A REVISION OF THE AMERICAN SPIDERS OF THE GENUS DRASSYLLUS (ARANEAE, GNAPHOSIDAE)

NORMAN I. PLATNICK AND MOHAMMAD U. SHADAB

BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY
VOLUME 173: ARTICLE 1 NEW YORK: 1982
A REVISION OF THE AMERICAN SPIDERS OF THE GENUS *DRASSYLLUS* (ARANEAE, GNAPHOSIDAE)

NORMAN I. PLATNICK
Associate Curator, Department of Entomology
American Museum of Natural History
Adjunct Professor, Department of Biology
City College, City University of New York

MOHAMMAD U. SHADAB
Scientific Assistant, Department of Entomology
American Museum of Natural History

BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY
Volume 173, article 1, pages 1–97, figures 1–281, maps 1–41
Issued March 26, 1982
Price: $7.60 a copy

Copyright © American Museum of Natural History 1982
ISSN 0003-0090
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abstract</td>
<td>3</td>
</tr>
<tr>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>Collections Examined</td>
<td>7</td>
</tr>
<tr>
<td>Drassyllus Chamberlin</td>
<td>7</td>
</tr>
<tr>
<td>The fallens Group</td>
<td>8</td>
</tr>
<tr>
<td>The lamprus Group</td>
<td>18</td>
</tr>
<tr>
<td>The notonus Group</td>
<td>29</td>
</tr>
<tr>
<td>The niger Group</td>
<td>36</td>
</tr>
<tr>
<td>The novus Group</td>
<td>42</td>
</tr>
<tr>
<td>The frigidus Group</td>
<td>51</td>
</tr>
<tr>
<td>The mumai Group</td>
<td>70</td>
</tr>
<tr>
<td>The insularis Group</td>
<td>73</td>
</tr>
<tr>
<td>Literature Cited</td>
<td>94</td>
</tr>
<tr>
<td>Index of Specific Names</td>
<td>97</td>
</tr>
</tbody>
</table>
ABSTRACT

The genus *Drassyllus* is redefined to include those gnaphosids with a preening comb on meta-

tarsi III and IV, closely spaced posterior median eyes, and a medially situated, bifid terminal

apophysis on the male palp, and is hypothesized to be the sister group of *Camillina*. The 59 known

American species, found from southern Canada to southern Mexico, are placed in eight species

groups. Keys, diagnoses, descriptions, illustrations, scanning electron micrographs, locality rec-

ords, and distribution maps are provided. *Zelotes mexicanus* (Banks) is transferred to *Drassyllus*.

Drassyllus novus (Banks) and *D. dromeus* Chamberlin are removed from the synonymy of *D.

frigidus* (Banks) and *D. orgilus* Chamberlin, respectively, and considered valid. Fourteen specific

names are newly synonymized: *D. zelotoides* (Worley) and *D. moronius* (Chamberlin), both with

D. lamprus (Chamberlin); *D. finium* Chamberlin and *D. dentelifer* Chamberlin, both with *D.

texasmans* Chamberlin; *D. sporadicus* Muma with *D. dixinus* Chamberlin; *D. virginianus* Cham-

berlin with *D. novus* (Banks); *D. ostegae* Chamberlin with *D. aprilinus* (Banks); *D. lutzi* Chamberlin

and *D. deexus* Chamberlin, both with *D. dromeus* Chamberlin; *D. monicus* Chamberlin with *D.

proclesis* Chamberlin; *D. lasalus* Chamberlin and Gertsch and *D. hubbelli* Chamberlin and

Gertsch, both with *D. mexicanus* (Banks); and *D. mephisto* Chamberlin and D. coahuilanus Gertsch

and Davis, both with *D. lepidus* (Banks). The males of *D. eremitus* Chamberlin, *D. nannellus*

Chamberlin and Gertsch, *D. seminolus* Chamberlin and Gertsch, *D. lamprus* (Chamberlin), *D.

louisianus* Chamberlin, *D. orgilus* Chamberlin, *D. arizonensis* (Banks), *D. saphes* Chamberlin,

and *D. fractus* Chamberlin, and the females of *D. socius* Chamberlin, *D. inanus* Chamberlin and

Gertsch, *D. eremophilus* Chamberlin and Gertsch, *D. elliptes* Chamberlin and Gertsch, and *D.

prosaphes* Chamberlin are described for the first time. Twenty-three new species are described

from the southern United States and Mexico.

INTRODUCTION

This paper, the fourteenth in a series on the spider family Gnaphosidae, is the first of several

that will be devoted to the New World representatives of the *Zelotes* complex, an extremely speciose

group that is nearly worldwide in occurrence. Members of the *Zelotes* complex are unique among
gnaphosids in having a preening comb on the third and fourth metatarsi (figs. 1, 2). The comb was
initially described in the African genus *Camillina* by Tullgren (1910), but it was Berland (1919) who
first recognized the wide distribution of the character (including its presence in the numerous species of the
abundant Holarctic genus *Zelotes*) and its taxonomic usefulness (demonstrating that several species formerly placed in such un-
related genera as *Drassodes*, *Echemus*, *Lepdorassus*, and *Mulicymnis* actually belong to the
Zelotes complex).

Although the reality of the *Zelotes* complex has thus been perceived for over 60 years, the generic classification of its mem-
bers is poorly understood and has been rec-

nized as inadequate for an equally long

time. Berland, for example, concluded his

study with a comment on the two genera

then recognized: “Je suis d’ailleurs persuadé

qu’une étude approfondie modifierait ces
deux genres, en morcelant certainement le
genre *Zelotes*, et peut-être aussi le genre

Camillina” (1919, p. 463). Berland’s words

were echoed by Marinaro (1967), who after a study of Algerian representatives of those
two genera and *Pseudodrassus* concluded that “De plus, le choix des critères systé-
matiques est délicat, puisque la réalité même
des trois genres concernés ne semble pas
tellement fondée” (p. 700).

The situation is also complicated by dif-

ferences in the classifications generally ac-

cepted by New and Old World authors. Eu-

ropeans have tended to place all the

Palearctic members of the complex in the

single genus *Zelotes*, the only notable at-

ttempts to subdivide the group being Loh-

mander’s (1944) division of the Swedish fau-

na into five subgenera and Miller’s (1967)

recognition of six species groups within the

Czechoslovakian fauna. Americans, on the
other hand, have generally followed Chamberlin’s (1922) division of their fauna into two genera, *Zelotes* and *Drassyllus*, although various workers have had difficulty placing certain species. Based on Dr. Willis Gertsch’s unpublished conclusion that the two genera intergrade, Roth and Brown (1973, p. 1) suggested they should be synonymized. That some European *Zelotes* would be placed in *Drassyllus* if they were American was first pointed out by Tullgren (1946). Curiously, Old World workers have retained these species in *Zelotes* even though they are most closely related to the African species generally placed in a separate genus, *Camillina*.

Chamberlin (1922) originally separated *Drassyllus* from *Zelotes* on the basis of both eye arrangement and male palpal structure. Whereas species of *Zelotes* have an ordinary eye arrangement, in *Drassyllus* the posterior median eyes are greatly enlarged and almost touch each other; the enlarged posterior median eyes result in the rear edges of the posterior eyes forming a strongly procurred line. Chamberlin characterized the male palp as having “no median ventral and no ectal apophysis, but . . . one or two distal chitinous ridges or apophyses”’ in *Zelotes* and “a conspicuous median ventral apophysis and . . . an ectal apophysis as well as a distal one” in *Drassyllus* (1922, p. 148).

Unfortunately, Chamberlin did not apply these characters very consistently, and included in *Drassyllus* two species (and two of their synonyms) that do not conform to his characterization. These species were subsequently excluded from *Drassyllus* by Chamberlin and Gertsch (1940) and Ubick and Roth (1973). The latter pair of authors, however, transferred two additional species from *Nodocion* to *Drassyllus* that also do not conform to Chamberlin’s characterization of the genus. In addition, one further species, common in Florida and not yet described (from there, although it may well be introduced) complicates the situation. It was this species that was apparently the source of Gertsch’s interpretation of intergradation, for it conforms to Chamberlin’s characterization of the eye pattern of *Drassyllus* and of the palpal structure of *Zelotes*!

Examination of a wide range of members of the *Zelotes* complex from both the Old and New World indicates to us that there are several genera involved, and that most of the problematical American species are problematical only because they belong neither to *Zelotes* nor *Drassyllus*; some are actually Old World species likely to have been introduced by humans. The present study is devoted to redefining *Drassyllus*, and establishing its sister group, on the basis of synapomorphic characters, and to reviewing the
American species that belong to the genus as so relimited.

Outgroup comparison with other zelotines indicates that both of the characters used by Chamberlin to define Drassyllus are synapomorphic, but that they do not actually define the same group. The genitalic differences were not well expressed by Chamberlin, as the 'distal chitinous ridges or apophyses' of Zelotes are homologous, at least in part, to the 'median ventral' and 'distal' apophyses of Drassyllus. However, Drassyllus species do have a unique palpal structure (fig. 3), involving a prominent, medially situated terminal apophysis that is divided into an elevated, distally directed projection and a recessed base that often extends behind the projection to the retrolateral side of the palpal bulb. There is also a characteristic embolic division, including a large and prolaterally situated embolar base (often including a weakly sclerotized area) that leads to a transverse embolar projection and a long embolus that usually coils behind the embolar projection and palpal bulb, reappearing at the retrolateral edge of the bulb (compare figs. 50, 54). A small membranous conductor seems always to be present but is sometimes visible only when the palp is expanded. Finally, a median apophysis is always present, and the subtegulum generally extends along the entire prolateral surface of the bulb and bears a distinct ridge near its distal end (fig. 3).

This type of palpal structure unites the 59 American species discussed below with at least some European ones. For example, three out of the 10 British species of Zelotes
recognized by Locket, Millidge, and Merrett (1974) have a Drassyllus palp: Z. lutetianus (L. Koch), Z. pusillus (C. L. Koch), and Z. praeficus (L. Koch). At least three additional species of Drassyllus occur in continental Europe (Miller, 1967), and we expect that some Asian species will eventually be found as well.

The modifications of the posterior median eyes noted by Chamberlin, although true for all Drassyllus, are also true for a large group of species with a different type of palpal structure. The palpi of these species resemble those of Zeolotes species in having distal ridges, but differ in having a subdistally originating embolus. The earliest available name for this group appears to be Camillina Berland (1919, a replacement name for the homonym Camilla Tullgren, 1910). On the basis of the modified posterior median eyes, we hypothesize that Camillina is the sister group of Drassyllus. This hypothesis is strengthened by the fact that the two genera have largely vicariant distributions. Camillina seems to replace Drassyllus in Africa and from the West Indies and southern Mexico south to Chile. Two species (including the undescribed Florida form mentioned above) of Camillina do reach the southeastern United States, and one (probably introduced) is found in Hawaii. Camillina species are easily recognizable by their palpal structure and by the presence of a triangular median plate on the female epigynum (for illustrations of the type species, see Platnick, 1981).

There are two major difficulties in dealing with the systematics of Drassyllus. One was succinctly expressed by Chamberlin (1936a, p. 21): "This genus is proving to be a very large one. The taxonomic problem presented is unfortunately complicated by the fact that specimens representing the different species largely come to hand singly or as representatives of one sex only, so that the bringing together of the sexes of the same species is often difficult or impossible at this stage of our knowledge." Thanks to the assistance of the numerous curators and collectors listed below, we have been able to examine enough material (approximately 4600 adult species) to essentially solve this problem for the species of the United States and Canada. Previously unknown males or females are described below for 14 species, and synonomy is provided for six cases in which conspecific males and females have been described separately. The Mexican species are less well known but because almost all of them are currently represented only by females there is not yet a problem of matching sexes.

The second major difficulty in Drassyllus is in understanding the interrelationships of the many species, and we have had only limited success at this. The numerous species are in many senses just variations on a common theme, and the only somatic differences detected among them are in size and color. Genitalic characters (commented on in the species diagnoses) frequently allow the recognition of pairs of sister taxa, or slightly larger groups, but we have found far too few characters uniting larger sets of species to attempt a cladogram. These difficulties cause parallel ones in identification. We initially attempted to construct a single key to species, but (particularly for females) it quickly degenerated into nothing more than a set of instructions indicating which illustrations should be examined next. A compromise arrangement has therefore been adopted in which the species are distributed among eight species groups, a few of which may prove not to be monophyletic. We hope that the diagnoses of these informal groups, combined with a survey of the illustrations and scanning electron micrographs and the keys to the closely similar members of each group, will allow relatively efficient identification of future specimens.

The format of the descriptions and standard abbreviations of morphological terms follow those used in Platnick and Shadab (1975) and in figures 3–5. Whenever sufficient material was available, we supplied scanning electron micrographs of the distal elements of the male palpal bulb (removed from the cymbium, at magnifications of 230×) and the female epigynum (at magnifications of 180×). Complete collection data are provided for the less common species,
and only summaries for those species abundant in collections. Unless another depository is indicated, all specimens mentioned below are in the American Museum of Natural History. All measurements given are in millimeters.

We thank Mr. R. J. Koestler of the American Museum of Natural History for assistance with the scanning electron microscope, and Dr. W. A. Shear of Hampden-Sydney College for reviewing a draft of the manuscript.

COLLECTIONS EXAMINED

AJP, Mr. A. J. Penniman
AMNH, American Museum of Natural History, including the Cornell University Collection and material made available by Dr. W. J. Gertsch
BJK, Dr. B. J. Kaston
BRV, Dr. B. R. Vogel
CAS, California Academy of Sciences, Dr. W. Pulawski
CDFA, California State Department of Food and Agriculture, Dr. F. Andrews, Mr. S. Kuba, Mr. C. Griswold
CNC, Canadian National Collection, Dr. C. D. Dondale
DEB, Mr. D. E. Bixler
DKH, Ms. D. K. Hoffmaster
DPC, Mr. D. P. Carroll
EPC, Exline-Peck Collection, Dr. W. B. Peck
FMNH, Field Museum of Natural History, Dr. J. Kethley
FSCA, Florida State Collection of Arthropods, Dr. G. B. Edwards
JAB, Dr. J. A. Beatty
JEC, Dr. J. E. Carico
JSH, Mr. J. S. Heiss
LSV, Dr. L. S. Vincent
MCZ, Museum of Comparative Zoology, Dr. H. W. Levi
MSU, Michigan State University, Dr. R. L. Fischer
NMB, Naturhistorisches Museum Basel, Dr. E. Sutter
NVH, Dr. N. V. Horner
OSU, Ohio State University, Dr. C. A. Triplehorn and Mr. A. J. Penniman
REL, Dr. R. E. Leech
SER, Dr. S. E. Riechert
TDG, Mr. T. D. Gowan
TMM, Texas Memorial Museum, Dr. W. G. Reeder
TTU, Texas Tech University, Dr. O. F. Francke and Mr. J. C. Cokendolpher
UCB, University of California at Berkeley, Dr. E. I. Schlinger and Mr. C. Griswold
UCR, University of California at Riverside, Mr. S. Frommer
USNM, National Museum of Natural History, Smithsonian Institution, Dr. R. E. Crabill, Jr.
UVT, University of Vermont, Dr. R. T. Bell
VDR, Mr. V. D. Roth
WAS, Dr. W. A. Shear
WDF, Dr. W. D. Fronk
WES, Mr. W. E. Sedgwick
WLT, Dr. W. L. Tietjen
WRI, Mr. W. R. Icenogle

DRASSYLLUS CHAMBERLIN

Drassyllus Chamberlin, 1922, p. 166 (type species by original designation Drassyllus fallens Chamberlin).

Epizelotes Lohmander, 1944, p. 14 [type species by original designation Zelotes pusillus (C. L. Koch)]. Described as a subgenus of Zelotes; synonymy first suggested by Tullgren, 1946, p. 113.

DIAGNOSIS: Specimens of Drassyllus can be distinguished from all other gnaphosids by the combined presence of a preening comb on metatarsi III and IV (figs. 1, 2), large and almost touching posterior median eyes (Kaston, 1978, fig. 528), and a bifid, medially situated terminal apophysis on the male palp (fig. 3).

DESCRIPTION: Total length 1.7–8.0. Carapace oval in dorsal view, widest between coxae II and III, truncate posteriorly, abruptly narrowed at level of palpi, orange to dark brown, frequently with dark reticulations, posterolateral corners with long, erect, dark setae; cephalic area flattened, thoracic groove long, longitudinal. From above, anterior eye row slightly recurved, posterior row slightly procurred; from front, both rows procurred; AME circular, dark, PME irregularly rectangular, light, ALE and PLE oval, light; PME largest, AME smallest; AME separated by roughly their diameter, almost touching ALE; PME almost touching, separated from PLE by half their long diameter or more; lateral eyes of each side separated by their radius or more; MOQ usually slightly longer than wide, wider in
back than in front. Clypeal height slightly greater than AME diameter. Chelicerae usually with four promarginal and three retro-marginal teeth. Endites short, rectangular, obliquely depressed, greatly flattened so that they appear abruptly narrowed beyond insertion of palpi; labium broad, rebordered and rounded distally; sternum oval, with recurved anterior margin, rebordered, with deep setal punctations centrally. Leg formula 4123. Typical leg spination pattern (only surfaces bearing spines listed): femora: I, II d1-1-0, p0-0-1; III d1-1-0, p0-1-1, r0-1-1; IV d1-1-0, p0-0-1, r0-0-1; patella III r0-1-0; tibiae: III p1-1-1, v1p-2-2, r0-1-1; IV p1-1-1, v2-2-2, r1-1-1; metatarsi: I, II v2-0-0; III p1-2-2, v2-0-0, r1-1-2; IV p1-2-2, v2-2-0, r1-2-1. Legs orange to dark brown (if dark, usually with lighter tarsi and metatarsi); tarsi IV lightly scopulate; tarsi with two dentate claws but no claw tufts; trochanters not notched; metatarsi III and IV with preening comb; distal segments with two rows of long trichobothria. Abdomen usually grey, rarely with dark median longitudinal band or chevron pattern; males with brown anterior scutum; six spinnerets, anterior sclerotized, separated at base by their width. Palp with bifid terminal apophysis, large embolar base (bearing projection and coiled embolus), median apophysis, and membranous conductor. Epigynum with midpiece or median depression; spermathecae situated posteriorly, ducts long.

