapunctata have the typical genital morphology found in all Nanometa species.

The other peculiar character of Nepdiphya is the promarginal row of stiff setae on legs I and II (Marusik and Omelko, 2017). A similar arrangement can also be found in some Nanometa species (e.g., in N. purpurapunctata, N. dimitrovi, and N. tetracaena). Unfortunately, the tracheal morphology of Nediphya remains unknown, and the SEM image of the booklung cover of the only known adult male in the genus (Marusik and Omelko, 2017: fig. 22) does not reveal whether the typical sclerotized anterior margin is present (although the authors report the ridges as absent).

Three putative morphological synapomorphies support the inclusion of Nepdiphya in Nanometa. The first one is the absence in both genera of an embolic apophysis, which is present in the sister genus of Nanometa (Pinkfloydia) and in other tetragnathids such as Allende, Tawhai, Taraire, and Chrysometa. The second is the conductor morphology as a curved, flattened, translucent disk, with an enlarged and folded margin that covers the embolus distal part. Pinkfloydia has a conductor that resembles that of Allende and some Metainae have it not flattened, more sclerotized, and projected apically as it curves...
with the embolus (Álvarez-Padilla and Hormiga, 2011; Dimitrov and Hormiga, 2011). A third putative synapomorphy is the presence of copulatory ducts modified as sacs, which gives the internal female genitalia of Nanometa the appearance of having four chambers. In the absence of any evidence of synapomorphic support for a clade that would include all Nanometa species but not Nediphya, we synonymize the latter genus under the former.

Nanometa gentilis Simon, 1908

Figures 7–8, 37

Type material: Male, female, and immature syntypes. Australia Occidentale (Michnerd), specimen code 23887, deposited at the Muséum National d’Histoire Naturelle (examined and photographed). One juvenile syntype from Western Australia, Lion Hill (= Mt. Helena), -31.883, 116.2. W. Michaelsen and R. Hartmeyer, 10 November 1905. WAM T159.

Diagnosis: *Nanometa gentilis* shares with *N. forsteri* a long CEBP apophysis; however, in the Australian species the apophysis is shorter and its tip bent apically in dorsal view (fig. 8A–C). *Nanometa gentilis* also has a thin apophysis, not found in similar species, that subtends this larger apophysis (fig. 8A). Both species have a conductor that is C-shaped apically (similar to many other Nanometa species), however, in *N. gentilis* the basal apophysis is narrower and more acute than in *N. forsteri* (figs. 8A–C, 35A–C). Females of *N. gentilis* can be separated from other small Nanometa species by having circular and deep genital openings half of the epigynum width, located on the posterior half of the epigynal plate and separated by a rectangular septum, almost the same size as these openings (figs. 7E, 8D, E).

Description: Male (GH0114): Total length ca. 2.6 (cephalothorax and abdomen detached). Cephalothorax length 1.1, width 0.8. Clypeus height 1.0 AME diameter. Cephalothorax background pale yellow with pattern of pair of dark gray parallel lines that converge in the fovea and the carapace lateral edges. Endites and sternum color dark brown. Cheliceral promargin and retromargin with three and two teeth respectively, cheliceral denticles present. Abdomen dorsum background light gray, silvery guanine patches conspicuous and covering the anterior half of abdomen except medial line, lateral surface covered with guanine patches over dorsal half, ventral half with brown pattern, ventral surface with a central brown rectangle, flanked by a line of silvery guanine patches. Stridulatory organ formed by a cuticular ridge highly sclerotized on booklungs anterior edge, coxa IV retrolateral not examined with SEM. Femur I length 2.0. CEMP square in shape and ca. 1/4 of the cymbium length. Conductor distal apophyses surface smooth, tip C-shaped (figs. 7B, F, H, 8A–C).

Female (WAM T24691, T24689): Total length 4.0. Clypeus height approximately the same as the AME (measurements taken from Simon, 1908, description). Cephalothorax and abdomen coloration darker than in male (fig. 7A, C). Epigynum plate one third wider than long, anterior margin rounded (figs. 7E, 8D).

Remarks: Simon’s original description mentions that there were several specimens from other localities cited as follow: “Stat. 99, Lion Mill: Stat. 100, Lion Mill (propter aquae rivum); Stat. 150. Yallingup: Stat. lös, Broome Hill; Stat. 1 (57, South Albany.” We were able to locate only a juvenile from this location.

Material examined: N = 8. AUSTRALIA: Western Australia: Barrabup Road, W. of Nannup, 33° 58’ 59.88” S, 115° 45’ 0” E, M.S. Harvey & T.J. Deog, 9 January 1985, at temporary pool, 1 male, 1 juvenile. WAM T20877; 8 km W. of Kirup, 33° 43’ 59.88” S, 115° 49’ 0.12” E, M.S. Harvey & T.J. Deog, 9 January 1985, 1 juvenile, WAM T20879; Lake Poorginup, 34° 32’ 60” S, 116° 43’ 59.88” E, M.S. Harvey & J.M. Waldock, 24 April 1990, 1 male, WAM T24687; Mount Chudalup, 34° 45’ 59.76” S, 116° 4’ 59.88”, M.S. Harvey & J.M. Waldock, 5 January 1990, 1 male, 1 female, WAM...
T24688; Pemberton, youth hostel, 34° 23’ 60” S, 115° 58’ 0.12”, M.S. Harvey & J.M. Waldock, 5 January–5 February 1990, 1 male, 1 juvenile, WAM T24689; Torndirrup National Park, Quaranup Road, 35° 4’ 59.88”, 117° 55’ 0.12”, M.S. Harvey & J.M. Waldock, 24 April 1990, 1 female, WAM T24691; Western Australia, Two Road, Walpole-Nornalup National Park, 11.1 km W. Walpole, 34° 57’ 55.6″ S, 116° 36’ 23.8″ E, 30 m. G. Hormiga, L. Lopardo, 26 February 2006, eucalypt forest and open heathland, 1 male deposited at GWU (DNA voucher, GH0114).

Distribution: This species is endemic to southwestern Western Australia (fig. 37B).

Nanometa trivittata (Keyserling, 1887), comb. nov.
Figures 3, 9–13, 37

Type Material: Female holotype likely destroyed (R. Raven, personal commun.). Specimen originally deposited at the Museum Godeffroy (ceNAK), Sydney; from Mr. Bradley’s collection, Cape York. Drawings and description are considered accurate for specimen identification.

Diagnosis: The broad and caudally straight epigynal septum (figs. 9D, 13D), the shape of the conductor apex and CEBP (figs. 10C, F, 13A–C) are unique to this species. In addition, *Nanometa trivittata* can be differentiated from other large *Nanometa* species by the following unique combination of characters: epigynum flat, genital openings large and separated by a wide septum ca. one half epigynum width, posterior middle section excavated with a pit of variable depth (figs. 9B, D, 10A, B, 13D). Median plate trapezoidal with ventral side wider (fig. 10A). CEBP has one long apophysis with a round tip and a tiny sclerotized basal spine (fig. 10C, F). CEMP an arc-shaped cuticular ridge (fig. 10C–E), tip separated from the cymbium, hook shaped and bent ca. 90° (fig. 10E). Cymbium distal margin protruded and finger shaped (fig. 10E, F).

Description: Female (TEAU003) total length 5.6. Cephalothorax length 2.1, width 1.6. Clypeus height 0.84 AME diameter. Cephalothorax background yellow, dark brown on the cephalic area and carapace edges (fig. 9A, C). Eyes sub-equal in size, lateral smaller. Sternum brown (fig. 9E). Cheliceral promargin and retromargin with three and two teeth respectively, ca. five cheliceral denticles. Abdomen dorsum background dark gray, most guanine patches forming a medial line divided into four to six lateral lobes delineated by dark-brown chevrons, lateral areas of the abdomen dorsum with intercalated areas of guanine patches and dark-brown spots (fig. 9A). Lateral line of guanine patches complete (fig. 9C). Ultrastructure of abdomen, tracheae, and spinnerets (figs. 11D, 12A) observed with SEM. Abdomen cuticle flat reticulated; median tracheal trunks branched, lateral tracheae tube shaped (fig. 11D). ALS with one major ampullate, one nubbin, ca. 60 piriform, tartipores present (fig. 12B). PMS with one nubbin, one minor ampullate, one cylindrical, and three central aciniform spigots (fig. 12C). PLS araneoid triplet spigots tips clustered together, ca. 12 aciniform spigots distributed in two parallel rows, two cylindrical gland spigots at the periphery (fig.12D). Femur I length 3.36. Copulatory ducts modified as membranous sacs with smooth cuticle (figs. 9H, 11C, 13E), spermathecae and “copulatory sacs” sclerotization variable (fig. 9F, H) accessory duct glands clustered on the internal surfaces (fig. 11C). Description based on specimens (TEAU003, TEAU006, TEAU008, TEAU023, TEAU035).

Male (TEAU036): Same as female except as noted. Total length 4.23. Cephalothorax length 2.0, width 1.5. Clypeus 0.95 AME diameter (fig. 9I). Cephalothorax and abdomen coloration lighter than in female, sternum coloration yellow. Cheliceral denticles ca. six. Booklung covers and coxa IV surfaces examined with SEM. Stridulatory organ formed by a thin cuticular ridge on booklung anterior edge, opposite to several cuticular
FIGURE 7. *Nanometa gentilis* (male: WAM T24687; female: WAM T24689). A. Female, dorsal habitus. B. Male, ventral pedipalp. C. Female, ventral habitus. D. Male, dorsal pedipalp. E. Epigynum, ventral. F. Male, mesal pedipalp. G. Male, apical pedipalp. H. Male, ectal pedipalp. Scale bars: A, C, F, 0.5 mm; B, D, G, H, 0.25 mm; E, 0.2 mm.
ridges on coxa IV retrolateral surface. Femur I length 4.73. Basal apophysis of conductor tip slender and as long as the distal apophysis, distal apophysis thicker, heavily sclerotized and ending in a curved tip (figs. 11E, F, 13A–C). Description based on specimens (TEAU004, TEAU036).

Variation: Females (N = 7) total length 5.3–7.2, cephalothorax length 2.1–2.8, width 1.6–2.2. The depth of the median septum pit varies from almost flat to considerably deep. Males (N = 6) total length 3.4–6.5, cephalothorax length 2.0–2.8, width 1.6–2.2. CEBP apophysis tip varies in shape from a rounded spatula to a broken tip. Conductor tip apophyses vary in length and orientation angle.

Distribution: This species can be found in tropical, subtropical, and temperate regions of eastern Queensland, New South Wales, and Victoria (fig. 37C).

Natural History: Nanometra trivittata builds vertical (n = 2) or horizontal (n = 1) orb webs, with relatively few radii (13–14; n = 3) and few loosely spaced radii (fig. 3C, D). The hub is open.

Material examined: N = 144. Australia: New South Wales: 4 km W of Washpool State Forest, 29° 15′ 51.89″ S, 152° 22′ 41.53″ E, 684 m, 1 male, 1 immature, AM KS9334; Border Ranges National Park, Brindle Creek Rd, 28° 22′ 42.2″ S, 153° 4′ 9.4″ E, 713 m, G. Hormiga & N. Scharff, 22–23 March 2010, temperate rainforest, general collecting at night, 8 females, 2 males, 3 immatures (1 female illustrated by G. Hormiga, 1 female image and description voucher TEAU023, 1 female SEM voucher TEAU033, 1 female epigynum variation voucher TEAU006) GWU; Bow Cave, Jenolan, 33° 49′ 6.12″ S, 150° 1′ 19.4″ E, 844 m, G. Smith, 15 May 1988, 2 males, 1 female, AM KS19045; Jamberoo Mountain, 34° 39′ 6.34″ S, 150° 41′ 40.56″ E, 613 m, J. Noble, 23 December 1995, 1 female, AM KS53629; Kumar-Gai Chase National Park, McCarr’s Creek, 33° 37′ 53.62″ S, 151° 15′ 14.42″ E, 167 m, D.J. Bickel, 22 November 1986, 1 female, AM KS32217; Macquarie Pass National Park, Cascades Rainforest walk, 34° 34′ 1.4″ S, 150° 40′ 22.6″ E, 127 m, G. Hormiga & N. Scharff, 15 March 2010, 2 females, GWU; Macquarie Pass National Park, Clover Hill Rd, 34° 33′ 51.6″ S, 150° 38′ 59.3″ E, 214 m, G. Hormiga & N. Scharff, 16 March 2010, 1 female, sifted litter (image voucher TEAU008); New England National Park, Wright’s Lookout Trail, 30° 30′ 17.21″ S, 152° 24′ 9.82″ E, 1300 m, A. Newton & M. Thayer, 27 February–6 March 1980, Nothofagus moorei rainforest, tree ferns, pyrethrin fogging, 1 male, AMNH; Port Macquarie, Sea Acres Nature Reserve, 31° 28′ 0″ S, 152° 56′ 0″ E, 0–10 m, G. Williams, 26 January–13 February 1999, subtropical rainforest, malaise trap, 1 male, AM KS58338; Toonumbar National Park, Iron Pot Creek, Hanrahans Rest, 28° 28′ 0″ S, 152° 53′ 0″ E, 105 m, D. Bickel, 17–18 December 1998, rainforest, yellow pans, 1 male, AM KS59114; Werrimbe National Park, Cobcroft Park, 31° 13′ 0″ S, 152° 11′ 0″ E, 1010 m, D. Bickel, 17–18 November 1998, rainforest, sweeping, 1 male, AM KS59043; Blue Mountains National Park, Mount Wilson, -33.49882, 150.41474, 955 m, G. Hormiga & N. Scharff, 3 April 2014, GH1663. Queensland: 7 km SW Kenilworth, Yabba Creek Forest, 26° 37′ 7.77″ S, 152° 39′ 28.18″ E, 150 m, S. Peck & J. Peck, 18 June–15 August 1982, wet sclerophyll FIT, 2 females, AMNH; Atherton Tablelands, Dambulla National Park, Mob Creek Walk, 17° 10′ 15.8″ S, 145° 38′ 23.8″ E, 716 m, G. Hormiga, N. Scharff, & J. Pedersen, 14 February 2012, 1 female, 3 immatures (DNA voucher GH1152) GWU; Tully Falls National Park, S of Ravenshoe, Charmillien Creek, Wabunga Wayamba, 17° 42′ 0.8″ S, 145° 31′ 20.8″ E, 931 m, G. Hormiga, N. Scharff, & J. Pedersen, 12 February 2012, rainforest walkabout, general collecting 1 female (DNA voucher GH1150) GWU; Bellenden Ker Range, NQ Cable Tower 3, 17° 15′ 29.85″ S, 145° 50′ 7.83″ E, 1054 m, 17–24 October 1981, 1 female, QM S26353; Eungella, Schoolhouse, 21° 8′ 0″ S, 148° 29′ 0″ E, 701 m, R. Raven & J. Gallon, 11–15 February 1986, rainforest, general collection, 1 female, QM S7043; Eungella, Schoolhouse, 21° 8′ 0″ S, 148° 29′ 0″ E, 701 m, R. Raven & J. Gallon, 11–15 February 1986, rainforest, general collection, 2 males, 3 females,
6 immatures QM S7056; Mount Hypipamee National Park, The Crater, 17° 25’ 35.8” S, 145° 29’ 8.9” E, 910 m, D. Bickel, 13–27 April 1994, rainforest, pans collecting, 1 male, AM KS45010; Cedar Creek, via Samford, 27° 26’ 5.44” S, 152° 59’ 54.37” E, 24 m, R. Raven & J. Gallon, 5 February 1986, 1 male, 4 females, QM S58348; Lamington National Park, tracks nr. O’Reilly’s, 28° 14’ 5” S, 153° 8’ 13” E, 920 m, G. Hormiga, M. Kuntner, & F. Álvarez-Padilla, 13–17 April 2002, rainforest, 25 females, 3 male, 16 juveniles (SEM 2 females image voucher TEAU035, 1 female image voucher TEAU003; 1 male image voucher TEAU004; SEM male palp expanded image voucher TEAU036); Lamington National Park, near O’Reilly’s Guesthouse, Python Rock Lookout Trail, 28° 13’ 32.1” S, 153° 7’ 34.7” E, 844 m, G. Hormiga & N. Scharff, 23 April 2011, 1 male (measurements voucher FAPM008) GWU; Lamington National Park, road Canungra-O’Reilly’s, 28° 8’ 25” S, 153° 6’ 55” E, 750 m, G. Hormiga, M. Kuntner, F. Álvarez, 15–17 April 2002, dry

forest (SEM 1 male palp voucher TEAU034); Lamington National Park, 28° 14' 0" S, 153° 8’ 0" E, 900 m. T. Churchill 6 February 1991, Nothofagus forest, 1 female QM S25430. Victoria: Grey River, Otway Range, 38° 41’ 3.81" S, 143° 50’ 21.29" E, 15 m, D.F. King, 15 February 1974, rainforest, lattice web across river, 1 female, AMS KS20994; Warburton, Cement Ck, 37° 42’ 33.8" S, 145° 43’ 33.61" E, 670 m, A. Newton & M. Thayer, 16 January 1980, on and under rocks in stream, AMNH; Great Otway National Park, Maits Rest rainforest, 38° 45’ 17.85” S, 143° 33’ 17.69 E, 215 m, G. Hormiga & N. Scharff, 14–15 April 2014, 1 female, 2 juveniles, GWU; Drummer Rainforest, ca. 10 km E of Cann River, 37° 34’ 3.47” S, 149° 16’ 20.82” E, 145 m, G. Hormiga & N. Scharff, 7 –8 April 2014, 1 male, 1 female, 1 juvenile, GWU; Phillips Track, Youngs Creek crossing, 0.5 km N of Triplet Falls, 38° 40’ 00” S, 143° 28’ 60.0” E, G. Milledge, 17 March 17 January 1980, Nothofagus cunninghamii, etc, ex wet moss over forest stream, AMNH; Warburton, Cement Ck, 37° 42’ 33.8” S, 145° 43’ 33.61” E, 670 m, A. Newton & M. Thayer, 16 January 1980, on and under rocks in stream, AMNH; Great Otway National Park, Maits Rest rainforest, 38° 45’ 17.85” S, 143° 33’ 17.69 E, 215 m, G. Hormiga & N. Scharff, 14–15 April 2014, 1 female, 2 juveniles, GWU; Drummer Rainforest, ca. 10 km E of Cann River, 37° 34’ 3.47” S, 149° 16’ 20.82” E, 145 m, G. Hormiga & N. Scharff, 7 –8 April 2014, 1 male, 1 female, 1 juvenile, GWU; Phillips Track, Youngs Creek crossing, 0.5 km N of Triplet Falls, 38° 40’ 00” S, 143° 28’ 60.0” E, G. Milledge, 17 March