MISPLACED SPECIES: Three species currently assigned to Drassyllus do not fit the diagnosis given above: *D. agilis* (Bryant), *D. peninsulanus* (Banks), and *D. elegans* (Bryant). Their proper placement will be discussed in subsequent papers.

UNCERTAIN NAME: The holotype of *D. ethops* (Chamberlin) is an unidentifiable juvenile specimen and the name is therefore regarded as a *nomen dubium*.

THE fallsens GROUP

DIAGNOSIS: The fallsens group contains those species in which the males have a longitudinal row of stiff setae dorsally on the palpal tibia (as in figs. 7, 39) and a short embolus arising at a sharp angle from a dorsally flattened posterior portion (as in figs. 6, 10). Females have a small epigynal midpiece (as in figs. 8, 20, 35) and often the median epigynal ducts are conspicuously widened (as in figs. 9, 33).

KEY TO SPECIES

1. **Males** .. 2
2. **Females** 7
2. **EB oriented transversely** (figs. 6, 14, 18, 26), with broad saddle-shaped prolateral depression (figs. 12, 22, 24) 3
3. **EB oriented obliquely** (figs. 30, 38), with narrow saddle-shaped prolateral depression (figs. 34, 36) 6
3. **TA relatively wide** (fig. 26), with distal notch at retrolateral corner (fig. 24) socius
4. **TA relatively narrow** (figs. 6, 14, 18), without distal notch (figs. 10, 12, 22) 4
5. **Distal half of RTA bent, transverse** (figs. 15, 19) 5
5. **Distal half of RTA straight, oblique** (fig. 7) fallsens
5. **Retrolateral edge of TA invaginated** (figs. 12, 14) eremitus
6. **Distal edge of TA rounded** (figs. 36, 38) gynosaphes
7. **MP deeply recessed between protuberant paramedian lobes** (figs. 8, 11, 13, 16) ... 8
8. **AEM relatively broad** (figs. 8, 11) fallsens
9. **AEM relatively narrow** (figs. 13, 16) eremitus
10. **AEM relatively long, reaching almost to base of MP** (figs. 20, 23, 25, 28) 10
11. **AEM conspicuously narrowed anteriorly** (figs. 20, 23) depressus
12. **AEM not conspicuously narrowed anteriorly** (figs. 25, 28) socius
13. **AEM with two paramedian protuberances** (figs. 32, 35) nannellus
14. **AEM without paramedian protuberances** (figs. 37, 40) gynosaphes
Drassyllus fallens Chamberlin

Figures 6–11; Map 1

Prosthesima depressa (misidentification): Emer- ton, 1911, p. 406 (in part; pl. 5, fig. 8 only).

Zelotes depressa (misidentification): Banks, 1911, p. 441, fig. 1.

Diagnosis: Drassyllus fallens seems closest to D. eremitus (in both species the EM is recessed below two paramedian protuberances) but may be distinguished by the longer, narrower TA (figs. 6, 10) of males and the wider AEM (figs. 8, 11) of females.

Male: Total length 3.94 ± 0.29. Carapace 1.74 ± 0.11 long, 1.40 ± 0.08 wide. Femur II 1.07 ± 0.07 long. Eye sizes and interdistances: AME 0.06, ALE 0.07, PME 0.10, PLE 0.08; AME–AME 0.07, AME–ALE 0.01, PME–PME 0.00, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.22, front width 0.19, back width 0.20. TA long, narrow toward tip (figs. 6, 10); RTA oblique (fig. 7). Leg spination: femur IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1; metatarsus IV r1-2-2.

Female: Total length 4.30 ± 0.77. Carapace 1.72 ± 0.13 long, 1.36 ± 0.10 wide. Femur II 1.09 ± 0.10 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.10, PLE 0.07; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.01, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.23, front width 0.16, back width 0.20. AEM relatively wide (figs. 8, 11); MED very wide (fig. 9). Leg spination: femora II, IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1; metatarsi: II v1r0-0-0; IV r1-2-2.

Material Examined: Canada: Nova Scotia: Bridgewater, July 6–Aug. 1, 1966–1968, ground traps in oak (D. G. Embree, CNC), 1♂, 2♀. Quebec: King Mountain, Ga-

DISTRIBUTION: Wisconsin to Nova Scotia, south to Georgia (map 1).

Drassyllus eremitus Chamberlin

Figures 12–17; Map 2

DIAGNOSIS: *Drassyllus eremitus* seems closest to *D. fallens* but may be distinguished by the shorter, wider TA (figs. 12, 14) of males and the narrower AEM (figs. 13, 16) of females.

MALE: Total length 3.49 ± 0.32. Carapace 1.58 ± 0.06 long, 1.24 ± 0.05 wide. Femur II 1.01 ± 0.05 long (69 specimens examined). Eye sizes and interdistances: AME 0.05, ALE 0.08, PME 0.10, PLE 0.09; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.01, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.22, front width 0.16, back width 0.21. TA rounded distally, invaginated retrolaterally (figs. 12, 14); RTA acutely bent (fig. 15). Leg spination: femora I, 4V p0-0-0; patella III r0-0-0; tibia IV p0-1-0, vlp-2-2; metatarsi: II v1r-0-0; III p0-2-2, r0-1-2.

FEMALE: Total length 3.75 ± 0.34. Carapace 1.59 ± 0.13 long, 1.24 ± 0.09 wide. Femur II 1.01 ± 0.09 long (65 specimens examined). Eye sizes and interdistances: AME 0.06, ALE 0.07, PME 0.10, PLE 0.08; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.01, PME–PLE 0.03, ALE–PLE 0.04. MOQ length 0.23, front width 0.18, back width 0.21. AEM narrow, slightly widened behind tip (figs. 13, 16); MED wide, long (fig. 17). Leg spination: femur IV p0-0-0, patella III r0-0-0, tibia IV p1-0-1, vlp-2-2; metatarsi: II v1r-0-0; III p0-2-2, r0-1-2.

DISTRIBUTION: Wisconsin to Massachusetts, south to Louisiana and Florida (map 2).

NATURAL HISTORY: Mature males have been taken from February through August and in October, mature females from March through August and in December. Specimens have been collected in pitfall traps and Berlese samples, in sphagnum, cattail, and tamarack bogs, in pecan groves, and in bottomland, hardwood, pine, sand-pine, and palm forests.

Drassylus depressus (Emerton)

Figures 18–23; Map 3

Prosthesima depressa Emerton, 1890, p. 9, pl. 3, figs. 8, 8a (female holotype from Medford, Middlesex County, Massachusetts, in MCZ, examined); 1911, p. 406, pl. 5, figs. 8a and 8c only.

Melanophora depressa: Bryant, 1908, p. 7.

Zelotes depressa: Banks, 1910, p. 8.

Zelotes depressus: Petrunkevitch, 1911, p. 149.

Drassylus depressus: Chamberlin, 1922, p. 167.

DIAGNOSIS: *Drassylus depressus* seems closest to *D. socius* (in both species the TAR has a conspicuous extension reaching the retrolateral edge of the CYM) but may be distinguished by the narrower TA (figs. 18,

22) of males and the anteriorly narrowed AEM (figs. 20, 23) of females.

MALE: Total length 3.99 ± 0.28. Carapace 1.78 ± 0.12 long, 1.42 ± 0.12 wide. Femur II 1.16 ± 0.10 long (249 specimens examined). Eye sizes and interdistances: AME 0.05, ALE 0.08, PME 0.09, PLE 0.08; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.21, front width 0.15, back width 0.20. TA roughly triangular (figs. 18, 22); RTA sharply bent (fig. 19). Leg spination: femora II, IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1; metatarsus IV r1-2-2.

FEMALE: Total length 4.59 ± 0.75. Carapace 1.74 ± 0.13 long, 1.38 ± 0.10 wide. Femur II 1.14 ± 0.06 long (206 specimens examined). Eye sizes and interdistances: AME 0.05, ALE 0.08, PME 0.10, PLE 0.08; AME–AME 0.08, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.06. MOQ length 0.23, front width 0.18, back width 0.22. AEM distinctly narrowed anteriorly (figs. 20, 23); MED and AED forming semicircle (fig. 21). Leg spination: femur IV p0-0-0; patella III r0-0-0; metatarsus III r1-2-2.

RECORDS:

DISTRIBUTION: British Columbia to Nova Scotia, south to Arizona, Arkansas, and Virginia (map 3).

NATURAL HISTORY: Mature males have been taken from late April through late September, mature females in January, March, and from May through late August. Specimens have been collected by vacuum and pitfall traps, under boards, rocks, and debris,
in fields, meadows, prairies, cattail marshes, sphagnum bogs, gravel pits, sand blowouts, and oak-hickory, hawthorne, and coniferous forests, on beaches, associated with goldenrod, wheat, and alfalfa, and in houses, at elevations up to 9000 feet.

Drassyllus socius Chamberlin

Figures 24–29; Map 4

Prosthesima depressa (misidentification): Emer- ton, 1911, p. 406 (in part; pl. 5, fig. 8b only).

Diagnosis: *Drassyllus socius* seems closest to *D. depressus* but may be distinguished by the distally notched TA (figs. 24, 26) of males and the anteriorly broad AEM (figs. 25, 28) of females.

Male: Total length 3.40 ± 0.31. Carapace 1.45 ± 0.08 long, 1.18 ± 0.06 wide. Femur II 0.88 ± 0.05 long. Eye sizes and interdistances: AME 0.04, ALE 0.06, PME 0.08, PLE 0.07; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.04. MOQ length 0.19, front width 0.14, back width 0.18. TA very wide, with distal notch on retrolateral side (figs. 24, 26); RTA narrowed distally (fig. 25). Leg spination: femora I, II, IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1; metatarsus III p0-2-2, r0-1-2.

Female: Total length 4.15 ± 0.41. Carapace 1.48 ± 0.06 long, 1.17 ± 0.05 wide. Femur II 0.93 ± 0.06 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.08, PLE 0.08; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.21, front width 0.13, back width 0.17. AEM broad, epignyum almost square (figs. 25, 28); AED very long (fig. 29). Leg spination: femora I, IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1; metatarsus III r0-1-1.

DISTRIBUTION: Ontario and Iowa to Nova Scotia and Massachusetts (map 4).

Drassyllus nannellus
Chamberlin and Gertsch
Figures 30–35; Map 5

Drassyllus nannellus Chamberlin and Gertsch, 1940, p. 11, fig. 33 (female holotype from 10 miles west of Tremonton, Box Elder County, Utah, in AMNH, examined). Roewer, 1954, p. 416. Ubick and Roth, 1973, p. 3.

DIAGNOSIS: *Drassyllus nannellus* seems closest to *D. gynosaphes* (in both species the EB and EP are oriented obliquely) but may be distinguished by the straight distal edge of the TA (figs. 30, 34) of males and the paramedian protuberances on the AEM (figs. 32, 35) of females.

MALE: Total length 2.68 ± 0.23. Carapace 1.15 ± 0.08 long, 0.91 ± 0.07 wide. Femur II 0.70 ± 0.08 long. Eye sizes and interdistances: AME 0.04, ALE 0.05, PME 0.07, PLE 0.06; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.15, front width 0.13, back width 0.16. EB shortened, directed obliquely, with recessed EP; TA sharply pointed with straight distal edge (figs. 30, 34); MA relatively small (fig. 31).
MAP 4. North America, showing distribution of *Drassylus socius*.

Leg spination: femora II, IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1, v1p-2-2; metatarsi: I v1r-0-0; III p0-2-2, r0-1-2; IV v2-1p-0.

FEMALE: Total length 2.94 ± 0.30. Carapace 1.20 ± 0.09 long, 0.93 ± 0.08 wide. Femur II 0.71 ± 0.09 long. Eye sizes and interdinations: AME 0.04, ALE 0.05, PME 0.06, PLE 0.06; AME-AME 0.04, AME-ALE 0.01, PME-PME 0.03, PME-PLE 0.02, ALE-PLE 0.03. MOQ length 0.17, front width 0.13, back width 0.15. AEM with paired paramedian protuberances (figs. 32, 35); MED sinuous (fig. 33). Leg spination: femur IV p0-0-0; tibia IV p1-0-1, v1p-2-2; metatarsi: I, II v1r-0-0; III p0-2-2, v0-0-0, r0-1-2; IV p0-2-2, v2-1p-0.

Rosebud Co.: Colstrip, June 23, 1974 (CNC), 1♀.

DISTRIBUTION: Oregon to Ohio (map 5).

Drassylus gynosaphes Chamberlin

Figures 36–41; Map 6

DIAGNOSIS: *Drassylus gynosaphes* seems closest to *D. nannellus* but may be distinguished by the rounded distal edge of the TA (figs. 36, 38) of males and the continuous AEM (figs. 37, 40) of females.

MALE: Total length 3.64 ± 0.39. Carapace 1.65 ± 0.15 long, 1.29 ± 0.10 wide. Femur II 1.05 ± 0.12 long. Eye sizes and interdinations: AME 0.06, ALE 0.09, PME 0.10, PLE 0.09; AME-AME 0.06, AME-ALE 0.02, PME-PME 0.02, PME-PLE 0.04, ALE-PLE 0.04. MOQ length 0.22, front width 0.18, back width 0.22. EB shortened, directed obliquely, with long, narrow EP; TA rounded distally (figs. 36, 38); MA relatively large (fig. 39). Leg spination: femora I, IV p0-0-0; tibia IV p1-0-1.

FEMALE: Total length 3.98 ± 0.47. Carapace 1.53 ± 0.06 long, 1.23 ± 0.06 wide. Femur II 0.96 ± 0.07 long. Eye sizes and interdinations: AME 0.05, ALE 0.09, PME 0.09, PLE 0.09; AME-AME 0.05, AME-ALE 0.01, PME-PME 0.02, PME-PLE 0.04, ALE-PLE 0.04. MOQ length 0.22, front width 0.15, back width 0.20. AEM very wide, without paired protuberances (figs. 37,

40); MED with straight edges (fig. 41). Leg spination: femur IV p0-0-0; tibia IV p1-0-1, v1p-2-2; metatarsi: III p0-2-2, r0-1-2; IV v2-vlp-0.

DISTRIBUTION: Kansas and Missouri to southern Texas (map 6).

THE lamprus GROUP

DIAGNOSIS: The lamprus group contains those species in which the males have a longitudinal row of stiff setae dorsally on the palpal tibia (as in figs. 43, 67), a long embolus emerging at the retrolateral side of the palpal bulb and restricted to that side (as in figs. 42, 66), and a short, narrow embolar projection (as in figs. 46, 60). Females have an epigynum either with an extremely narrow anterior margin (D. lamprus, figs. 44, 47) or a translucent flange connecting the median and anterior epigynal ducts (as in figs. 53, 57, 65, 69).

KEY TO SPECIES

1. Males with a short TA, not reaching TAR (figs. 42, 46); females with an extremely narrow
AEM, occupying less than one-third the epigynal width lamprus
Males with TA extending to or beyond TAR (as in figs. 50, 54); females with AEM extending the full width of the epigynum . 2
2. Males 3
Females 6
3. TA relatively narrow (figs. 48, 50) seminolus
TA relatively wide (as in figs. 54, 66) 4
4. EMB greatly thickened (figs. 54, 58) dixinus
EMB normal (as in figs. 60, 62) 5
5. RTA relatively narrow (fig. 63) ... texamans
RTA relatively wide (fig. 67) ... conformans
6. MP massive, triangular (figs. 61, 64) texamans
MP wide posteriorly but narrow anteriorly (figs. 52, 56, 68) 7
7. MP fused to AEM, forming continuous line (figs. 68, 71) conformans
MP not fused to AEM (figs. 52, 56) 8
8. MP very narrow anteriorly, abruptly widened posteriorly (figs. 56, 59) dixinus
MP wider anteriorly, gradually narrowed posteriorly (figs. 49, 52) seminolus

Drassyllus lamprus (Chamberlin)
Figures 42–47; Map 7

Zelotes lampra Chamberlin, 1920, p. 193, fig. 3
(female holotype from Mill Creek, Salt Lake County, Utah, in MCZ, examined).

Drassyllus lamprus: Chamberlin, 1922, p. 171.
Ubick and Roth, 1973, p. 2.

Nodocion zelotoides Worley, 1928, p. 621, fig. 4
(female holotype from Mitchell, Scotts Bluff
MAP 5. North America, showing distribution of Drassyllus nannellus.

Nodocion moronius Chamberlin, 1936b, p. 5, fig. 21 (female holotype from Moroni, Sanpete County, Utah, in AMNH, examined). Roewer, 1954, p. 428. Bonnet, 1958, p. 3105. NEW SYNONYMY.