1991, *Nothofagus cunninghami* forest, direct search, NMV; Phillips Track, Young's Creek crossing, 0.5 km N of Triplet Falls, 38° 40' 00" S, 143° 28" 60.0" E, G. Milledge, 30 January 1995, *Nothofagus cunninghami* forest, direct search, 3 males, 10 females, 10 juveniles, NMV K-6320; Phillips Track, Young's Creek crossing, 0.5 km N of Triplet Falls, 38° 40' 00" S, 143° 28" 60.0" E, G. Milledge, 31 January 1995, *Nothofagus cunninghami* forest, direct search, 2 females, NMV K-6322; Cement Creek, A. Neboiss, 5 February 1995, 2 females, 2 juveniles, NMV; Strzelecki Ranges, Tarra-Bulga National Park, 0.5 km NNE of Tarra Valley Picnic Area, -38.4444444, 146.5416667. G. Milledge, 14 September 1995. *Nothofagus cunninghami* forest, direct search. 4 males, 2 females, 6 juveniles. NMV K-6325. Strzelecki Ranges, Tarra-Bulga National Park, 0.5 km NNE of Tarra Valley Picnic Area, -38° 26' 40" S, 146° 34' 20.0" E, G. Milledge, 10 January 1996, *Nothofagus cunninghami* forest, direct search, NMV K-6329; Strzelecki Ranges, Tarra-
FIGURE 13. *Nanometa trivititta* (TEAU023). A. Pedipalp, ventral. B. Pedipalp, ectal. C. Pedipalp, dorsal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–D, 0.5 mm; E, 0.2 mm.
Bulga National Park, 0.5 km NNE of Tarra Valley Picnic Area, 38° 26′ 40″, 146° 34′ 18″, G. Milledge, 5 March–7 May 1996, Nothofagus cunninghami forest, intercept trap, 1 male, NMV K-6327; Beech Forest. J. Clark, 11 January 1932, 1 male, NMV; Otway Ranges, Maits Rest, 10 km W of Apollo Bay, -38° 45′ 0″ S, 143° 34′ 0″ E, G. Milledge, 20 February 1992, Nothofagus cunninghami forest, direct search, NMV; Central Highlands, the Big Culvert, 2.5 km ENE of Mt. Observation, 37° 33′ 36″ S, 145° 52′ 15″ E, G. Milledge, 19 February 1996, Nothofagus cunninghami forest, direct search, 2 females, NMV K-6323; along Carisbrook Creek, approx. 6 miles inland, 19 January 1974, 1 female, NMV; Lind National Park, Olive Creek, A. Neboiss, 18 December 1976, 1 male, NMV; Falls Creek Ski Village, A. Neboiss, 26 January 1957, 1 male, 1 female, NMV; Lock Creek, 9 km W of Buldah, 37° 13′ 60″ S, 149° 3′ 0″ E, ANZSES Expedition, 9 January 1982. 1 male, NMV.

Nanometa sarasini (Berland, 1924), comb. nov.

Figures 14–16, 37

Orsinome sarasini Berland, 1924: 210, figs. 108–112.

Type material: Two female and four male syntypes from New Caledonia, Forêt du Mont Ignambi, au-dessus d’Oubatche, 800–1000 m. May 1911. We have not been able to locate the syntypes; other Berland types from that publication are deposited at the MNHN and Naturhistorisches Museum, Basel, Switzerland. Nonetheless, the drawings and description quality are enough to make accurate identifications.

Diagnosis: The long male pedipalpal tibia with about 10 trichobothria is unique for this species (fig. 16A–C). Additionally, N. sarasini can be differentiated from other large Nanometa species by the following combination of characters: epigynum rectangular at least three times wider than long, genital openings visible on ventral view and located at the sides of the epigynum, septum wide, at least three times its length (figs. 14B–D, 16D), spermathecae longer than wide, L-shaped, walls well sclerotized, copulatory “sacs” cuticle translucent and weakly sclerotized (figs. 14F, 16E). CEBP apophysis large, excavated at its base and continuous with the CEMP (figs. 15D, 16B). CEMP tip separated from the cymbium and L-shaped (fig. 16A–C).

Description: Female (TEAU011) total length 8.9. Cephalothorax length 3.6, width 2.7. Clypeus height 1.1 AME diameter. Cephalothorax background dark yellow, cephalic region and carapace margins dark brown (fig. 14A, C). Eyes subequal in size, lateral smaller. Sternum dark brown (fig. 14E). Cheliceral promargin and retromargin each with three teeth, ca. three cheliceral denticles. Abdomen dorsum background gray, ca. six to five pairs of guanine patches concentrated in the center and delineated by dark-brown patches (fig. 14A). Stridulatory organ present in females as a cuticular thick and highly sclerotized ridge on booklung anterior edge (fig. 14H). Lateral line of guanine patches diffuse and intercalated with dark-brown reticulated spots (fig. 14C). Femur I length 6.9. Copulatory ducts modified as membranous sacs with translucent cuticle and internal sclerotized apodemes, spermathecae longer than wide (figs. 14F, 16E), accessory duct glands not examined with SEM.

Male (TEAU012) same as female except as noted. Total length 6.9. Cephalothorax length 3.1, width 2.5. Clypeus 2.0 AME diameter (fig. 14I). Cephalothorax and abdomen lighter than in female. Cheliceral promargin and retromargin with three and one teeth respectively, denticles ca. 10. Stridulatory organ slightly longer, coxa IV retrolateral not examined with SEM. Femur I length 7.5. Conductor tip apophyses present (figs. 15A, F, H, I, 16A–C).
FIGURE 16. *Nanometa sarasini* (QM S25460). A. Pedipalp, ventral. B. Pedipalp, dorsal. C. Pedipalp, ectal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–D, 0.5 mm; E, 0.2 mm.
DISTRIBUTION: This is the only nanometine collected in New Caledonia (fig. 37C).

MATERIAL EXAMINED: $N = 8$. NEW CALEDONIA, Mt. Panié, 20° 35′ 0″ S, 164° 45′ 0″ E, 1300 m. R.J. Raven 4–14 December 1990, Agathis montana rainforest, QM S25460 (one female specimen removed for image voucher TEAU011); Mt. Panié, 20° 35′ 0″ S, 164° 45′ 0″ E, 1300 m. R.J. Raven 4–14 December 1990, Agathis montana rainforest, QM S25460 (one male specimen removed for image voucher TEAU012); Mt. Panié, 20° 35′ 0″ S, 164° 45′ 0″ E, 1300 m. R.J. Raven, T. Churchill, 2–3 November 1988, night collecting, 1 male, QM S34217.

\textbf{Nanometa fea}, sp. nov.

Figures 15, 17, 37

TYPE MATERIAL: Male holotype from Papua New Guinea, Morobe Prov. Mt. Kaindi, 7° 20′ 22.59″ S, 146° 40′ 41.69″ E, 2360 m. W. Shear, 17 November 1980, Moss Forest (AMNH).

DIAGNOSIS: Specimens of $N. fea$ can be differentiated from other large \textit{Nanometa} species by the following combination of characters: tibia I ventral surface with small and thick macrosetae (fig. 15C), CEBP with only one large sclerotized apophysis, CEMP a triangular cuticular projection, tip separated from the CEMP and located on the cymbium retro lateral edge (figs. 15G, 17A, B). Conductor tip hook shaped and heavily sclerotized (figs. 15E, G, I, 17A).
Description: Male (holotype, TEAU013) total length 4.1. Cephalothorax length 1.9, width 1.5. Clypeus height 1.6 AME diameter. Cuticle coloration dark brown (probably due to preservation artifacts) (fig. 15B). Eyes subequal in size, lateral smaller. Sternum dark brown. Cheliceral promargin and retromargin teeth not observed due to state of specimen preservation. Abdomen dorsum background dark yellow, without guanine patches and a posterior black band (fig. 15B). Stridulatory organ along the anterior booklung edge, coxa IV not observed with SEM. Male pedipalp as described in the diagnosis.

Etymology: The species epithet is taken from the feminine Spanish word for ugly, fea, and it refers to the poor preservation state of the only known specimen.

Distribution: Papua New Guinea (fig. 37C).

Material examined: No additional material examined.

Nanometa tetracaena, sp. nov.

Figures 18–19, 37

Type material: Male holotype and female allotype from Australia, Victoria, Strzelecki Ranges, Gunyah-Toora Rd., 2 km SSW of Gunyah, -38.541, 146.317, G. Milledge, 5 March 1995 (NMV K-6309); both types deposited at NMVM.

Diagnosis: Males of N. tetracaena are most likely to be confused with N. dutrorum. The CEMP of N. tetracaena (figs. 18D, 19C) does not bear the conspicuous spine found in N. dutrorum (figs. 31C, 33C), its conductor lacks the serrated denticles found in N. dutrorum (fig. 33A–C), and the embolic process is more sclerotized than that of N. dutrorum (fig. 31A, E). The CEBP of N. tetracaena has four apophyses, whereas N. dutrorum has three. The epigynum of N. tetracaena has a small carina separating the copulatory openings (figs. 18E, 19D), which is readily distinguishable from the shallow, M-shaped ridge on the epigynum of N. dutrorum.

Description: Female (NMV K-6295) total length 3.14. Cephalothorax length 1.09, width 0.85. Clypeus height 1.0 AME diameter. Cephalothorax background pale yellow, with light gray concentrated over ocular area, carapace lateral edges, and near margin of pars cephalica and pars thoracica (fig. 18A). Endites and sternum grayish yellow (fig. 18C). Cheliceral promargin and retromargin with three and two teeth, respectively, cheliceral denticles present. Abdomen dorsum background pale brown, silvery guanine patches covering all abdomen dorsal surface, except a medial line that extends the entire abdomen length (fig. 18A), lateral surface covered with guanine patches over dorsal half, ventral half with brown lines (fig. 18A, C), ventral surface brown intercalated with silvery guanine patches and with a central rectangle flanked by two lines (fig. 18C). Booklung stridulatory organ, tracheae and epigynum not observed with SEM. Femur I length 1.7.

Male (NMV K-6305) same as female except as noted. Total length 2.75. Cephalothorax length 1.15 width 0.94. Clypeus 1.5 AME diameter. Cephalothorax and abdomen coloration slightly darker than in female, silvery guanine patches less conspicuous and reduced into longitudinal stripes. Cheliceral promargin and retromargin with three and two teeth respectively. Cheliceral denticles present, stridulatory organ and coxa IV retrolateral surface not observed with SEM. Femur I length 2.6. Palp with conspicuous CEMP and CEBP with four pointed apophyses.

Variation: Females (N = 3) total length 2.82–3.27, cephalothorax length 1.13–1.27, width 0.84–0.94. Males (N = 3) total length 2.41–2.82, cephalothorax length 0.99–1.30, width 0.82–1.08.

Etymology: The specific epithet is from the Greek tetra (four) and acaena (spikes or thorns), referring to the four points on the CEBP.

Distribution: Nanometa tetracaena can be found in Tasmania, Victoria and southern New South Wales (fig. 37D).

Material examined: N = 88. AUSTRALIA, Victoria: Central Highlands, Acheron Gap, 6 km NE of Mt. Donna Buang, 37° 41’ 20.4” S, 145° 44’ 20.4” E, G. Milledge, 28 December 1995,
Nothofagus cunninghami forest, intercept trap, 3 males, 7 females, NMV K-6297; Central Highlands, Acheron Gap, 6 km NE of Mount Donna Buang, 37° 41′ 20.4″ S, 145° 44′ 20.4″ E, G. Milledge, 20 February 1996, direct search, 2 males, NMV K-6317; Central Highlands, Acheron Gap, 6 km NE of Mt. Donna Buang, 37° 41′ 20.4″ S, 145° 44′ 20.4″ E, G. Milledge, 28 December 1995–21 February 1996, direct search, 1 male, 3 females, NMV K-6298. Central Highlands, The Big Culvert, 2.5 km ENE of Mt. Observation, 37° 33′ 36″ S, 145° 52′ 15.6″ E, G. Milledge, 19 February 1996, Nothofagus cunninghami forest, direct search, 2 males, 3 females, NMV K-6302; Mount Donna Buang, A. Neboiss, 5 February 1995, 1 male, 1 female, NMV; Great Otway National Park, Triplet Falls track, 38° 40′ 12″ S, 143° 29′ 52.80″ E, G. Hormiga & N. Scharff, 312 m, 16 April 2014, sifted litter, GWU (GH1697); Otway Ranges, Aire Crossing Track, 0.5 km N of Aire R. Crossing, 38° 42′ 0″ S, 143° 28′ 58.8″ E, P. Lillywhite, 31 January 1995, Nothofagus cunninghami forest, sweep net, 2 males, 3 females, NMV K-6293; Otway Ranges, Beauchamp Falls, 38° 38′ 60″ S, 143° 35′ 60″ E, G. Milledge, 15 November 1994–31 January 1995, intercept trap, 1 male, 2 females, NMV K-6830; Otway Ranges, Beauchamp Falls, 38° 38′ 60″ S, 143° 35′ 60″ E, G. Milledge, 31 January 1995–11 April 1995, 1 male, 2 females, NMV K-6294; Otway Ranges, Young's Creek Rd, 0.4 km NW of Triplet Falls, 38° 40′ 1.2″ S, 143° 22′ 58.8″ E, G. Milledge, 31 January 1995, Eucalyptus sp. forest, intercept trap, 3 males, NMV K-6826; Otway Ranges, Young's Creek Rd, 0.4 km NW of Triplet Falls, 38° 40′ 1.2″ S, 143° 22′ 58.8″ E, G. Milledge, 31 January 1995, Eucalyptus sp. forest, direct search, 3 females, NMV K-6823; Otway Ranges, Young's Creek Rd, 0.4 km NW of Triplet Falls, 38° 40′ 1.2″ S, 143° 22′ 58.8″ E, P. Lillywhite, 5 females, NMV K-6295; Phillips Track, Young's Creek crossing, 0.5 km N of Triplet Falls, G. Milledge, 20 February 1992, Nothofagus cunninghami forest, direct search, 2 females, 3 males, NMV; Strzelecki Ranges, Gunyah-Toora Rd., 2 km SSW of Gunyah, 38° 32′ 31.2″ S, 146° 19′ 1.2″ E, G. Milledge, 5 March 1995, Nothofagus cunninghami forest, intercept trap, 1 male, 1 female, NMV K-6386; Strzelecki Ranges, Gunyah-Toora Rd., 2 km SSW of Gunyah, 38° 32′ 31.2″ S, 146° 19′ 1.2″ E, G. Milledge, 5 March 1995, Nothofagus cunninghami forest, intercept trap, 1 male, 1 female, NMV K-6308; Strzelecki Ranges, Gunyah-Toora Rd., 2 km SSW of Gunyah, 38° 32′ 31.2″ S, 146° 19′ 1.2″ E, G. Milledge, 5 March 1995, Nothofagus cunninghami forest, intercept trap, 2 males, 12 females, NMV K-6309; Strzelecki Ranges, Gunyah-Toora Rd., 2 km SSW of Gunyah, 38° 32′ 31.2″ S, 146° 19′ 1.2″ E, G. Milledge, 5 March 1995, Nothofagus cunninghami forest, intercept trap, 3 males, NMV K-6305; Strzelecki Ranges, Tarra-Bulga National Park, 0.5 km NNE of Tarra Valley Picnic Area, 38° 26′ 38.4″ S, 146° 32′ 31.2″ E, G. Milledge, 10 January 1996–5 March 1996, Nothofagus cunninghami forest, intercept trap, 2 females, NMV K-6314. Tasmania: Mt. Michael, rainforest between Mt. Michael and Little Mt. Michael, 41° 10′ 58.8″ S, 148° 0′ 0.0″ E, R. Coy, P. Lillywhite, & A.L. Yen, 20 February 1990, Nothofagus cunninghami forest, 2 males, 3 females, NMV; Pirates Rd., 2.5 km SW of Eaglehawk Neck, 43° 3′ 10.8″ S, 147° 54′ 18″ E, R. Coy, P. Lillywhite, & A.L. Yen, 13 February 1990, Nothofagus cunninghami forest, 2 males, 3 females, NMV. New South Wales: Blue Mountains National Park, Mt. Wilson, 33° 29′ 55.75″ S, 150° 24′ 53.063″ E, 955 m, G. Hormiga & N. Scharff, 3 April 2014, 1 male, 1 female (GH1662), GWU; Jamberoo Mountain, 1 January 1993, J. Noble, 1F, KS 54234. Mt. St. Leonard, 37° 33′ 59.76″ S, 145° 31′ 59.88″ E, M.S. Harvey & M.E. Blosfelds, June 4 1991, 1 male, WAM T23237; Jamberoo Mountain, 1 January 1993, J. Noble, 1F, KS 54234. Mt. St. Leonard, 37° 33′ 59.76″ S, 145° 31′ 59.88″ E, M.S. Harvey & M.E. Blosfelds, June 4 1991, many females, WAM T23193; Coranderrk Reserve, Healesville, -37.7166, 145.5500, P.J. Gullan, 1 male, WAM T24693. Strathgordon, 42° 46′ 1.2″ S, 146° 3′ 0.0″ E, 6 January 1998, L.J. Boutin, 2MM, 2FF, QVM 13:43581; Mt. Wedge Track, 42° 52′ 58.8″ S, 146° 18′ 0.0″ E, 7 January 1998, L.J. Boutin, 1FF, 1M,
Nanometa lagenifera (Urquhart, 1888),
comb. nov.