Drassyllus zelotoides: Ubick and Roth, 1973, p. 3.

PLATNICK AND SHADAB: DRASSYLLUS

Figs. 42–45. *Drassyllus lamprus* (Chamberlin). 42. Palp, ventral view. 43. Palp, retrolateral view. 44. Epigynum, ventral view. 45. Epigynum, dorsal view.

Drassyllus moronius: Ubick and Roth, 1973, p. 3.

Diagnosis: If the *lamprus* group is monophyletic, *D. lamprus* represents the sister group of the other four species as it shares the diagnostic features of males of the group (but lacks the modifications of the epigynal ducts of the other females) mentioned above. Specimens of *D. lamprus* can be recognized by the features listed in the first couplet of the key.

Male: Total length 3.26 ± 0.31. Carapace 1.46 ± 0.10 long, 1.16 ± 0.10 wide. Femur II 0.91 ± 0.05 long (27 specimens examined). Eye sizes and interdistances: AME 0.05, ALE 0.06, PME 0.09, PLE 0.07; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.18, front width 0.15, back width 0.20. TA very short, not reaching TAR (figs. 42, 46); RTA sinuous distally (fig. 43). Leg spination: femur IV p0-0-0; tibia IV p1-0-1.

Female: Total length 3.48 ± 0.61. Carapace 1.58 ± 0.12 long, 1.20 ± 0.10 wide. Femur II 1.00 ± 0.10 long (66 specimens examined). Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.09, PLE 0.06; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.21, front width 0.13, back width 0.21. AEM very narrow, surrounded by darkened cuticle extending around anterior ends of MP (figs. 44, 47); AED wide, short (fig. 45). Leg spination: femora II, IV p0-0-0.

DISTRIBUTION: Western North America (map 7).

Natural History: Mature males have been taken from May through July and in October, mature females from late March through August. Specimens have been collected in pitfall traps, pools, under rocks, on river banks, in dry fields and prairies, associated with alfalfa, althorn, juniper, lichens, mesquite, nolina, pinyon pine, sagebrush, and yucca, and under cow pats, at elevations up to 9200 feet.

Synonymy: Chamberlin provided no characters to distinguish *moronius* from *zeleloides*, and there appear to be none; the redescription of *D. lamprus* under these names was apparently due to generic misidentifications.

Drassyllus seminolus

Chamberlin and Gertsch

Figures 48–53; Map 8

Drassyllus seminolus Chamberlin and Gertsch, 1940, p. 16, fig. 31 (female holotype from Gainesville, Alachua County, Florida, in AMNH, examined). Roewer, 1954, p. 413. Ubick and Roth, 1973, p. 3.

Diagnosis: *Drassyllus seminolus* seems to represent the sister group of *D. dixinus*, *D. texamans*, and *D. conformans*; all four species have a translucent flange connecting the MED and AED, but males of *D. seminolus* lack the greatly widened TA of the other species (figs. 48, 50). Females of *D. seminolus* have the flange smaller than in the other species (fig. 53).
MAP 7. North America, showing distribution of *Drassyllus lamprus*.

MALE: Total length 2.63–3.28. Carapace 1.22–1.44 long, 0.94–1.10 wide. Femur II 0.73–0.84 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.04, AME–ALE 0.01, PME–PME 0.01, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.20, front width 0.14, back width 0.19. TA relatively narrow, extending beyond TAR (figs. 48, 50); RTA blade-shaped (fig. 51). Leg spination: tibiae: II v1r–lr-0; III v2-2-2, r1-1-1; IV p1-0-1, r2-1-1.

FEMALE: Total length 3.05 ± 0.31. Carapace 1.26 ± 0.07 long, 0.99 ± 0.07 wide. Femur II 0.77 ± 0.07 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.08, PLE 0.06; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.00, PME–PLE 0.04, ALE–PLE 0.03. MOQ length 0.18, front width 0.13, back width 0.16. MP relatively wide anteriorly, gradually widened posteriorly (figs. 49, 52); MED and AED connected by small translucent flange (fig. 53). Leg spination: tibiae: II v0-1r-0; III r1-1-1; IV r2-1-1.

Distribution: Florida (map 8).

Drassyllus dixinus Chamberlin

Figures 54–59; Map 9

Drassyllus sporadicus Muma, 1944, p. 10, figs. 11, 12 (male holotype from Parole, Anne Arundel County, Maryland, in AMNH, examined). Roewer, 1954, p. 417. Ubick and Roth, 1973, p. 3. NEW SYNONYMY.

Figs. 54–57. Drassyllus dixinus Chamberlin. 54. Palp, ventral view. 55. Palp, retrolateral view. 56. Epigynum, ventral view. 57. Epigynum, dorsal view.
DIAGNOSIS: *Drassyllus dixinus* seems closest to *D. texamans* and *D. conformans* (males of all three have a greatly widened TA) but may be distinguished by the greatly thickened EMB (figs. 54, 58) of males and the large, rectangular posterior expansion of the MP (figs. 56, 59) of females.

MALE: Total length 3.05 ± 0.22. Carapace 1.35 ± 0.07 long, 1.08 ± 0.07 wide. Femur II 0.87 ± 0.02 long. Eye sizes and interdistances: AME 0.05, ALE 0.08, PME 0.10, PLE 0.07; AME–AME 0.04, AME–ALE 0.02, PME–PME 0.00, PME–PLE 0.04, ALE–PLE 0.03. MOQ length 0.21, front width 0.14, back width 0.20. TA very wide, lobe-shaped; EMB greatly thickened (figs. 54, 58); RTA long, oblique (fig. 55). Leg spination: tibia IV r2-1-1; metatarsus III p0-2-2, v1p-0-0.

FEMALE: Total length 3.25 ± 0.24. Carapace 1.36 ± 0.14 long, 1.01 ± 0.08 wide. Femur II 0.82 ± 0.06 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.03, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.16, front width 0.14, back width 0.20. MP wide, rectangular posteriorly, greatly narrowed anteriorly (figs. 56, 59); translucent flange connecting MED and AED large (fig. 57). Leg spination: metatarsus III p0-2-2, r0-1-2.

MATERIAL EXAMINED: UNITED STATES: Arkansas: Benton Co.: Round Prairie, May 6–21, 1965 (EPC), 1♂. Bradley Co.: no spe-

DISTRIBUTION: Southeastern United States (map 9).

SYNONYMY: Several simultaneous collections of both sexes indicate that *sporadicus* is the male of *dixinus*.

Drassyllus texamans Chamberlin

Figures 60–65; Map 10

DIAGNOSIS: *Drassyllus texamans* seems closest to *D. dixinus* and *D. conformans* but may be distinguished by the narrow RTA (fig. 63) of males and the massive, triangular MP (figs. 61, 64) of females.

MALE: Total length 3.30 ± 0.19. Carapace 1.45 ± 0.11 long, 1.16 ± 0.09 wide. Femur
II 0.90 ± 0.08 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.04, AME–ALE 0.02, PME–PME 0.01, PME–PLE 0.03, ALE–PLE 0.04. MOQ length 0.21, front width 0.14, back width 0.19. TA extremely wide (figs. 60, 62); RTA narrow (fig. 63). Leg spination: femur IV p0-0-0; tibiae: II v0-1r-0; IV p1-0-1, r2-1-1.

FEMALE: Total length 3.46 ± 0.34. Carapace 1.38 ± 0.11 long, 1.06 ± 0.09 wide. Femur II 0.86 ± 0.05 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.08, PLE 0.07; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.20, front width 0.15, back width 0.18. MP triangular, occupying most of epigynum (figs. 61, 64); AED fused with translucent flange (fig. 65). Leg spination: femora I, II, IV p0-0-0; tibiae: III v1p-1p-2; IV p1-0-1, v1p-2-2; metatarsi I v1r-0-0; III p0-2-2, v0-0-0, r0-1-2; IV v2-1p-0.

Material Examined: United States:

Distribution: Oklahoma and Tamaulipas to Florida (map 10).

Synonymy: Chamberlin provided no characters to distinguish dentelifer from finium, and there appear to be none; several simultaneous collections of both sexes indicate that these names refer to the male of texamans.

Drassyllus conformans Chamberlin

Figures 66–71; Map 11

Diagnosis: Drassyllus conformans seems closest to D. dixinus and D. texamans but may be distinguished by the prolaterally elongated TA (figs. 66, 70) of males and the fused MP and AEM (figs. 68, 71) of females.

Male: Total length 3.32 ± 0.34. Carapace 1.48 ± 0.15 long, 1.16 ± 0.19 wide. Femur II 0.87 ± 0.11 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.09, PLE 0.06; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.01, PME–PLE 0.03, ALE–PLE 0.04. MOQ length 0.18, front width 0.14, back width 0.20. TA wide, longer prolaterally than retrolaterally (figs. 66, 70); RTA with sinuous dorsal margin (fig. 67). Leg spination: tibiae: II v0-1r-0; IV r2-1-1.

Female: Total length 3.68 ± 0.46. Carapace 1.43 ± 0.15 long, 1.10 ± 0.13 wide. Femur II 0.88 ± 0.09 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.10, PLE 0.07; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.22, front width 0.15, back width 0.22. MP and AEM fused, forming continuous line (figs. 68, 71); translucent flange rounded (fig. 69). Leg spination typical for genus.

DISTRIBUTION: California and New Mexico to Oaxaca (map 11).

THE notonus GROUP

Diagnosis: The notonus group contains those species in which the males have a longitudinal row of stiff setae dorsally on the palpal tibia (as in figs. 75, 87; the setae are reduced or absent in D. antonito), an extremely long embolus which crosses the distal surface of the palpal bulb and reaches the prolateral half of the cymbium (as in figs. 74, 90), and an enlarged median apophysis that reaches to the tip of the terminal apophysis.
Figs. 70–73. 70, 71. *Drassyllus conformans* Chamberlin. 72, 73. *D. notonus* Chamberlin. 70, 72. Palp, ventral view. 71, 73. Epigynum, ventral view.

(as in figs. 72, 84). Females have an extremely long anterior epigynal margin (as in figs. 76, 92) or coiled posterior epigynal ducts (fig. 89). The group includes the smallest of the known *Drassyllus* species.

KEY TO SPECIES

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Males</td>
<td>2</td>
</tr>
<tr>
<td>Females</td>
<td>5</td>
</tr>
<tr>
<td>2. EP blunt (figs. 72, 74, 78, 82)</td>
<td>3</td>
</tr>
<tr>
<td>EP sharply pointed (figs. 83, 84, 86, 90)</td>
<td>4</td>
</tr>
<tr>
<td>3. TA long, relatively narrow at tip (figs. 72, 74)</td>
<td>notonus</td>
</tr>
<tr>
<td>TA short, relatively wide at tip (figs. 78, 82)</td>
<td>inanus</td>
</tr>
<tr>
<td>4. RTA straight (fig. 87)</td>
<td>sinton</td>
</tr>
<tr>
<td>RTA bent dorsally (fig. 91)</td>
<td>antonito</td>
</tr>
<tr>
<td>5. MP fused to AEM (figs. 85, 88)</td>
<td>sinton</td>
</tr>
<tr>
<td>MP not fused to AEM</td>
<td>6</td>
</tr>
<tr>
<td>6. Anterior portion of AEM relatively wide (fig. 92)</td>
<td>antonito</td>
</tr>
<tr>
<td>Anterior portion of AEM relatively narrow (figs. 76, 80)</td>
<td>7</td>
</tr>
<tr>
<td>7. Posterior portion of MP relatively small (figs. 73, 76)</td>
<td>notonus</td>
</tr>
<tr>
<td>Posterior portion of MP relatively large (fig. 80)</td>
<td>inanus</td>
</tr>
</tbody>
</table>

Drassyllus notonus Chamberlin

Figures 72–77; Map 12

Drassyllus apachus (misidentification): Chamberlin and Woodbury, 1929, p. 135, pl. 2, figs. 3, 4.
Diagnosis: *Drassyllus notonus* seems closest to *D. inanus* (in both species the EP is straight and blunt and the AEM almost surrounds the epigynum) but may be distinguished by the longer and narrower TA (figs. 72, 74) of males and the longer AEM (figs. 73, 76) of females.

Male: Total length 2.55 ± 0.32. Carapace 1.06 ± 0.07 long, 0.84 ± 0.04 wide. Femur II 0.63 ± 0.03 long (45 specimens examined). Eye sizes and interdistances: AME 0.04, ALE 0.05, PME 0.05, PLE 0.06; AME–AME 0.04, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.15, front width 0.12, back width 0.14. TA long, narrowed distally, triangular (figs. 72, 74); MA extremely long, closely appressed to TA (fig. 75). Leg spination: femur II p0-0-0; patella III r0-0-0; metatarsi: I v0-0-0; II v1r-0-0; III v1p-0-0, r0-1-2; IV v2-0-0.

Female: Total length 2.90 ± 0.19. Carapace 1.15 ± 0.07 long, 0.89 ± 0.05 wide. Femur II 0.71 ± 0.08 long (49 specimens examined).}

Drassyllus tonaquintus Chamberlin and Gertsch, 1940, p. 17, figs. 20, 21 (male holotype from St. George, Washington County, Utah, in AMNH, examined). Roewer, 1954, p. 417. First synonymized by Ubick and Roth, 1973, p. 3.
MOQ length 0.14, front width 0.12, back width 0.14. MP narrow, AEM longer than wide (figs. 73, 76); AED expanded (fig. 77). Leg spination: femora: I, II p0-0-0; III p0-0-1, r0-0-1; IV p0-0-0; patella III r0-0-0; tibiae: III v0-1p-2; IV v1p-2-2; metatarsi: I, II v1r-0-0; III p0-2-2, v0-0-0, r0-1-2; IV v2-1p-0.

DISTRIBUTION: Oregon and Arizona to Louisiana and San Luis Potosi (map 12).

NATURAL HISTORY: Mature males have been taken from February through October and in December, mature females from late March through October and in December.

Specimens have been collected in pitfall and suction traps, under rocks and trash, on sand dunes and ditch banks, and in alfalfa, Bermuda grass, cotton, sorghum, soybean, and sweet potato fields, at elevations up to 3000 feet.

Diagnosis: *Drassyllus inanus* seems closest to *D. notonus* but may be distinguished by the shorter, wider TA (figs. 78, 82) of males and the shorter AEM (fig. 80) of females.

Male: Total length 2.03–2.41. Carapace 0.91–1.06 long, 0.72–0.83 wide. Femur II 0.50–0.58 long. Eye sizes and interdistances: AME 0.03, ALE 0.05, PME 0.06, PLE 0.05; AME–AME 0.03, AME–ALE 0.00, PME–PME 0.02, PME–PLE 0.02, ALE–PLE 0.03. MOQ length 0.12, front width 0.09, back width 0.14. TA short, wide (figs. 78, 82); RTA bent at tip (fig. 79). Leg spination: patella III r0-0-0; tibia IV p1-0-1, v1p-2-2; metatarsus III p0-2-2, r0-1-2.

Female: Total length 2.30, 2.63. Carapace 1.11, 1.13 long, 0.84, 0.85 wide. Femur II 0.58, 0.63 long. Eye sizes and interdistances: AME 0.03, ALE 0.05, PME 0.04, PLE 0.05;
North America, showing distribution of *Drassyllus inanus*.

AME–AME 0.05, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.14, front width 0.11, back width 0.12. AEM long, wide (fig. 80); PED widened anteriorly (fig. 81). Leg spination: tibia IV p1-0-1; metatarsus III p0-2-2, r0-1-2.

Distribution: Utah to southern Texas (map 13).

Drassyllus sinton, new species

Figures 84–89; Map 14

Types: Male holotype and female paratype from 8 miles northeast of Sinton, San Patricio County, Texas (September 4, 1959; H. E. Laughlin), deposed in AMNH.

Etymology: The specific name is a noun in apposition taken from the type locality.

Diagnosis: *Drassyllus sinton* seems closest to *D. antonito* (in both species the TA is wide, distally rounded, and medially elevated) but may be distinguished by the straight RTA (fig. 87) of males and the fused MP and AEM (figs. 85, 88) of females.

Male: Total length 2.30 ± 0.25. Carapace 1.10 ± 0.07 long, 0.84 ± 0.05 wide. Femur II 0.60 ± 0.04 long. Eye sizes and interdis-

tances: AME 0.03, ALE 0.05, PME 0.05, PLE 0.05; AME–AME 0.04, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.03. MOQ length 0.14, front width 0.10, back width 0.13. TA large, distally rounded, with submarginal ridge (figs. 84, 86); RTA straight, short (fig. 87). Leg spination: femur I p0-0-0; tibiae: II v0-1r-0; IV p1-0-1; metatarsi: III p0-2-2, r0-1-2; IV v2-0-0.

FEMALE: Total length 2.37 ± 0.37. Carapace 1.00 ± 0.14 long, 0.71 ± 0.06 wide. Femur II 0.56 ± 0.03 long. Eye sizes and interdistances: AME 0.03, ALE 0.05, PME 0.05, PLE 0.05; AME–AME 0.04, AME–ALE 0.00, PME–PME 0.03, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.14, front width 0.10, back width 0.12. MP and AEM fused, forming continuous line (figs. 85, 88); PED coiled anteriorly (fig. 89). Leg spination: femora I, II, IV p0-0-0; tibia IV p1-0-1; metatarsi: I, II v0-0-0; III p0-2-2, v0-0-0, r0-1-2; IV v2-1p-0.