Figures 20, 22–24, 37

Linyphia lagenifera Urquhart, 1888: 111, pl. 11, fig. 4 (female type, not examined).

Tetragnatha herbigrada Urquhart, 1890: 253
(type not examined, depository unknown).

Orsinome australis Simon, 1899: 423 (type not examined). Synonymized by Bryant (1933).

Orsinome herbigrada (Urquhart, 1888) Dalmas, 1917: 369, fig. 38.

Orsinome lagenifera (Urquhart, 1888) Bryant, 1933: 21.

Orsiella lagenifera (Urquhart, 1888) Forster and Forster, 1999: 167, figs. 11.30b, 113.30c.

Type material: Female holotype of Linyphia lagenifera from New Zealand, Otago, P. Goyen, deposited at the Canterbury Museum, last revised by Dalmas (1917) and Bryant (1933). Drawings and descriptions by these two authors were accurate for specimen identification.

Diagnosis: Males of Nanometa lagenifera differ from those of other congeneric species in New Zealand by its longer embolus, which curves outside the margin of the tegulum in ventral view (fig. 22B), while in N. purpurapunctata and N. forsteri the embolus is much shorter and curves onto the surface of the tegulum. In ventral view (fig. 24D), females of N. lagenifera lack the longitudinal septum of N. purpurapunctata and N. forsteri. In addition, N. lagenifera can be differentiated from other large Nanometa species by the following combination of characters: epigynum rectangular flat sclerotized area (fig. 20B), genital openings opening posteriorly, shaped as two sclerotized grooves; median plate hourglass shaped (fig. 20D), genital opening septum narrow, approximately ¼ of the epigynum width (fig. 20B, D). CEBP bearing one small basal apophysis heavily sclerotized (figs. 22B, D, H; 23F, 24A–C). CEMP tip separated from the cymbium and gradually bending as long hook (figs. 22D, 24C). CEMP wider and shorter than in N. trivittata and not bent ventrally (figs. 22F, 23F).

Description: Female (TEAU009, TEAU024, TEAU040) total length 8.0. Cephalothorax length 3.0, width 2.4. Clypeus height 1.1 AME diameter. Cephalothorax yellow with dark-brown pattern (fig. 20A, C). Eyes subequal in size, lateral smaller (fig. 20G). Sternum dark brown (fig. 20E). Cheliceral promargin and retromargin with three and two teeth, respectively, ca. five cheliceral denticles. Abdomen dorsum background gray, guanine patches concentrated in the center, delineated by two lines of dark-brown chevrons and guanine patches (fig. 20A). Lateral line of guanine patches diffuse and intercalated with dark-brown reticulated spots (fig. 20C). Tracheae observed with SEM, median tracheal trunks branched, lateral tracheae tube shaped. Femur I length 5.9. Copulatory ducts modified as membranous sacs with translucent cuticle and internal sclerotized apodemes, spermathecae oval, translucent, and weakly sclerotized (figs. 20H, 24E), accessory duct glands clustered on puffball-shaped clusters (figs. 23D, 24E).

Male (TEAU010) as female except as noted. Total length 7.5. Cephalothorax length 2.1, width 2.4. Clypeus 1.2 AME diameter (fig. 20I). Cephalothorax and abdomen lighter than in female. Cheliceral promargin and retromargin with three and two teeth respectively, denticles ca. two. Stridulatory organ formed by a cuticular thick...
FIGURE 20. Nanometa lagenifera (female: TEAU009, TEAU024; male: TEAU010). A. Female, dorsal habitus. B. Epigynum, ventral. C. Female, lateral habitus. D. Epigynum, caudal. E. Female, ventral habitus. F. Stridulatory ridge anterior to booklung cover and sclerotized cuticle of coxa IV indicated with arrows. G. Female, frontal habitus. H. Epigynum, dorsal digested. I. Male, frontal habitus. Scale bars: A, C, E, 1.0 mm; B, D, F, H, 0.2 mm; G, I, 0.5 mm.
and highly sclerotized ridge on the booklung anterior edge, coxa IV retrolateral not examined with SEM. Femur I length 10.2. Basal apophysis of conductor tip absent, distal apophysis short and heavily sclerotized (figs. 22B, F, 24A–C).

Variation: Females \((N = 3)\) total length 7.0–8.0, cephalothorax length 2.8–3.0, width 2.1–2.4. Males \((N = 2)\) total length 7.4–8.0, cephalothorax length 2.1–3.3, width 2.4–2.5.

Distribution: This species can be found inhabiting the North and South islands of New Zealand (fig. 37E).

Natural History: Forster and Forster (1999: 167, fig. 11.30a) report that *Nanometa lagenifera* seems to be restricted to shady streams and describe their webs as "horizontal snares above the water surface, often anchored to stones or debris sticking out of the water.”

Remarks: Although *Tetragnatha arborea* Urquhart, 1891, is listed as a synonym of *Orsinome lagenifera* in the World Spider Catalog (2019), this species belongs to a different genus and is described below.

Material examined: \(N = 23\). NEW ZEALAND, South Island: Christchurch City Co., Banks Peninsula, Hinewai Reserve, Big Kanuka Trail. 43° 48′ 38″ S, 173° 1′ 15.6″ E, 508 m. G. Hormiga & N. Scharff, 3 March 2010, sifted leaf litter and mosses, 1 male, 1 female, 4 immatures GWU (measurement voucher FAPM010); Christchurch City Co., Banks Peninsula, Hinewai Reserve, Big Kanuka Trail. 43° 48′ 38″ S, 173° 1′ 15.6″ E, 508 m, G. Hormiga & N. Scharff, 3 March 2010, sifted leaf litter and mosses, 2 males, 1 female GWU (DNA voucher GH11172); Christchurch City Co., Banks Peninsula, Hinewai Reserve, Lower Valley Track, W of Otanerito Homestead, 43° 49′ 38.3″ S, 173° 2′ 40.1″ E, 71 m, G. Hormiga & N. Scharff, 3 March 2010, general collecting at night, 1 female GWU (image voucher TEAU009); Christchurch City Co., Banks Peninsula, Hinewai Reserve, Lower Valley Track, W of Otanerito Homestead, 43° 49′ 38.3″ S, 173° 2′ 40.1″ E, 71 m, G. Hormiga & N. Scharff, 3 March 2010, general collecting at night, 1 male GWU (image voucher TEAU010); Christchurch City Co., Banks Peninsula, Hinewai Reserve, Lower Valley Track, W of Otanerito Homestead, 43° 49′ 38.3″ S, 173° 2′ 40.1″ E, 71 m, G. Hormiga & N. Scharff, 3 March 2010, general collecting at night, 2 males, 4 females, 1 immature GWU (one female SEM voucher TEAU040 all adults paratypes); Christchurch City Co., Banks Peninsula, Hinewai Reserve, Lower Valley Track, W of Otanerito Homestead, 43° 49′ 38.3″ S, 173° 2′ 40.1″ E, 71 m, G. Hormiga & N. Scharff, 3 March 2010, general collecting at night, 1 male, 1 female, 3 immatures, GWU. North Island: Tararua Forest Park, Holdsworth Loop Trail, 40° 53′ 59.9″ S, 175° 27′ 56.5″ E, 338 m. G. Hormiga & N. Scharff, 14–15 April 2011, GWU (DNA voucher GH1113). 1 female GWU (image voucher TEAU024). 4 females, 12 immatures GWU; Waiorongomai Valley, Te Aroha, 37° 33′ 39.25″ S, 175° 45′ 27.81″ E, 72 m. D.J. Vulley, 15 May 1984, one male, one female QM S58329; Franz Josef Glacier, Alex Knob Track, -43.41082804: 170.17762, 182 m, G. Hormiga, G. Giribet, M. Arnedo, R. Fernández, F. Álvarez-Padilla, R.J. Kallal, C. Baker, 17.i.2016, 2 males GWU. Keleceys Bush Conservation Area, 44° 42′ 2.62″ S, 170° 57′ 57.84″ E, 151 m, G. Hormiga, G. Giribet, M. Arnedo, R. Fernández, F. Álvarez-Padilla, R.J. Kallal, C. Baker, 22 January 2016, 9 females, 3 juveniles GWU.

Nanometa tasmaniensis, sp. nov.

Figures 1, 21–23, 25, 37

Type material: Female holotype and male allotype from Australia, Tasmania, Cradle Mountain, Lake St. Clair National Park, near Waldheim cabins, 22.6 km 202° SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m. G. Hormiga, L. Lopardo 3–5 March 2006, *Nothofagus forest* (MCZ).
Diagnosis: Males of *N. tasmaniensis* can be diagnosed from other Australian species by the longer embolus, which curves outside the margin of the tegulum in ventral view (fig. 22A), combined with a long, heavy sclerotized and conical CEBP (fig. 22C). The distinctive lateral epigynal lobes are unique to this species (figs. 21B, 25D). In addition, *N. tasmaniensis* can be differentiated from other large *Nanometa* species by the following combination of characters: female genital openings n-shaped ca. 1/3 width of epigynum, septum narrow ca. 1/3 width of the genital opening, median plate triangular (figs. 21B, D, 23A arrow, 25D). Spermathecae spherical, cuticle weakly sclerotized, copulatory "sacs" cuticle translucent (figs. 21F, 23C, 25E). CEBP apophysis armed with three large spines of decreasing length toward the cymbium middle section (figs. 22C, 23E, 25C). CEMP flat cuticular ridge, tip blunt, separated from the cymbium and curved proximally (fig. 22E).

Description: Female (TEAU001, TEAU027, TEAU039) total length 8.1. Cephalothorax length 3.5, width 2.6. Clypeus height 1.6 AME diameter. Cephalothorax background yellow, dark-brown pattern reticulated (fig. 21A). Eyes subequal in size, lateral smaller (fig. 21G). Sternum color dark brown (fig. 21E). Chelicera promargin and retromargin with three and two teeth respectively, denticles ca. two. Stridulatory organ formed by a cuticular sclerotized ridge on booklung plate anterior edge and half its diameter, coxa IV retrolateral surface cuticle covered with scales. Femur I length 5.7. Conductor tip with two apophyses, basal apophysis curved, slender, and almost the same length of the distal apophysis, distal apophysis long and heavily sclerotized (figs. 22A, 23GH, 25A–C). Right pedipalp expanded: basal hematodocha largely distended and responsible for most of the movements, embolic division considerably less expansible. Conductor membranous section partially expanded. Embolus-tegulum membrane turned clockwise only (figs. 22A, 25A).

Variation: Females (*N* = 5) total length 6.2–8.3, cephalothorax length 2.8–3.5, width 2.0–2.6. Males (*N* = 6) total length 5.5–6.8, cephalothorax length 2.6–3.1, width 2.0–2.3.

Etymology: The species epithet is taken from the island of Tasmania.

Distribution: This species is endemic to Tasmania (fig. 37D).

Natural History: *Nanometa tasmaniensis* builds vertical orb webs in shaded, wet areas (figs. 1–2). At nighttime the spider can be found at the hub of the web with the typical resting posture (fig. 1A, C); in daytime it is hidden above the web. Juvenile webs are less densely woven, with fewer radii and spiral turns (fig. 2B).

Remarks: This species was misidentified by Álvarez-Padilla and Hormiga (2011) as *Orsinome sarasini* in that work.
FIGURE 21. *Nanometa tasmaniensis* (female: TEAU001, TEAU002; male: TEAU002). **A.** Female, dorsal habitus. **B.** Epigynum, ventral. **C.** Female, lateral habitus. **D.** Epigynum, caudal. **E.** Female, ventral habitus. **F.** Epigynum, dorsal digested. **G.** Female, frontal habitus. **H.** Male, chelicera and endites. **I.** Male, frontal habitus. Scale bars: A, C, E, 1.0 mm; B, D, F, H, 0.2 mm; G, I, 0.5 mm.
FIGURE 25. *Nanometa tasmaniensis* (TEAU007). A. Pedipalp, ventral. B. Pedipalp, ectal. C. Pedipalp, dorsal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–D, 0.5 mm; E, 0.2 mm.
Material examined: N = 278. AUSTRALIA: Tasmania, 10 km W Strathgordon, just north of Mt. Sprent, 42° 45′ 55.47″ S, 145° 58′ 12.41″ E, 290 m. N.I. Platnick, R.J. Raven, T. Churchill, 26 April 1987, 1 male, 2 females, 15 immatures AMNH; 5 km S Renison Bell, 41° 50′ 13.54″ S, 145° 24′ 31.13″ E, 180 m, N.I. Platnick, R.J. Raven, T. Churchill, 1 May 1987, pyrethrin fogging of mossy overhang, 2 males, 3 females, 12 immatures AMNH; 8 km SW of Waratah, 41° 29′ 0″ S, 145° 27′ 0″ E, 680 m. Bob Mesibov, 21 September 1990, grid reference CQ702064, 4 males, 3 females QVM 13:44510; 8 km SW of Waratah, 41° 29′ 0″ S, 145° 27′ 0″ E, 680 m. Bob Mesibov, 24 September 1990, CQ703065, QVM 13:44512; Mt. Wellington, nr. Hobart, 42° 53′ 43.5″ S, 147° 14′ 20.77″ E, 1321 m, N.I. Platnick, R.J. Raven, T. Churchill, 4 May 1987, pyrethrin knockdown, 1 male, 1 female, 1 immature, AMNH; Scotts Peak Dam Road, 15 km S Strathgordon Rd, just S Mt. Anne Track, 42° 59′ 0″ S, 146° 20′ 0″ E, 300 m, N.I. Platnick, R.J. Raven, & T. Churchill, 26 April 1987, Nothofagus wet rainforest, 2 females, AMNH; 4 km SE Weldborough, 41° 13′ 10.62″ S, 147° 56′ 25.88″ E, 450 m, A. Newton & M. Thayer, 12–14 February 1980, Nothofagus, etc. pyrethrin fogging tree ferns, 1 female, AMNH; 4 km SE Weldborough, 41° 13′ 10.62″ S, 147° 56′ 25.88″ E, 450 m, A. Newton & M. Thayer, 12–14 February 1980, fogging N. cunninghamii bark, 1 female, AMNH; 6 km east of Strahan, 42° 9′ 12.2″ S, 145° 24′ 6.9″ E, 247 m, N.I. Platnick, R.J. Raven, & T. Churchill, 30 April 1987, rainforest, pyrethrin fogging king fern, 1 male, AMNH; Betts Vale Mt. Wellington, 42° 53′ 46.08″ S, 147° 14′ 37.54″ E, 924 m, V.V. Hickman, 13 January 1953, 1 male, 2 immatures, AM KS28563; Bubs Hill, just W of Victoria Pass, Berlese, 42° 6′ 46.44″ S, 145° 46′ 14.94″ E, 488 m, N.I. Platnick, R.J. Raven, T. Churchill, 28 April 1987, leaf litter, 1 male, 3 immatures, AMNH; Cradle Mountain Camping Ground, 41° 41′ 32.13″ S, 145° 55′ 47.86″ E, 843 m, H.M. & P.K.D., 15 November 1989, Site 2. Tree 2, Myrtle, 1 female, QM S31813; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, Nothofagus forest, GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga, 3–5 March 2006, 1 male, 4 females, 1 immature, GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, 1 male, 1 female (measurement voucher FAPM002) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 male, GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female, GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, 1 male GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female, DNA voucher GH0123 GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga, 3–5 March 2006, 1 female, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 male, DNA voucher GH0124 GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 3 males, 2 females (DNA voucher GH0123) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga, 3–5 March 2006, 1 female, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female, G. Hormiga & L. Lopardo, 3–5 March 2006 (DNA voucher GH0124) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female, G. Hormiga field image photos 0229–0250/3.iii.2006 GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female (G. Hormiga field image photos 0302–0308/4.iii.2006) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38′ 28.5″ S, 145° 56′ 26.5″ E, 926 m, 1 immature
(G. Hormiga field image photos 0309–0316/4, iii.2006) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38’ 28.5” S, 145° 56’ 26.5” E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 3 males, 14 females (image voucher TEAU039) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38’ 28.5” S, 145° 56’ 26.5” E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 female (image voucher TEAU001) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38’ 28.5” S, 145° 56’ 26.5” E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 1 male (image voucher TEAU027) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38’ 28.5” S, 145° 56’ 26.5” E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 5 males, 5 females, 3 immatures (image voucher TEAU017) GWU; Cradle Mountain–Lake St. Clair National Park, near Waldheim cabins, 22.6 km SWS Moina, 41° 38’ 28.5” S, 145° 56’ 26.5” E, 926 m, G. Hormiga & L. Lopardo, 3–5 March 2006, 2 males, 9 females, 1 immature, AMNH; Florentine Valley, Punishment Pot cave (JF 373), 42° 34’ 55.35” S, 146° 28’ 41.6” E, 419 m, S. Eberhard, 1988, Twilight threshold, 1 female, AM KS20172; Florentine Vly, 29.2 km NWN Maydena, on Eleven Rd., 42° 35’ 26” S, 146° 25’ 16.85” E, 460 m, A. Newton & M. Thayer, 6 February 1980, pyrethrin fogging of Nothofagus cunninghamii, 1 female, 2 immatures, AMNH; Franklin R. Picnic ground 42° 19’ 0” S, 145° 47’ 0” E, 182 m, TC, RR, 29 April 1987, 3 females, 2 immatures, QM S44033; Ida Bay Caves IB 12A, 43° 27’ 45.42” S, 146° 50’ 27.27” E, 222 m, D. Rowe, 26 December 1989, 1 female, AM KS32018; Jacks track, 41° 19’ 3.93” S, 146° 5’ 17.95” E, 302 m, T. Churchill, 27 April 1987, night collecting, 1 female QM S33814; Kelly Basin, Franklin–Gordon Wild Rivers National Park, 26.4 km SSE Queenstown, 42° 18’ 35.7” S, 145° 36’ 56.9” E, 192 m, G. Hormiga & L. Lopardo, 10 March 2006, Nothofagus rainforest, 2 males, 13 immatures, GWU; Mount Michael, 41° 10’ 51.96” S, 148° 0’ 22.65” E, 778 m, H.M. & P.K.D., 26 November 1989, Tree 2, 1 female, 1 immature, QM S31807; Mount Victoria, 41° 20’ 14.42” S, 147° 50’ 15.59” E, 996 m, H.M. & P.K.D., 24 November 1989, Tree 2 hand collecting, 2 males, 3 immatures, QM S31679; Mt. Barrow Rd., 41° 21’ 58.72” S, 147° 25’ 47.01” E, 890 m, A. Newton & M. Thayer, 16 February 1980, Nothofagus cunninghamii bark pyrethrin spraying, 4 females AMNH. 15–17 February 1980, Nothofagus, etc. pyrethrin fogging Melaleuca bark, 1 female AMNH; Nothofagus, etc. pyrethrin fogging Eucalyptus bark, 1 female AMNH; Mt. Field National Park, Lake Dobson Rd., 42° 40’ 30.88” S, 146° 40’ 59.32” E, 610 m, A. Newton & M. Thayer, 4 February 1980, Nothofagus cunninghamii bark pyrethrin spraying, 1 male, 1 female, 7 immatures AMNH; Mt. Field National Park, Lake Dobson Rd., 42° 40’ 40.54” S, 146° 42’ 58.68” E, 240 m, A. Newton & M. Thayer, 30 January–5 February 1980, wet sclerophyll pyrethrin fogging of tree ferns, 1 female AMNH; Mt. Rufus. Tas. Park, 42° 7’ 56.57” S, 146° 7’ 1.58” E, 1099 m, TC, RR 29 April 1987, 4 females, 8 immatures, QM S44050; Myrtle Gully Cascades, 42° 53’ 46.91” S, 147° 16’ 10.34” E, 249 m, V.V. Hickman 24 February 1945, 1 male, 2 females AM KS28559; Nelson Falls, Franklin–Gordon Wild Rivers...
National Park, 15.0 km 89° E Queenstown, 42° 6′ 13.9″ S, 145° 44′ 10″ E, 338 m, G. Hormiga, L. Lopardo, 9 March 2006, *Nothofagus* rainforest, 2 males, 7 females (1 male, 1 female measurement voucher FAPM001) GWU; Nelson Falls, Franklin-Gordon Wild Rivers National Park, 15.0 km 89° E Queenstown, 42° 6′ 13.9″ S, 145° 44′ 10″ E, 338 m, G. Hormiga, L. Lopardo, 9 March 2006, *Nothofagus* rainforest, 11 females, GWU. 7 females, 5 immatures, GWU; Newall Creek, Franklin-Gordon Wild Rivers National Park, 9.57 km 177° S Queenstown, 42° 9′ 37.1″ S, 145° 32′ 20.1″ E, 159 m, G. Hormiga, L. Lopardo, 14 March 2006, *Nothofagus* rainforest, 1 male, 5 females, GWU; Newall Creek, Franklin-Gordon Wild Rivers National Park, 9.57 km 177° S Queenstown, 42° 9′ 37.1″ S, 145° 32′ 20.1″ E, 159 m, G. Hormiga, L. Lopardo, 14 March 2006, *Nothofagus* rainforest, 2 females, GWU. Cradle Mt. National Park, Waldheim Forest, 41° 23′ 24″ S, 145° 34′ 12″ E, 1000 m, R. Raven, J. Gallon, 31 January–4 February 1987, general and night collection 6 males, 23 females, 47 immatures (1 male, 1 female measurement voucher FAPM004) QM S5546; Cradle Mt. National Park, Waldheim Forest, 41° 23′ 24″ S, 145° 34′ 12″ E, 1000 m, R. Raven, J. Gallon, 31 January–4 February 1987, 1 male, 1 female, 8 immatures QM S5545; Cradle Mt. National Park, Waldheim Forest, 41° 23′ 24″ S, 145° 34′ 12″ E, 1000 m, R. Raven, J. Gallon, 31 January–4 February 1987, 1 male, 5 females, 7 immatures QM S5544; Lake St Clair, 42° 4′ 48″ S, 146° 6′ 0″ E, 700 m, R. Raven, J. Gallon, 29 30 January 1987, heath forest night collecting, 3 females, 2 immatures, QM S5609; Lake edge: under logs and rocks, 3 females, QM S5591; Lake St Clair, Fergies Paddock, 42° 4′ 48″ S, 145° 6′ 0″ E, 700 m, R. Raven, J. Gallon, 25–31 January 1987, heath forest, general collection, 1 female, 1 immature, QM S5654; Punishment Pot JF373 Florentine Valley Twilight Zone, 42° 35′ 5.38″ S, 146° 28′ 44.69″ E, 407 m, R. & S. Eberhard 23 November 1985, 1 male, 2 females, QM S30846; S. Eberhard, 14 September 1984, 1 male QM S30848; Rufus Canal, 13.5 km WNW Derwent Br., 42° 50′ 3.85″ S, 146° 4′ 21.24″ E, 800 m, A. Newton & M. Thayer, 26–28 January 1980, *Nothofagus* rainforest, pyrethrins fogging tree ferns, 1 male, AMNH; Scotts Peak Unnamed cave Cliffline cave site 4, 43° 0′ 17.64″ S, 146° 16′ 25.97″ E, 511 m, A. Clarke, 29 October 1988, 1 male, AM KS21369; St. Columbia Falls, 27.1 km 256° W St Helens, 41° 19′ 17.2″ S, 147° 55′ 33.7″ E, 335 m, G. Hormiga, L. Lopardo, 7 March 2006, *Eucalyptus/Casuarina* woodland, 1 male, 8 females, 9 immatures GWU; St. Columbia Falls, 27.1 km 256° W St Helens, 41° 19′ 17.2″ S, 147° 55′ 33.7″ E, 335 m, G. Hormiga, L. Lopardo, 7 March 2006, *Eucalyptus/Casaurina* woodland, 1 male, 5 females, GWU; Tasmania, Gordon River, 42° 29′ 37.93″ S, 145° 39′ 52.16″ E, 388 m, C.L. Howard, P.J. Suiter, 10 February 1976, 1 female, 1 immature AM KS27494; N. of Mt. Sprent via Strathgordon, 42° 47′ 24″ S, 145° 57′ 36″ E, 815 m, R. Raven, J. Gallon, 23–25 January 1987, Closed forest total spider collection, 10 females, 18 immatures QM S5710; The Gap, Florentine Rd. 15 km WNW Maydena, 42° 42′ 40.36″ S, 146° 28′ 56.41″ E, 600 m, A. Newton & M. Thayer 1 February 1980, *Nothofagus*, etc. pyrethrins fogging tree ferns, 1 female, AMNH; The Wet Caves Mole Creek (MC-144), 41° 35′ 53.94″ S, 146° 24′ 28.03″ E, 317 m, V.V. Hickman 28 April 1928, 6 females, 1 immature, AM KS28539; Track off Mt. Barrow Rd., 41° 21′ 36.98″ S, 147° 25′ 27.65″ E, 780 m, A. Newton & M. Thayer 15–17 February 1980, *Nothofagus*, pyrethrins fogging tree ferns, 1 male, 2 females, 2 immatures AMNH; W. Side Lake St. Clair, 42° 2′ 13.2″ S, 146° 7′ 53.06″ E, 750 m, A. Newton & M. Thayer 25–29 January 1980, *Nothofagus*, etc., pyrethrins fogging tree bark, 1 female AMNH; Weldonboro Pass Scenic Reserve, 28.6 km 280° WNW St Helens, 41° 12′ 59.8″ S, 147° 56′ 18.2″ E, 480 m, G. Hormiga, L. Lopardo, 6–7 March 2006, *Nothofagus* forest, 1 female, 1 immature GWU; Weldonboro Pass Scenic Reserve, 28.6 km 280° WNW St Helens, 41° 12′ 59.8″ S, 147° 56′ 18.2″ E, 480 m, G. Hormiga, L. Lopardo, 7 March 2006, 2 females GWU; Mt. Michael, rainforest between Mt. Michael and Little Mt. Michael, 41° 11′ 1′′ S 148° 00′ 0″, *Nothofagus cunninghamii* sample, R. Coy, P. Lillywhite, and A.L. Yen,
21 February 1990, 1 female NMV; Mt. Field National Park, Lyrebird Track, -42.67944, 146.67, 775 m, G. Hormiga & N. Scharff. 21 April 2014, 3 females, 1 juvenile. GWU. Dove River, below Lake Dove. A. Wells, 18 January 1976. 1 male, 1 female, NMV. Frodshams Pass, Scotts Peak Rd., 1.5 km W of Gordon River Rd., 42° 49′ 0″ S, 146° 22′ 20″ E, R. Coy, P. Lillywhite, & A.L. Yen, 15 February 1990, Nothofagus cunninghami forest. 1 male, NMV; Condominion Creek at Scotts Peak Road, A. Neboiss & K. Walker, 9 February 1988, 1 male, NMV; National Park, from Richea pandanifolia, 20 January 1964, V.V. Hickman, 2FF, KS 28643.

Nanometa purpurapunctata (Urquhart, 1889), comb. nov.

Figures 26–29, 37

Linyphia purpura-punctata Urquhart, 1889: 134 (syntypes deposited at the Canterbury Museum, not examined).

Linyphia nitidulum Urquhart, 1889: 136 (holotype not examined). Synonymized by Bryant, 1933.

Erycina violacea Urquhart, 1891: 151, pl. 21, figs. 4, 14, 17 (type not examined). Synonymized by Bryant, 1933.

Eryciniolia purpurapunctata (Urquhart, 1889) Strand, 1912: 346. Name preoccupied.

Eryciniola purpurapunctata (Urquhart, 1889) Bryant, 1933: 20, pl. 4, fig. 33, pl. 5, f. 49. Forster and Forster, 1999: 168, fig. 11.31.

Eryciniola purpureopunctata Forster, 1980: 281, fig. 19.

Type material: Female syntype from New Zealand, Wairongomai Gorge, deposited at the Canterbury Museum, revised by Dalmas (1917) and Bryant (1933).

Diagnosis: Nanometa purpurapunctata can be differentiated from other Nanometa species by its unique eye arrangement: eyes arranged in two lines, AME smaller than the ALE, lateral eyes separated one or more diameters apart (fig. 26G). The eyes of N. hippai, N. lehtineni, N. lylei and N. padillai also differ from the norm, but they are arranged in three rows with AME substantially smaller than both PME and PLE, lateral eyes not juxtaposed (fig. 26A, G). The male genital morphology of N. purpuropunctata follows the same organization as in the other Nanometa species, but it is unique in having a spherical tegulum considerably wider than the conductor-embolus complex (figs. 27A, 29A–C). Other diagnostic features include: CEBP with a small bifurcated spine (figs. 27C, 29A–C), CEMP short and hook shaped. Conductor with an extra apophysis on its median section (fig. 27B).

Description: Female (TEAU025, TEAU044, TEAU049) total length 3.7. Cephalothorax length 1.1, width 1.4. Clypeus height 2.7 AME diameter. Cephalothorax background pale-yellow pattern coloration dark gray (fig. 26A). Eyes in two rows, subequal in size except AME that are smaller (fig. 26G). Sternum pale yellow (fig. 26E). Cheliceral promargin and retromargin with three and one tooth respectively, ca. three cheliceral denticles. Abdomen dorsum background light gray, silvery guanine patches concentrated in the center around two lines of dark-gray spots (fig. 26A), lateral line of guanine patches complete and surrounded with dark-gray reticulated spots (fig. 26C). Booklung stridulatory organ absent. Tracheae observed with SEM, median trunks branched; lateral tracheae tube shaped. Femur I length 4.4. Copulatory ducts short and well sclerotized, spermathecae translucent and weakly sclerotized (figs. 26H, 29E), accessory duct glands opening acorn shaped as in leucaugines and not concentrated in clusters (fig. 28C).

Male (TEAU025, TEAU045) same as female except as noted. Total length 2.7. Cephalothorax length 1.7, width 1.1. Clypeus 2.0 AME diameter (fig. 26I). Cephalothorax and abdomen coloration slightly darker than in female. Cheliceral promargin and retromargin with three teeth and one tooth respectively, denticles ca. two. Stridulatory organ formed by a cuticular ridge highly sclerotized on the booklung
anterior edge (fig. 26F), coxa IV retrolateral not examined with SEM. Femur I length 6.0. Conductor tip with two distal apophyses (figs. 27B, 28E, F, 29A).

Variation: Males ($N = 2$) total length 2.6–2.7, cephalothorax length 1.1–1.7, width 0.9–1.0.

Distribution: This species is distributed on the North Island of New Zealand (fig. 37E).

Remarks: The specimen identified as “Nanometa sp. Voucher number FAPDNA066” by Álvarez-Padilla and Hormiga (2011) belongs to *N. purpurapunctata*.

Material examined: $N = 20$. NEW ZEALAND, North Island, Tararua Forest Park, Holdsworth, Loop Trail, 40° 53’ 59.9” S, 175° 27’ 56.5” E, 338 m, G. Hormiga & N. Scharff, 14–15 April 2011, 1 male, 1 female (DNA specimen voucher GH1114, 1 female for SEM image voucher TEAU049) GWU; Tongariro National Park, Lake Rotopounamu Walk, 39° 1’ 14.5” S, 175° 43’ 58.6” E, 744 m, G. Hormiga & N. Scharff, 17 April 2011, 9 males, 2 females, 7 immatures. (DNA specimen voucher GH1118) GWU; Tongariro National Park, Lake Rotopounamu Walk, 39°

FIGURE 27. *Nanometa purpurapunctata*, pedipalp (TEAU025). A. Ventral. B. Mesal, extra conductor apophysis indicated with arrow. C. Dorsal. D. Ectal. Scale bars: 0.2 mm.

Nanometa dimitrovi, sp. nov.

Figures 30–32, 36–37

“Nanometa sp.” Álvarez-Padilla and Hormiga, 2011: 802, figs. 87–90, 91A, C (SEMFA048).

Type material: Male holotype and female allotype from Australia, Queensland, Bellenden Ker Range, Summit TV Snt. 17° 15’ 59.69” S, 145° 50’ 1.42” S, 1560 m. Earthwatch/QLD Museum, 25–31 October 1981; 17 males and 25
FIGURE 29. *Nanometa purpurapunctata* (male: TEAU051; female: TEAU025). A. Pedipalp, ventral. B. Pedipalp, ectal. C. Pedipalp, dorsal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–D, 0.2 mm; E, 0.1 mm.
females paratypes from the same locality. Deposited at Queensland Museum (S27687).

Diagnosis: Males of *N. dimitrovi* can be differentiated from the other small *Nanometa* species by its short paracymbium and CEBP (figs. 30F, 31B, D, 32A–C), compared to the long, curved structure of *N. forsteri* (figs. 35B, 36H) and sclerotized, bifurcated *N. dutrorum* (fig. 33A). Females of *N. dimitrovi* can be separated from other small *Nanometa* species by having round and shallow genital openings approximately 1/4 of the epignyum width, located on the center of the epignyal plate and delineated by a “question mark-shaped” sclerotized margin (figs. 30A, 35D, 36F). These genital openings have a similar position in *N. forsteri*, but differ in the septum shape (fig. 36B).