DISTRIBUTION: New Mexico, Texas, and Tamaulipas (map 14).

Drassyllus antonito, new species

Figures 83, 90–93; Map 15

TYPE: Male holotype from 36 miles south of Antonito, Socorro County, New Mexico (March 21, 1963; B. R. Vogel), deposited in AMNH courtesy of Dr. Vogel.

ETYMOLOGY: The specific name is a noun in apposition taken from the type locality.

DIAGNOSIS: Drassyllus antonito seems closest to D. sinton but may be distinguished by the bent RTA (fig. 91) of males and the extremely wide AEM (fig. 92) of females.

MALE: Total length 2.23–2.57. Carapace 0.86–1.03 long, 0.67–0.82 wide. Femur II 0.55–0.63 long. Eye sizes and interdistances: AME 0.03, ALE 0.05, PME 0.05, PLE 0.05; AME–AME 0.03, AME–ALE 0.00, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.02. MOQ length 0.11, front width 0.09, back width 0.12. TA wide, distally rounded, elevated medially (figs. 83, 90); RTA bent, with dorsally directed tip (fig. 91). Leg spination: femora I, II, IV p0-0-0; tibia IV p1-0-1; metatarsi: II v1r-0-0; III p0-2-2, v1r-0-0, r0-1-2; IV v2-1p-0.

FEMALE: Total length 3.20, 3.49. Carapace 1.30, 1.55 long, 0.98, 1.19 wide. Femur II 0.77, 0.97 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.05, AME–ALE 0.00, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.19, front width 0.13, back width 0.20. AEM extremely wide (fig. 92); MED greatly widened (fig. 93). Leg spination: femora I, II p0-0-0; tibia IV p1-0-1; metatarsi III, IV p0-2-2.

DISTRIBUTION: New Mexico, Texas, and northeastern Mexico (map 15).

THE niger GROUP

DIAGNOSIS: The *niger* group contains those species in which the males lack stiff setae dorsally on the palpal tibia (except for *D. cerrus*, in which a few such setae are present) and have an extremely elongate terminal apophysis (as in figs. 98, 110) and a narrow retrolateral hook on the median apophysis (as in figs. 94, 115). Females have atypical epigyna with conspicuous lateral margins (as in figs. 96, 104, 108).

KEY TO SPECIES

1. Males 2
 Females (those of *cerrus* unknown) 5
2. TA directed distally (figs. 106, 114) 3
 TA directed obliquely (figs. 94, 102) 4
3. RTA relatively wide (fig. 107) *adocetus*
 RTA relatively narrow (fig. 115) *cerrus*
4. EP closely appressed to MA (figs. 94, 95, 98) *niger*
 EP far from MA (fig. 102) *eremophilus*
5. AEM conspicuous, occupying width of epigynum (figs. 96, 99) *niger*

MAP 15. North America, showing distribution of *Drassyllus antonito*.

Diagnosis: Drassyllus niger seems closest to D. eremophilus (in both species the EP is enormously elongated) but may be distinguished by the closely appressed EP and MA (figs. 94, 98) of males and the conspicuous, broad AEM (figs. 96, 99) of females.

Males: Total length 4.78 ± 0.27. Carapace 2.23 ± 0.15 long, 1.79 ± 0.12 wide. Femur II 1.50 ± 0.09 long (102 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.10, PME 0.15, PLE 0.09; AME–AME 0.07, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.07. MOQ length 0.29, front width 0.23, back width 0.32. TA long, obliquely directed (figs. 94, 98); EP long, narrow, adjacent to MA (fig. 95). Leg spination: tibiae: I v0-1r-0, II v1r-1r-0.

Females: Total length 6.50 ± 0.60. Carapace 2.49 ± 0.11 long, 1.95 ± 0.07 wide. Femur II 1.71 ± 0.09 long (108 specimens examined). Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.13, PLE 0.08; AME–AME 0.08, AME–ALE 0.03, PME–PME

0.02, PME–PLE 0.05, ALE–PLE 0.06. MOQ length 0.27, front width 0.22, back width 0.27. AEM conspicuous, wide (figs. 96, 99); MED expanded anteriorly (fig. 97). Leg spination: femur I p0-0-0; patella III r0-0-0.

PLATNICK AND SHADAB: *DRASSYLLUS*

North America, showing distribution of *Drassyllus niger*.

Distribution: British Columbia and northern California to Nova Scotia and Pennsylvania (map 16).

Natural History: Mature males and females have been taken from April through early September. Specimens have been collected by vacuum and pitfall traps, under stones and boards, in moss, sphagnum bogs, litter, old fields, pastures, and pine and oak-hickory forests.

Drassyllus eremophilus
Chamberlin and Gertsch
Figures 100, 102–105; Map 17

Diagnosis: *Drassyllus eremophilus* seems closest to *D. niger* but may be distinguished by the straight, retrolaterally projecting EP

(fig. 102) of males and the large lateral epigynal margins (figs. 100, 104) of females.

MALE: Total length 4.00, 4.64. Carapace 1.81, 2.00 long, 1.39, 1.58 wide. Femur II 1.19, 1.37 long. Eye sizes and interdistances:

AME 0.07, ALE 0.09, PME 0.09, PLE 0.09; AME–AME 0.08, AME–ALE 0.02, PME–PME 0.01, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.28, front width 0.22, back width 0.19. EP greatly elongated, straight, projecting to edge of CYM (fig. 102); RTA long (fig. 103). Leg spination: femur IV p0-0-0; tibiae: II v0-1r-0, IV p1-0-1; metatarsus III r1-2-2.

FEMALE: Total length 4.07–5.70. Carapace 1.87–2.20 long, 1.39–1.69 wide. Femur II 1.31–1.57 long. Eye sizes and interdistances:

AME 0.09, ALE 0.11, PME 0.14, PLE 0.10; AME–AME 0.08, AME–ALE 0.03, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.06. MOQ length 0.32, front width 0.26, back width 0.30. AEM reduced to lateral hoods, connected to large lateral margins (figs. 100, 104); MED large posteriorly, AED greatly reduced (fig. 105). Leg spination: femur IV p0-0-0; tibiae: II v0-1r-0; IV p1-0-1; metatarsus III p0-2-2.

MATERIAL EXAMINED: CANADA: New Brunswick: Kouchibouguac, June 27–July 12, 1977, bog (G. A. Calderwood, CNC), 1♀, 1♂.
PLATNICK AND SHADAB: DRASSYLLUS

DISTRIBUTION: Michigan to New Brun- wick (map 17).

Drassyllus adocetus Chamberlin
Figures 106–111; Map 18

DIAGNOSIS: Drassyllus adocetus seems closest to D. cerrus (in both species the TA is half the length of the CYM and distally directed) but may be distinguished by the wider RTA (fig. 107) of males and the short epigynum (fig. 108) of females.

MALE: Total length 3.59–4.43. Carapace 1.53–1.93 long, 1.22–1.56 wide. Femur II 1.06–1.31 long. Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.10, PLE 0.08; AME–AME 0.05, AME–ALE 0.02, PME– PME 0.03, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.24, front width 0.20, back width 0.23. TA extremely long, sinuous (figs. 106, 110); RTA wide, truncate distally (fig.
MAP 18. North America, showing distribution of Drassyllus adocetus (circles) and D. cerrus (square).

107). Leg spination: femur IV p0-0-0; tibia IV p1-0-1, v1p-2-2; metatarsus III p0-2-2, r0-1-2.

FEMALE: Total length 4.99 ± 0.39. Carapace 1.97 ± 0.17 long, 1.55 ± 0.09 wide. Femur II 1.36 ± 0.09 long. Eye sizes and interdistances: AME 0.10, ALE 0.09, PME 0.13, PLE 0.08; AME–AME 0.07, AME–ALE 0.02, PME–PME 0.01, PME–PLE 0.05, ALE–PLE 0.06. MOQ length 0.30, front width 0.27, back width 0.27. AEM reduced to lateral hoods (figs. 108, 111); MED expanded anteriorly (fig. 109). Leg spination: femur IV p0-0-0; tibia IV p1-0-1, v1p-2-2.

MATERIAL EXAMINED: UNITED STATES:

DIAGNOSIS: Drassyllus cerrus seems closest to D. adocetus but may be distinguished by the narrower RTA (fig. 115) of males.

MATERIAL EXAMINED: One male taken with the holotype.

MATERIAL EXAMINED: One male taken with the holotype.

DIAGNOSIS: The novus group contains those species in which the males lack stiff setae dorsally on the palpal tibia, but have a large and almost rectangular terminal apophysis (as in figs. 118, 134) and a distally directed embolar origin leading to a 90-degree turn (as in figs. 112, 126). Females have a broad, undivided anterior epigynal margin (as in figs. 120, 136) and median epigynal
ducts that are either posteriorly coiled (as in figs. 121, 133) or greatly expanded anteriorly (fig. 137).

KEY TO SPECIES
1. TA with pointed extension at middle of distal edge (figs. 128, 130); MP indistinct (fig. 132), restricted to anterior quarter of epigynum (fig. 129) aprilinus
 TA without such an extension; MP distinct 2
2. EP long, sharp (figs. 118, 122); MP relatively wide (figs. 120, 124) 3
 EP short, blunt (figs. 134, 138); MP relatively narrow (figs. 136, 139) covensis
3. TA pointed retrolaterally (figs. 112, 118); AEM farthest anteriorly at middle (figs. 113, 120) .. novus
 TA rounded prolaterally (figs. 122, 126); AEM farthest anteriorly at sides (figs. 124, 127) .. rufulus

Drassyllus novus (Banks)
Figures 112, 113, 118–121; Map 19

Prosthesima nova Banks, 1895, p. 78 (male holotype from Sea Cliff, Nassau County, New York, in MCZ, examined).

Melanophora nova: Comstock, 1903, p. 18.

Prosthesima rufula (misidentification): Emerton, 1909, p. 217 (in part, fig. 6 only).
Drassyllus frigidus (misidentification): Chamberlin, 1922, p. 168 (in part); 1936a, p. 24, figs. 40, 41 (male only).

DIAGNOSIS: Drassyllus novus seems closest to D. rufulus (in both species the embolar origin is twisted) but may be distinguished by the retrolaterally pointed TA (figs. 112, 118) of males and the almost straight AEM (figs. 113, 120) of females.

MALE: Total length 5.25 ± 0.29. Carapace 2.37 ± 0.12 long, 1.88 ± 0.09 wide. Femur II 1.54 ± 0.07 long (54 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.11, PLE 0.09; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.07. MOQ length 0.28, front width 0.23, back width 0.24. TA with distal point on retrolat-
Drassyllus novus (Banks) 118. Palp, ventral view. 119. Palp, retrolateral view. 120. Epigynum, ventral view. 121. Epigynum, dorsal view.

eral side (figs. 112, 118); RTA narrow (fig. 119). Leg spination: tibiae: II v0-1r-0; III v2-2-2.

FEMALE: Total length 7.08 ± 0.55. Carapace 2.75 ± 0.14 long, 2.13 ± 0.12 wide. Femur II 1.88 ± 0.07 long (63 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.11, PME 0.13, PLE 0.10; AME–AME 0.07, AME–ALE 0.03, PME–PME 0.03, PME–PLE 0.06, ALE–PLE 0.07. MOQ length 0.31, front width 0.23, back width 0.29. AEM without median posterior extension (figs. 113, 120); MED expanded (fig. 121). Leg spination: tibiae: II v1r-1r-0; III v2-2-2.

DISTRIBUTION: The eastern deciduous forest (map 19).

NATURAL HISTORY: Mature males have been taken from April through June and in November, mature females from May through September. Specimens have been collected in pitfall traps and leaf litter in pine and oak-hickory forests, and under stones, at elevations up to 2350 feet.

SYNONYM: Chamberlin's description of the female as *virginianus* was evidently caused by his consistent misidentification of males as those of *frigidus*.

Drassyllus rufulus (Banks)

Figures 122–127; Map 20

Prosthesima rufula Banks, 1892, p. 17, pl. 1, figs. 55–55a (two female syntypes from Ithaca,
Prothesima immaculata Banks, 1892, p. 18, pl. 1, figs. 58, 58a (female holotype from Ithaca, Tompkins County, New York, in MCZ, examined). First synonymized by Banks, 1910, p. 8.

Melanophora rufula: Bryant, 1908, p. 8. Petrunkevitch, 1910, p. 207, fig. 4.

Diagnosis: *Drassyllus rufulus* seems closest to *D. novus* but may be distinguished by the retrolaterally rounded TA (figs. 122, 126) of males and the AEM having a posterior projection at its middle (figs. 124, 127) in females.

Male: Total length 4.66 ± 0.47. Carapace 2.08 ± 0.23 long, 1.70 ± 0.20 wide. Femur II 1.53 ± 0.20 long. Eye sizes and interdistances: AME 0.09, ALE 0.10, PME 0.14,

PLE 0.11; AME–AME 0.05, AME–ALE 0.03, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.06. MOQ length 0.32, front width 0.23, back width 0.30. TA broad, rounded (figs. 122, 126); RTA wide except at tip (fig. 123). Leg spination: femora: III r0-1-0; IV r0-1-1; patella III r0-0-0; tibiae: II v0-1r-1r; III v2-2-2, r1-1-1; metatarsi: II v2-1p-0; III v2-2-0.

FEMALE: Total length 5.84 ± 1.11. Carapace 2.22 ± 0.26 long, 1.78 ± 0.21 wide. Femur II 1.64 ± 0.22 long. Eye sizes and interdistances: AME 0.09, ALE 0.09, PME 0.14, PLE 0.11; AME–AME 0.07, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.30, front width 0.25, back width 0.30. AEM projecting posteriorly at middle (figs. 124, 127); MED coiled posteriorly (fig. 125). Leg spination: tibia III v2-2-2.

MAP 20. North America, showing distribution of Drassyllus rufulus.

Drassyllus aprilinus (Banks)
Figures 128–133; Map 21

Zelotes aprilinus Banks, 1904, p. 110, fig. 7 (one male and two female syntypes from Chevy Chase, Montgomery County, Maryland, in MCZ, examined).

Drassyllus ostegae Chamberlin, 1936a, p. 29, figs. 42, 43 (male holotype from Ostega. Duval County, Florida, in AMNH, examined). Roewer, 1954, p. 413. NEW SYNONYMY.

Diagnosis: Drassyllus aprilinus is a distinctive species easily recognized by the median projection at the tip of the TA (figs. 128, 130) of males and the almost invisible MP (figs. 129, 132) of females.

Male: Total length 3.86 ± 0.22. Carapace 1.75 ± 0.10 long, 1.36 ± 0.09 wide. Femur II 1.09 ± 0.10 long (170 specimens examined). Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.01, PME–PLE 0.03, ALE–PLE 0.04. MOQ length 0.22, front width 0.14, back width 0.20. TA with elevated projection at middle of distal edge (figs. 128, 130); RTA greatly narrowed distally (fig. 131). Leg spination: femur IV p0-1-1; tibia II v0-1r-0.

Female: Total length 4.50 ± 0.51. Carapace 1.87 ± 0.17 long, 1.40 ± 0.08 wide. Femur II 1.15 ± 0.07 long (247 specimens examined). Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.11, PLE 0.08; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.24, front width 0.20, back width 0.23. AEM broadly rounded, MP scarcely detectable (figs. 129, 132); MED coiled over PED (fig. 133). Leg spination: tibia III v2-2-2.

Distribution: Michigan and Massachusetts to San Luis Potosi and Florida (map 21).

Natural History: Mature males and females have been taken year-round. Specimens have been collected in pitfall, Berlese, and malt traps, from leaf litter, under stones and boards, on beaches, in pecan and citrus groves, and from oak-hickory, pine, sand-pine, and beech-magnolia forests, at elevations up to 3100 feet.

Synonymy: Chamberlin provided no characters to distinguish *ostegae* from *aprilinus*, and there appear to be none.

Drassyllus covensis Exline

Figures 134–139; Map 22

Diagnosis: *Drassyllus covensis* is a distinctive species easily recognized by the oblique, rectangular TA and blunt EP (figs. 134, 138) of males and the anteriorly expanded MP (figs. 136, 139) of females.

Male: Total length 3.79 ± 0.27. Carapace 1.71 ± 0.10 long, 1.33 ± 0.08 wide. Femur II 1.04 ± 0.05 long. Eye sizes and interdistances: AME 0.05, ALE 0.08, PME 0.09, PLE 0.08; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.21, front width 0.15, back width 0.21. TA oblique, rectangular, EP short, blunt (figs. 134, 138); MA very large (fig. 135). Leg spination: tibiae: II v1r-1r-0; III v2-2-2; metatarsus IV v1r-2-0.

Female: Total length 3.79 ± 0.47. Carapace 1.54 ± 0.10 long, 1.20 ± 0.10 wide. Femur II 0.95 ± 0.08 long. Eye sizes and interdistances: AME 0.04, ALE 0.06, PME 0.08, PLE 0.06; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.03, PME–PLE

0.04, ALE–PLE 0.03. MOQ length 0.18, front width 0.13, back width 0.19. MP expanded anteriorly into lateral flanges (figs. 136, 139); MED greatly expanded anteriorly (fig. 137). Leg spination: patella III r0-0-0; tibia IV p1-0-1; metatarsus III r0-1-1.

Distribution: Southeastern United States (map 22).