Description: Female (S27683; SEM observations from Álvarez-Padilla and Hormiga, 2011: specimen code SEM-FAP048 from the paratype series S27687) total length 2.3. Cephalothorax length 0.9, width 0.7. Clypeus height 1.0 AME diameter. Cephalothorax background pale yellow light gray concentrated over the ocular area and the carapace lateral edges (fig. 36I). Endites and sternum dark gray. Cheliceral promargin and retromargin each with three teeth, cheliceral denticles present ca. three. Abdomen dorsum background light gray, silvery guanine patches covering all abdomen dorsal surface, except the central line that extends over only half the abdomen length, lateral surface covered with guanine patches over dorsal half, ventral half with dark-gray pattern, ventral surface dark gray with a central rectangle flanked by two lines of silvery guanine patches. Booklung stridulatory organ absent. Tracheae and epignyal observed with SEM, median tracheal trunks branched; lateral tracheae tubular (fig. 30D). ALS with one major ampullate, one nubbin, ca. 16 piriform, few tar-tipores present. PMS with one minor ampullate, one nubbin, and one cylindrical and two central aciniform. PLS with araneoid triplet spigots clustered together, ca. five aciniform distributed in one row between the two peripheral cylindrical gland spigots. The anterior cylindrical spigot is considerably thicker than the other. Femur I length 1.24. Copulatory ducts modified as membranous sacs with smooth cuticle, spermathecae round, accessory duct glands clustered on puff-ball-shaped clusters (figs. 30B, 32E).

Male same as female except as noted. Total length 2.3. Cephalothorax length 1.0 width 0.8. Clypeus 1.1 AME diameter (fig. 36J). Cephalothorax and abdomens coloration slightly darker than in female, silvery guanine patches less conspicuous. Cheliceral promargin and retromargin with three and two teeth respectively, cheliceral denticles present ca. three. Stridulatory organ formed by a cuticular ridge on the booklung edge, coxa IV retrolateral surface covered with small teeth opposite to the booklung ridge (fig. 30C). Femur I length 1.6. Pedipalp with small paracymbium and spikelike CEBP (figs. 30F, 31B, D). Conductor tip with one distal blunt apophysis and cuticle covered with scales (figs. 30E, GH, 31F, H).

Variation: Females (*N* = 3) total length 2.3–2.6, cephalothorax length 0.9–1.0, width 0.7–0.8. The epignyal septum and the epignyal plate vary on their width.

Etymology: The species epithet honors our colleague Dimitar S. Dimitrov for his many contributions to the study of spider systematics.

Distribution: *Nanometa dimitrovi* is found in tropical Queensland (fig. 37C).

Material examined: *N* = 47. AUSTRALIA, North East Queensland, Bellenden Ker Range, NQ Cable Tower 3, 17° 15’ 29.85″ S, 145° 50’, 17.83″ E, 1054 m, 17–24 October 1981. 1 female S26341 Queensland Museum. 1 female, 4 males S26352. 1 male, QM S27684; Bellenden Ker, Center Peak Summit, 17° 16’ 0″ S, 145° 51’ 0″ E, 1500 m, G.B. Monteith, 10 April 1979, 2 females, QM S27683; Bellenden Ker Range, Summit TV Station, 17° 15’ 59.69″ S, 145° 50’ 1.42″ E, 1560 m, Earthwatch/QLD Museum, 25–31 October 1981, 17 males 25 females, 42 immatures, QM S27687; Bellenden Ker Range, Summit TV Station, 17° 15’ 59.69″ S, 145° 50’ 1.42″ E, 1560 m, Earthwatch/QLD Museum, 25–31 October 1981,
Nanometa dutrorum, sp. nov.

Figures 31, 33, 36–37

Type material: Male holotype and female allotype from Australia, Tasmania, Weldborough Pass Scenic Reserve, 28.6 km 280° WNW St Helens, 41° 12′ 59.8″ S, 147° 56′ 18.2″ E, 480 m. G. Hormiga, L. Lopardo. 6–7 March 2006. Nothofagus forest (male specimen also DNA voucher GH0128), both types deposited at the Tasmanian Museum and Art Gallery (Hobart).

Diagnosis: Males of N. dutrorum can be differentiated from the other small Nanometa species by having the CEMP bearing a conspicuous apophysis (figs. 31C, 33C), and the CEBP having only two small apophyses and a square cymbial outgrowth (figs. 31A, 33A). The conductor tip is covered with several sclerotized denticles (figs. 31A, E, G, 33A–C) and the embolus is marginally serrated. Females of N. dutrorum can be separated from other small Nanometa species by having oval and shallow genital openings approximately 1/2 of the epigynum width, located at the center of the epigynal plate (figs. 33D, 36D). Genital opening rebordered by thick cuticular margin, septum discontinuous near the genital openings’ posterior margin (fig. 36D).

Description: Female (GH0128) total length 4.1. Cephalothorax length 1.4, width 1.2. Clypeus height 1.0 AME diameter. Cephalothorax background pale-yellow, with light-gray coloration concentrated over the ocular area and the carapace lateral edges. Endites and sternum color dark gray. Cheliceral promargin and retromargin each with three and two teeth, with ca. three cheliceral denticles. Abdomen dorsum background light gray, silvery guanine patches covering all abdomen dorsal surface, except the central line that extends all the abdomen length, lateral surface covered with guanine patches over dorsal half, ventral half with brown pattern, ventral surface brown intercalated with silvery guanine patches and with a central rectangle flanked by two lines. Booklung stridulatory organ absent. Tracheae and epigynum not observed with SEM. Femur I length 2.4. Copulatory openings small, shallow, ovate, forming Y-shaped pattern between them and cuticular margin. Copulatory duct enlarged, similar in size to spermathecae.

Male (GH0128) same as female except as noted. Total length 3.4. Cephalothorax length 1.5 width 1.3. Clypeus 1.1 AME diameter. Cephalothorax and abdomen coloration slightly darker than in female, silvery guanine patches less conspicuous. Cheliceral promargin and retromargin with three and two teeth respectively, with ca. three cheliceral denticles. Stridulatory organ formed by a cuticular ridge on the booklung anterior edge, coxa IV retrolateral surface not observed with SEM. Femur I length 3.0. Pedipalp with two-pronged CEBP (figs. 31A, 33A–C), paracymbium small (figs. 31A, 33A), CEMP with long apophysis (fig. 33B), conductor denticulated and embolus with marginal serration (figs. 31A, E, 33A–C).

Variation: Females (N = 2) total length 3.9–4.1, cephalothorax length 1.3–1.4, width 1.0–1.1.

Etymology: The species epithet is a patronym in honor of paleontologist John Thomas Dutro (1923–2010) and his wife Nancy P. Dutro, for their boundless generosity to G.H.

Distribution: This species is found in Tasmania and Victoria (fig. 37D).

Material examined: N = 3. AUSTRALIA, Tasmania, St. Columbia Falls, 27.1km 256° W St Helens, 41° 19′ 17.2″ S, 147° 55′ 33.7″ E, 335 m, G. Hormiga & L. Lopardo, 7 March 2006. Eucalyptus/Casuarina woodland, 1 male, GWU. Victoria, Mt. St. Leonard, 37° 34′ S, 145° 32′ E, 6 April 1991, M.S. Harvey, M.E. Blosfelds, NMV.
Nanometa forsteri, sp. nov.

Type material: Male holotype and female allotype from New Zealand, South Island, Arthur’s Pass National Park, Bridal Veil Track, 42° 55′ 49.6″ S, 171° 33′ 43.4″ E, 819 m. 4–5 February 2012, G. Hormiga, N. Scharff, J. Pedersen, voucher code GH1139. Both deposited at MONZ.

Diagnosis: *Nanometa forsteri* can be differentiated by the following combination of characters: eyes arranged in two lines and subequal in size, with juxtaposed lateral eyes (figs. 36A, G, H). Males of *N. forsteri* can be distinguished from other small *Nanometa* species by having the CEBP apophysis longer than this process (figs. 34A–D, 35A–C), and from *N. gentilis* in particular by having this apophysis with its tip bent posteriorly. Both *Nanometa forsteri* and *N. gentilis* have conductor tips C-shaped, but in *N. forsteri* the basal apophysis is wider and with a blunt tip (figs. 34A, B, 35A). Females of *N. forsteri* can be separated from other small *Nanometa* species by having ovate and deep genital openings, approximately half of the epigynum width, located on the posterior half of the epigynal plate and separated by a triangular septum, approximately half the size of these openings (figs. 35D, 36B).

Description: Female total length 3.3. Cephalothorax length 1.1, width 1.0. Clypeus height 1.0 AME diameter. Cephalothorax background pale yellow, light-gray coloration concentrated over the ocular area and the carapace lateral edges (fig. 36A). Endites and sternum color dark brown (fig. 36C). Cheliceral promargin and retromargin with three and two teeth respectively, cheliceral denticles present ca. 2. Abdomen dorsum background pale yellow, light-gray coloration concentrated over the ocular area and the carapace lateral edges (fig. 36A). Endites and sternum color dark brown (fig. 36C). Cheliceral promargin and retromargin with three and two teeth respectively, cheliceral denticles present ca. 2. Abdomen dorsum background pale yellow, light-gray coloration concentrated over the ocular area and the carapace lateral edges (fig. 36A). Femur I length 1.8.
FIGURE 35. *Nanometa forsteri*. (GH1139). A. Pedipalp, ventral. B. Pedipalp, ectal. C. Pedipalp, dorsal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–D, 0.2 mm; E, 0.1 mm.
Trachea, spinnerets not observed with SEM. Internal genital structures not observed. Epigynum typical of the genus (figs. 35D, E, 36B). Description based on specimen (GH1139).

Male same as female except as noted. Total length 2.4. Cephalothorax length 1.72 width 1.0. Clypeus 0.6 AME diameter. Cephalothorax and abdomen coloration lighter than in female, silver guanine patches less conspicuous. Cheliceral promargin and retromargin with three and two teeth respectively, cheliceral denticles present ca. 2. Stridulatory organ formed by a cuticular ridge highly sclerotized on the booklung anterior edge, coxa IV retrolateral not examined with SEM. Femur I length 1.8. CEBP tip with a small tooth (figs. 34D, 35A–C). CEMP square in shape and ca. 1/4 of the cymbium length (figs. 34B, 35C). Conductor distal apophyses surface smooth, tip C-shaped (figs. 34, 35A–C). Description based on specimen (GH1139).

VARIATION: Females (N = 2) total length 3.2–3.3, cephalothorax length 1.1–1.2, width 0.9–1.0.

ETYMOLOGY: The specific epithet is a patronym honoring Raymond R. Forster (1922–2000) and his contributions to arachnology. Among his innumerable discoveries, he is credited with being the first arachnologist to identify nanometines as a natural group.

 DISTRIBUTION: This species is found only on the New Zealand South Island (fig. 37E).

 NATURAL HISTORY: Nanometa forsteri builds small horizontal orb webs on the lower vegetation.

SUBFAMILY LEUCAUGINAE CAPORIACCO, 1955

Leucauginae Álvarez-Padilla et al., 2009: 138.
Type genus: Leucauge White, 1841.

Genus Harlanethis, gen. nov.

Figures 38–44, 60

TYPE SPECIES: Harlanethis lipscombae.

DIAGNOSIS: Harlanethis species are similar to other leucaugine genera in having femoral trichobothria and silver guanine abdominal patches (fig. 38A, C–D), but can be easily separated from other leucaugines by the presence some unique features among tetragnathids such a whitish, lightly sclerotized triangular epigynal protrusion (fig. 39C, D); two anterior longitudinal deep grooves on the epigynum venter (fig. 41A); and by having the epigynum almost the same size as the sternum (fig. 38C). Males are diagnosed by their massive conductor, which is wider than long and formed by three sclerites united by a membrane (figs. 39G, H, 41B, 42G, 43F). The embolus morphology is diagnostic, being very thick, tubular, slightly curved, and apically covered with small scales (figs. 41B, C, 42G). In males, the ventral cuticle of the paturon has four deep grooves intercalated with transverse ridges (figs. 38F, H, 41H).

DESCRIPTION: Female total length 3.99–5.25. Cephalothorax length 1.72–1.87, width 1.30–1.38. Carapace glabrous, pale yellow to light brown, slightly darker over the cephalic region and carapace margins. Fovea deep, triangular in shape, carapace dorsal pits absent (fig. 38A). Clypeus height 0.9 to 0.7 AME diameter, cuticle darker
FIGURE 38. Harlanethis weintrauborum (male: TEAU016; female: TEAU017). A. Female, dorsal habitus. B. Female, frontal habitus. C. Female, ventral habitus. D. Female, lateral habitus. E. Male, frontal habitus. F. Female, chelicera ventral view. G. Male, frontal view of endites with stridulating cuticle highlighted with arrow. H. Male, chelicerae ventral view with striae highlighted with arrow. Scale bars: A, C, D, 1 mm; B, –E, 0.5 mm; F–H, 0.2 mm.
under the median eyes and paler under the lateral eyes (figs. 38B). AME slightly larger than PME. Lateral eyes on the same tubercle, one AME diameter apart from median eyes and approximately half that size. Chelicerae with few scattered setae, cuticle smooth, without ventral stridulatory ridges (fig. 38F), with three promarginal and two retro-marginal teeth (figs. 38B, F). Endites longer than wide, dark brown, internal margins pale yellow. Labium rectangular, wider than long, colored as the endites. Sternum dark brown, trapezoidal in shape, wider between the first two legs (fig. 38C). Abdomen dorsally covered with silvery guanine patches over a background pale to dark gray, with a dark median longitudinal line, lateral surfaces with diffused dark vertical stripes; ventrally dark brown, with guanine patches concentrated in four spots forming a central rectangle (figs. 38A, C–D). Booklung covers without stridulatory striae. Spinnerets pale yellow to brown, lighter pattern on internal surfaces. Leg formula 1-2-4-3. Femur I length 2.96–3.67. First pair considerably larger, femora and tibia brown-yellow with dark-brown annuli. Second pair femora and tibiae pale yellow without annulation. Metatarsi and tarsi dark yellow. All leg segments dark brown apically. Femora III and IV with ca. six prolateral trichobothria, distributed around the base, flagellum smooth (fig. 41G). Femora with few setae, other segments hirsute increasing after tibiae. All leg segments with few macrosetae, except tarsi, which are glabrous. Epigynum: trapezoidal shape wider than long. Copulatory openings medially located on both sides of posterior margin of triangular epigynal protrusion (fig. 41A, D). Spermathecae membranous, internal surfaces covered with accessory gland ducts (figs. 39E, F, 41E). Copulatory ducts short, enclosing the spermathecal entrance, both copulatory ducts converging into a common sclerotized base where the fertilization ducts also originate (figs. 39E, F, 44C–D). Fertilization ducts short, straight.

Male same as female except as noted. Total length 3.86–4.15. Cephalothorax length 1.71–1.76, width 1.35–1.46. Carapace dorsal coloration white to dark yellow. Clypeus height 0.83–0.91 AME diameter, pale yellow. Sternum pale yellow to brown. Chelicerae pale to dark brown, slightly longer and narrower, dorsal cuticle rugose, setal bases enlarged and more abundant at base; ectal cuticle less rugose toward the ventral and apical surfaces (fig. 38E); ventral cuticle with four deep grooves intercalated with transverse ridges (figs. 38H, 41H); with three promarginal and three to four retromarginal teeth (fig. 38E, H). Endites brown; dorsal cuticle without obvious complementary structures to the cheliceral striae (fig. 38G). Abdominal pattern as in female, but lighter in coloration. Femur I length 3.65–4.17. Legs pale yellow, annulation less pronounced than in female. Pedipalpal tibia triangular, as long as wide, apical margin wider. CDBP shaped as a long curved ridge with its basal portion forming a small triangular spur (figs. 40C–F, 41F, 42C). Paracymbium cylindrical, almost glabrous, slightly curved, apically swollen, its cymbium attachment membranous (fig. 38G, H). Embolus very thick, tubular, slightly curved and apically covered with small scales (fig. 41B, C).

Composition: This new genus includes two species: Harlanethis lipscombei and H. weintrauborum.

Systematics: This genus is placed in the subfamily Leucauginae (figs. 61–63), nested in a clade including Mesida Kulczyński, 1911, Tylorida Simon, 1894, and Orsinome. The monophyly of Harlanethis is supported by the following morphological synapomorphies: massive highly sclerotized conductor, wider than long and formed by three sclerites united by a membrane (figs. 38G, H, 42E, G) and the large lightly sclerotized triangular epigynal protrusion with two anterior longitudinal deep grooves on the epigynum venter (fig. 39A–D).

Etymology: This new genus is named by the third author (G.H.) to honor Wilbur B. (Bill) Harlan, whose endowment to the Department Biological Sciences of the George Washington University has empowered numerous young biologists scholarly work. This name is compounded with nethis, the Greek work for spinster, i.e., a woman who
spins. *Harlanethis* is an undecinable proper name and feminine in gender.

Distribution: This genus can be found in northeastern Queensland (fig. 60).

Natural History: *Harlanethis* appears to be endemic to the tropical northern zone of Queensland.

Harlanethis lipscombae, sp. nov.

Figures 39–42, 44, 60

Type material: Female holotype from Queensland, Mt. Halifax, SE Ridge, 19° 7’ S, 146° 23’ E. 950 m. 19–21 March 1991, G.B. Monteith & D. Cook, Male allotype from NE Queensland, Millaa Millaa Falls, 17° 7” S, 145° 36’ E. 834 m. 23–24 November 1994, G.B. Monteith. Both deposited at QM.