The frigidus Group

Diagnosis: The frigidus group contains those species in which the males lack stiff setae dorsally on the palpal tibia, but have a narrow terminal apophysis (as in figs. 142, 200) and a relatively narrow embolar base with a long embolar projection (as in figs. 146, 196). Females have a broad anterior epignyal area that is either bent at its middle (fig. 144) or has distinctly darkened and thickened hoodlike areas on each side (as in figs. 156, 198).

MAP 22. North America, showing distribution of Drassylus covensis.

KEY TO SPECIES

1. Males (those of puebla, durango, and huachue unknown) 2
 Males 12
2. TA relatively short (figs. 142, 146, 154, 168, 184) 3
 TA relatively long (figs. 158, 172, 180, 192, 196, 200) 7
3. TAB restricted to distal edge of palpal bulb (figs. 140, 142) frigidus
 TAB covering at least distal one-third of palpal bulb (as in figs. 146, 154) 4
4. RTA very long, extending almost one-half of CYM length (fig. 169) alachua
 RTA normal, extending no more than one-quarter of CYM length (as in figs. 147, 155) 5
5. TA with two distal points (fig. 154) .. lousianus
 TA with one distal point (figs. 146, 184) 6
6. TA relatively narrow basally (figs. 146, 150) .. ellipes
 TA relatively wide basally (figs. 184, 188) .. mormon
7. Distal edges of TA and TAB forming continuous diagonal line (figs. 158, 196) 8
 Distal edges of TA and TAB not forming continuous diagonal line 9
8. RTA pointed distally (fig. 159) ... creolus
 RTA rounded distally (fig. 197) ... mexicanus
9. TA distally hooked (figs. 190, 192) ... proclesis
 TA not distally hooked 10

10. TA distally expanded (fig. 200) ... arizonensis
TA not distally expanded ... 11
11. TA relatively long (fig. 172); origin of EMB gently rounded (fig. 176) orgilus
TA relatively short (fig. 180); origin of EMB abrupt (fig. 178) dromeus
12. MED with anteromedian projection (figs. 161, 163, 165, 171, 199) 13
MED without anteromedian projection ... 17
13. MP almost rectangular (fig. 170) .. alachua
MP rounded ... 14
14. AEM laterally transverse (figs. 164, 198) ... 15
AEM laterally oblique (figs. 160, 162) ... 16
15. AEM rounded medially (fig. 164) .. durango
AEM triangular medially (figs. 198, 204) .. mexicanus
16. MED sinuous (fig. 161) ... creolus
MED almost straight (fig. 163) .. puebla
17. AEM with distinct finger-like projections (figs. 174, 182) 18
AEM without distinct finger-like projections .. 19
18. AEM projections relatively small (figs. 179, 182) .. dromeus
AEM projections relatively large (figs. 174, 177) .. orgilus
19. MP with lateral extensions extending beyond sides of AEM (figs. 202, 205) ... arizonensis
MP without such extensions ... 20
20. MED at least as wide as long (figs. 149, 167) ... 21
MED much longer than wide (figs. 145, 157, 187, 195) ... 22
21. AEM truncate distally (figs. 148, 151) .. ellipes
AEM rounded distally (fig. 166) .. huachuca
22. MED extending almost full length of epigynum (figs. 157, 187, 195) 23
MED restricted to posterior two-thirds of epigynum (fig. 145) frigidus
23. MED rectangular (fig. 187) .. mormon
MED ovoid (figs. 157, 195) .. 24
24. AEM almost straight (figs. 101, 156) ... losianus
AEM oblique (figs. 191, 194) .. proclesis

Drassyllus frigidus (Banks)
Figures 140–145; Map 23

Prosthesima frigida Banks, 1892, p. 17, pl. 1, figs. 56, 56a (male and female syntypes from Ithaca, Tompkins County, New York, in MCZ, examined).
Zelotes frigidus: Petrunkevitch, 1911, p. 149.
Drassyllus frigidus: Chamberlin, 1922, p. 168.

Diagnosis: Drassyllus frigidus seems closest to D. ellipes and D. louisianus (in all three species the TA is short, situated medially, and sharply pointed) but may be distinguished by the tiny TAB (figs. 140, 142) of males and the short PED (fig. 145) of females.

Male: Total length 3.69 ± 0.28. Carapace 1.67 ± 0.08 long, 1.26 ± 0.06 wide. Femur II 1.10 ± 0.07 long (94 specimens examined). Eye sizes and interdistances: AME 0.06, ALE 0.08, PME 0.11, PLE 0.08; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.24, front width 0.18, back width 0.23. TAB restricted to distal edge of palpal bulb (figs. 140, 142); RTA long, gradually narrowed distally (fig. 141). Leg spination: tibia II v0-1r-0; metatarsi: III p0-2-2, r0-1-2; IV p0-2-2.

Female: Total length 4.46 ± 0.34. Carapace 1.79 ± 0.09 long, 1.35 ± 0.08 wide. Femur II 1.20 ± 0.04 long (143 specimens examined). Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.12, PLE 0.08; AME–AME 0.07, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.25, front width 0.21, back width 0.26. AEM abruptly bent at middle (figs. 141, 144); PED reaching only two-thirds of epigynal length (fig. 145). Leg spination: tibia II v0-1r-0; metatarsi I v1r-0-0.

Distribution: Arizona east to New England and Florida (map 23).

Natural history: Mature males and females have been taken year-round. Specimens have been collected in pitfall traps, leaf litter, fields, sand blowouts, gravel pits, houses, and clover, and under rocks, logs, and boards, at elevations up to 5400 feet.

Drassyllus ellipes Chamberlin and Gertsch
Figures 146–151; Map 24

Diagnosis: Drassyllus ellipes seems closest to D. frigidus and D. louisianus but may be distinguished by the hook-shaped TA (figs. 146, 150) of males and the squared epigynum (figs. 148, 151) of females.

Male: Total length 4.70 ± 0.36. Carapace 2.19 ± 0.17 long, 1.73 ± 0.13 wide. Femur II 1.50 ± 0.10 long. Eye sizes and interdis-

Dimensions: AME 0.09, ALE 0.10, PME 0.13, PLE 0.11; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.01, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.28, front width 0.24, back width 0.27. TAB normal, TA short, hook-shaped (figs. 146, 150); RTA short (fig. 147). Leg spination: patella III r0-0-0; tibiae: II v0-1r-0; III v2-2-2, r0-0-1; IV p1-0-1; metatarsus III p0-1-2, r1-1-1.

Female: Total length 4.43–5.80. Carapace 1.73–2.47 long, 1.44–1.92 wide. Femur II 1.22–1.69 long. Eye sizes and interdistances: AME 0.07, ALE 0.11, PME 0.13, PLE 0.10; AME–AME 0.12, AME–ALE 0.02, PME–PME 0.04, PME–PLE 0.06, ALE–PLE 0.06. MOQ length 0.29, front width 0.27, back width 0.30. AEM enclosing square area (figs. 148, 151); MED widened (fig. 149). Leg spination: tibiae: II v1r-1r-0; IV p1-0-1.

Distribution: Southeastern United States (map 24).

Drassyllus louisianus Chamberlin

Figures 101, 154–157; Map 25

Diagnosis: *Drassyllus louisianus* seems closest to *D. frigidus* and *D. ellipes* but may be distinguished by the bifid tip of the TA

(fig. 154) of males and the recurved PED (fig. 157) of females.

MALE: Total length 4.72. Carapace 2.25 long, 1.74 wide. Femur II 1.55 long. Eye sizes and interdistances: AME 0.11, ALE 0.11, PME 0.15, PLE 0.12; AME–AME 0.06, AME–ALE 0.03, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.07. MOQ length 0.31, front width 0.28, back width 0.32. TAB normal, TA short, with two points at tip (fig. 154); RTA short, stubby (fig. 155). Leg spination: tibiae: II v0-lr-0; III v2-2-2; IV vlp-2-2; metatarsi: III p0-2-2, r0-1-2; IV r1-2-2.

FEMALE: Total length 5.03–7.13. Carapace 2.21–2.61 long, 1.67–2.02 wide. Femur II 1.53–1.87 long. Eye sizes and interdistances: AME 0.11, ALE 0.12, PME 0.15, PLE 0.12; AME–AME 0.09, AME–ALE 0.03, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.07. MOQ length 0.35, front width 0.31, back width 0.32. AEM very wide, almost straight (figs. 101, 156); PED recurved (fig. 157). Leg spination: tibiae: II v0-1r-0; III v2-2-2; IV p1-0-1.

Distribution: Southeastern United States (map 25).

Drassyllus creolus Chamberlin and Gertsch
Figures 152, 153, 158–161; Map 26

Diagnosis: Drassyllus creolus seems closest to D. puebla (in both species the AEM is almost semicircular and the MP is posteriorly depressed). Males of D. puebla are unknown; the only known males likely to be confused with D. creolus are those of D. mexicanus, which have a shorter, broader RTA (compare figs. 159, 197). Females of D. creolus have the PED more sinuous than in D. puebla (fig. 161).

Male: Total length 4.65 ± 0.48. Carapace 2.03 ± 0.19 long, 1.60 ± 0.14 wide. Femur II 1.46 ± 0.15 long (49 specimens examined). Eye sizes and interdistances: AME 0.09, ALE 0.09, PME 0.14, PLE 0.09; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.03. MOQ length 0.24, front width 0.23, back width 0.30. TA and TAB forming continuous diagonal line (figs. 152, 158); RTA an elon-

Fig. 152. Palp, ventral view. 155. Palp, retrolateral view. 156. Epigynum, ventral view. 157. Epigynum, dorsal view.
gate triangle (fig. 159). Leg spination: femora: II, IV p0-0-0; patella III r0-0-0; tibia IV p1-0-1; metatarsus III p0-2-2, r0-1-2.

Female: Total length 5.42 ± 0.35. Carapace 2.17 ± 0.16 long, 1.71 ± 0.11 wide. Femur II 1.59 ± 0.12 long (72 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.14, PLE 0.10; AME-AME 0.07, AME-ALE 0.03, PME-PME 0.01, PME-PLE 0.05, ALE-PLE 0.07. MOQ length 0.30, front width 0.23, back width 0.30. AEM almost semicircular (figs. 153, 160); PED sinuous, with anteromedian projections (fig. 161). Leg spination: tibia IV p1-0-1, v1p-2-2; metatarsus IV v2-lp-0.

NATURAL HISTORY: Mature males have been taken from late February through June, mature females from March through August. Specimens have been collected in pitfall and Berlese traps, from pecans, cotton, broom-sedge, and camellias, under boards and rubbish, and in prairies, fields, and pine, pin oak, and oak-hickory forests.

Drassylus puebla, new species

Figures 162, 163; Map 27

TYPE: Female holotype from 2 miles east of Teziutlán, Puebla, Mexico (February 23, 1953; D. M. Darling), deposited in AMNH.

ETYMOLOGY: The specific name is a noun in apposition taken from the type locality.

DIAGNOSIS: Drassylus puebla seems closest to *D. creolus* but may be distinguished by the straighter MED (fig. 163) of females.

MALE: Unknown.

FEMALE: Total length 4.78. Carapace 2.17 long, 1.67 wide. Femur II 1.48 long. Eye sizes and interdistances: AME 0.09, ALE...
0.11, PME 0.15, PLE 0.10; AME–AME 0.09, AME–ALE 0.01, PME–PME 0.01, PME–PLE 0.07, ALE–PLE 0.07. MOQ length 0.32, front width 0.27, back width 0.31. AEM almost semicircular (fig. 162); MED almost straight, with anteromedian projections (fig. 163). Leg spination: tibiae: II v0-lr-0; IV p1-0-1.

Material Examined: Only the holotype.

Distribution: Known only from Puebla, Mexico (map 27).

Drassyllus durango, new species
Figures 164, 165; Map 27

Type: Female holotype from an elevation of 8200 feet at Otlnapa, Durango, Mexico (August 12, 1947; W. J. Gertsch), deposited in AMNH.

Etymology: The specific name is a noun in apposition taken from the type locality.

Diagnosis: Drassyllus durango seems closest to *D. huachuca* and *D. alachua* (in all three species the MED are widened and shifted obliquely) but may be distinguished by the rounded middle portion of the AEM (fig. 164) of females.

Male: Unknown.

Female: Total length 6.88. Carapace 2.41 long, 1.80 wide. Femur II 1.66 long. Eye sizes and interdistances: AME 0.07, ALE 0.10, PME 0.11, PLE 0.10; AME–AME 0.07, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.09. MOQ length 0.30, front width 0.21, back width 0.24. AEM tripartite, with middle portion rounded (fig. 164); MED widened, oriented obliquely (fig. 165). Leg spination: tibiae: II v1r-1r-0; III v2-2-2.

Material Examined: Only the holotype.

Distribution: Known only from Durango, Mexico (map 27).

Drassyllus huachuca, new species
Figures 166, 167; Map 27

Type: Female holotype from an elevation of 8000 feet in Carr Canyon, Huachuca Mountains, Cochise County, Arizona (June 3, 1952; W. J. Gertsch, M. Cazier, R. Schrammel), deposited in AMNH.

Etymology: The specific name is a noun in apposition taken from the type locality.

Diagnosis: Drassyllus huachuca seems closest to *D. durango* and *D. alachua* but may be distinguished by the almost square MED (fig. 167) of females.

Male: Unknown.

Female: Total length 5.76. Carapace 2.14 long, 1.60 wide. Femur II 1.49 long. Eye sizes and interdistances: AME 0.09, ALE 0.11, PME 0.11, PLE 0.10; AME–AME 0.06, AME–ALE 0.00, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.03. MOQ length 0.28, front width 0.24, back width 0.25. AEM extremely wide (fig. 166); MED almost square, with L-shaped elevations (fig. 167). Leg spination (leg I missing): tibiae: II v1r-1r-0; III v2-2-2.

Material Examined: Only the holotype.

Distribution: Known only from the Huachuca Mountains of southeastern Arizona (map 27).

Drassyllus alachua, new species
Figures 168–171; Map 27

Types: Male holotype and female paratype from the turkey oak zone at Gainesville, Alachua County, Florida (March 6, 1937; H. K. Wallace and W. M. Barrows), deposited in AMNH.

Etymology: The specific name is a noun in apposition taken from the type locality.
Diagnosis: Drassyllus alachua seems closest to D. durango and D. huachuca but may be distinguished by the almost rectangular MP (fig. 170) of females. Males of the last two species are unknown; those of D. alachua have the EP and EMB far from the distal edge of the palpal bulb, and an extremely long RTA (figs. 168, 169).

Male: Total length 4.39, 4.64. Carapace 2.17, 2.23 long, 1.69, 1.72 wide. Femur II 1.35, 1.44 long. Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.13, PLE 0.12; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.31, front width 0.22, back width 0.28. EP and EM obliquely directed, far from palpal bulb (fig. 168); RTA extending almost half the CYM length (fig. 169). Leg spination: tibia IV p1-0-1.

Female: Total length 4.70. Carapace 2.16 long, 1.71 wide. Femur II missing. Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.12, PLE 0.09; AME–AME 0.07, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.07. MOQ length 0.29, front width 0.23, back width 0.26. MP almost rectangular (fig. 170); MED widened, oblique, with anteromedian projections (fig. 171). Leg spination (leg II missing): tibia III v2-2-2.

Distribution: Known only from Florida (map 27).

Drassyllus orgilus Chamberlin
Figures 172–177; Map 28

Diagnosis: Drassyllus orgilus seems closest to D. dromeus (in both species the AEM bear finger-like projections) but may be distinguished by the longer TA, more smoothly rounded embolar origin, and distally wide
RTA (figs. 172, 173, 176) of males and the much larger projections on the AEM (figs. 174, 177) of females.

MALE: Total length 4.74–5.26. Carapace 2.23–2.41 long, 1.62–1.91 wide. Femur II 1.32–1.79 long (six specimens examined). Eye sizes and interdistances: AME 0.07, ALE 0.10, PME 0.14, PLE 0.11; AME–AME 0.08, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.31, front width 0.23, back width 0.30. TA extending beyond rim of alveolus (fig. 172); origin of EMB smoothly rounded (fig. 176); RTA relatively wide distally (fig. 173). Leg spination: tibiae: II v0–lr-0; III v2-2-2, r1-1-1; IV p1-0-1; metatarsus III r1-2-2.

FEMALE: Total length 6.14 ± 0.50. Carapace 2.37 ± 0.14 long, 1.87 ± 0.12 wide. Femur II 1.68 ± 0.12 long (68 specimens examined). Eye sizes and interdistances: AME 0.10, ALE 0.13, PME 0.14, PLE 0.11; AME–AME 0.06, AME–ALE 0.03, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.29, front width 0.26, back width 0.30. AEM bearing large finger-like projections (figs. 174, 177); PED and MED relatively massive (fig. 175). Leg spination: tibia II v0-1r-0.

RECORDS: **United States** (county records only): **Oklahoma:** Comanche. **Texas:** Bexar, Brazos, Cameron, Clay, Dallas, Denton, De Witt, Galveston, Gonzales, Hidalgo, Kerr, Kimble, Llano, McCulloch, San Patricio, Sutton, Tarrant, Taylor, Tom Green, Travis, Webb, Wichita. **Mexico:** **Jalisco:** SE End, Lago de Chapala. **Nuevo León:** Hualahuises, 4 mi. S Monterrey, Rio Santa Lucia (below Linares). **San Luis Potosi:** Ciudad del Maiz. **Tamaulipas:** Arroyo, 40 mi. S Linares.