Diagnosis: *Harlanethis lipscombae* is very similar to *H. weintrauborum*, but both sexes can be consistently distinguished from the latter species by details of the genitalia. In lateral view, the anterior margin of the triangular epigynal protrusion of *H. lipscombae* extends beyond the longitudinal grooves (figs. 39A, 44E), while in *H. weintrauborum* this anterior protrusion ends contiguous with the grooves’ edges (figs. 39B, 44G). In lateral view, the dorsal cymbial ridge of *H. lipscombae* is more pronounced (figs. 40E, 42D) than that of *H. weintrauborum*, the basal conductor sclerite ectal margin is projected ventrally in *H. lipscombae* (figs. 40E, 42B), in contrast with the flat basal conductor sclerite present in *H. weintrauborum*, and basal cymbial apophysis tip more acute (fig. 42C, F) than its homolog in *H. weintrauborum* (fig. 43C, E), although in some specimens this last difference is very subtle.

Description: Female (TEAU019, TEAU037, TEAU038, TEAU048) total length 5.13. Cephalothorax length 1.67, width 1.38. Clypeus height 0.80 AME diameter. Ultrastructure of abdomen and spinnerets observed with SEM. Abdomen cuticle flat reticulated; all tracheae tubular, median tracheae restricted to abdomen, tracheal atrium glands absent. ALS with one major ampullate, one nubbin, ca. 60 piriform, tardi-pores numerous. PMS with one minor ampul-late, one nubbin, and one cylindrical and three central aciniform spigots. PLS araneoid tripled clustered together at the base, aggregate and flagelliform tips separated, ca. 14 aciniform spig-ots distributed in two parallel rows, with two cylindrical gland spigots at the periphery. Femur I length 2.96. Femora III and IV with ca. six prolateral trichobothria, distributed at the base, flagellum smooth. Spermathecae membran-ous (figs. 39E, 44C), internal surfaces covered with accessory gland ducts, duct bases acorn shaped (fig. 41E).

Male same as female except as noted. Total length 3.86. Cephalothorax length 1.71, width 1.35. Carapace dorsal coloration white to pale yellow. Clypeus 0.83 AME diameter, pale yellow. Sternum pale yellow. Femur I length 3.65. Right pedipalp expanded. Basal hematodocha highly expanded, bulb sclerites connected by membranous attachments that moved only slightly. Conductor attachment to the tegulum membranous. Conductor divided in three sclerites united by membranous joints (fig. 42E, G). The most basal conductor sclerite is roughly rectangular, with the other conductor sclerites originating at its apical surface. Apical conductor sclerites are lamelliform and longer than wide (figs. 39G, H, 42A, B). These two sclerites flank the embolus in unexpanded palps (figs. 41B, C, 43F), but this configuration changes after expansion freeing the embolus from this groove (fig. 42G). Description based on specimen (TEAU038).

Variation: Females (*N* = 2) total length 4.77–5.13, cephalothorax length 1.67–1.78, width 1.31–1.38. The size of the triangular protrusion and the separation between the longitudinal grooves vary as observed in ventral view. The shape of the dorsal basal process tip varies from sharper to more blunt.

Etymology: This species is named by the third author (G.H.) to honor protist systematist Diana Lipscomb, colleague and friend of the authors.

Distribution: This species can be found in northeast Queensland, south of Cairns (fig. 60A).

Harlanethis weintrauborum, sp. nov.

Figures 38–40, 43–44, 60

Type material: Female holotype (AM KS129856) and male allotype (AM KS129856) from Queensland, Thornton Peak, North of Daintree, 16° 10' S, 145° 22' E, 610 m. M. Gray, November 1975, rainforest site 39 (AM). Deposited at AM.

Diagnosis: Females of *H. weintrauborum*, can be distinguished from *H. lipscombae* by the absence of the triangular anterior margin protrusion as observed in lateral view (fig. 39B). In males of *H. weintrauborum* the dorsal cymbial ridge, in lateral view, is less pronounced than that of *H. lipscombae* (figs. 40F, 43D), the basal conductor sclerite ectal margin is flat (figs. 40F, 43B), in contrast to the projected conductor ectal margin found in *H. lipscombae*, and basal cymbial apophysis tip blunt (fig. 43E), in contrast to the acute tip found in *H. lipscombae*.

Description: Female (TEAU017, TEAU050) total length 4.91. Cephalothorax length 1.87, width 1.38. Clypeus height 0.91 AME diameter. Femur I length 3.66. Cephalothorax dark yellow, sternum light brown. Ultrastructure not examined with SEM. Epigynum as in figures: 39B, D; 44B, D, G.

Male (TEAU016) as female except as noted. Total length 4.15. Cephalothorax length 1.76, width 1.50. Clypeus 0.91 AME diameter. Femur I length 3.65. Palp as in figures: 40B, D, F; 44B, D, G.

Variation: Females (\(N = 2 \)) total length 4.00–4.91, cephalothorax length 1.72–1.89, width 1.30–1.31. The size of the triangular epigynal protrusion and the separation between the longitudinal grooves varies (this is best observed in ventral view).

Etymology: This species is named by the third author (G.H.) to honor Robert L. and Frances Weintraub, whose endowment to the Department of Biological Sciences at the George Washington University for the study of systematics has led to the discovery of myriad spiders.

Distribution: This species can be found in northeastern Queensland, southwest of Cape Tribulation (fig. 60A).

Material examined: \(N = 25 \). AUSTRALIA: Queensland, East Normanby R, 15° 53’ S, 145° 12’ E, 540 m, 31 December 1990, 1 female, QM S25115; Mt. Boolbun South, 15° 57’ S, 145° 8’ E, 850–1000 m, Monteith, Cook & Rob-
erts, 4–6 November 1995, 1 female, QM S31752; Mt. Boolbun South, 15° 57′ S, 145° 8′ E, 850–1000 m, Monteith, Cook & Roberts, 4–6 November 1995, 2 females S41030; Thornton Peak, North of Daintree, N. 16° 10′ S, 145° 22′ E, 610 m, M. Gray, November 1975, rainforest site 39, 1 male, 6 females, 10 immatures (1 female image voucher TEAU016, 1 epigynum cleared voucher TEAU050, 1 male image voucher TEAU017, type specimens extracted from this series); female holotype and male allotype extracted from this specimen series) AM KS129856; Windsor Tableland, Barracks, 16° 16′ S, 145° 3’ E, 1060 m. Monteith, Cook & Burwell, 23–24 November 1997, 1 male, QM S43978.

FIGURE 45. Taraire rufolineata (TEAU029; A–E) and T. oculta (TEAU042; F). A. Female, dorsal habitus. B. Female, frontal habitus. C. Female, ventral habitus. D. Male, frontal habitus. E. Female, lateral habitus. F. Pedipalp, apical (expanded). Scale bars: A–D, 1.0 mm; F, 0.2 mm.
Incetae Subfamiliae

Genus *Taraire*, gen. nov.

Figures 45–50, 55

Type species: *Linyphia rufolineata* Urquhart, 1889.

Diagnosis: *Taraire* species resemble the large species of *Nanometa* in their internal female reproductive anatomy (fig. 48C, D), and the monotypic *Tawhai* by the projected epigynal plate (figs. 47A, B, 51D) and male cymbial processes (figs. 46A–H, 52A–D). However, *Taraire* females can be consistently separated from *Nanometa* by having the posterior edge of the epigynum extending below the epigastric furrow (fig. 47A, B). *Tawhai arborea* differs from *Taraire* species in that the former genus has a protruded epigynum with short and sclerotized copulatory ducts (figs. 51H, 54F); in *Taraire* the copulatory ducts are much longer (fig. 49E) and inside membranous sacks (fig. 47E, F). Males of *Taraire*
can be separated from those of Nanometa by the presence of one large heavily sclerotized embolic apophysis attached to the embolic base through a membrane (figs. 45F, 46A, B, 49A–C, 50A–C). In Taraire the tegulum is basally displaced and cup shaped (figs. 46A, B, 49A, B, 50A, B), unlike the donut-shaped and dorsoventrally compressed tegulum of Nanometa (figs. 10C, F, 13A, B). Taraire species lack the booklung plate stridulatory organs found in Nanometa. In Taraire the conductor is considerably larger than the embolic apophysis and completely encloses a filiform embolus (fig. 45F), while in Tawhai the conductor is small and rectangular in shape, and partially enclosing a thicker embolus (fig. 52A, C).

DESCRIPTION: Female total length 4.95–5.57. Cephalothorax length 2.35–2.87, width 1.85–2.27. Carapace glabrous, pale yellow or yellow, dark brown only over the cephalic region. Fovea deep, transversal, carapace dorsal pits absent (fig. 45A). Clypeus height 0.9 to 1.3 AME diameter, cuticle darker around the eyes and over the cheliceral boss (fig. 45B). Anterior eyes slightly larger than posterior eyes. Lateral eyes on the same tubercle, one AME diameter apart from median eyes and approximately half that size. Chelicerae with few scattered setae, cuticle smooth (fig. 45B), with three pro- and two retromarginal teeth, with ca. two cheliceral denticles. Endites longer than wide, dark brown, lighter pattern on internal surfaces. Ultrastructure of abdomen and spinnerets observed with SEM. Abdomen cuticle flat reticulated, all tracheae tube shaped, median tracheae with leaf-shaped tips. ALS with one major ampullate, one nubbin, ca. 70 piriform, tartipores numerous. PMS with one minor ampullate, one nubbin, and one cylindrical and three central aciniform spigots. PLS araneoid triplet separated at the base and tips, ca. 12 aciniform spigots distributed in two parallel rows, two cylindrical gland spigots at periphery. Leg formula 1-2-4-3. Femur I length 3.23–3.79. First pair considerably larger. Background of all legs yellow to dark yellow and covered with dark-brown annuli. Femora without trichobothria, few setae present, other segments hirsute, increasing after tibiae. Epigynum: rectangular shape, wider than long. Copulatory openings located on the posterior margin (figs. 47C, D, 48A, B). Internal epigynal structures similar to those found in Nanometa. Copulatory ducts modified as membranous sacs and separated from the spermathecae giving the appearance of four receptacles (fig. 48C, D). Accessory duct glands clustered on puffball-shaped clusters. Fertilization ducts short, straight (figs. 49E, 50E).

Male same as female except as noted. Total length 4.81–5.73. Cephalothorax length 2.47–2.59, width 1.99–2.15. Clypeus height 0.64–0.95 AME diameter (fig. 45D). Chelicerae darker than female, slightly longer and narrower, dorsal cuticle rugose (fig. 45D). Abdominal pattern as in female, but lighter. Femur I length 4.43–5.58. Pedipalpal tibia triangular, 1.3 times longer than wide, apical margin wider. CEBP short and heavily sclerotized cuticular ridge, with or without spines (figs. 46B, 49A, 50A), CEMP spine shaped, long and completely separated from the cymbium (fig. 48E, F). Paracymbium finger shaped and hirsute (figs. 46G, H). Tegulum basally displaced and cup shaped (figs. 49A, B). Conductor margins sclerotized, central part membranous (it did not expand with lactic acid), completely covering the embolus and variable in shape between
species (figs. 49A–C, 50A–C). Embolus long, filiform, and flexible. Embolus basal apophysis attachment membranous, basal apophysis heavily sclerotized and formed by one sclerite partially divided by a membrane (figs. 45F, 49B).

Composition: *Taraire rufolineata* and *Taraire oculta*.

Systematics: *Taraire* is sister to *Tawhai* (figs. 61–63), but the placement of the lineage including these two genera is unstable across phylogenetic analyses. Putative morphological synapomorphies supporting the monophyly of *Taraire* include the apically acute, digitiform CEMP pointing anteriorly (figs. 46D, 49C), the narrowing of the conductor margin (which encloses the filiform embolus), as seen in ventral view (figs. 46A, B, 49A, 50A), and sclerotized, horizontal fertilization ducts (figs. 47E, F, 49E, 50E).

Etymology: The genus is named after the Māori word for the New Zealand endemic tree *Beilschmiedia tarairi* A. Cunningham (Lauraceae). *Taraire* is indeclinable and feminine in gender.

Distribution: *Taraire* is found on the North, South and Stewart islands of New Zealand (fig. 55).

Natural History: *Taraire* builds vertical orb webs. They rest at the central hub with two legs forward and the fourth pair pointed back (fig. 3A, B). The webs can be located near the forest floor, such as under rock shelves (G.H. and R.K., personal obs.).

Taraire rufolineata (Urquhart, 1889), comb. nov.

Figures 4, 45–50, 55

Linyphia rufo-lineata Urquhart, 1889: 137 (male and female syntypes).

Landana lautiuscula Dalmas, 1917: 372, figs. 40–43 (female description). Two female syntypes (from Murchison, South Island), MNHN, examined. Synonymized by Bryant (1933), although Dalmas’ syntypes were not examined by her.

Type material: Syntypes (2 males, 3 females, 1 juvenile) from the North Island of New Zealand, summit of Te Aroha, deposited at the Canterbury Museum (A1367). The syntypes have been examined by Cor Vink (in litt., G.H.) to confirm the identification.

Diagnosis: *Taraire rufolineata* can be differentiated from *T. oculta* by the median projection of the epigynum, which does not extend beyond the distal margin (fig. 47A); this median projection does extend beyond that margin in the latter species (fig. 47B). The epigynal median plate of *T. rufolineata* is triangular, almost the same width as the epigynum and copulatory openings directed toward the epigynum lateral margins (figs. 47C, 48B); this plate is considerably narrower and with the copulatory openings directed to the sagittal plane in *T. oculta* (fig. 47D). The conductor of *T. rufolineata* has a distal portion bent apically and its basal part is continuous with the tegulum (figs. 46A, 48H, 49A), whereas *T. oculta* has a conductor with both portions bent (fig. 46B). The embolus basal apophysis not covered by conductor and its complex shape is also diagnostic for *T. rufolineata* (figs. 46A, 49B): in addition, the CEBP lacks spines (figs. 48F, 49C), while *T. oculta* bears one spine on this process (figs. 48E, 50C).

Description: Female (TEAU029, TEAU043) total length 6.6. Cephalothorax length 2.5, width 2.1. Clypeus height 0.9 AME diameter. Cheliceral promargin and retromargin with three and two teeth respectively, with ca. two cheliceral denticles. Femur I length 3.6. Copulatory ducts modified as membranous sacs with smooth cuticle (figs. 47E, 49E), spermathecae round and slightly more sclerotized that the “copulatory sacs” (fig. 47E), accessory duct glands clustered on puffball-shaped clusters (figs. 48C, 49E).

Male (TEAU030, TEAU046) same as female except as noted. Total length 8.2. Cephalothorax length 2.5, width 3.3. Clypeus 0.6 AME diameter (fig. 45D). Cephalothorax and abdomen lighter than female. Femur I length 8.9. Embolic apophysis formed by a heavily sclerotized curved lamella with a membranous center (fig. 46A, E, G).
FIGURE 49. *Taraire rufolineata* (male: TEAU030; female: TEAU043). A. Pedipalp, ventral. B. Pedipalp, ectal. C. Pedipalp, dorsal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–C, 0.5 mm; D, E, 0.2 mm.
FIGURE 50. *Taraire ocula* (male: QM S58330; female: TEAU042). A. Pedipalp, ventral. B. Pedipalp, ectal. C. Pedipalp, dorsal. D. Epigynum, ventral. E. Epigynum, dorsal. Scale bars: A–C, 0.5 mm; D, 0.2 mm; E, 0.1 mm.
Variation: Females \((N = 3)\) total length 4.95–6.58, cephalothorax length 2.35–2.52, width 1.85–2.05.

Distribution: *Taraire rufolineata* is found around the area of Arthur’s Pass in the central region of the South Island of New Zealand (fig. 55). The syntypes were collected at the summit of Mount Te Aroha (952 m), the highest point on the Kaimai-Mamaku range, but so far this is the only record of this species from the North Island.

Natural History: *Taraire rufolineata* builds vertical orb webs in forested areas, with an open hub centrally located. They rest at the central hub with two legs forward and the fourth pair pointed back (fig. 4A).

Material examined: \(N = 9\). NEW ZEALAND, South Island, Arthur’s Pass National Park, Bridal Veil Track, 42° 55′ 49.6″ S, 171° 33′ 43.4″ E, 819 m. G. Hormiga, N. Scharff, J. Pedersen, 4–5 February 2012, 1 male, 1 female (DNA voucher GH1136) GWU; 1 female (G. Hormiga field image photos 7979–7983/4.ii.2012GH) GWU; 1 female (G. Hormiga field image photos 7984–7988/4.ii.2012GH) GWU; 23 females, 4 immatures (image voucher TEAU043) GWU; Bealey Vy Tr., 42° 56′ 1.75″ S, 171° 33′ 29.65″ E, 840 m. A. Newton & M. Thayer 18–21 March 1980, Subalpine *Nothofagus, Nothofagus solandri* bark pyrethrin fogging 1 female AMNH; Selwyn Dist. Co., Bridal Veil Falls Track, 42° 56′ 1.3″ S, 171° 33′ 29.65″ E, 819 m. G. Hormiga, N. Scharff, 4 March 2010, leaf litter, moss, & general collecting at night, 1 female (image voucher TEAU029) GWU; 1 male (image voucher TEAU030) GWU; 1 male, 4 females, 4 immatures (image voucher TEAU046) GWU.

Taraire oculta, sp. nov.

Figures 4–5, 45–48, 50, 55

Type material: Male holotype and female allotype from New Zealand, South Island, Fox Glacier, Westland Tai Poutini National Park, Glacier View Road, Chalet Lookout Walk, 43° 29′ 45.5″ S, 170° 1′ 54.8″ E, 297 m., G. Hormiga, N. Scharff, J. Pedersen, 2 February 2012, night collecting (DNA series voucher GH1133), deposited at MONZ.

Diagnosis: In *Taraire oculta*, the epigynum median projection extends beyond its posterior margin (fig. 47B), while in *T. rufolineata* this projection does not exceed this margin (fig. 47A). The epigynal median plate of *T. oculta* is conical, narrow (ca. 1/4 width of epigynum), and the copulatory openings are directed to the sagittal plane (figs. 47D, 48A), whereas in *T. rufolineata* it is triangular, almost the same width as the epigynum, and the copulatory openings are directed toward the epigynum lateral margins (fig. 47C). In *T. oculta* the conductor basal and distal portions bend apically and hide most of the embolic apophysis (figs. 46B, 48G, 50B); in *T. rufolineata* only the distal portion of the conductor is bent and the embolus basal apophysis is completely visible in ventral view (figs. 46A, 49A). The CEBP has one heavily sclerotized spine (figs. 46D, 48E, 50A–C) that is absent in *T. rufolineata*.

Description: Female (TEAU031, TEAU042) total length 7.6. Cephalothorax length 2.9, width 2.3. Clypeus height 0.9 AME diameter. Chelicera promargin and retromargin with three and two teeth respectively, cheliceral denticles absent. Femur I length 3.8. Copulatory ducts modified as membranous sacs shaped as wizard hats with smooth cuticle (figs. 47F, 50E), spermathecae round and slightly more sclerotized than the “copulatory sacs,” accessory duct glands clustered on puffball-shaped clusters (figs. 47F, 48C, 50E).

Male (TEAU032, TEAU042) same as female except as noted. Total length 5.7. Cephalothorax length 2.6, width 2.1. Clypeus 0.6 AME diameter. Cephalothorax and abdomen coloration lighter than in female. Femur I length 4.7. Expanded palp: basal hematodocha largely distended and responsible for most of the movements, embolic division considerably less expansible; conductor membranous section mobile but not expanded. Embolus-tegulum membrane present, embolus filiform and completely unlocked from conductor (fig. 45F). Embolic apophysis attachment
FIGURE 51. *Tawhai arborea* (female: TEAU026; male: TEAU028). A. Female, dorsal habitus. B. Female, spinning apparatus. C. Female, lateral habitus. D. Epigynum, ventral. E. Female, ventral habitus. F. Epigynum, caudal. G. Female, frontal habitus. H. Epigynum, apical digested. I. Male, frontal habitus. Scale bars: A–C, E, 1.0 mm; B, D, F, H, 0.2 mm; G, I, 0.5 mm.
membranous, apophysis formed by a heavily sclerotized curved lamella with a membranous center (figs. 45F, 46B, 50A).

Variation: Females \((N = 3)\) total length 5.36–7.61, cephalothorax length 2.46–2.67, width 1.87–2.18. Males \((N = 2)\) total length 4.81–5.73, cephalothorax length 2.47–2.59, width 1.99–2.07.

Etymology: The species epithet is taken from the Spanish word for “hidden,” *oculto*, in reference the embolic apophysis hidden by a conductor fold, which is a diagnostic feature of this species.

Distribution: This species is found in the South Island of New Zealand (fig. 55).

Natural History: *Tawhai oculta* builds vertical orb webs with an open hub \((n = 10)\). The webs are often located near the forest floor, in areas such as under rock shelves. There is variation in in the hub placement, central some webs but in the upper part of the web in the webs of some juveniles (but not all).

Material examined: \(N = 14\). NEW ZEALAND, South Island, Fox Glacier, National Park Westland Tai Poutini, Glacier View Road, Chalet Lookout Walk, 43° 29′ 45.5″ S, 170° 1′ 54.8″ E, 297 m. G. Hormiga, N. Scharff, J. Pedersen, 2 February 2012, night collecting, 2 females, behavior voucher GWU; 1 female (image voucher TEAU031) GWU; 1 male (image voucher TEAU032) GWU; 4 males, 14 females (image voucher TEAU042) GWU; 2 males, 12 females (DNA series voucher GH1133) GWU; 3 females, 1 immature (DNA series voucher GH1133) GWU; 1 male, 1 female (G. Hormiga field image photos DSC_7902-7910) GWU; 1 female (field image voucher photos 7915–7919/2.ii.2012GH) GWU; 1 female (field image voucher photos 7930–7940/2.ii.2012GH) GWU; 1 female (field image voucher photos 7941–7945) GWU;
FIGURE 53. *Tawhai arborea*, epigynum. A. Ventral. B. Ventral pores, detail. C. Apical. D. Detail of accessory glands. E. Caudal. F. Dorsal. Scale bars: A, C, 0.2 mm; B, D, 0.02 mm.

Genus **Tawhai**, gen. nov.

Figures 51–55

Type species: *Tetragnatha arborea* Urquhart, 1891.

Diagnosis: In *Tawhai* the epigynum protrudes ventrally and its posterior margin extends beyond the epigastric furrow, like in *Taraire* (figs. 51D, 53A), but differs from the latter genera by the following characters: spermathecae cuticle covered with sclerotized clusters that bear the accessory glands openings (figs. 51H, 53C, D), copulatory ducts absent (the spermatheca opens directly in the epigynum plate as in *Meta*) and long and straight fertilization ducts enclosed by a membrane that communicates with the uterus externus (figs. 53F, 54F). Externally the epigynum bears several holes (observed only with SEM fig. 53A, B) that resemble those of *Pinkfloydia* (Dimitrov and Hormiga, 2011: figs. 15D, E, G); however, it differs from this Australian genus in the eyes, which are organized in two lines, and in having the spermathecae cuticle heavily sclerotized (figs. 51H, 53C). The CEBP is similar to that of *Allende* species in having a finger-shaped paracymbium with a sclerotized apical keel, an L-shaped long apophysis between the paracymbium and the basal part of the CEBP and the presence of short and thick macrosetae on the CEMP (figs. 52D, 54A–C). *Tawhai* differs from *Allende* by the lack of teeth on the cymbial apophysis and the CEBP base, the separation of the CEBP base from the cymbium by a membranous section (figs. 52D, 54C) and the CEMP
contiguous with the cymbium margin (fig. 54A–C). Tawhai has a large and heavily sclerotized embolic apophysis similar to that of Taraire species, but it differs from the latter genus in the shape of this embolic apophysis (fig. 52C). In addition, the following features are unique to Tawhai: a short, rectangular, and membranous conductor separated from the embolus except at the apex (figs. 52A, C, 54A), embolus the largest sclerite with a hook shape in ventral view and bearing a subterminal spine observed in apical or mesal view (figs. 52B, 54A).

Description: Female total length 8.4. Cephalothorax length 3.6, width 2.7. Carapace glabrous, pale yellow with dark-brown markings over the fovea, extending to the dorsal surface of the ocular area and two patches over the chelicerae (fig. 51A). Ocular area dark brown, fovea longitudinal. Clypeus height 0.4 AME diameter. Eyes subequal in size. Chelicerae dark brown, glabrous cuticle smooth (fig. 51G). Three prolateral, two retromarginal teeth, and ca. two denticles between margins. Endites brown, internal margins pale-yellow, longer than wide. Labium rectangular, wider than long, same color as the endites. Sternum pale yellow, trapezoidal, wider between the first two legs (fig. 51E). Abdomen dorsum with scattered guanine white patches intercalated with dark-brown transverse bands against a light-brown background (fig. 51A); lateral surface with intercalated diffused brown stripes and white guanine patches (fig. 51C); ventral surface light brown with scattered guanine patches flanked by dark-brown irregular lines (fig. 51E). Booklung covers without stridulatory organs. Spinnerets brown, lighter pattern on internal surfaces. Ultrastructure of abdomen, tracheae and spinnerets observed with SEM. Abdomen cuticle flat reticulated, all tracheae not ramified, median tracheae tip leaf shaped. ALS one major ampullate, one nubbin, ca. 80 piriform, tartipores present. PMS one minor ampullate, one nubbin, and one cylindrical and three central aciniform. PLS aggregate and flagelliform spigot tips clustered together, ca. 18 aciniform spigots distributed in two parallel rows, two cylindrical gland spigots at periphery (fig. 51B). Leg formula 1-2-4-3, Femur I length 4.9. Background of legs yellow on the basal segments, becoming dark brown toward the apex, basal segments decorated with dark-brown annuli. All femora without trichobothria. Macrosetae few and present on all segments except metatarsi and tarsi. Spermathecae heavily sclerotized, covered with small sclerotized globular clusters with accessory gland ducts (figs. 51H, 53C, D, 54F). Copulatory ducts reduced, opening directly into the epigynal plate. Fertilization ducts sclerotized, long, narrow and inside a membranous sac that connects with the uterus externus (figs. 53E, F, 54F). Genital openings on the median posterior surface, median plate membranous (fig. 54E).

Male same as female except as noted. Total length 8.2. Cephalothorax length 4.4, width 3.2. Clypeus height 0.6 AME diameter. Chelicerae longer than female (fig. 51G, I), distal part with three promarginal, two retromarginal teeth and one denticle between margins. Femur I length 8.9. Male pedipalpal tibia three times as long as wide, apical margin bordered with a cuticular rim (the male palpal morphology is described in Diagnosis; see figs. 52, 54).

Composition: Monotypic.

Systematics: Tawhai is sister to Taraire (figs. 61–63), but the placement of the two genera together is unstable. Autapomorphies of Tawhai include the concavity of the ectal cymbial margin (figs. 52D, 54B), bearing macrosetae and the sclerotized globular clusters with accessory gland ducts that cover the spermathecae (figs. 53C, D, 54F).

Etymology: The genus is named after the Māori word (*tawhai*) for the New Zealand endemic tree *Nothofagus menziesii* (Hook.f.) Oerst. (Nothofagaceae), the silver beech. It is indeclinable and feminine in gender.

Distribution: Tawhai is found only in the North Island of New Zealand (fig. 55).

Natural History: The web of Tawhai arborea is given under the species description below.
FIGURE 56. *Iamarra multitheca* (female: TEUA015, TEAU020; male: TEAU014, TEAU041). A. Female, dorsal habitus. B. Pedipalp, expanded. C. Female, lateral habitus. D. Epigynum, caudal. E. Female, ventral habitus. F. Epigynum, ventral. G. Male, frontal habitus. H. Epigynum, dorsal digested. I. Female, frontal habitus. Scale bars: A, C, E, 1.0 mm; B, 0.2 mm; D, F, H, 0.1 mm; G, I, 0.5 mm.
Tawhai arborea (Urquhart, 1891), comb. nov.

Figures 51–55

Tetragnatha arborea Urquhart, 1891: 172, pl. 21, fig. 9. Syntypes not examined, description and illustrations accurate enough to make reliable identification.

Type material: The syntypes (males and females, from New Zealand, North Island, Stratford, Taranaki) are not at the Canterbury Museum (Nicholls et al., 2000) and are probably lost (C. Vink, in litt., to G.H.).

Diagnosis and description: See genus diagnosis and description. Female description based on specimens (TEAU026, TEAU047). Male description based on specimen (TEAU028).

Distribution: Tawhai arborea is found in New Zealand’s North Island (fig. 55).

Natural History: Tawhai arborea builds vertical orb webs with open hubs, few radii, and sticky spirals. The web illustrated in figure 5C had a height of 34 cm (from top to bottom spiral thread). Forster and Forster (1999: 166, fig. 11.28a) describe their webs as large, “up to a metre wide, with widely spaced sticky threads. They are also found within the forest, and their webs may be tilted at a slight angle over running water.”

Remarks: Tetragnatha arborea was considered a synonym of Orsinome lagenifera, but these species differ considerably in their morphology. Tawhai arborea was misidentified in the phylogenetic analysis of Wheeler et al. (2017) as “Allende sp. CG103.” Our phylogenetic analysis suggests that both Taraire and Tawhai are not close relatives of Orsinome.

Material examined: \(N = 6 \). NEW ZEALAND, North Island, Te Urewera National Park, Lake Waikaremoana, trail to Lake Waikareiti, 38° 44’ 32” S, 177° 9′ 53.1” E, 650 m., G. Hormiga, 6–11 April 2011, night collecting.
Genus *Iamarra*, gen. nov.

Type species: *Iamarra multitheca*.

Diagnosis: The only species included in *Iamarra* builds dense horizontal orb webs between tree buttresses (fig. 6A, B) that resemble those of *Dolichognatha* O. Pickard-Cambridge, 1869, and has the lateral eyes nonjuxtaposed, on separated tubercles, a feature it shares with *Diphya* Nicolet, 1849. *Iamarra* differs from both those genera by having all eyes of equal size (fig. 56G, I) and by lacking the leg I spination pattern of *Diphya* and from all other tetragnathids by the presence of the following unique features: embolus very large (the largest palpal sclerite), lamelliform and coiling around a slender conductor (figs. 56B, 57A–C, 59A), apically divided in a sclerotized lamella and a membranous sac where the spermatic duct opens (figs. 57C, 58D, 59B); conductor base thin and translucent, tip sclerotized and hook shaped (figs. 57A, 59A, C–D). The epigynum morphology is also unique and diagnostic, flat and trapezoidal in shape (figs. 56F, 59E), with the genital openings inside the epigastric furrow, slit shaped within a

FIGURE 60. Distribution of new genera in Queensland. A. *Harlanethis*. B. *Iamarra*.
partially sclerotized triangular plate (figs. 56D, 58A, 59F), and with the spermathecae divided in clusters (figs. 56H, 58B, C, 59G).

Description: Male total length 3.92. Cephalothorax length 1.82, width 1.44. Carapace glabrous, pale yellow with dark-gray markings over fovea, extending to dorsal surface of ocular area and two patches over legs I and II. Ocular area dark brown under clypeus and laterally (fig. 56G). Fovea longitudinal, between two bulges of thoracic area. Clypeus height 0.42 AME diameter. Eyes subequal in size. Lateral eyes not juxtaposed, separated more than one lateral eye diameter. Chelicerae brown, glabrous, distal part divergent and fangs enlarged (fig. 56G), without ventral stridulatory ridges, with two pro- and one retro-marginal teeth and three denticles between margins. Endites brown, internal margins pale yellow, longer than wide. Labium rectangular, wider than long, same color as endites. Sternum pale yellow with two anterior dark-gray markings, trapezoidal, wider between the first three legs. Abdomen dorsum covered with guanine white patches intercalated with dark-brown transverse bands over a gray background; laterally with diffused brown vertical stripes and white guanine patches; ventral surface dark brown without guanine patches. Booklung covers without striae. Spinnerets brown, lighter pattern on internal surfaces. Leg formula 1-2-4-3, Femur I length 3.29. All femora, patella, and tibia brown-yellow, with dark-brown annuli. All leg segments apically dark brown. All femora without trichobothria. Macrosetae few and present on all segments except metatarsi and tarsi. Male pedipalpal tibia triangular, as long as wide, apical margin wider and bordered with a translucent cuticle rim. CEBP and CEMP reduced and without macroseta. Paracymbium contiguous with cymbium, slender, with few basal setae, slightly curved apically (figs. 57D, 58E, 59C–D). Embolic basal apophysis small and triangular (fig. 59 C–D). Conductor fused to the tegular margin. Spermatic duct spiral without switchbacks (fig. 59B).

Female same as male except as noted. Total length 3.77. Cephalothorax length 1.68, width 1.35. Clypeus height 0.49 AME diameter. Chelicerae smaller than male, distal part straight, fangs not enlarged (fig. 56I), with three pro-marginal and two retromarginal teeth, and two denticles between margins. Ultrastructure of abdomen and spinnerets observed with SEM. Abdomen cuticle flat reticulated, all tracheae tubular, median trachea restricted to abdomen, tracheal atrium glands present. ALS with one major ampullate, one nubbin, and ca. 45 piriform spigots. PMS with one minor ampullate, one nubbin, and one cylindrical and three central aciniform spigots. PLS araneoid triplet with base clustered together, aggregate and flagelliform tips not separated, ca. 12 aciniform distributed at the center, and two peripheral cylindrical spigots. Femur I length 2.85. Spermathecae membranous and covered with small sclerotized globular clusters with accessory gland ducts, duct bases flat (figs. 58B, C, 59G). Copulatory ducts reduced to a sclerotized rim that opens directly into the membranous spermathecae. Fertilization ducts sclerotized, following a straight path under the accessory gland clusters, apically bent 90° (fig. 59G).

Composition: Monotypic.

Systematics: Autapomorphies of lamarra include the massive embolus, with its apical region divided into a sclerotized lamella and a membranous sac where the spermatic duct opens (figs. 58D, 59B) and the spermathecae with small, sclerotized globular clusters with accessory gland ducts (fig. 58B, C). The phylogenetic placement of this genus is weakly supported in our analyses (figs. 61–63).

Etymology: The genus name is derived and modified from the Ngadjon word for a spider web (jamarra). The Ngadjonji people are one the aboriginal inhabitants of what is now known as the Atherton Tablelands, in North Queensland, Australia. Their language is part of the Dyirbal group. lamarra is indeclinable and feminine in gender.

Distribution: This genus is found in northern Queensland (fig. 60B).

Natural History: The web of lamarra multitheca is described in the section below.
Iamarra multitheca, sp. nov.

Figures 6, 56–60

Type material: Female holotype and male allotype from NE Queensland, 3 km W. Bones Knob 17° 13′ S, 145° 25′ E, 1100 m. 10 December 1995, Monteith, Cook & Thompson, between trees and logs of Pyrethrum sp. (QM)

Diagnosis and description: See genus diagnosis and description. Female description based on specimens (TEAU015, TEAU020 to 22, TEAU041). Male description based on specimens (TEAU014, TEAU041).