DISTRIBUTION: Oklahoma to Jalisco (map 28). A female in AMNH from “Friday Harbor, Washington” was presumably either mislabelled or transported by humans.

NATURAL HISTORY: Mature males have
been taken from late October through January, mature females from November through April. Specimens have been collected by sifting leaves, under rocks, in meadows, fields, and houses, and on sand, at elevations up to 2300 feet.

Drassyllus dromeus Chamberlin

Figures 178–183; Map 29

Ubick and Roth, 1973, p. 3. NEW SYNONYMY.

Diagnosis: *Drassyllus dromeus* seems closest to *D. orgilus* but may be distinguished by the shorter TA, more abrupt embolar origin, and distally narrow RTA (figs. 178, 180, 181) of males and the much smaller projections on the AEM (figs. 179, 182) of females.

Male: Total length 4.37 ± 0.32. Carapace 2.04 ± 0.10 long, 1.58 ± 0.04 wide. Femur II 1.36 ± 0.09 long (68 specimens examined).
Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.08, PLE 0.09; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.27, front width 0.22, back width 0.18. TA not extending to rim of alveolus (fig. 180); origin of EMB abrupt (fig. 178); RTA greatly narrowed distally (fig. 181). Leg spination: tibiae: II vlr-1r-0; III v2-2-2.

FEMALE: Total length 5.31 ± 1.04. Carapace 2.19 ± 0.24 long, 1.68 ± 0.14 wide. Femur II 1.48 ± 0.13 long (123 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.11, PME 0.11, PLE 0.08; AME–AME 0.09, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.27, front width 0.25, back width 0.24. AEM bearing small finger-like projections (figs. 179, 182); MED coiled anteriorly (fig. 183). Leg spination: tibiae: II vlr-1r-0; III v2-2-2.

DISTRIBUTION: British Columbia and Massachusetts to Arizona and Georgia (map 29).

NATURAL HISTORY: Mature males have been taken from March through November, mature females from March through December. Specimens have been collected in pitfall traps and houses, under rocks, in tall grass and oak litter, and associated with pinyon pine, juniper, and nolina, at elevations up to 7600 feet.

SYNONYM: Chamberlin provided no characters by which to distinguish devexus from lutzi, and there appear to be none; several simultaneous collections of both sexes indicate that these names refer to the female of dromeus.

VARIATION: The degree to which the finger-like projections of the AEM are produced varies among females but in no discernible geographic pattern.

Drassyllus mormon Chamberlin
Figures 184–189; Map 30

DIAGNOSIS: Drassyllus mormon seems closest to D. proclesis and D. mexicanus (in all three species the RTA is sinuous and the lateral thickenings of the AEM are pronounced) but may be distinguished by the much shorter TA (figs. 184, 188) of males and the much narrower middle portion of the AEM (figs. 186, 189) of females.

MALE: Total length 5.12 ± 0.64. Carapace 2.37 ± 0.27 long, 1.86 ± 0.22 wide. Femur II 1.54 ± 0.15 long (31 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.11, PME 0.14, PLE 0.10; AME–AME 0.09, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.06, ALE–PLE 0.05. MOQ length 0.33, front width 0.25, back width 0.30. TA small, curved, blunt distally

(figs. 184, 188); RTA abruptly narrowed distally (fig. 185). Leg spination: tibiae: I v0-1r-0; II v1r-1r-0; III v2-2-2.

Female: Total length 6.30 ± 1.04. Carapace 2.76 ± 0.33 long, 2.07 ± 0.22 wide. Femur II 1.86 ± 0.24 long (72 specimens examined). Eye sizes and interdistances: AME 0.08, ALE 0.11, PME 0.14, PLE 0.10; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.29, front width 0.22, back width 0.28. AEM with long lateral hoods and narrow middle portion (figs. 186, 189); AED long, narrow (fig. 187). Leg spination: tibiae: II v1r-1r-0; III v2-2-2; metatarsus III r1-2-2.

Distribution: Utah to Baja California Sur (map 30).

Natural History: Mature males and females have been taken year-round. Specimens have been collected in pitfall traps, leaf litter, grass, and houses, in oak, ponderosa pine, pinyon pine, and juniper associations, in a palm oasis, and under trash, at elevations up to 7700 feet.

Drassyllus proclesis Chamberlin

Figures 190–195; Map 31

Drassyllus monicus Chamberlin, 1936a, p. 27, fig. 35 (female holotype from Santa Monica, Los Angeles County, California, in AMNH, exam-
Diagnosis: Drassylus proclesis seems closest to D. mormon and D. mexicanus but may be distinguished by the distally curled TA (figs. 190, 192) of males and the smoothly sloping AEM (figs. 191, 194) of females.

Male: Total length 4.03–5.20. Carapace 1.87–2.27 long, 1.51–1.81 wide. Femur II 1.19–1.49 long. Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.11, PLE 0.08; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.25, front width 0.20, back width 0.24. TA curled distally (figs. 190, 192); MA short, wide (fig. 193). Leg spination: femur II p0-0-0; tibiae: II v0-1r-0; III v2-2-2.

Female: Total length 4.25–6.86. Carapace 1.87–2.89 long, 1.42–2.17 wide. Femur II 1.22–1.87 long. Eye sizes and interdistances: AME 0.07, ALE 0.10, PME 0.12, PLE 0.10; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.25, front width 0.20, back width 0.27. AEM smoothly sloping to sides (figs. 191, 194); MED coiled posteriorly (fig. 195). Leg spination: femur II p0-0-0; tibia II v0-1r-0.

Material Examined: United States: California: Los Angeles Co.: Mt. Baldy Road (Evey Canyon), Apr. 24–May 12, 1969, elevation 2000 feet, pitfall (D. Bixler, DEB), 2♂; Old Topanga Canyon (Santa Monica Mountains), Apr. 29, 1955 (R. Schick), 1♀; Paradise Springs, June 15, 1954, elevation 1400 feet (O. Bryant, CAS), 1♂; Santa Monica, 1♀ (type); Topanga Canyon, Mar. 18, 1941 (W. Ivie), 1♂, 1♀. Orange Co.: Dana Point, San Juan Creek, July 1, 1931 (W. Ivie), 1♀. Riverside Co.: Riverside, Apr. 23, 1955, cottonwood litter (I. Newell), 1♀. San Diego Co.: 4.8 mi. S Julian, Apr. 26, 1959 (I. Newell), 1♀; Palomar Mountain State Park, July 13, 1953 (W. J. and J. W. Gertsch), 1♀; Santa Ysabel Creek, Aug. 1, 1947 (W. M. Pearce), 1♀. Santa Barbara Co.: San Marcos Pass, Apr. 1, 1960, elevation 2200 feet (W. J. Gertsch, W. Ivie, R.

Schrammel), 1♂; Santa Barbara, Apr. 13 (R. V. Chamberlin, MCZ), 2♂ (including type).

Distribution: Known only from southern California (map 31). A male in AMNH collected in Norwalk, Connecticut, by W. J. Gertsch was presumably transported by humans.

Synonymy: The simultaneous collection of both sexes indicates that monicus is the female of proclesis.

Drassylus mexicanus (Banks), new combination

Figures 196–199, 204; Map 32

Prosthesima mexicana Banks, 1898, p. 217, pl. 13, fig. 18 (female syntypes from Orizaba, Vera cruz, Mexico, in CAS, destroyed, and MCZ, examined).

Drassylus lasalus Chamberlin and Gertsch, 1940, p. 13, fig. 30 (female holotype from La Sal Mountains, Grand County, Utah, in AMNH, examined). Roewer, 1954, p. 416. Ubick and Roth, 1973, p. 2. NEW SYNONYM.

Diagnosis: *Drassyllus mexicanus* seems closest to *D. mormon* and *D. prolesis* but may be distinguished by the long, straight TA (fig. 196) of males and the very wide AEM (figs. 198, 204) of females.

Male: Total length 5.47, 5.87. Carapace 2.27, 2.57 long, 1.79, 1.98 wide. Femur II 1.58, 1.68 long. Eye sizes and interdistances: AME 0.07, ALE 0.12, PME 0.13, PLE 0.11; AME–AME 0.09, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.07, ALE–PLE 0.07. MOQ length 0.29, front width 0.23, back width 0.28. Palpal femur greatly expanded ventrally; TA and TAB forming continuous, straight line (fig. 196). RTA short, sinuous (fig. 197). Leg spination: tibiae: II vlr-lr-0; III v2-2-2, r1-1-0.

Female: Total length 4.93–7.78. Carapace 2.12–2.89 long, 1.66–2.23 wide. Femur II 1.45–2.16 long. Eye sizes and interdistances: AME 0.08, ALE 0.11, PME 0.13, PLE 0.11; AME–AME 0.09, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.32, front width 0.25, back width 0.28. AEM extremely wide (figs. 198, 204); MED with anteromedian projections (fig. 199). Leg spination: tibiae: II vlr-lr-0; III v2-2-2.

DISTRIBUTION: Utah to Veracruz (map 32).

SYNONYMY: The similarities of both sexes to those of closely related species suggest that *hubbelli* is the male of *lasalus*. The description of *mexicanus* was inadequate to allow Chamberlin and Gertsch to recognize the species.

Drassylus arizonensis (Banks)
Figures 200–203, 205; Map 33

Prothesima arizonensis Banks, 1901, p. 582, fig. 3 (female holotype from Catalina Springs, Pima County, Arizona, in USNM, examined).

Drassylus vidiuus Chamberlin, 1936a, p. 30, fig. 45 (female holotype from Scottsdale, Maricopa County, Arizona, in AMNH, examined).

DIAGNOSIS: *Drassylus arizonensis* is a distinctive species easily recognized by the distally expanded TA (fig. 200) and bent RTA (fig. 201) of males and the anteriorly expanded MP (figs. 202, 205) of females.

MALE: Total length 4.46, 5.40. Carapace 2.03, 2.55 long, 1.58, 1.99 wide. Femur II 1.48, 1.74 long. Eye sizes and interdistances:
MAP 30. North America, showing distribution of *Drassyllus mormon*.

AME 0.07, ALE 0.10, PME 0.12, PLE 0.09; AME–AME 0.08, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.05. MOQ length 0.26, front width 0.22, back width 0.26. TA long, narrow, with expanded flange distally (fig. 200); RTA wide basally, bent, bifid distally (fig. 201). Leg spination: tibiae: II v1r-1r-0; III v2-2-2; metatarsi I, II, III v2-1p-0.

FEMALE: Total length 6.57 ± 0.46. Carapace 2.52 ± 0.21 long, 1.91 ± 0.14 wide. Femur II 1.79 ± 0.13 long. Eye sizes and interdistances: AME 0.10, ALE 0.12, PME 0.15, PLE 0.11; AME–AME 0.09, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.07. MOQ length 0.34, front width 0.29, back width 0.31. MP expanded anteriorly, wider than AEM (figs. 202, 205); AED long (fig. 203). Leg spination: tibiae: II v1r-1r-0; III v2-2-2; metatarsi: I v2-1p-0; II v2-2-0; III v2-1p-0.

MATERIAL EXAMINED: UNITED STATES: Arizona: Maricopa Co.: 10 mi. NE Fort McDowell, Mar. 21, 1930 (J. Chamberlin), 1♀; Litchfield Park, Dec. 26, 1940 (S. and D. Mulaik), 2♀; Scottsdale, Dec. 30, 1902 (H. W. Britcher), 1♀ (type). Pima Co.: 20 mi. S Ajo, Jan. 4, 1941 (S. and D. Mulaik), 1♂, 3♀; 38 mi. S Ajo, Jan. 4, 1941 (S. and D. Mulaik), 1♀; Catalina Springs, 1♀ (type); Covered

MAP 31. North America, showing distribution of *Drassyllus proclesis* (circles), *D. gammus* (triangle), and *D. callus* (square).

MAP 32. North America, showing distribution of *Drassyllus mexicanus*.

Distribution: Arizona, Sonora, and Baja California (map 33).

The mumai Group

Diagnosis: The mumai group contains those species in which the females have the epigynal midpiece expanded so that its lateral margins are almost parallel (as in figs. 207, 210, 212, 214). Males (known only in D. mumai) have a large, recurved terminal apophysis (figs. 206, 208) and a strong retrolateral projection from the base of the terminal apophysis (fig. 209) similar to the retrolateral extension found in D. insularis and related species.

Key to Species

1. Males (those of gammus and callus unknown) with palpi as in figures 206, 208, 209
 - mumai

2. MED coiled posteriorly (fig. 211)
 - mumai
 - MED not coiled posteriorly

3. MED greatly widened (fig. 215)
 - callus
 - MED not greatly widened (fig. 213)

Drassyllus mumai Gertsch and Riechert
Figures 206–211; Map 34

Drassyllus mumai Gertsch and Riechert, 1976, p. 13, figs. 12–14 (female holotype from Carrizozo, Lincoln County, New Mexico, in AMNH, examined).

Diagnosis: Males of D. mumai may be recognized by the semicircular tip of the TA (figs. 206, 208) and pronglike extension of the TAB (fig. 209), females by the straight lateral margins of the MP (figs. 207, 210).
MALE: Total length 3.35 ± 0.39. Carapace 1.47 ± 0.17 long, 1.11 ± 0.13 wide. Femur II 0.92 ± 0.13 long (101 specimens examined). Eye sizes and interdistances: AME 0.06, ALE 0.08, PME 0.10, PLE 0.07; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.21, front width 0.18, back width 0.22. TA with semicircular tip (figs. 206, 208); TAB with distally directed pronglike retrolateral extension (fig. 209). Leg spination: tibia III v2-2-0.

FEMALE: Total length 3.66 ± 0.54. Carapace 1.52 ± 0.13 long, 1.15 ± 0.11 wide. Femur II 0.98 ± 0.11 long (94 specimens examined). Eye sizes and interdistances: AME 0.05, ALE 0.08, PME 0.10, PLE 0.07; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.20, front width 0.15, back width 0.22. MP expanded, with straight lateral margins (figs. 207, 210); MED coiled posteriorly, with anterolateral projections (fig. 211). Leg spination: femur IV p0-0-0; tibia IV p1-0-1; metatarsus III p1-1-2.

DISTRIBUTION: Arizona to Coahuila (map 34).

NATURAL HISTORY: Mature males have been taken from December through September, mature females from January through...
September. Specimens have been collected in pitfall traps, on rangeland, under cow pats, trash, and fallen cholla, and associated with yucca, ephedra, allthorn, and mesquite, at elevations up to 4600 feet.

Drassylus gammus, new species
Figures 212, 213; Map 31

Type: Female holotype from jungle 6 miles south of Guamúchil, Sinaloa, Mexico (February 1, 1966; V. Roth), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassylus gammus* may be distinguished by the ovoid enlargements situated behind the AED (fig. 213) of females.

Male: Unknown.

Female: Total length 6.17. Carapace 2.04 long, 1.58 wide. Femur II 1.49 long. Eye sizes and interdistances: AME 0.09, ALE 0.11, PME 0.13, PLE 0.10; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.26, front width 0.23, back width 0.28. MP widest posteriorly, almost fused with AEM (fig. 212); pair of ovoid enlargements behind AED (fig. 213). Leg spination: tibia II v0-1r-0.

Material Examined: Only the holotype.

Distribution: Known only from Sinaloa, Mexico (map 31).

Drassylus callus, new species
Figures 214, 215; Map 31

Type: Female holotype from Agua Caliente, latitude 26°50' N, longitude 108°36' W,
Sonora, Mexico (January 18, 1972; V. Roth), deposited in AMNH.

ETYMOLOGY: The specific name is an arbitrary combination of letters.

DIAGNOSIS: Drassyllus callus may be distinguished by the greatly expanded MED (fig. 215) of females.

MALE: Unknown.

FEMALE: Total length 5.49. Carapace 2.44 long, 1.92 wide. Femur II 1.73 long. Eye sizes and interdistances: AME 0.08, ALE 0.11, PME 0.15, PLE 0.11; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.01, PME–PLE 0.06, ALE–PLE 0.06. MOQ length 0.35, front width 0.22, back width 0.31. AEM invaginated at middle (fig. 214); MED greatly expanded (fig. 215). Leg spination: tibiae: II v1r–l–r–0; III v2–2–2.

MATERIAL EXAMINED: Only the holotype.

DIAGNOSIS: The insularis group contains those species in which the females have a pair of median extensions on the anterior epigynal ducts (as in figs. 219, 255, 279) and the anterior edges of the epigynal midpiece extending out to the sides, often at considerable length (as in figs. 250, 266). The known males lack stiff setae dorsally on the palpal tibia and have either a long spur extending from the retrolateral side of the base of the terminal apophysis (as in figs. 216, 224, 248, 252) or a greatly elongated and distally directed embolar projection (figs. 234, 238, 264, 276).

THE insularis GROUP

DIAGNOSIS: The insularis group contains those species in which the females have a pair of median extensions on the anterior epigynal ducts (as in figs. 219, 255, 279) and the anterior edges of the epigynal midpiece extending out to the sides, often at considerable length (as in figs. 250, 266). The known males lack stiff setae dorsally on the palpal tibia and have either a long spur extending from the retrolateral side of the base of the terminal apophysis (as in figs. 216, 224, 248, 252) or a greatly elongated and distally directed embolar projection (figs. 234, 238, 264, 276).