Variation: Males (N = 5) total length 3.44–4.20. Cephalothorax length 1.82–2.09, width 1.39–1.58. Femur length 2.88–3.31. Females (N = 5) total length 3.54–3.84. Cephalothorax length 1.49–1.67, width 1.17–1.35. Femur length 2.43–2.85. The epigynum triangular plate base varies from straight to slightly curved.

Etymology: The species epithet refers to the characteristic spermathecae of this species, which are conspicuously divided several globular clusters (from the Greek word theca a chest, box, or other container).

Distribution: This species is endemic to Queensland (fig. 60B).

Natural History: Iamarra multitheca is found exclusively in the tropical region of northern Queensland. These spiders build dense, horizontal webs, which may or may not have open hubs, at the base of tree trunks (fig. 6).

Remarks: This species was misidentified in Wheeler et al. (2017) as “Dolichognatha sp. GH59.”

Material examined: N = 130. AUSTRALIA: Queensland, 3 km W. Bones Knob, 17° 13′ S, 145° 25′ E, 1100 m, Monteith, Cook & Thompson, 10 December 1995, trees and logs of Pyrethrum sp. 2 males, 4 females, 2 immatures (Holotype and allotype taken from this specimen series) QM S38211; Atherton Tablelands, Rose Gums Wilderness Retreat, 12.4 km ENE Malanda, 17° 18′ 51.1″ S, 145° 42′ 8.6″ E, 770 m, G. Hormiga & L. Lopardo, 15–16 March 2006, 1 female (GH0150), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 2 males, 1 female, 4 immatures, GWU. 1 female (image vouchers TEAU015 and TEAU021), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L. Lopardo, 16 March 2006, 1 male (image voucher TEAU014), GWU; Atherton Tablelands, Wongabel State Forest, 10.8 km west of Malanda, 17° 19′ 55.4″ S, 145° 30′ 1.9″ E, 740 m, G. Hormiga & L.
State Forest, 17° 10’ 30” S, 145° 39’ 34” E, 810 m. G. Hormiga, M. Kuntner, & F. Álvarez, 21 April 2002, dry forest, 1 female (photo voucher R7/18-24GH), GWU; Atherton Tablelands, Lake Tinaroo, Danbulla State Forest, 17° 10’ 30” S, 145° 39’ 34” E, 810 m. G. Hormiga, M. Kuntner, & F. Álvarez, 21 April 2002, dry forest, 1 female, 1 male, GWU; Atherton Tablelands, Lake Tinaroo, Danbulla State Forest, 17° 10’ 30” S, 145° 39’ 34” E, 810 m. G. Hormiga, M. Kuntner, & F. Álvarez, 21 April 2002, dry forest, 2 males, GWU; Atherton Tablelands, Lake Tinaroo, Danbulla State Forest, 17° 10’ 30” S, 145° 39’ 34” E, 810 m. G. Hormiga, M. Kuntner, & F. Álvarez, 21 April 2002, dry forest, 1 female, 1 male, GWU; Atherton Tablelands, Lake Tinaroo, Danbulla State Forest, 17° 10’ 30” S, 145° 39’ 34” E, 810 m. G. Hormiga, M. Kuntner, & F. Álvarez, 21 April 2002, dry forest, 5 females (variation vouchers images TEAU020, TEAU022), GWU; Atherton Tablelands, Mount Hypipamee National Park, near the Crater, 17° 25’ 35.8” S, 145° 29’ 8.9” E, 945 m. G. Hormiga, N. Scharff, J. Pedersen, 11–13 February 2012, 3 females (behavioral voucher) GWU; Atherton Tablelands, Tully Falls National Park S of Ravenshoe, Charmillin Creek, Wabunga Wayamba, 17° 42’ 0.8” S, 145° 31’ 20.8” E, 931 m. G. Hormiga, N. Scharff, J. Pedersen 12 February 2012, Rainforest walkabout, 1 female, GWU; Atherton Tablelands, Wongabel State Forest, 17° 9’ 54” S, 145° 30’ 8.6” E, 765 m, G. Hormiga, N. Scharff, J. Pedersen, 13 February 2012, 6 males, 10 females (1 male, 1 female, SEM vouchers TEAU041), GWU; Bellenden Ker National Park Palmerston Hwy. 29.3 km SSW of Innisfail, Wallichens Falls area, 17° 36’ S, 145° 47’ E, 217 m. G. Milledge, 23 April 1998, rainforest, 1 male, KS52440; Bellenden Ker Range, 1/2 km S Cable Tower No 7, 17° 17’ 30.13” S, 145° 49’ 32.29” E, 500 m, 1–7 November 1981, 1 male, 2 females, 1 immature, QM S27787; Charmillin Creek, 17° 42’ S, 145° 31’ E, 940 m. G. Monteith, 1 December 1997, trees and logs Pyrethrum sp. 1 male, 2 females, 3 immatures, QM S43100; Millaa Millaa Falls, 17° 30’ S, 145° 36’ E, 834 m. G. Monteith, 23–24 November 1994, 3 males, 3 females, 2 immatures, QM S47055; Upper Isley Ck., 17° 3’ S 145° 41’ E, 750 m. Monteith & Janetzi, 29 November 1993, trees and logs Pyrethrum sp. 2 males, QM S31911.

PHYLOGENETICS

The best partitioning scheme for Bayesian analysis resulted in four partitions: 12S+16S (GTR+I+G), 18S+28S (GTR+I+G), COI codon position 3 (GTR+G), and all remaining partitions using SYM+I+G. The best scheme for IQ-TREE was 12S (TIM2+F+G4), 16S (GTR+F+I+G4), 18S (TNe+R4), 28S (GTR+F+R4), COI codon position 1 (GTR+F+G4), COI codon position 2 (GTR+F+G4), COI codon position 3 (K3Pu+F+I+G4), H3 codon position 1 (SYM+G4), H3 codon position 2 (K2P), and H3 codon position 3 (TIM2e+I+G4).

The resulting topologies are summarized in figures 61–63; differences are trivial, but we refer to figure 61 as our preferred topology, as it recovers Arkyidae as sister lineage to Tetragnathidae following phylogenomic results (e.g., Fernández et al., 2018, Kallal et al., 2018). All analyses strongly support the monophyly of Tetragnathidae. IQ-TREE and MrBayes analyses support the monophyly of Arkyidae + Mimetidae, whereas RAxML shows Arkyidae + Tetragnathidae, but the support is not high in any analysis. The first diverging taxon in
FIGURE 61. Phylogeny of Tetragnathidae using RAxML. Values at nodes are bootstrap supports. New taxa are demarcated in bold and subfamilies demarcated in colored boxes.
FIGURE 62. Phylogeny of Tetragnathidae using IQ-TREE. Values at nodes are ultrafast bootstrap supports. New taxa are demarcated in bold and subfamilies demarcated in colored boxes.
FIGURE 63. Phylogeny of Tetragnathidae using MrBayes. Values at nodes are posterior probabilities. New taxa are demarcated in bold and subfamilies demarcated in colored boxes.
RAxML and MrBayes topologies is *Mollemeta edwardsi* Simon, 1894. The monophyly of the subfamily Tetragnathinae is well supported in all analyses, with *Cyrtognatha* Keyserling, 1881, sister to other sampled genera. *Hispanognatha* Bryant, 1945, is nested within *Tetragnatha* Latreille, 1804, in all analyses, and *Antillognatha* Bryant, 1945, is also nested in *Tetragnatha* in analyses using RAxML and MrBayes (figs. 61, 63). *Glenognatha* Simon, 1887, is sister to *Pachygnatha* Sundevall, 1823, in all analyses. Metainae monophyly is well supported in all analyses, with support for all genera with multiple representatives, and the only topological difference is the placement of *Zhini* Kallal and Hormiga, 2018, as sister to *Dolichognatha* (maximum likelihood, figs. 61–62) or *Metellina* (Bayesian inference, fig. 63); it was weakly supported in both cases. Leucauginae is present in all analyses but weakly supported in the tree resulting from RAxML (fig. 61). *Opadometa* Archer, 1951, nests within *Leucauge* White, 1841, a result strongly supported in all analyses. *Harlanethis* is weakly placed in the clade including *Tylorida*, *Orsinome* Thorell, 1890, and *Mesida* clade in the maximum likelihood analyses, but in Bayesian analyses, it is weakly supported near rogue lineages *Chrysosoma* and *Allende*. *Taraire* and *Tawhai* are always sister taxa, weakly supported as a sister group to *Chrysosoma + Allende* in maximum likelihood analyses but sister to Nanometinae in results from MrBayes. *Taraire* and *Tawhai* diverged from each other 49 (27–74) Ma. *Iamarra* was also a rogue taxon, with a different, weakly supported position in each analysis.

In all analyses, Nanometinae is monophyletic, with *Pinkfloydia* sister to the *Nanometa* clade, with widespread high support within. *Nanometa tasmaniensis* is sister to all other Nanometinae. The so-called small *Nanometa* species—represented in the molecular analyses by *N. dutrorum*, *N. forsteri*, and *N. gentilis*—form a clade in all analyses. In all cases, the relationships recovered are *N. dutrorum*, sister lineage to *N. gentilis*, and *N. forsteri*. According to our Bayesian analysis, Nanometinae is approximately 72 (49–99) Ma, and the two constituent genera diverged approximately 59 (38–82) Ma.

DISCUSSION

This work is the latest of several to include a number of nanometine taxa, but it is the first to describe the species used in molecular phylogenies, such as those by Dimitrov and Hormiga (2011), Dimitrov et al. (2017), and Kallal and Hormiga (2018), all of which included at least six nanometine tetragnathids and whose results for the subfamily have been largely congruent across analytical treatments. In all analyses, *Pinkfloydia* and *Nanometa* are sister genera and reciprocally monophyletic. In all analyses, *Taraire* and *Tawhai* are strongly supported as sister lineages to each other but are not placed with confidence by either maximum likelihood or Bayesian inference. In the RAxML analysis, they are placed sister to the clade including *Allende* and *Chrysosoma*, two lineages that have traditionally been rogue taxa in similar analyses (figs. 61–63). Analyses using IQ-TREE also placed *Iamarra multitheca* nearby, and Bayesian analyses placed *Taraire* and *Tawhai* sister to Nanometinae. *Taraire rufolineata* was also recently placed with high support sister to Nanometinae (Dimitrov et al., 2017). However, given the incongruence between analyses as far as these two clades are concerned, we are reluctant to classify *Taraire* and *Tawhai* as nanometines. *Harlanethis* is, based on its morphology and molecular placement, a leucaugine, and *Iamarra* was unstably placed in the phylogenies.

The dating analyses results presented here are consistent with those of Dimitrov et al. (2017) and Kallal and Hormiga (2018), who used Sanger multilocus data, and Fernández et al. (2018), who used transcriptomic data. All analyses suggest multiple colonizations of New Zealand by nanometines. Most of these occur around 22 Ma, which are consistent with colonization after the so-called New Zealand Oligocene drowning, although *N. lagenifera* probably arrived earlier.
and as such could represent another arachnid that defies the drowning paradigm (see others in Boyer and Giribet, 2009; Giribet and Boyer, 2010). There also appears to be a degree of Tasmanian endemicity despite the relative recency of its separation from mainland Australia about 14,000 years ago (Lambeck and Chappell, 2001).

Nanometine anatomical features make it particularly difficult to diagnose and optimize synapomorphies at this node. As currently circumscribed, this lineage represents two genera that have different morphology but are strongly monophyletic. Depending on the analysis, Taraire, Tawhai, Metleucauge Levi, 1980, Chrysometa, and Allende are related to Nanometinae, all of which have no subfamily designation. The positions of these genera in particular are sensitive to taxon sampling and tree inference method. The internal female genitalia of Nanometa is characterized by four chambers and are remarkably similar to those in Taraire, but differ greatly from Allende, Chrysometa, and Tawhai, which have well-sclerotized spermathecal walls (fig. 52H). The external genital features are either apomorphic and homoplastic, as in the case of the large pores on the epigynal plate in Pinkfloydia and Tawhai, or symplesiomorphic for Nanometa by having a flat, sclerotized epigynum with variation only in the place and orientation of the genital openings. Pinkfloydia is also notable because it shares similar internal epigyna with Metleucauge. Depending on the analysis, Metleucauge is sister to leucaugines or nanometines, or it falls among the rogue lineages including Azilia, Chrysometa, and Allende, but always with low support. Both genera have flexible spermathecae and fertilization ducts relatively short and relatively straight. However, spermatheca wall sclerotization is particularly homoplastic in tetragnathids and this character evolution must be optimized analytically.

Pedipalpal cymbia all share basal and median processes. However, this character is considered symplesiomorphic as it is present in Mollomet Adolfo-García-Padilla, 2007, Meta, Metellina, Allende, Tawhai, Chrysometa, and others. A possible synapomorphy for Nanometinae as currently circumscribed could be the CEBP shaped as a relatively large spine and attached to the cymbium, as in Pinkfloydia and Nanometa (e.g., figs. 8, 17, 25; Hormiga, 2017: figs. 2, 3). This spine is smaller in Tawhai and Chrysometa, long and flattened in Tawhai, and in Allende bearing small teeth in some species. The embolic division features are also fairly similar in Nanometa, with a conductor shaped as a curved, flattened translucent disk, with an enlarged and folded margin that covers the embolus distally. Pinkfloydia, in another example of a morphologic feature shared with a nonnanometine, has a conductor that more closely resembles Allende (and some Metainae) in that it is not flattened, more sclerotized, and projects apically as it curves with the embolus. The conductor of Taraire is also translucent, but it either curls, as in Pinkfloydia, or folds enclosing the embolus at both sides, as in T. oculta. The Tawhai conductor is reduced to a small membrane. Nanometa species lack an embolic apophysis, while Pinkfloydia, Allende, Tawhai, Taraire and Chrysometa conspicuously have them. Metleucauge, in this regard, is anomalous in having a conductor divided into two sclerites and no embolic apophyses.

The study of the genitalia of these species also allows us to clarify one of the morphological terms that have been previously discussed in regard to tetragnathids: the apophysis of the embolus. In prior works, the members of the clade Metainae were united by the presence of a process emerging from the base of their embolus, and as such called the metaine embolic apophysis (MEA; e.g., Álvarez-Padilla and Hormiga, 2011; Hormiga et al., 1995). However, this embolic process is also present in non-metaines, including Allende, Chrysometa, Cyrtognatha, and Pinkfloydia (Álvarez-Padilla, 2007; Álvarez-Padilla and Hormiga, 2011; Levi, 1986; Dimitrov and Hormiga, 2009, 2011). As part of this study, we found a comparable structure in the three newly described genera as well. Because of its appearance in taxa outside Metainae, we prefer the term basal embolic apophysis (BEA) for this structure.
ACKNOWLEDGMENTS

We thank Michael G. Rix, Robert J. Raven, and Lorenzo Prendini for comments and suggestions improving this manuscript. We thank the following individuals for making specimens available to us: Robert J. Raven and Owen Seeman (QM), Mark S. Harvey and Julianne Waldock (WAM), Graham Millidge (AM), Peter Lillywhite (NMVM), Norman Platnick and Louis Sorkin (AMNH), Cor Vink (CMNZ), and Christine Rollard (MHNH). For our fieldwork in Australia and New Zealand, we received support from many colleagues, including Miquel Arnedo, Barbara Baehr, Caitlin Baker, Catherine Byrne, Rosa Fernández, Gonzalo Giribet, Mark S. Harvey, Lara Lopardo, Graham Millidge, Andrew Mitchell, Kirrily Moore, Jan Pedersen, Robert J. Raven, Michael G. Rix, Nikolaj Scharff, Jamie Seymour, and Cor Vink. We are particularly grateful to Robert J. Raven for his continuous help and support, spanning now more than two decades and a half. Special thanks to Cor Vink (CMNZ) for checking Urquhart’s type specimens against our illustrations and for sending us images of some of his original labels. This work was supported by U.S. National Science Foundation grants (DEB 1457300 and 1457539 “Collaborative Proposal: Phylogeny and diversification of the orb weaving spiders (Orbiculariae, Araneae)” to G.H. and Gonzalo Giribet) and DEB-1144417 and 1144492: “Collaborative Research: ARTS: Taxonomy and systematics of selected Neotropical clades of arachnids” to G.H. and Gonzalo Giribet).

REFERENCES

Scientific Publications of the American Museum of Natural History

American Museum Novitates
Bulletin of the American Museum of Natural History
Anthropological Papers of the American Museum of Natural History

Publications Committee
Robert S. Voss, Chair

Board of Editors
Jin Meng, Paleontology
Lorenzo Prendini, Invertebrate Zoology
Robert S. Voss, Vertebrate Zoology
Peter M. Whiteley, Anthropology

Managing Editor
Mary Knight

Submission procedures can be found at http://research.amnh.org/scipubs

All issues of Novitates and Bulletin are available on the web (http://digitallibrary.amnh.org/dspace). Order printed copies on the web from:
http://shop.amnh.org/a701/shop-by-category/books/scientific-publications.html

or via standard mail from:
American Museum of Natural History—Scientific Publications
Central Park West at 79th Street
New York, NY 10024

This paper meets the requirements of ANSI/NISO Z39.48-1992 (permanence of paper).

On the cover: Nanometra tasmaniensis, male from Lake St. Clair National Park, Tasmania, Australia, suspended on a traveling thread; photo by G. Hormiga.