KEY TO SPECIES

1. Males (those of coajus, mazus, chibus, ojus, villus, baccus, sonus, mirus, tinus, and zimus unknown) ... 2

2. TA with pointed projection on retrolateral side (figs. 216, 220, 224) ... 3

3. EMB relatively short (figs. 216, 220) ... insularis

EMB relatively long (fig. 224) ... tepus

4. TAB with long retrolateral extension (figs. 248, 252, 260) ... 5

TAB without long retrolateral extension (figs. 234, 238, 264, 276) ... 7

5. RTA abruptly narrowed distally (figs. 260, 261) ... salton

RTA smoothly narrowed distally (figs. 249, 253) ... 6

6. TA abruptly narrowed and twisted distally (figs. 222, 248) ... saphes

TA smoothly narrowed and not twisted distally (figs. 252, 256) ... fractus

7. TA bifid (figs. 270, 276) ... lepidus

TA entire ... 8

8. TA rounded retrolaterally (fig. 264), RTA relatively short (fig. 265) ... prosaphes

TA angular retrolaterally (figs. 234, 238); RTA relatively long (figs. 235, 239) ... 9

9. TA relatively long, wide (fig. 234) ... eurus

TA relatively short, narrow (fig. 238) ... 10

TA relatively long, narrow (fig. 238) ... talus

10. AEM extending almost entire width of epigynum (figs. 116, 218, 226, 228, 230, 232, 236, 242, 274, 278, 280) ... 18

AEM extending less than half of epigynal width or not present as separate structure ... 11

11. AEM distinct from MP (figs. 240, 244, 250, 254, 262) ... 14

AEM absent, presumably fused to MP (figs. 246, 266, 272) ... 12

12. Epigynum widest posteriorly (fig. 272) ... mirus

Epigynum widest anteriorly or at middle (figs. 246, 266) ... 13
13. Lateral edges of epigynum straight (figs. 266, 269) .. prosaphes
Lateral edges of epigynum sinuous (fig. 246) ... sonus
14. AEM reduced to small hood between lateral extensions of MP (figs. 259, 262)
AEM extending over part of lateral extensions of MP (figs. 240, 244, 250, 254)
... salton
15. Epigynum longer than wide (fig. 240) ... talus
Epigynum wider than long (figs. 244, 250, 254) .. 16
16. Lateral edges of epigynum straight (fig. 244) ... baccus
Lateral edges of epigynum curved (figs. 250, 254) .. 17
17. Lateral edges of epigynum extended toward MP (figs. 223, 250) saphes
Lateral edges of epigynum not extended toward MP (figs. 254, 257) fractus
18. AED extending to near SP (figs. 219, 227, 229, 231) ... 19
AED not extending to near SP (figs. 117, 233, 237, 243, 275, 279, 281) 22
19. Epigynum roughly square (figs. 218, 226, 228) .. 20
Epigynum roughly triangular (fig. 230) ... mazus
20. Epigynum wider than long (fig. 228) ... coajus
Epigynum longer than wide (figs. 218, 226) ... 21
21. Epigynum with posterolateral corners (figs. 218, 221) ... insularis
Epigynum without posterolateral corners (fig. 226) .. tepus
22. MED and AED connected by large flange (figs. 233, 237, 279, 281) 23
MED and AED not connected by large flange (figs. 117, 243, 275) 26
23. AEM extending almost to SP (figs. 271, 278) ... lepidus
AEM restricted to anterior portion of epigynum (figs. 232, 236, 280) 24
24. SP displaced laterally (figs. 280, 281) ... eurus
SP not displaced laterally (figs. 233, 237) ... 25
25. AED extending beyond AEM (figs. 232, 233) .. chibus

Drassyllus insularis (Banks)
Figures 216–221; Map 35

Callilepis insularis Banks, 1900, p. 97 (female holotype from Isla de Guadalupe, Baja California Norte, Mexico, in MCZ, examined). Bonnet, 1956, p. 932.

Zelotes irritans Chamberlin, 1919, p. 6, pl. 2, fig. 6 (male holotype from Claremont, Los Angeles County, California, in MCZ, examined). First synonymized by Ubick and Roth, 1973, p. 2.

Diagnosis: Drassyllus insularis seems closest to *D. tepus* (in both species the TA bears a pointed retrolateral projection) but may be distinguished by the relatively short EMB and single retrolateral projection of the TAB (figs. 216, 220) of males and the ridges at the posterolateral corners of the epigynum (figs. 218, 221) of females.
MALE: Total length 4.82 ± 1.28. Carapace 2.27 ± 0.32 long, 1.77 ± 0.21 wide. Femur II 1.49 ± 0.23 long (434 specimens examined). Eye sizes and interdistances: AME 0.06, ALE 0.10, PME 0.13, PLE 0.11; AME–AME 0.09, AME–ALE 0.02, PME–PME 0.04, PME–PLE 0.06, ALE–PLE 0.08. MOQ length 0.32, front width 0.21, back width 0.30. TA with retrolateral point, TAB with long, entire retrolateral extension (figs. 216, 220); RTA long, distally sinuous (fig. 217). Leg spination: femur IV v1r-2-0; tibiae: II v1r-2-0; III d1-0-0, v2-2-2, r1-1-1; IV p2-l-1, r2-1-1; metatarsus II v2-1p-0.

FEMALE: Total length 5.23 ± 0.82. Carapace 2.09 ± 0.15 long, 1.57 ± 0.12 wide. Femur II 1.40 ± 0.09 long (581 specimens examined). Eye sizes and interdistances: AME 0.07, ALE 0.11, PME 0.12, PLE 0.10; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.04, PME–PLE 0.05, ALE–PLE 0.06. MOQ length 0.29, front width 0.20, back width 0.28. AEM wide, MP with long lateral extensions, ridges present at posterolateral corners (figs. 218, 221); AED extending to spermathecae (fig. 219). Leg spination: femora: III d1-1-1; IV r0-1-1; tibiae: II v0-1r-0; III d1-0-0, v2-2-2; IV r2-1-1; metatarsi: II v2-lp-0; III r0-2-2; IV r1-2-2.

RECORDS: Canada: British Columbia: Lillooet, Oliver, Summerland. United States (county records only): Arizona: Maricopa,

Natural History: Mature males and females have been taken year-round. Specimens have been collected in pitfall traps in chaparral and citrus litter, under logs and rocks, associated with alfalfa, box elder, cottonwood, oak, poplar, and yucca, in nests of Neotoma woodrats and Phidippus johnsoni jumping spiders, in the burrows of tarantulas, and in buildings, at elevations up to 7000 feet.

Drassyllus tepus, new species

Figures 224–227; Map 35

Types: Male holotype and female paratype from Tepetates Pass, 15 miles west of Hidalgo, latitude 19°39’ N, longitude 100°45’.

W, Michoacan, Mexico (May 8, 1963; W. J. Gertsch and W. Ivie), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: Drassyllus tepus seems closest to D. insularis but may be distinguished by the bifid projection of the TAB (figs. 224, 225) of males and the absence of ridges at the posterolateral epigynal corners (fig. 226) of females.

Male: Total length 5.04. Carapace 2.10 long, 1.69 wide. Femur II 1.33 long. Eye sizes and interdistances: AME 0.07, ALE 0.08, PME 0.10, PLE 0.09; AME–AME 0.04, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.03. MOQ length 0.23, front width 0.18, back width 0.22. TA with pointed retrolateral projection, TAB with bifid retrolateral projection (fig. 224); RTA oblique (fig. 225). Leg spination: tibiae: II v1r-lr-0; III v2-2-2; metatarsus III v2-2-0.

Female: Total length 4.63. Carapace 2.08 long, 1.60 wide. Femur II 1.26 long. Eye sizes and interdistances: AME 0.07, ALE 0.08, PME 0.10, PLE 0.10; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.25, front width 0.20, back width 0.22. AEM extending width of epigynum (fig. 226); AED...
extending to SP (fig. 227). Leg spination: tibia IV p1-0-1.

Material Examined: Only the types.

Distribution: Known only from Michoacan, Mexico (map 35).

Drassyllus coajus, new species

Type: Female holotype from Coajomulco, Morelos, Mexico (June 7, 1946; J. C. and D. L. Pallister), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus coajus* seems closest to *D. mazus* (in both species the AEM is greatly elongated) but may be distinguished by the rectangular epigynum (fig. 228) of females.

Male: Unknown.

Female: Total length 4.58–5.83. Carapace 1.86–2.28 long, 1.37–1.73 wide. Femur II 1.20–1.48 long. Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.10, PLE 0.07; AME–AME 0.07, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.05, ALE–PLE 0.03. MOQ length 0.24, front width 0.21, back width 0.22. AEM greatly elongated (fig. 228); AED extended to SP (fig. 229). Leg spination: tibia IV p1-0-1.

Distribution: Central Mexico (map 35).

Drassyllus mazus, new species

Type: Female holotype from 3 miles south of Mazamitla, latitude 19°49' N, longitude 103°05' W, Jalisco, Mexico (May 10, 1963; W. J. Gertsch and W. Ivie), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus mazus* seems closest to *D. coajus* but may be distinguished by the triangular epigynum (fig. 230) of females.

MALE: Unknown.

FEMALE: Total length 4.07, 4.69. Carapace 1.87, 1.89 long, 1.33, 1.43 wide. Femur II 0.97, 1.17 long. Eye sizes and interdistances: AME 0.07, ALE 0.07, PME 0.10, PLE 0.08; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.03. MOQ length 0.23, front width 0.19, back width 0.22. AEM greatly elongated (fig. 230); AED expanded anteriorly (fig. 231). Leg spination: tibia IV p1-0-1; metatarsi: I v0-0-0; III p0-1-2.

Material Examined: One female taken with the holotype.

Distribution: Known only from Jalisco, Mexico (map 35).

Drassylus chibus, new species

Figures 232, 233; Map 36

Type: Female holotype from an elevation of 1000 m. at Barranca de Río Batopilas, 120 km. south of Creel, Chihuahua, Mexico (February 26, 1966; J. Reddell and W. Bell), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: Drassylus chibus seems closest to D. ojus, D. eurus, and D. talus (in all four species the MED and AED are connected by a large translucent flange) but may be distinguished by the AED extending beyond the AEM (figs. 232, 233) in females.

MALE: Unknown.

FEMALE: Total length 4.39. Carapace 1.86 long, 1.37 wide. Femur II 1.22 long. Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.10, PLE 0.09; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.06, ALE–PLE 0.04. MOQ length 0.24, front width 0.19, back width 0.23. AEM extending width of epigynum (fig. 232); AED extending anterior of AEM (fig. 233). Leg spination: tibiae: II v0-1r-0; III v2-2-2.

Material Examined: Only the holotype.
Distribution: Known only from Chihuahua, Mexico (map 36).

Drassyllus ojus, new species

Figures 236, 237; Map 36

Type: Female holotype from Laguna Ojo de Liebre, Baja California Sur, Mexico (February 23, 1966; V. Roth), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus ojus* seems closest to *D. chibus*, *D. eurus*, and *D. talus* but may be distinguished by the rounded anterior edges of the MP (fig. 236) of females.

Male: Unknown.

Female: Total length 3.78–5.94. Carapace 1.52–2.20 long, 1.22–1.71 wide. Femur II 1.08–1.55 long. Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.11, PLE 0.08; AME-AME 0.06, AME-ALE 0.02, PME-PME 0.02, PME-PLE 0.04, ALE-PLE 0.03. MOQ length 0.22, front width 0.20, back width 0.24. AEM wide (fig. 236); AED not reaching AEM (fig. 237). Leg spination: tibiae: III v2-2-2; IV p1-0-1; metatarsi: I v1r-0-0; III v2-1p-0.

Map 36. North America, showing distribution of *Drassyllus ojus* (circles), *D. villus* (square), *D. chibus* (upright triangle), and *D. eurus* (inverted triangles).

Drassyllus eurus, new species

Figures 234, 235, 280, 281; Map 36

Types: Male holotype and female paratype from a pitfall trap on a desert dune at Eureka Valley, Inyo County, California (April 1978; Giuliani, Hardy, and Andrews), deposited in CAS.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus eurus* seems closest to *D. chibus*, *D. ojus*, and *D. talus* but may be distinguished by the relatively long, wide TA (fig. 234) of males and the laterally displaced SP (figs. 280, 281) of females.

Male: Total length 1.88–2.34. Carapace 0.94–0.99 long, 0.72–0.81 wide. Femur II 0.60–0.72 long. Eye sizes and interdistances: AME 0.04, ALE 0.06, PME 0.06, PLE 0.05; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.03, ALE–PLE 0.03. MOQ length 0.16, front width 0.12, back width 0.15. TA relatively long, wide, arched (fig. 234); RTA relatively short (fig. 235). Leg spination: femora: I p0-0-0; IV p0-0-0, r0-0-0; tibia IV p1-0-1, v1p-1p-2, r1-0-1; metatarsi: I v0-0-0; III p0-1-2, r0-1-2; IV p0-2-2, v2-0-0, r0-2-1.

Female: Total length 2.92. Carapace 1.12 long, 0.82 wide. Femur II 0.74 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.09, PLE 0.06; AME–AME 0.04, AME–ALE 0.00, PME–PME 0.01, PME–PLE 0.04, ALE–PLE 0.03. MOQ length 0.16, front width 0.14, back width 0.19. AEM wide (fig. 280); SP displaced to sides of epigynum (fig. 281). Leg spination: femora: I, II
p0-0-0; III p0-0-1, r0-0-0; IV p0-0-0, r0-0-0; patella III r0-0-0; tibiae: III p0-1-1, v0-1p-1p, r0-1-0; IV p1-0-1, v1p-2-2, r0-1-1; metatarsi: I, II v0-0-0; III p0-0-1, v0-0-0, r0-0-1; IV p0-1-1, v1p-0-0, r0-1-0.

Other Material Examined: One male taken with the types (CDFA) and one male taken at Mercury, Nye County, Nevada on November 13, 1961.

Distribution: California and Nevada (map 36).

Drassyllus talus, new species

Figures 238–241; Map 34

Type: Female holotype from an elevation of 100 feet at the west end of Punta Banda, Baja California Norte, Mexico (July 11, 1969; S. C. Williams and V. F. Lee), deposited in CAS.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus talus* seems closest to *D. chibus*, *D. ojus*, and *D. eurus* but may be distinguished by the relatively short, narrow TA (fig. 238) of males and the narrow AEM (fig. 240) of females.

Male: Total length 2.61. Carapace 1.22 long, 0.95 wide. Femur II 0.83 long. Eye sizes and interdistances: AME 0.04, ALE 0.05, PME 0.05, PLE 0.05; AME–AME 0.03, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.13, front width 0.12, back width 0.13. TA relatively short, narrow (fig. 238); RTA relatively short (fig. 239). Leg spination: tibia II v0-1r-0; metatarsi: I v0-0-0; II v1p-0-0; III p0-2-2.

Female: Total length 5.90. Carapace 2.43 long, 1.80 wide. Femur II 1.71 long. Eye sizes and interdistances: AME 0.06, ALE 0.10, PME 0.11, PLE 0.09; AME–AME 0.09, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.29, front width 0.20, back width 0.25. AEM not extending width of epigynum (fig. 240); MED and AED connected by translucent flange (fig. 241).

Other Material Examined: MEXICO:
PLATNICK AND SHADAB: DRASSYLLUS

Baja California Sur: Sierra Laguna, 17 mi. ENE Todos Santos, Dec. 12–18, 1979, elevation 6000 feet (C. E. Griswold, UCB), 1♀.

Distribution: Known only from Baja California, Mexico (map 34).

Drassyllus villus, new species
Figures 242, 243; Map 36

Type: Female holotype from an elevation of 6200 feet at about 52 miles east of Villa Unión, Sinaloa, Mexico (August 25, 1965; W. J. Gertsch and R. Hastings), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: Drassyllus villus seems closest to D. baccus (both species have recurved extensions of the MP outlining large paramedian discs) but may be distinguished by the wider AEM (fig. 242) of females.

Male: Unknown.

Female: Total length 4.93. Carapace 1.84 long, 1.43 wide. Femur II 1.30 long. Eye sizes and interdistances: AME 0.06, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.04, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.22, front width 0.15, back width 0.21. AEM extending almost width of epigynum (fig. 242); AED with narrow posterior extensions (fig. 243). Leg spination: tibiae: III v2-2-2; IV p1-0-1, v1p-2-2.

Material Examined: Only the holotype.

Distribution: Known only from Sinaloa, Mexico (map 36).

Drassyllus baccus, new species
Figures 244, 245; Map 34

Type: Female holotype from between Creel and Batopilas, Chihuahua, Mexico (February 28, 1966; J. Reddell and W. Bell), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: Drassyllus baccus seems closest to D. villus but may be distinguished by the narrower AEM (fig. 244) of females.

Male: Unknown.
Map 37. North America, showing distribution of Drassyllus saphes.

Female: Total length 6.62. Carapace 2.22 long, 1.85 wide. Femur II 1.56 long. Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.12, PLE 0.09; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.25, front width 0.22, back width 0.28. AEM occupying only half of epigynal width (fig. 244); AED narrowed anteriorly (fig. 245). Leg spination: tibiae: II v1r-lr-0; III v2-2-2.

Material Examined: Only the holotype.

Distribution: Known only from Chihuahua, Mexico (map 34).

Drassyllus saphes Chamberlin

Figures 222, 223, 248–251; Map 37

Diagnosis: *Drassyllus saphes* seems closest to *D. fractus* and *D. salton* (in all three species the TA is a broad, rounded lobe) but may be distinguished by the distally twisted TA (figs. 222, 249) of males and the long, rounded lateral extensions of the MP (figs. 223, 250) of females.

Male: Total length 3.90 ± 0.47. Carapace 1.70 ± 0.17 long, 1.30 ± 0.13 wide. Femur II 1.06 ± 0.13 long. Eye sizes and interdis-

tances: AME 0.05, ALE 0.06, PME 0.09, PLE 0.06; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.20, front width 0.16, back width 0.20. TA narrowed, twisted distally (figs. 222, 248); RTA blade-shaped (fig. 249). Leg spination: tibiae: I v0-lr-0; II v1r-0-0; III v2-2-2; IV r2-1-1.

FEMALE: Total length 5.43 ± 1.18. Carapace 2.27 ± 0.59 long, 1.70 ± 0.42 wide. Femur II 1.42 ± 0.38 long. Eye sizes and interdistances: AME 0.05, ALE 0.07, PME 0.10, PLE 0.07; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.19, front width 0.16, back width 0.22. MP with recurved lateral extensions (figs. 223, 250); AED expanded at tip (fig. 251). Leg spination: femur IV p0-1-1, r0-1-1; tibiae: III v2-2-2, r1-1-1; IV r2-1-1; metatarsi: I v1p-0-0; III v2-2-0.

MAP 38. North America, showing distribution of *Drassyllus fractus*.

Drassyllus fractus Chamberlin
Figures 252–257; Map 38

Diagnosis: Drassyllus fractus seems closest to D. saphes and D. salton but may be distinguished by the distally untwisted TA (figs. 252, 256) and gradually narrowed RTA (fig. 253) of males and the angular lateral epigynal ridges (figs. 254, 257) of females.

Male: Total length 4.19 ± 0.45. Carapace 1.81 ± 0.15 long, 1.39 ± 0.15 wide. Femur II 1.21 ± 0.15 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.08, PLE 0.06; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.18, front width 0.14, back width 0.19. TA distally untwisted (figs. 252, 256); RTA gradually narrowed distally (fig. 253). Leg spination: tibiae: II v1-lr-1r-0; III v2-2-2, r1-l-1; IV r2-l-1; metatarsus I v1p-0-0.

Distribution: Oregon and Montana to Baja California Norte (map 37).

MAP 39. North America, showing distribution of Drassyllus salton (circles), D. tinus (triangle), and D. zimus (square).

FEMALE: Total length 4.96 ± 0.78. Carapace 2.11 ± 0.33 long, 1.54 ± 0.24 wide. Femur II 1.36 ± 0.20 long. Eye sizes and interdistances: AME 0.06, ALE 0.08, PME 0.08, PLE 0.07; AME–AME 0.06; AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.06, ALE–PLE 0.05. MOQ length 0.24, front width 0.18, back width 0.19. MP with angular lateral extensions (figs. 254, 257); MED with lateral lobes (fig. 255). Leg spination: femora: I, II d1-0-0; IV p0-1-1, r0-1-1; tibiae: III v2-2-0, r2-1-1; IV r2-1-1; metatarsi: I v0-0-0; III v2-2-0.

Co.: Del Puerto Canyon, Feb. 25, 1975 (C. E. Griswold, UCB), 1♀.

DISTRIBUTION: Known only from California (map 38).

Drassylus salton, new species

Figures 258–263; Map 39

TYPES: Male holotype and female paratype from Fish Springs, Salton Sea, Imperial County, California (March 12, 1941; A. and W. Ivie), deposited in AMNH.

ETYMOLOGY: The specific name is a noun in apposition taken from the type locality.

DIAGNOSIS: *Drassylus salton* seems closest to *D. saphes* and *D. fractus* but may be distinguished by the abruptly narrowed and excavated tip of the RTA (figs. 260, 261) of males and the tiny AEM (figs. 259, 262) of females.

MALE: Total length 3.28–3.67. Carapace 1.50–1.58 long, 1.17–1.27 wide. Femur II 0.86–1.04 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.07, PLE 0.05; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.04. MOQ length 0.17, front width 0.14, back width 0.17. TA very broad proximally (figs. 258, 260); RTA excavated distally (fig. 261). Leg spination: tibia III v2-2-2; metatarsus I v0-0-0.

FEMALE: Total length 2.95–5.58. Carapace 1.10–2.17 long, 0.86–1.64 wide. Femur II 0.67–1.33 long. Eye sizes and interdistances: AME 0.07, ALE 0.08, PME 0.10, PLE 0.07; AME–AME 0.06, AME–ALE 0.01, PME–PME 0.03, PME–PLE 0.04, ALE–PLE 0.04. MOQ length 0.21, front width 0.20, back width 0.23. AEM reduced to small hood between lateral extensions of MP (figs. 259, 262); PED, MED, AED all narrow (fig. 263). Leg spination: femur IV p0-1-1, r0-1-1; tibiae: II v0-1r-0; III v2-2-2; IV r2-1-1; metatarsus I v0-0-0.

DISTRIBUTION: Known only from Arizona and southern California (map 39).

Drassylus prosaphes Chamberlin

Figures 264–269; Map 40

DIAGNOSIS: *Drassylus prosaphes* seems closest to *D. sonus* and *D. mirus* (in all three species the AEM is absent and has presumably been fused to the MP) but may be distinguished by the horn-shaped EP (figs. 264, 268) of males and the almost rectangular lateral discs outlined by the extensions of the MP (figs. 266, 269) of females.

MALE: Total length 2.80 ± 0.25. Carapace 1.33 ± 0.08 long, 1.03 ± 0.07 wide. Femur II 0.78 ± 0.06 long. Eye sizes and interdistances: AME 0.04, ALE 0.06, PME 0.07, PLE 0.06; AME–AME 0.05, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.03,

ALE-PLE 0.03. MOQ length 0.18, front width 0.13, back width 0.15. EP enlarged, horn-shaped, with bell of horn directed retrolaterally (figs. 264, 268); RTA short (fig. 265). Leg spination: tibiae: II v1r-lr-0; IV p2-1-1, r2-1-1.

FEMALE: Total length 3.41 ± 0.47. Carapace 1.44 ± 0.09 long, 1.10 ± 0.09 wide. Femur II 0.83 ± 0.05 long. Eye sizes and interdistances: AME 0.04, ALE 0.06, PME 0.08, PLE 0.06; AME-AME 0.05, AME-ALE 0.01, PME-PME 0.03, PME-PLE 0.02, ALE-PLE 0.04. MOQ length 0.19, front width 0.13, back width 0.19. MP extensions outlining almost rectangular lateral discs (figs. 266, 269); AED short (fig. 267). Leg spination: femur IV p0-0-0; tibia III v2-2-2; metatarsus III p1-1-2.

DISTRIBUTION: Known only from Texas and Tamaulipas (map 40).
Drassyllus sonus, new species

Figs. 246, 247; Map 40

Type: Female holotype from Río Cuchujaqui, east of Álamos, Sonora, Mexico (January 14, 1968; V. Roth), deposited in AMNH.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus sonus* seems closest to *D. prosaphes* and *D. mirus* but may be distinguished by the sinuous lateral extensions of the MP (fig. 246) of females.

Male: Unknown.

Female: Total length 4.08–5.67. Carapace 1.81–2.09 long, 1.30–1.69 wide. Femur II 1.19–1.49 long. Eye sizes and interdistances: AME 0.06, ALE 0.09, PME 0.11, PLE 0.10; AME–AME 0.06, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.26, front width 0.18, back width 0.25. MP with sinuous lateral extensions (fig. 246); AED expanded at tip (fig. 247). Leg spination: tibiae: II v1r-1r-0; III v2-2-2.

Other Material Examined: MEXICO: Chihuahua: Milpillas, Feb. 1, 1968 (V. Roth), 2♀; Santo Niño, Nov. 18, 1972, elevation 400 meters (V. Roth), 1♀.

Distribution: Known only from southern Sonora and Chihuahua, Mexico (map 40).

Drassyllus mirus, new species

Figs 272, 273; Map 40

Type: Female holotype from 8 kilometers south of Miraflores on the road to Las Casitas, Baja California Sur, Mexico (December 15, 1977; L. Vincent and C. Griswold), deposited in UCB, on permanent loan to CAS.

Etymology: The specific name is an arbitrary combination of letters.

Diagnosis: *Drassyllus mirus* seems closest to *D. prosaphes* and *D. sonus* but may be distinguished by the epigynum being widest posteriorly (fig. 272) in females.

Male: Unknown.

Female: Total length 4.88, 5.47. Carapace...
2.00, 2.17 long, 1.55, 1.76 wide. Femur II 1.25, 1.48 long. Eye sizes and interdistances: AME 0.08, ALE 0.09, PME 0.13, PLE 0.08; AME–AME 0.07, AME–ALE 0.02, PME–PME 0.03, PME–PLE 0.05, ALE–PLE 0.05. MOQ length 0.27, front width 0.23, back width 0.29. Epigynum widest posteriorly (fig. 272); PED and AED twisted (fig. 273). Leg spination: tibiae: II v1r·1r·0; III v2·2·2.

Material Examined: The holotype and one female taken at Rancho Mata Gorda, 12 km. west of Santiago, Baja California Sur, by L. Vincent and C. Griswold on December 18, 1977 (UCB).

Distribution: Known only from southern Baja California Sur, Mexico (map 40).

Drassyllus lepidus (Banks)
Figures 270, 271, 276–279; Map 41

Megamyrmecion lepidum Banks, 1899, p. 190 (female holotype from Shreveport, Caddo Parish, Louisiana, in MCZ, examined).

Drassinella lepidus: Banks, 1910, p. 8.

Drassyllus coahuilanus Gertsch and Davis, 1940, p. 7, fig. 15 (female holotype from Saltillo, Coahuila, Mexico, in AMNH, examined). Roewer, 1954, p. 413. Ubick and Roth, 1973, p. 2. NEW SYNONYMY.

Diagnosis: Drassyllus lepidus seems closest to D. tinus and D. zinus (in all three species the AEM extends posteriorly around the MP) but may be distinguished by the bifid TA (figs. 270, 276) of males and the very long AEM (figs. 271, 278) of females.

Male: Total length 3.01 ± 0.43. Carapace 1.39 ± 0.14 long, 1.08 ± 0.12 wide. Femur II 0.87 ± 0.06 long (65 specimens examined). Eye sizes and interdistances: AME 0.06, ALE 0.06, PME 0.10, PLE 0.09; AME–AME 0.04, AME–ALE 0.01, PME–PME 0.02, PME–PLE 0.03, ALE–PLE 0.04. MOQ length 0.22, front width 0.16, back width 0.23. TA bifid (figs. 270, 276); RTA notched (fig. 277). Leg spination: tibiae: II v0·1r·0; IV v0·1r·0.

Female: Total length 3.51 ± 0.54. Carapace 1.42 ± 0.14 long, 1.08 ± 0.12 wide. Femur II 0.90 ± 0.11 long (135 specimens examined). Eye sizes and interdistances: AME 0.06, ALE 0.07, PME 0.09, PLE 0.07; AME–AME 0.05, AME–ALE 0.02, PME–PME 0.02, PME–PLE 0.04, ALE–PLE 0.05. MOQ length 0.23, front width 0.18, back width 0.20. AEM extending almost to base of MP (figs. 271, 278); MED and AED connected by flange (fig. 279). Leg spination typical for genus.

characters to distinguish *mephisto* from *lepidus* and there appear to be none. Gertsch and Davis distinguished *coahuilanus* from *mephisto* on the basis of color pattern, which is subject to individual variation in all the populations sampled.

NOTE: It is possible that *Prosthesima fidelis* Banks (1898, p. 218, pl. 13, fig. 19), described from "Minititlan" (probably Minititlán, Veracruz), Mexico, is an earlier name for this species. However, the holotype and only known specimen has been destroyed and the species is not recognizable with certainty from Banks’s description and illustration. The name is therefore best regarded as a *nomen dubium*.

Drassyl us tinus, new species

Figures 274, 275; Map 39

TYPE: Female holotype from Sótano de la Tinaja, 11 kilometers north of Valles, San Luis Potosí, Mexico (February 18, 1970; W. Elliott), deposited in AMNH.

ETYMOLOGY: The specific name is an arbitrary combination of letters.

DIAGNOSIS: *Drassyl us tinus* seems closest to *D. lepidus* and *D. zimus* but may be distinguished by the wide MP (fig. 274) of females.

MALE: Unknown.

FEMALE: Total length 4.43. Carapace 1.83 long, 1.39 wide. Femur II 1.15 long. Eye sizes and interdistances: AME 0.07, ALE 0.09, PME 0.08, PLE 0.07; AME—AME 0.03, AME—ALE 0.02, PME—PME 0.03, PME—PLE 0.04, ALE—PLE 0.03. MOQ length 0.19, front width 0.17, back width 0.19. AEM horseshoe-shaped (fig. 274); MED expanded anteriorly (fig. 275). Leg spination: tibia III v2-2-2; metatarsi: I, II v0-0-0; III p0-1-2, r0-1-2.

MATERIAL EXAMINED: Only the holotype.

DISTRIBUTION: Known only from San Luis Potosí, Mexico (map 39).

Drassyl us zimus, new species

Figures 116, 117; Map 39

TYPE: Female holotype from 5 miles north of Zimapán, Hidalgo, Mexico (November 21, 1946; E. S. Ross), deposited in AMNH.
ETYMOLOGY: The specific name is an arbitrary combination of letters.

DIAGNOSIS: Drassyllus zimus seems closest to D. lepidus and D. tinus but may be distinguished by the short, sinuous AEM (fig. 116) of females.

MALE: Unknown.

FEMALE: Total length 3.35. Carapace 1.55 long, 1.27 wide. Femur II 0.94 long. Eye sizes and interdistances: AME 0.04, ALE 0.07, PME 0.06, PI E 0.05; AME—AME 0.04, AME—ALE 0.01, PME—PME 0.03, PME—PLE 0.02, ALE—PME 0.03. MOQ length 0.13, front width 0.12, back width 0.15. AEM short, sinuous (fig. 116); AED short (fig. 117). Leg spination: femur IV p0-1-1; tibiae: III v2-2-2; IV p1-0-1; metatarsi: I, II v0-0-0; III p0-1-2, v0-1-2.

MATERIAL EXAMINED: Only the holotype.

DISTRIBUTION: Known only from Hidalgo, Mexico (map 39).

LITERATURE CITED

Banks, Nathan

Berland, Lucien

Bonnet, Pierre

Bryant, Elizabeth B.

Chamberlin, Ralph V.
1936b. Further records and descriptions of North American Gnaphosidae. Ibid., no. 853, pp. 1–25, figs. 1–47.

Chamberlin, Ralph V., and Willis J. Gertsch

Chamberlin, Ralph V., and A. M. Woodbury
1929. Notes on the spiders of Washington
Emerton, James H.
Exline, Harriet
Forcart, Lothar
Fox, Irving
Gertsch, Willis J., and L. Irby Davis
Gertsch, Willis J., and Susan E. Riechert
Kaston, Benjamin J.
Locket, George H., A. F. Millidge, and P. Merrett
Lohmander, Hans
Marinaro, Jean-Yves
Miller, František
Muma, Martin H.
Petrunkevitch, Alexander
Platnick, Norman I.
Platnick, Norman I., and Mohammad U. Shadab
Roewer, Carl F.
Roth, Vincent D., and Wynne Brown
Scheffer, Theodore H.
Schenkel, Ehrenfried
Tullgren, Albert

Ubick, Darrell, and Vincent D. Roth

Worley, L. G.

INDEX OF SPECIFIC NAMES
(Valid names are printed in italics)

adocetus, 41
agilis, 8
alachua, 59
amissus, 53
antonito, 35
apachus, 30, 75
aprilinus, 48
arizonensis, 67
baccus, 83
callus, 72
cerrus, 42
chibus, 79
coaahuilanus, 92
coaquis, 78
conformans, 28
covensis, 49
creolus, 56
dentelifer, 26
depressa, 9, 12, 15
depressus, 12
de vexus, 62
diximus, 24
dixinus, 24
dromeus, 62
durango, 59
elegans, 8
ellipas, 53
empiricus, 75
eremitus, 11
eremophilus, 39
ethops, 8
eurus, 81
fallens, 9
fidelis, 93
finium, 26
fractus, 87
fratrellus, 31
frigida, 52
frigidus, 52
frigidus, 43
gammus, 72
gertschi, 28
gynosaphes, 17
huachuca, 59
hubbelli, 65
immaculata, 45
inanus, 33
insularis, 75
irratis, 75
lampra, 19
lamprus, 19
lasalus, 65
lepidum, 92
lepidus, 92
louisianus, 54
lutzi, 62
mazus, 78
mephisto, 92
mexicana, 65
mexicanus, 65
mirus, 91
monicus, 64
monteriensis, 75
mormon, 63
moronius, 20
mumai, 70
nannellus, 16
niger, 37
notonus, 30
nova, 43
novus, 43
ojus, 80
orgilus, 60
ostegae, 48
osteganus, 48
peninsulanus, 8
proclesis, 64
prosaphes, 89
puebla, 58
rationalis, 75
rufula, 37, 43, 44
rufalus, 44
salton, 89
saphes, 84
seminolus, 22
sinton, 34
socitus, 15
sonus, 91
sporadicus, 24
talus, 82
tepus, 77
texamans, 26
tinus, 93
tonaquintus, 31
transversa, 37
transversus, 37
viduus, 67
villus, 83
virginianus, 43
zelotoides, 19
zimus, 93